linux/drivers/nvme/host/pci.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * NVM Express device driver
   4 * Copyright (c) 2011-2014, Intel Corporation.
   5 */
   6
   7#include <linux/acpi.h>
   8#include <linux/aer.h>
   9#include <linux/async.h>
  10#include <linux/blkdev.h>
  11#include <linux/blk-mq.h>
  12#include <linux/blk-mq-pci.h>
  13#include <linux/dmi.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/io.h>
  17#include <linux/mm.h>
  18#include <linux/module.h>
  19#include <linux/mutex.h>
  20#include <linux/once.h>
  21#include <linux/pci.h>
  22#include <linux/suspend.h>
  23#include <linux/t10-pi.h>
  24#include <linux/types.h>
  25#include <linux/io-64-nonatomic-lo-hi.h>
  26#include <linux/sed-opal.h>
  27#include <linux/pci-p2pdma.h>
  28
  29#include "trace.h"
  30#include "nvme.h"
  31
  32#define SQ_SIZE(q)      ((q)->q_depth << (q)->sqes)
  33#define CQ_SIZE(q)      ((q)->q_depth * sizeof(struct nvme_completion))
  34
  35#define SGES_PER_PAGE   (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
  36
  37/*
  38 * These can be higher, but we need to ensure that any command doesn't
  39 * require an sg allocation that needs more than a page of data.
  40 */
  41#define NVME_MAX_KB_SZ  4096
  42#define NVME_MAX_SEGS   127
  43
  44static int use_threaded_interrupts;
  45module_param(use_threaded_interrupts, int, 0);
  46
  47static bool use_cmb_sqes = true;
  48module_param(use_cmb_sqes, bool, 0444);
  49MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
  50
  51static unsigned int max_host_mem_size_mb = 128;
  52module_param(max_host_mem_size_mb, uint, 0444);
  53MODULE_PARM_DESC(max_host_mem_size_mb,
  54        "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
  55
  56static unsigned int sgl_threshold = SZ_32K;
  57module_param(sgl_threshold, uint, 0644);
  58MODULE_PARM_DESC(sgl_threshold,
  59                "Use SGLs when average request segment size is larger or equal to "
  60                "this size. Use 0 to disable SGLs.");
  61
  62static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
  63static const struct kernel_param_ops io_queue_depth_ops = {
  64        .set = io_queue_depth_set,
  65        .get = param_get_uint,
  66};
  67
  68static unsigned int io_queue_depth = 1024;
  69module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
  70MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
  71
  72static int io_queue_count_set(const char *val, const struct kernel_param *kp)
  73{
  74        unsigned int n;
  75        int ret;
  76
  77        ret = kstrtouint(val, 10, &n);
  78        if (ret != 0 || n > num_possible_cpus())
  79                return -EINVAL;
  80        return param_set_uint(val, kp);
  81}
  82
  83static const struct kernel_param_ops io_queue_count_ops = {
  84        .set = io_queue_count_set,
  85        .get = param_get_uint,
  86};
  87
  88static unsigned int write_queues;
  89module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
  90MODULE_PARM_DESC(write_queues,
  91        "Number of queues to use for writes. If not set, reads and writes "
  92        "will share a queue set.");
  93
  94static unsigned int poll_queues;
  95module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
  96MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
  97
  98static bool noacpi;
  99module_param(noacpi, bool, 0444);
 100MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
 101
 102struct nvme_dev;
 103struct nvme_queue;
 104
 105static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
 106static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
 107
 108/*
 109 * Represents an NVM Express device.  Each nvme_dev is a PCI function.
 110 */
 111struct nvme_dev {
 112        struct nvme_queue *queues;
 113        struct blk_mq_tag_set tagset;
 114        struct blk_mq_tag_set admin_tagset;
 115        u32 __iomem *dbs;
 116        struct device *dev;
 117        struct dma_pool *prp_page_pool;
 118        struct dma_pool *prp_small_pool;
 119        unsigned online_queues;
 120        unsigned max_qid;
 121        unsigned io_queues[HCTX_MAX_TYPES];
 122        unsigned int num_vecs;
 123        u32 q_depth;
 124        int io_sqes;
 125        u32 db_stride;
 126        void __iomem *bar;
 127        unsigned long bar_mapped_size;
 128        struct work_struct remove_work;
 129        struct mutex shutdown_lock;
 130        bool subsystem;
 131        u64 cmb_size;
 132        bool cmb_use_sqes;
 133        u32 cmbsz;
 134        u32 cmbloc;
 135        struct nvme_ctrl ctrl;
 136        u32 last_ps;
 137
 138        mempool_t *iod_mempool;
 139
 140        /* shadow doorbell buffer support: */
 141        u32 *dbbuf_dbs;
 142        dma_addr_t dbbuf_dbs_dma_addr;
 143        u32 *dbbuf_eis;
 144        dma_addr_t dbbuf_eis_dma_addr;
 145
 146        /* host memory buffer support: */
 147        u64 host_mem_size;
 148        u32 nr_host_mem_descs;
 149        dma_addr_t host_mem_descs_dma;
 150        struct nvme_host_mem_buf_desc *host_mem_descs;
 151        void **host_mem_desc_bufs;
 152        unsigned int nr_allocated_queues;
 153        unsigned int nr_write_queues;
 154        unsigned int nr_poll_queues;
 155};
 156
 157static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
 158{
 159        int ret;
 160        u32 n;
 161
 162        ret = kstrtou32(val, 10, &n);
 163        if (ret != 0 || n < 2)
 164                return -EINVAL;
 165
 166        return param_set_uint(val, kp);
 167}
 168
 169static inline unsigned int sq_idx(unsigned int qid, u32 stride)
 170{
 171        return qid * 2 * stride;
 172}
 173
 174static inline unsigned int cq_idx(unsigned int qid, u32 stride)
 175{
 176        return (qid * 2 + 1) * stride;
 177}
 178
 179static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
 180{
 181        return container_of(ctrl, struct nvme_dev, ctrl);
 182}
 183
 184/*
 185 * An NVM Express queue.  Each device has at least two (one for admin
 186 * commands and one for I/O commands).
 187 */
 188struct nvme_queue {
 189        struct nvme_dev *dev;
 190        spinlock_t sq_lock;
 191        void *sq_cmds;
 192         /* only used for poll queues: */
 193        spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
 194        struct nvme_completion *cqes;
 195        dma_addr_t sq_dma_addr;
 196        dma_addr_t cq_dma_addr;
 197        u32 __iomem *q_db;
 198        u32 q_depth;
 199        u16 cq_vector;
 200        u16 sq_tail;
 201        u16 last_sq_tail;
 202        u16 cq_head;
 203        u16 qid;
 204        u8 cq_phase;
 205        u8 sqes;
 206        unsigned long flags;
 207#define NVMEQ_ENABLED           0
 208#define NVMEQ_SQ_CMB            1
 209#define NVMEQ_DELETE_ERROR      2
 210#define NVMEQ_POLLED            3
 211        u32 *dbbuf_sq_db;
 212        u32 *dbbuf_cq_db;
 213        u32 *dbbuf_sq_ei;
 214        u32 *dbbuf_cq_ei;
 215        struct completion delete_done;
 216};
 217
 218/*
 219 * The nvme_iod describes the data in an I/O.
 220 *
 221 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
 222 * to the actual struct scatterlist.
 223 */
 224struct nvme_iod {
 225        struct nvme_request req;
 226        struct nvme_queue *nvmeq;
 227        bool use_sgl;
 228        int aborted;
 229        int npages;             /* In the PRP list. 0 means small pool in use */
 230        int nents;              /* Used in scatterlist */
 231        dma_addr_t first_dma;
 232        unsigned int dma_len;   /* length of single DMA segment mapping */
 233        dma_addr_t meta_dma;
 234        struct scatterlist *sg;
 235};
 236
 237static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
 238{
 239        return dev->nr_allocated_queues * 8 * dev->db_stride;
 240}
 241
 242static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
 243{
 244        unsigned int mem_size = nvme_dbbuf_size(dev);
 245
 246        if (dev->dbbuf_dbs)
 247                return 0;
 248
 249        dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
 250                                            &dev->dbbuf_dbs_dma_addr,
 251                                            GFP_KERNEL);
 252        if (!dev->dbbuf_dbs)
 253                return -ENOMEM;
 254        dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
 255                                            &dev->dbbuf_eis_dma_addr,
 256                                            GFP_KERNEL);
 257        if (!dev->dbbuf_eis) {
 258                dma_free_coherent(dev->dev, mem_size,
 259                                  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
 260                dev->dbbuf_dbs = NULL;
 261                return -ENOMEM;
 262        }
 263
 264        return 0;
 265}
 266
 267static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
 268{
 269        unsigned int mem_size = nvme_dbbuf_size(dev);
 270
 271        if (dev->dbbuf_dbs) {
 272                dma_free_coherent(dev->dev, mem_size,
 273                                  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
 274                dev->dbbuf_dbs = NULL;
 275        }
 276        if (dev->dbbuf_eis) {
 277                dma_free_coherent(dev->dev, mem_size,
 278                                  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
 279                dev->dbbuf_eis = NULL;
 280        }
 281}
 282
 283static void nvme_dbbuf_init(struct nvme_dev *dev,
 284                            struct nvme_queue *nvmeq, int qid)
 285{
 286        if (!dev->dbbuf_dbs || !qid)
 287                return;
 288
 289        nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
 290        nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
 291        nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
 292        nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
 293}
 294
 295static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
 296{
 297        if (!nvmeq->qid)
 298                return;
 299
 300        nvmeq->dbbuf_sq_db = NULL;
 301        nvmeq->dbbuf_cq_db = NULL;
 302        nvmeq->dbbuf_sq_ei = NULL;
 303        nvmeq->dbbuf_cq_ei = NULL;
 304}
 305
 306static void nvme_dbbuf_set(struct nvme_dev *dev)
 307{
 308        struct nvme_command c;
 309        unsigned int i;
 310
 311        if (!dev->dbbuf_dbs)
 312                return;
 313
 314        memset(&c, 0, sizeof(c));
 315        c.dbbuf.opcode = nvme_admin_dbbuf;
 316        c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
 317        c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
 318
 319        if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
 320                dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
 321                /* Free memory and continue on */
 322                nvme_dbbuf_dma_free(dev);
 323
 324                for (i = 1; i <= dev->online_queues; i++)
 325                        nvme_dbbuf_free(&dev->queues[i]);
 326        }
 327}
 328
 329static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
 330{
 331        return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
 332}
 333
 334/* Update dbbuf and return true if an MMIO is required */
 335static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
 336                                              volatile u32 *dbbuf_ei)
 337{
 338        if (dbbuf_db) {
 339                u16 old_value;
 340
 341                /*
 342                 * Ensure that the queue is written before updating
 343                 * the doorbell in memory
 344                 */
 345                wmb();
 346
 347                old_value = *dbbuf_db;
 348                *dbbuf_db = value;
 349
 350                /*
 351                 * Ensure that the doorbell is updated before reading the event
 352                 * index from memory.  The controller needs to provide similar
 353                 * ordering to ensure the envent index is updated before reading
 354                 * the doorbell.
 355                 */
 356                mb();
 357
 358                if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
 359                        return false;
 360        }
 361
 362        return true;
 363}
 364
 365/*
 366 * Will slightly overestimate the number of pages needed.  This is OK
 367 * as it only leads to a small amount of wasted memory for the lifetime of
 368 * the I/O.
 369 */
 370static int nvme_pci_npages_prp(void)
 371{
 372        unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
 373                                      NVME_CTRL_PAGE_SIZE);
 374        return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
 375}
 376
 377/*
 378 * Calculates the number of pages needed for the SGL segments. For example a 4k
 379 * page can accommodate 256 SGL descriptors.
 380 */
 381static int nvme_pci_npages_sgl(void)
 382{
 383        return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
 384                        PAGE_SIZE);
 385}
 386
 387static size_t nvme_pci_iod_alloc_size(void)
 388{
 389        size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
 390
 391        return sizeof(__le64 *) * npages +
 392                sizeof(struct scatterlist) * NVME_MAX_SEGS;
 393}
 394
 395static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 396                                unsigned int hctx_idx)
 397{
 398        struct nvme_dev *dev = data;
 399        struct nvme_queue *nvmeq = &dev->queues[0];
 400
 401        WARN_ON(hctx_idx != 0);
 402        WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
 403
 404        hctx->driver_data = nvmeq;
 405        return 0;
 406}
 407
 408static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 409                          unsigned int hctx_idx)
 410{
 411        struct nvme_dev *dev = data;
 412        struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
 413
 414        WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
 415        hctx->driver_data = nvmeq;
 416        return 0;
 417}
 418
 419static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
 420                unsigned int hctx_idx, unsigned int numa_node)
 421{
 422        struct nvme_dev *dev = set->driver_data;
 423        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 424        int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
 425        struct nvme_queue *nvmeq = &dev->queues[queue_idx];
 426
 427        BUG_ON(!nvmeq);
 428        iod->nvmeq = nvmeq;
 429
 430        nvme_req(req)->ctrl = &dev->ctrl;
 431        return 0;
 432}
 433
 434static int queue_irq_offset(struct nvme_dev *dev)
 435{
 436        /* if we have more than 1 vec, admin queue offsets us by 1 */
 437        if (dev->num_vecs > 1)
 438                return 1;
 439
 440        return 0;
 441}
 442
 443static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
 444{
 445        struct nvme_dev *dev = set->driver_data;
 446        int i, qoff, offset;
 447
 448        offset = queue_irq_offset(dev);
 449        for (i = 0, qoff = 0; i < set->nr_maps; i++) {
 450                struct blk_mq_queue_map *map = &set->map[i];
 451
 452                map->nr_queues = dev->io_queues[i];
 453                if (!map->nr_queues) {
 454                        BUG_ON(i == HCTX_TYPE_DEFAULT);
 455                        continue;
 456                }
 457
 458                /*
 459                 * The poll queue(s) doesn't have an IRQ (and hence IRQ
 460                 * affinity), so use the regular blk-mq cpu mapping
 461                 */
 462                map->queue_offset = qoff;
 463                if (i != HCTX_TYPE_POLL && offset)
 464                        blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
 465                else
 466                        blk_mq_map_queues(map);
 467                qoff += map->nr_queues;
 468                offset += map->nr_queues;
 469        }
 470
 471        return 0;
 472}
 473
 474/*
 475 * Write sq tail if we are asked to, or if the next command would wrap.
 476 */
 477static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
 478{
 479        if (!write_sq) {
 480                u16 next_tail = nvmeq->sq_tail + 1;
 481
 482                if (next_tail == nvmeq->q_depth)
 483                        next_tail = 0;
 484                if (next_tail != nvmeq->last_sq_tail)
 485                        return;
 486        }
 487
 488        if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
 489                        nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
 490                writel(nvmeq->sq_tail, nvmeq->q_db);
 491        nvmeq->last_sq_tail = nvmeq->sq_tail;
 492}
 493
 494/**
 495 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
 496 * @nvmeq: The queue to use
 497 * @cmd: The command to send
 498 * @write_sq: whether to write to the SQ doorbell
 499 */
 500static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
 501                            bool write_sq)
 502{
 503        spin_lock(&nvmeq->sq_lock);
 504        memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
 505               cmd, sizeof(*cmd));
 506        if (++nvmeq->sq_tail == nvmeq->q_depth)
 507                nvmeq->sq_tail = 0;
 508        nvme_write_sq_db(nvmeq, write_sq);
 509        spin_unlock(&nvmeq->sq_lock);
 510}
 511
 512static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
 513{
 514        struct nvme_queue *nvmeq = hctx->driver_data;
 515
 516        spin_lock(&nvmeq->sq_lock);
 517        if (nvmeq->sq_tail != nvmeq->last_sq_tail)
 518                nvme_write_sq_db(nvmeq, true);
 519        spin_unlock(&nvmeq->sq_lock);
 520}
 521
 522static void **nvme_pci_iod_list(struct request *req)
 523{
 524        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 525        return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
 526}
 527
 528static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
 529{
 530        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 531        int nseg = blk_rq_nr_phys_segments(req);
 532        unsigned int avg_seg_size;
 533
 534        avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
 535
 536        if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
 537                return false;
 538        if (!iod->nvmeq->qid)
 539                return false;
 540        if (!sgl_threshold || avg_seg_size < sgl_threshold)
 541                return false;
 542        return true;
 543}
 544
 545static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
 546{
 547        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 548        const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
 549        dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
 550        int i;
 551
 552        if (iod->dma_len) {
 553                dma_unmap_page(dev->dev, dma_addr, iod->dma_len,
 554                               rq_dma_dir(req));
 555                return;
 556        }
 557
 558        WARN_ON_ONCE(!iod->nents);
 559
 560        if (is_pci_p2pdma_page(sg_page(iod->sg)))
 561                pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
 562                                    rq_dma_dir(req));
 563        else
 564                dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
 565
 566
 567        if (iod->npages == 0)
 568                dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
 569                        dma_addr);
 570
 571        for (i = 0; i < iod->npages; i++) {
 572                void *addr = nvme_pci_iod_list(req)[i];
 573
 574                if (iod->use_sgl) {
 575                        struct nvme_sgl_desc *sg_list = addr;
 576
 577                        next_dma_addr =
 578                            le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
 579                } else {
 580                        __le64 *prp_list = addr;
 581
 582                        next_dma_addr = le64_to_cpu(prp_list[last_prp]);
 583                }
 584
 585                dma_pool_free(dev->prp_page_pool, addr, dma_addr);
 586                dma_addr = next_dma_addr;
 587        }
 588
 589        mempool_free(iod->sg, dev->iod_mempool);
 590}
 591
 592static void nvme_print_sgl(struct scatterlist *sgl, int nents)
 593{
 594        int i;
 595        struct scatterlist *sg;
 596
 597        for_each_sg(sgl, sg, nents, i) {
 598                dma_addr_t phys = sg_phys(sg);
 599                pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
 600                        "dma_address:%pad dma_length:%d\n",
 601                        i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
 602                        sg_dma_len(sg));
 603        }
 604}
 605
 606static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
 607                struct request *req, struct nvme_rw_command *cmnd)
 608{
 609        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 610        struct dma_pool *pool;
 611        int length = blk_rq_payload_bytes(req);
 612        struct scatterlist *sg = iod->sg;
 613        int dma_len = sg_dma_len(sg);
 614        u64 dma_addr = sg_dma_address(sg);
 615        int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
 616        __le64 *prp_list;
 617        void **list = nvme_pci_iod_list(req);
 618        dma_addr_t prp_dma;
 619        int nprps, i;
 620
 621        length -= (NVME_CTRL_PAGE_SIZE - offset);
 622        if (length <= 0) {
 623                iod->first_dma = 0;
 624                goto done;
 625        }
 626
 627        dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
 628        if (dma_len) {
 629                dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
 630        } else {
 631                sg = sg_next(sg);
 632                dma_addr = sg_dma_address(sg);
 633                dma_len = sg_dma_len(sg);
 634        }
 635
 636        if (length <= NVME_CTRL_PAGE_SIZE) {
 637                iod->first_dma = dma_addr;
 638                goto done;
 639        }
 640
 641        nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
 642        if (nprps <= (256 / 8)) {
 643                pool = dev->prp_small_pool;
 644                iod->npages = 0;
 645        } else {
 646                pool = dev->prp_page_pool;
 647                iod->npages = 1;
 648        }
 649
 650        prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
 651        if (!prp_list) {
 652                iod->first_dma = dma_addr;
 653                iod->npages = -1;
 654                return BLK_STS_RESOURCE;
 655        }
 656        list[0] = prp_list;
 657        iod->first_dma = prp_dma;
 658        i = 0;
 659        for (;;) {
 660                if (i == NVME_CTRL_PAGE_SIZE >> 3) {
 661                        __le64 *old_prp_list = prp_list;
 662                        prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
 663                        if (!prp_list)
 664                                return BLK_STS_RESOURCE;
 665                        list[iod->npages++] = prp_list;
 666                        prp_list[0] = old_prp_list[i - 1];
 667                        old_prp_list[i - 1] = cpu_to_le64(prp_dma);
 668                        i = 1;
 669                }
 670                prp_list[i++] = cpu_to_le64(dma_addr);
 671                dma_len -= NVME_CTRL_PAGE_SIZE;
 672                dma_addr += NVME_CTRL_PAGE_SIZE;
 673                length -= NVME_CTRL_PAGE_SIZE;
 674                if (length <= 0)
 675                        break;
 676                if (dma_len > 0)
 677                        continue;
 678                if (unlikely(dma_len < 0))
 679                        goto bad_sgl;
 680                sg = sg_next(sg);
 681                dma_addr = sg_dma_address(sg);
 682                dma_len = sg_dma_len(sg);
 683        }
 684
 685done:
 686        cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
 687        cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
 688
 689        return BLK_STS_OK;
 690
 691 bad_sgl:
 692        WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
 693                        "Invalid SGL for payload:%d nents:%d\n",
 694                        blk_rq_payload_bytes(req), iod->nents);
 695        return BLK_STS_IOERR;
 696}
 697
 698static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
 699                struct scatterlist *sg)
 700{
 701        sge->addr = cpu_to_le64(sg_dma_address(sg));
 702        sge->length = cpu_to_le32(sg_dma_len(sg));
 703        sge->type = NVME_SGL_FMT_DATA_DESC << 4;
 704}
 705
 706static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
 707                dma_addr_t dma_addr, int entries)
 708{
 709        sge->addr = cpu_to_le64(dma_addr);
 710        if (entries < SGES_PER_PAGE) {
 711                sge->length = cpu_to_le32(entries * sizeof(*sge));
 712                sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
 713        } else {
 714                sge->length = cpu_to_le32(PAGE_SIZE);
 715                sge->type = NVME_SGL_FMT_SEG_DESC << 4;
 716        }
 717}
 718
 719static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
 720                struct request *req, struct nvme_rw_command *cmd, int entries)
 721{
 722        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 723        struct dma_pool *pool;
 724        struct nvme_sgl_desc *sg_list;
 725        struct scatterlist *sg = iod->sg;
 726        dma_addr_t sgl_dma;
 727        int i = 0;
 728
 729        /* setting the transfer type as SGL */
 730        cmd->flags = NVME_CMD_SGL_METABUF;
 731
 732        if (entries == 1) {
 733                nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
 734                return BLK_STS_OK;
 735        }
 736
 737        if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
 738                pool = dev->prp_small_pool;
 739                iod->npages = 0;
 740        } else {
 741                pool = dev->prp_page_pool;
 742                iod->npages = 1;
 743        }
 744
 745        sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
 746        if (!sg_list) {
 747                iod->npages = -1;
 748                return BLK_STS_RESOURCE;
 749        }
 750
 751        nvme_pci_iod_list(req)[0] = sg_list;
 752        iod->first_dma = sgl_dma;
 753
 754        nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
 755
 756        do {
 757                if (i == SGES_PER_PAGE) {
 758                        struct nvme_sgl_desc *old_sg_desc = sg_list;
 759                        struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
 760
 761                        sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
 762                        if (!sg_list)
 763                                return BLK_STS_RESOURCE;
 764
 765                        i = 0;
 766                        nvme_pci_iod_list(req)[iod->npages++] = sg_list;
 767                        sg_list[i++] = *link;
 768                        nvme_pci_sgl_set_seg(link, sgl_dma, entries);
 769                }
 770
 771                nvme_pci_sgl_set_data(&sg_list[i++], sg);
 772                sg = sg_next(sg);
 773        } while (--entries > 0);
 774
 775        return BLK_STS_OK;
 776}
 777
 778static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
 779                struct request *req, struct nvme_rw_command *cmnd,
 780                struct bio_vec *bv)
 781{
 782        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 783        unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
 784        unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
 785
 786        iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
 787        if (dma_mapping_error(dev->dev, iod->first_dma))
 788                return BLK_STS_RESOURCE;
 789        iod->dma_len = bv->bv_len;
 790
 791        cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
 792        if (bv->bv_len > first_prp_len)
 793                cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
 794        return BLK_STS_OK;
 795}
 796
 797static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
 798                struct request *req, struct nvme_rw_command *cmnd,
 799                struct bio_vec *bv)
 800{
 801        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 802
 803        iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
 804        if (dma_mapping_error(dev->dev, iod->first_dma))
 805                return BLK_STS_RESOURCE;
 806        iod->dma_len = bv->bv_len;
 807
 808        cmnd->flags = NVME_CMD_SGL_METABUF;
 809        cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
 810        cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
 811        cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
 812        return BLK_STS_OK;
 813}
 814
 815static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
 816                struct nvme_command *cmnd)
 817{
 818        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 819        blk_status_t ret = BLK_STS_RESOURCE;
 820        int nr_mapped;
 821
 822        if (blk_rq_nr_phys_segments(req) == 1) {
 823                struct bio_vec bv = req_bvec(req);
 824
 825                if (!is_pci_p2pdma_page(bv.bv_page)) {
 826                        if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
 827                                return nvme_setup_prp_simple(dev, req,
 828                                                             &cmnd->rw, &bv);
 829
 830                        if (iod->nvmeq->qid &&
 831                            dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
 832                                return nvme_setup_sgl_simple(dev, req,
 833                                                             &cmnd->rw, &bv);
 834                }
 835        }
 836
 837        iod->dma_len = 0;
 838        iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
 839        if (!iod->sg)
 840                return BLK_STS_RESOURCE;
 841        sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
 842        iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
 843        if (!iod->nents)
 844                goto out;
 845
 846        if (is_pci_p2pdma_page(sg_page(iod->sg)))
 847                nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
 848                                iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
 849        else
 850                nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
 851                                             rq_dma_dir(req), DMA_ATTR_NO_WARN);
 852        if (!nr_mapped)
 853                goto out;
 854
 855        iod->use_sgl = nvme_pci_use_sgls(dev, req);
 856        if (iod->use_sgl)
 857                ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
 858        else
 859                ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
 860out:
 861        if (ret != BLK_STS_OK)
 862                nvme_unmap_data(dev, req);
 863        return ret;
 864}
 865
 866static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
 867                struct nvme_command *cmnd)
 868{
 869        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 870
 871        iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
 872                        rq_dma_dir(req), 0);
 873        if (dma_mapping_error(dev->dev, iod->meta_dma))
 874                return BLK_STS_IOERR;
 875        cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
 876        return BLK_STS_OK;
 877}
 878
 879/*
 880 * NOTE: ns is NULL when called on the admin queue.
 881 */
 882static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
 883                         const struct blk_mq_queue_data *bd)
 884{
 885        struct nvme_ns *ns = hctx->queue->queuedata;
 886        struct nvme_queue *nvmeq = hctx->driver_data;
 887        struct nvme_dev *dev = nvmeq->dev;
 888        struct request *req = bd->rq;
 889        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 890        struct nvme_command cmnd;
 891        blk_status_t ret;
 892
 893        iod->aborted = 0;
 894        iod->npages = -1;
 895        iod->nents = 0;
 896
 897        /*
 898         * We should not need to do this, but we're still using this to
 899         * ensure we can drain requests on a dying queue.
 900         */
 901        if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
 902                return BLK_STS_IOERR;
 903
 904        ret = nvme_setup_cmd(ns, req, &cmnd);
 905        if (ret)
 906                return ret;
 907
 908        if (blk_rq_nr_phys_segments(req)) {
 909                ret = nvme_map_data(dev, req, &cmnd);
 910                if (ret)
 911                        goto out_free_cmd;
 912        }
 913
 914        if (blk_integrity_rq(req)) {
 915                ret = nvme_map_metadata(dev, req, &cmnd);
 916                if (ret)
 917                        goto out_unmap_data;
 918        }
 919
 920        blk_mq_start_request(req);
 921        nvme_submit_cmd(nvmeq, &cmnd, bd->last);
 922        return BLK_STS_OK;
 923out_unmap_data:
 924        nvme_unmap_data(dev, req);
 925out_free_cmd:
 926        nvme_cleanup_cmd(req);
 927        return ret;
 928}
 929
 930static void nvme_pci_complete_rq(struct request *req)
 931{
 932        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 933        struct nvme_dev *dev = iod->nvmeq->dev;
 934
 935        if (blk_integrity_rq(req))
 936                dma_unmap_page(dev->dev, iod->meta_dma,
 937                               rq_integrity_vec(req)->bv_len, rq_data_dir(req));
 938        if (blk_rq_nr_phys_segments(req))
 939                nvme_unmap_data(dev, req);
 940        nvme_complete_rq(req);
 941}
 942
 943/* We read the CQE phase first to check if the rest of the entry is valid */
 944static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
 945{
 946        struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
 947
 948        return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
 949}
 950
 951static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
 952{
 953        u16 head = nvmeq->cq_head;
 954
 955        if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
 956                                              nvmeq->dbbuf_cq_ei))
 957                writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
 958}
 959
 960static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
 961{
 962        if (!nvmeq->qid)
 963                return nvmeq->dev->admin_tagset.tags[0];
 964        return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
 965}
 966
 967static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
 968{
 969        struct nvme_completion *cqe = &nvmeq->cqes[idx];
 970        struct request *req;
 971
 972        /*
 973         * AEN requests are special as they don't time out and can
 974         * survive any kind of queue freeze and often don't respond to
 975         * aborts.  We don't even bother to allocate a struct request
 976         * for them but rather special case them here.
 977         */
 978        if (unlikely(nvme_is_aen_req(nvmeq->qid, cqe->command_id))) {
 979                nvme_complete_async_event(&nvmeq->dev->ctrl,
 980                                cqe->status, &cqe->result);
 981                return;
 982        }
 983
 984        req = blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq), cqe->command_id);
 985        if (unlikely(!req)) {
 986                dev_warn(nvmeq->dev->ctrl.device,
 987                        "invalid id %d completed on queue %d\n",
 988                        cqe->command_id, le16_to_cpu(cqe->sq_id));
 989                return;
 990        }
 991
 992        trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
 993        if (!nvme_try_complete_req(req, cqe->status, cqe->result))
 994                nvme_pci_complete_rq(req);
 995}
 996
 997static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
 998{
 999        u16 tmp = nvmeq->cq_head + 1;
1000
1001        if (tmp == nvmeq->q_depth) {
1002                nvmeq->cq_head = 0;
1003                nvmeq->cq_phase ^= 1;
1004        } else {
1005                nvmeq->cq_head = tmp;
1006        }
1007}
1008
1009static inline int nvme_process_cq(struct nvme_queue *nvmeq)
1010{
1011        int found = 0;
1012
1013        while (nvme_cqe_pending(nvmeq)) {
1014                found++;
1015                /*
1016                 * load-load control dependency between phase and the rest of
1017                 * the cqe requires a full read memory barrier
1018                 */
1019                dma_rmb();
1020                nvme_handle_cqe(nvmeq, nvmeq->cq_head);
1021                nvme_update_cq_head(nvmeq);
1022        }
1023
1024        if (found)
1025                nvme_ring_cq_doorbell(nvmeq);
1026        return found;
1027}
1028
1029static irqreturn_t nvme_irq(int irq, void *data)
1030{
1031        struct nvme_queue *nvmeq = data;
1032        irqreturn_t ret = IRQ_NONE;
1033
1034        /*
1035         * The rmb/wmb pair ensures we see all updates from a previous run of
1036         * the irq handler, even if that was on another CPU.
1037         */
1038        rmb();
1039        if (nvme_process_cq(nvmeq))
1040                ret = IRQ_HANDLED;
1041        wmb();
1042
1043        return ret;
1044}
1045
1046static irqreturn_t nvme_irq_check(int irq, void *data)
1047{
1048        struct nvme_queue *nvmeq = data;
1049
1050        if (nvme_cqe_pending(nvmeq))
1051                return IRQ_WAKE_THREAD;
1052        return IRQ_NONE;
1053}
1054
1055/*
1056 * Poll for completions for any interrupt driven queue
1057 * Can be called from any context.
1058 */
1059static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1060{
1061        struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1062
1063        WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1064
1065        disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1066        nvme_process_cq(nvmeq);
1067        enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1068}
1069
1070static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1071{
1072        struct nvme_queue *nvmeq = hctx->driver_data;
1073        bool found;
1074
1075        if (!nvme_cqe_pending(nvmeq))
1076                return 0;
1077
1078        spin_lock(&nvmeq->cq_poll_lock);
1079        found = nvme_process_cq(nvmeq);
1080        spin_unlock(&nvmeq->cq_poll_lock);
1081
1082        return found;
1083}
1084
1085static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1086{
1087        struct nvme_dev *dev = to_nvme_dev(ctrl);
1088        struct nvme_queue *nvmeq = &dev->queues[0];
1089        struct nvme_command c;
1090
1091        memset(&c, 0, sizeof(c));
1092        c.common.opcode = nvme_admin_async_event;
1093        c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1094        nvme_submit_cmd(nvmeq, &c, true);
1095}
1096
1097static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1098{
1099        struct nvme_command c;
1100
1101        memset(&c, 0, sizeof(c));
1102        c.delete_queue.opcode = opcode;
1103        c.delete_queue.qid = cpu_to_le16(id);
1104
1105        return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1106}
1107
1108static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1109                struct nvme_queue *nvmeq, s16 vector)
1110{
1111        struct nvme_command c;
1112        int flags = NVME_QUEUE_PHYS_CONTIG;
1113
1114        if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1115                flags |= NVME_CQ_IRQ_ENABLED;
1116
1117        /*
1118         * Note: we (ab)use the fact that the prp fields survive if no data
1119         * is attached to the request.
1120         */
1121        memset(&c, 0, sizeof(c));
1122        c.create_cq.opcode = nvme_admin_create_cq;
1123        c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1124        c.create_cq.cqid = cpu_to_le16(qid);
1125        c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1126        c.create_cq.cq_flags = cpu_to_le16(flags);
1127        c.create_cq.irq_vector = cpu_to_le16(vector);
1128
1129        return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1130}
1131
1132static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1133                                                struct nvme_queue *nvmeq)
1134{
1135        struct nvme_ctrl *ctrl = &dev->ctrl;
1136        struct nvme_command c;
1137        int flags = NVME_QUEUE_PHYS_CONTIG;
1138
1139        /*
1140         * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1141         * set. Since URGENT priority is zeroes, it makes all queues
1142         * URGENT.
1143         */
1144        if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1145                flags |= NVME_SQ_PRIO_MEDIUM;
1146
1147        /*
1148         * Note: we (ab)use the fact that the prp fields survive if no data
1149         * is attached to the request.
1150         */
1151        memset(&c, 0, sizeof(c));
1152        c.create_sq.opcode = nvme_admin_create_sq;
1153        c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1154        c.create_sq.sqid = cpu_to_le16(qid);
1155        c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1156        c.create_sq.sq_flags = cpu_to_le16(flags);
1157        c.create_sq.cqid = cpu_to_le16(qid);
1158
1159        return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1160}
1161
1162static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1163{
1164        return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1165}
1166
1167static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1168{
1169        return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1170}
1171
1172static void abort_endio(struct request *req, blk_status_t error)
1173{
1174        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1175        struct nvme_queue *nvmeq = iod->nvmeq;
1176
1177        dev_warn(nvmeq->dev->ctrl.device,
1178                 "Abort status: 0x%x", nvme_req(req)->status);
1179        atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1180        blk_mq_free_request(req);
1181}
1182
1183static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1184{
1185        /* If true, indicates loss of adapter communication, possibly by a
1186         * NVMe Subsystem reset.
1187         */
1188        bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1189
1190        /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1191        switch (dev->ctrl.state) {
1192        case NVME_CTRL_RESETTING:
1193        case NVME_CTRL_CONNECTING:
1194                return false;
1195        default:
1196                break;
1197        }
1198
1199        /* We shouldn't reset unless the controller is on fatal error state
1200         * _or_ if we lost the communication with it.
1201         */
1202        if (!(csts & NVME_CSTS_CFS) && !nssro)
1203                return false;
1204
1205        return true;
1206}
1207
1208static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1209{
1210        /* Read a config register to help see what died. */
1211        u16 pci_status;
1212        int result;
1213
1214        result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1215                                      &pci_status);
1216        if (result == PCIBIOS_SUCCESSFUL)
1217                dev_warn(dev->ctrl.device,
1218                         "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1219                         csts, pci_status);
1220        else
1221                dev_warn(dev->ctrl.device,
1222                         "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1223                         csts, result);
1224}
1225
1226static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1227{
1228        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1229        struct nvme_queue *nvmeq = iod->nvmeq;
1230        struct nvme_dev *dev = nvmeq->dev;
1231        struct request *abort_req;
1232        struct nvme_command cmd;
1233        u32 csts = readl(dev->bar + NVME_REG_CSTS);
1234
1235        /* If PCI error recovery process is happening, we cannot reset or
1236         * the recovery mechanism will surely fail.
1237         */
1238        mb();
1239        if (pci_channel_offline(to_pci_dev(dev->dev)))
1240                return BLK_EH_RESET_TIMER;
1241
1242        /*
1243         * Reset immediately if the controller is failed
1244         */
1245        if (nvme_should_reset(dev, csts)) {
1246                nvme_warn_reset(dev, csts);
1247                nvme_dev_disable(dev, false);
1248                nvme_reset_ctrl(&dev->ctrl);
1249                return BLK_EH_DONE;
1250        }
1251
1252        /*
1253         * Did we miss an interrupt?
1254         */
1255        if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1256                nvme_poll(req->mq_hctx);
1257        else
1258                nvme_poll_irqdisable(nvmeq);
1259
1260        if (blk_mq_request_completed(req)) {
1261                dev_warn(dev->ctrl.device,
1262                         "I/O %d QID %d timeout, completion polled\n",
1263                         req->tag, nvmeq->qid);
1264                return BLK_EH_DONE;
1265        }
1266
1267        /*
1268         * Shutdown immediately if controller times out while starting. The
1269         * reset work will see the pci device disabled when it gets the forced
1270         * cancellation error. All outstanding requests are completed on
1271         * shutdown, so we return BLK_EH_DONE.
1272         */
1273        switch (dev->ctrl.state) {
1274        case NVME_CTRL_CONNECTING:
1275                nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1276                fallthrough;
1277        case NVME_CTRL_DELETING:
1278                dev_warn_ratelimited(dev->ctrl.device,
1279                         "I/O %d QID %d timeout, disable controller\n",
1280                         req->tag, nvmeq->qid);
1281                nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1282                nvme_dev_disable(dev, true);
1283                return BLK_EH_DONE;
1284        case NVME_CTRL_RESETTING:
1285                return BLK_EH_RESET_TIMER;
1286        default:
1287                break;
1288        }
1289
1290        /*
1291         * Shutdown the controller immediately and schedule a reset if the
1292         * command was already aborted once before and still hasn't been
1293         * returned to the driver, or if this is the admin queue.
1294         */
1295        if (!nvmeq->qid || iod->aborted) {
1296                dev_warn(dev->ctrl.device,
1297                         "I/O %d QID %d timeout, reset controller\n",
1298                         req->tag, nvmeq->qid);
1299                nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1300                nvme_dev_disable(dev, false);
1301                nvme_reset_ctrl(&dev->ctrl);
1302
1303                return BLK_EH_DONE;
1304        }
1305
1306        if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1307                atomic_inc(&dev->ctrl.abort_limit);
1308                return BLK_EH_RESET_TIMER;
1309        }
1310        iod->aborted = 1;
1311
1312        memset(&cmd, 0, sizeof(cmd));
1313        cmd.abort.opcode = nvme_admin_abort_cmd;
1314        cmd.abort.cid = req->tag;
1315        cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1316
1317        dev_warn(nvmeq->dev->ctrl.device,
1318                "I/O %d QID %d timeout, aborting\n",
1319                 req->tag, nvmeq->qid);
1320
1321        abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1322                        BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1323        if (IS_ERR(abort_req)) {
1324                atomic_inc(&dev->ctrl.abort_limit);
1325                return BLK_EH_RESET_TIMER;
1326        }
1327
1328        abort_req->timeout = ADMIN_TIMEOUT;
1329        abort_req->end_io_data = NULL;
1330        blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1331
1332        /*
1333         * The aborted req will be completed on receiving the abort req.
1334         * We enable the timer again. If hit twice, it'll cause a device reset,
1335         * as the device then is in a faulty state.
1336         */
1337        return BLK_EH_RESET_TIMER;
1338}
1339
1340static void nvme_free_queue(struct nvme_queue *nvmeq)
1341{
1342        dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1343                                (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1344        if (!nvmeq->sq_cmds)
1345                return;
1346
1347        if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1348                pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1349                                nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1350        } else {
1351                dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1352                                nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1353        }
1354}
1355
1356static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1357{
1358        int i;
1359
1360        for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1361                dev->ctrl.queue_count--;
1362                nvme_free_queue(&dev->queues[i]);
1363        }
1364}
1365
1366/**
1367 * nvme_suspend_queue - put queue into suspended state
1368 * @nvmeq: queue to suspend
1369 */
1370static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1371{
1372        if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1373                return 1;
1374
1375        /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1376        mb();
1377
1378        nvmeq->dev->online_queues--;
1379        if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1380                blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1381        if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1382                pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1383        return 0;
1384}
1385
1386static void nvme_suspend_io_queues(struct nvme_dev *dev)
1387{
1388        int i;
1389
1390        for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1391                nvme_suspend_queue(&dev->queues[i]);
1392}
1393
1394static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1395{
1396        struct nvme_queue *nvmeq = &dev->queues[0];
1397
1398        if (shutdown)
1399                nvme_shutdown_ctrl(&dev->ctrl);
1400        else
1401                nvme_disable_ctrl(&dev->ctrl);
1402
1403        nvme_poll_irqdisable(nvmeq);
1404}
1405
1406/*
1407 * Called only on a device that has been disabled and after all other threads
1408 * that can check this device's completion queues have synced, except
1409 * nvme_poll(). This is the last chance for the driver to see a natural
1410 * completion before nvme_cancel_request() terminates all incomplete requests.
1411 */
1412static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1413{
1414        int i;
1415
1416        for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1417                spin_lock(&dev->queues[i].cq_poll_lock);
1418                nvme_process_cq(&dev->queues[i]);
1419                spin_unlock(&dev->queues[i].cq_poll_lock);
1420        }
1421}
1422
1423static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1424                                int entry_size)
1425{
1426        int q_depth = dev->q_depth;
1427        unsigned q_size_aligned = roundup(q_depth * entry_size,
1428                                          NVME_CTRL_PAGE_SIZE);
1429
1430        if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1431                u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1432
1433                mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1434                q_depth = div_u64(mem_per_q, entry_size);
1435
1436                /*
1437                 * Ensure the reduced q_depth is above some threshold where it
1438                 * would be better to map queues in system memory with the
1439                 * original depth
1440                 */
1441                if (q_depth < 64)
1442                        return -ENOMEM;
1443        }
1444
1445        return q_depth;
1446}
1447
1448static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1449                                int qid)
1450{
1451        struct pci_dev *pdev = to_pci_dev(dev->dev);
1452
1453        if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1454                nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1455                if (nvmeq->sq_cmds) {
1456                        nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1457                                                        nvmeq->sq_cmds);
1458                        if (nvmeq->sq_dma_addr) {
1459                                set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1460                                return 0;
1461                        }
1462
1463                        pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1464                }
1465        }
1466
1467        nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1468                                &nvmeq->sq_dma_addr, GFP_KERNEL);
1469        if (!nvmeq->sq_cmds)
1470                return -ENOMEM;
1471        return 0;
1472}
1473
1474static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1475{
1476        struct nvme_queue *nvmeq = &dev->queues[qid];
1477
1478        if (dev->ctrl.queue_count > qid)
1479                return 0;
1480
1481        nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1482        nvmeq->q_depth = depth;
1483        nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1484                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
1485        if (!nvmeq->cqes)
1486                goto free_nvmeq;
1487
1488        if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1489                goto free_cqdma;
1490
1491        nvmeq->dev = dev;
1492        spin_lock_init(&nvmeq->sq_lock);
1493        spin_lock_init(&nvmeq->cq_poll_lock);
1494        nvmeq->cq_head = 0;
1495        nvmeq->cq_phase = 1;
1496        nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1497        nvmeq->qid = qid;
1498        dev->ctrl.queue_count++;
1499
1500        return 0;
1501
1502 free_cqdma:
1503        dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1504                          nvmeq->cq_dma_addr);
1505 free_nvmeq:
1506        return -ENOMEM;
1507}
1508
1509static int queue_request_irq(struct nvme_queue *nvmeq)
1510{
1511        struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1512        int nr = nvmeq->dev->ctrl.instance;
1513
1514        if (use_threaded_interrupts) {
1515                return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1516                                nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1517        } else {
1518                return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1519                                NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1520        }
1521}
1522
1523static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1524{
1525        struct nvme_dev *dev = nvmeq->dev;
1526
1527        nvmeq->sq_tail = 0;
1528        nvmeq->last_sq_tail = 0;
1529        nvmeq->cq_head = 0;
1530        nvmeq->cq_phase = 1;
1531        nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1532        memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1533        nvme_dbbuf_init(dev, nvmeq, qid);
1534        dev->online_queues++;
1535        wmb(); /* ensure the first interrupt sees the initialization */
1536}
1537
1538static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1539{
1540        struct nvme_dev *dev = nvmeq->dev;
1541        int result;
1542        u16 vector = 0;
1543
1544        clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1545
1546        /*
1547         * A queue's vector matches the queue identifier unless the controller
1548         * has only one vector available.
1549         */
1550        if (!polled)
1551                vector = dev->num_vecs == 1 ? 0 : qid;
1552        else
1553                set_bit(NVMEQ_POLLED, &nvmeq->flags);
1554
1555        result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1556        if (result)
1557                return result;
1558
1559        result = adapter_alloc_sq(dev, qid, nvmeq);
1560        if (result < 0)
1561                return result;
1562        if (result)
1563                goto release_cq;
1564
1565        nvmeq->cq_vector = vector;
1566        nvme_init_queue(nvmeq, qid);
1567
1568        if (!polled) {
1569                result = queue_request_irq(nvmeq);
1570                if (result < 0)
1571                        goto release_sq;
1572        }
1573
1574        set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1575        return result;
1576
1577release_sq:
1578        dev->online_queues--;
1579        adapter_delete_sq(dev, qid);
1580release_cq:
1581        adapter_delete_cq(dev, qid);
1582        return result;
1583}
1584
1585static const struct blk_mq_ops nvme_mq_admin_ops = {
1586        .queue_rq       = nvme_queue_rq,
1587        .complete       = nvme_pci_complete_rq,
1588        .init_hctx      = nvme_admin_init_hctx,
1589        .init_request   = nvme_init_request,
1590        .timeout        = nvme_timeout,
1591};
1592
1593static const struct blk_mq_ops nvme_mq_ops = {
1594        .queue_rq       = nvme_queue_rq,
1595        .complete       = nvme_pci_complete_rq,
1596        .commit_rqs     = nvme_commit_rqs,
1597        .init_hctx      = nvme_init_hctx,
1598        .init_request   = nvme_init_request,
1599        .map_queues     = nvme_pci_map_queues,
1600        .timeout        = nvme_timeout,
1601        .poll           = nvme_poll,
1602};
1603
1604static void nvme_dev_remove_admin(struct nvme_dev *dev)
1605{
1606        if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1607                /*
1608                 * If the controller was reset during removal, it's possible
1609                 * user requests may be waiting on a stopped queue. Start the
1610                 * queue to flush these to completion.
1611                 */
1612                blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1613                blk_cleanup_queue(dev->ctrl.admin_q);
1614                blk_mq_free_tag_set(&dev->admin_tagset);
1615        }
1616}
1617
1618static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1619{
1620        if (!dev->ctrl.admin_q) {
1621                dev->admin_tagset.ops = &nvme_mq_admin_ops;
1622                dev->admin_tagset.nr_hw_queues = 1;
1623
1624                dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1625                dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1626                dev->admin_tagset.numa_node = dev->ctrl.numa_node;
1627                dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1628                dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1629                dev->admin_tagset.driver_data = dev;
1630
1631                if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1632                        return -ENOMEM;
1633                dev->ctrl.admin_tagset = &dev->admin_tagset;
1634
1635                dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1636                if (IS_ERR(dev->ctrl.admin_q)) {
1637                        blk_mq_free_tag_set(&dev->admin_tagset);
1638                        return -ENOMEM;
1639                }
1640                if (!blk_get_queue(dev->ctrl.admin_q)) {
1641                        nvme_dev_remove_admin(dev);
1642                        dev->ctrl.admin_q = NULL;
1643                        return -ENODEV;
1644                }
1645        } else
1646                blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1647
1648        return 0;
1649}
1650
1651static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1652{
1653        return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1654}
1655
1656static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1657{
1658        struct pci_dev *pdev = to_pci_dev(dev->dev);
1659
1660        if (size <= dev->bar_mapped_size)
1661                return 0;
1662        if (size > pci_resource_len(pdev, 0))
1663                return -ENOMEM;
1664        if (dev->bar)
1665                iounmap(dev->bar);
1666        dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1667        if (!dev->bar) {
1668                dev->bar_mapped_size = 0;
1669                return -ENOMEM;
1670        }
1671        dev->bar_mapped_size = size;
1672        dev->dbs = dev->bar + NVME_REG_DBS;
1673
1674        return 0;
1675}
1676
1677static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1678{
1679        int result;
1680        u32 aqa;
1681        struct nvme_queue *nvmeq;
1682
1683        result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1684        if (result < 0)
1685                return result;
1686
1687        dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1688                                NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1689
1690        if (dev->subsystem &&
1691            (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1692                writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1693
1694        result = nvme_disable_ctrl(&dev->ctrl);
1695        if (result < 0)
1696                return result;
1697
1698        result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1699        if (result)
1700                return result;
1701
1702        dev->ctrl.numa_node = dev_to_node(dev->dev);
1703
1704        nvmeq = &dev->queues[0];
1705        aqa = nvmeq->q_depth - 1;
1706        aqa |= aqa << 16;
1707
1708        writel(aqa, dev->bar + NVME_REG_AQA);
1709        lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1710        lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1711
1712        result = nvme_enable_ctrl(&dev->ctrl);
1713        if (result)
1714                return result;
1715
1716        nvmeq->cq_vector = 0;
1717        nvme_init_queue(nvmeq, 0);
1718        result = queue_request_irq(nvmeq);
1719        if (result) {
1720                dev->online_queues--;
1721                return result;
1722        }
1723
1724        set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1725        return result;
1726}
1727
1728static int nvme_create_io_queues(struct nvme_dev *dev)
1729{
1730        unsigned i, max, rw_queues;
1731        int ret = 0;
1732
1733        for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1734                if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1735                        ret = -ENOMEM;
1736                        break;
1737                }
1738        }
1739
1740        max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1741        if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1742                rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1743                                dev->io_queues[HCTX_TYPE_READ];
1744        } else {
1745                rw_queues = max;
1746        }
1747
1748        for (i = dev->online_queues; i <= max; i++) {
1749                bool polled = i > rw_queues;
1750
1751                ret = nvme_create_queue(&dev->queues[i], i, polled);
1752                if (ret)
1753                        break;
1754        }
1755
1756        /*
1757         * Ignore failing Create SQ/CQ commands, we can continue with less
1758         * than the desired amount of queues, and even a controller without
1759         * I/O queues can still be used to issue admin commands.  This might
1760         * be useful to upgrade a buggy firmware for example.
1761         */
1762        return ret >= 0 ? 0 : ret;
1763}
1764
1765static ssize_t nvme_cmb_show(struct device *dev,
1766                             struct device_attribute *attr,
1767                             char *buf)
1768{
1769        struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1770
1771        return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1772                       ndev->cmbloc, ndev->cmbsz);
1773}
1774static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1775
1776static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1777{
1778        u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1779
1780        return 1ULL << (12 + 4 * szu);
1781}
1782
1783static u32 nvme_cmb_size(struct nvme_dev *dev)
1784{
1785        return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1786}
1787
1788static void nvme_map_cmb(struct nvme_dev *dev)
1789{
1790        u64 size, offset;
1791        resource_size_t bar_size;
1792        struct pci_dev *pdev = to_pci_dev(dev->dev);
1793        int bar;
1794
1795        if (dev->cmb_size)
1796                return;
1797
1798        dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1799        if (!dev->cmbsz)
1800                return;
1801        dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1802
1803        size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1804        offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1805        bar = NVME_CMB_BIR(dev->cmbloc);
1806        bar_size = pci_resource_len(pdev, bar);
1807
1808        if (offset > bar_size)
1809                return;
1810
1811        /*
1812         * Controllers may support a CMB size larger than their BAR,
1813         * for example, due to being behind a bridge. Reduce the CMB to
1814         * the reported size of the BAR
1815         */
1816        if (size > bar_size - offset)
1817                size = bar_size - offset;
1818
1819        if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1820                dev_warn(dev->ctrl.device,
1821                         "failed to register the CMB\n");
1822                return;
1823        }
1824
1825        dev->cmb_size = size;
1826        dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1827
1828        if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1829                        (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1830                pci_p2pmem_publish(pdev, true);
1831
1832        if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1833                                    &dev_attr_cmb.attr, NULL))
1834                dev_warn(dev->ctrl.device,
1835                         "failed to add sysfs attribute for CMB\n");
1836}
1837
1838static inline void nvme_release_cmb(struct nvme_dev *dev)
1839{
1840        if (dev->cmb_size) {
1841                sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1842                                             &dev_attr_cmb.attr, NULL);
1843                dev->cmb_size = 0;
1844        }
1845}
1846
1847static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1848{
1849        u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1850        u64 dma_addr = dev->host_mem_descs_dma;
1851        struct nvme_command c;
1852        int ret;
1853
1854        memset(&c, 0, sizeof(c));
1855        c.features.opcode       = nvme_admin_set_features;
1856        c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1857        c.features.dword11      = cpu_to_le32(bits);
1858        c.features.dword12      = cpu_to_le32(host_mem_size);
1859        c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1860        c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1861        c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1862
1863        ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1864        if (ret) {
1865                dev_warn(dev->ctrl.device,
1866                         "failed to set host mem (err %d, flags %#x).\n",
1867                         ret, bits);
1868        }
1869        return ret;
1870}
1871
1872static void nvme_free_host_mem(struct nvme_dev *dev)
1873{
1874        int i;
1875
1876        for (i = 0; i < dev->nr_host_mem_descs; i++) {
1877                struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1878                size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1879
1880                dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1881                               le64_to_cpu(desc->addr),
1882                               DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1883        }
1884
1885        kfree(dev->host_mem_desc_bufs);
1886        dev->host_mem_desc_bufs = NULL;
1887        dma_free_coherent(dev->dev,
1888                        dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1889                        dev->host_mem_descs, dev->host_mem_descs_dma);
1890        dev->host_mem_descs = NULL;
1891        dev->nr_host_mem_descs = 0;
1892}
1893
1894static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1895                u32 chunk_size)
1896{
1897        struct nvme_host_mem_buf_desc *descs;
1898        u32 max_entries, len;
1899        dma_addr_t descs_dma;
1900        int i = 0;
1901        void **bufs;
1902        u64 size, tmp;
1903
1904        tmp = (preferred + chunk_size - 1);
1905        do_div(tmp, chunk_size);
1906        max_entries = tmp;
1907
1908        if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1909                max_entries = dev->ctrl.hmmaxd;
1910
1911        descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1912                                   &descs_dma, GFP_KERNEL);
1913        if (!descs)
1914                goto out;
1915
1916        bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1917        if (!bufs)
1918                goto out_free_descs;
1919
1920        for (size = 0; size < preferred && i < max_entries; size += len) {
1921                dma_addr_t dma_addr;
1922
1923                len = min_t(u64, chunk_size, preferred - size);
1924                bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1925                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1926                if (!bufs[i])
1927                        break;
1928
1929                descs[i].addr = cpu_to_le64(dma_addr);
1930                descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1931                i++;
1932        }
1933
1934        if (!size)
1935                goto out_free_bufs;
1936
1937        dev->nr_host_mem_descs = i;
1938        dev->host_mem_size = size;
1939        dev->host_mem_descs = descs;
1940        dev->host_mem_descs_dma = descs_dma;
1941        dev->host_mem_desc_bufs = bufs;
1942        return 0;
1943
1944out_free_bufs:
1945        while (--i >= 0) {
1946                size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1947
1948                dma_free_attrs(dev->dev, size, bufs[i],
1949                               le64_to_cpu(descs[i].addr),
1950                               DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1951        }
1952
1953        kfree(bufs);
1954out_free_descs:
1955        dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1956                        descs_dma);
1957out:
1958        dev->host_mem_descs = NULL;
1959        return -ENOMEM;
1960}
1961
1962static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1963{
1964        u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1965        u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1966        u64 chunk_size;
1967
1968        /* start big and work our way down */
1969        for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
1970                if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1971                        if (!min || dev->host_mem_size >= min)
1972                                return 0;
1973                        nvme_free_host_mem(dev);
1974                }
1975        }
1976
1977        return -ENOMEM;
1978}
1979
1980static int nvme_setup_host_mem(struct nvme_dev *dev)
1981{
1982        u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1983        u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1984        u64 min = (u64)dev->ctrl.hmmin * 4096;
1985        u32 enable_bits = NVME_HOST_MEM_ENABLE;
1986        int ret;
1987
1988        preferred = min(preferred, max);
1989        if (min > max) {
1990                dev_warn(dev->ctrl.device,
1991                        "min host memory (%lld MiB) above limit (%d MiB).\n",
1992                        min >> ilog2(SZ_1M), max_host_mem_size_mb);
1993                nvme_free_host_mem(dev);
1994                return 0;
1995        }
1996
1997        /*
1998         * If we already have a buffer allocated check if we can reuse it.
1999         */
2000        if (dev->host_mem_descs) {
2001                if (dev->host_mem_size >= min)
2002                        enable_bits |= NVME_HOST_MEM_RETURN;
2003                else
2004                        nvme_free_host_mem(dev);
2005        }
2006
2007        if (!dev->host_mem_descs) {
2008                if (nvme_alloc_host_mem(dev, min, preferred)) {
2009                        dev_warn(dev->ctrl.device,
2010                                "failed to allocate host memory buffer.\n");
2011                        return 0; /* controller must work without HMB */
2012                }
2013
2014                dev_info(dev->ctrl.device,
2015                        "allocated %lld MiB host memory buffer.\n",
2016                        dev->host_mem_size >> ilog2(SZ_1M));
2017        }
2018
2019        ret = nvme_set_host_mem(dev, enable_bits);
2020        if (ret)
2021                nvme_free_host_mem(dev);
2022        return ret;
2023}
2024
2025/*
2026 * nirqs is the number of interrupts available for write and read
2027 * queues. The core already reserved an interrupt for the admin queue.
2028 */
2029static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2030{
2031        struct nvme_dev *dev = affd->priv;
2032        unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2033
2034        /*
2035         * If there is no interrupt available for queues, ensure that
2036         * the default queue is set to 1. The affinity set size is
2037         * also set to one, but the irq core ignores it for this case.
2038         *
2039         * If only one interrupt is available or 'write_queue' == 0, combine
2040         * write and read queues.
2041         *
2042         * If 'write_queues' > 0, ensure it leaves room for at least one read
2043         * queue.
2044         */
2045        if (!nrirqs) {
2046                nrirqs = 1;
2047                nr_read_queues = 0;
2048        } else if (nrirqs == 1 || !nr_write_queues) {
2049                nr_read_queues = 0;
2050        } else if (nr_write_queues >= nrirqs) {
2051                nr_read_queues = 1;
2052        } else {
2053                nr_read_queues = nrirqs - nr_write_queues;
2054        }
2055
2056        dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2057        affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2058        dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2059        affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2060        affd->nr_sets = nr_read_queues ? 2 : 1;
2061}
2062
2063static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2064{
2065        struct pci_dev *pdev = to_pci_dev(dev->dev);
2066        struct irq_affinity affd = {
2067                .pre_vectors    = 1,
2068                .calc_sets      = nvme_calc_irq_sets,
2069                .priv           = dev,
2070        };
2071        unsigned int irq_queues, poll_queues;
2072
2073        /*
2074         * Poll queues don't need interrupts, but we need at least one I/O queue
2075         * left over for non-polled I/O.
2076         */
2077        poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2078        dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2079
2080        /*
2081         * Initialize for the single interrupt case, will be updated in
2082         * nvme_calc_irq_sets().
2083         */
2084        dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2085        dev->io_queues[HCTX_TYPE_READ] = 0;
2086
2087        /*
2088         * We need interrupts for the admin queue and each non-polled I/O queue,
2089         * but some Apple controllers require all queues to use the first
2090         * vector.
2091         */
2092        irq_queues = 1;
2093        if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2094                irq_queues += (nr_io_queues - poll_queues);
2095        return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2096                              PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2097}
2098
2099static void nvme_disable_io_queues(struct nvme_dev *dev)
2100{
2101        if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2102                __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2103}
2104
2105static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2106{
2107        return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2108}
2109
2110static int nvme_setup_io_queues(struct nvme_dev *dev)
2111{
2112        struct nvme_queue *adminq = &dev->queues[0];
2113        struct pci_dev *pdev = to_pci_dev(dev->dev);
2114        unsigned int nr_io_queues;
2115        unsigned long size;
2116        int result;
2117
2118        /*
2119         * Sample the module parameters once at reset time so that we have
2120         * stable values to work with.
2121         */
2122        dev->nr_write_queues = write_queues;
2123        dev->nr_poll_queues = poll_queues;
2124
2125        /*
2126         * If tags are shared with admin queue (Apple bug), then
2127         * make sure we only use one IO queue.
2128         */
2129        if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2130                nr_io_queues = 1;
2131        else
2132                nr_io_queues = min(nvme_max_io_queues(dev),
2133                                   dev->nr_allocated_queues - 1);
2134
2135        result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2136        if (result < 0)
2137                return result;
2138
2139        if (nr_io_queues == 0)
2140                return 0;
2141        
2142        clear_bit(NVMEQ_ENABLED, &adminq->flags);
2143
2144        if (dev->cmb_use_sqes) {
2145                result = nvme_cmb_qdepth(dev, nr_io_queues,
2146                                sizeof(struct nvme_command));
2147                if (result > 0)
2148                        dev->q_depth = result;
2149                else
2150                        dev->cmb_use_sqes = false;
2151        }
2152
2153        do {
2154                size = db_bar_size(dev, nr_io_queues);
2155                result = nvme_remap_bar(dev, size);
2156                if (!result)
2157                        break;
2158                if (!--nr_io_queues)
2159                        return -ENOMEM;
2160        } while (1);
2161        adminq->q_db = dev->dbs;
2162
2163 retry:
2164        /* Deregister the admin queue's interrupt */
2165        pci_free_irq(pdev, 0, adminq);
2166
2167        /*
2168         * If we enable msix early due to not intx, disable it again before
2169         * setting up the full range we need.
2170         */
2171        pci_free_irq_vectors(pdev);
2172
2173        result = nvme_setup_irqs(dev, nr_io_queues);
2174        if (result <= 0)
2175                return -EIO;
2176
2177        dev->num_vecs = result;
2178        result = max(result - 1, 1);
2179        dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2180
2181        /*
2182         * Should investigate if there's a performance win from allocating
2183         * more queues than interrupt vectors; it might allow the submission
2184         * path to scale better, even if the receive path is limited by the
2185         * number of interrupts.
2186         */
2187        result = queue_request_irq(adminq);
2188        if (result)
2189                return result;
2190        set_bit(NVMEQ_ENABLED, &adminq->flags);
2191
2192        result = nvme_create_io_queues(dev);
2193        if (result || dev->online_queues < 2)
2194                return result;
2195
2196        if (dev->online_queues - 1 < dev->max_qid) {
2197                nr_io_queues = dev->online_queues - 1;
2198                nvme_disable_io_queues(dev);
2199                nvme_suspend_io_queues(dev);
2200                goto retry;
2201        }
2202        dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2203                                        dev->io_queues[HCTX_TYPE_DEFAULT],
2204                                        dev->io_queues[HCTX_TYPE_READ],
2205                                        dev->io_queues[HCTX_TYPE_POLL]);
2206        return 0;
2207}
2208
2209static void nvme_del_queue_end(struct request *req, blk_status_t error)
2210{
2211        struct nvme_queue *nvmeq = req->end_io_data;
2212
2213        blk_mq_free_request(req);
2214        complete(&nvmeq->delete_done);
2215}
2216
2217static void nvme_del_cq_end(struct request *req, blk_status_t error)
2218{
2219        struct nvme_queue *nvmeq = req->end_io_data;
2220
2221        if (error)
2222                set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2223
2224        nvme_del_queue_end(req, error);
2225}
2226
2227static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2228{
2229        struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2230        struct request *req;
2231        struct nvme_command cmd;
2232
2233        memset(&cmd, 0, sizeof(cmd));
2234        cmd.delete_queue.opcode = opcode;
2235        cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2236
2237        req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2238        if (IS_ERR(req))
2239                return PTR_ERR(req);
2240
2241        req->timeout = ADMIN_TIMEOUT;
2242        req->end_io_data = nvmeq;
2243
2244        init_completion(&nvmeq->delete_done);
2245        blk_execute_rq_nowait(q, NULL, req, false,
2246                        opcode == nvme_admin_delete_cq ?
2247                                nvme_del_cq_end : nvme_del_queue_end);
2248        return 0;
2249}
2250
2251static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2252{
2253        int nr_queues = dev->online_queues - 1, sent = 0;
2254        unsigned long timeout;
2255
2256 retry:
2257        timeout = ADMIN_TIMEOUT;
2258        while (nr_queues > 0) {
2259                if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2260                        break;
2261                nr_queues--;
2262                sent++;
2263        }
2264        while (sent) {
2265                struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2266
2267                timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2268                                timeout);
2269                if (timeout == 0)
2270                        return false;
2271
2272                sent--;
2273                if (nr_queues)
2274                        goto retry;
2275        }
2276        return true;
2277}
2278
2279static void nvme_dev_add(struct nvme_dev *dev)
2280{
2281        int ret;
2282
2283        if (!dev->ctrl.tagset) {
2284                dev->tagset.ops = &nvme_mq_ops;
2285                dev->tagset.nr_hw_queues = dev->online_queues - 1;
2286                dev->tagset.nr_maps = 2; /* default + read */
2287                if (dev->io_queues[HCTX_TYPE_POLL])
2288                        dev->tagset.nr_maps++;
2289                dev->tagset.timeout = NVME_IO_TIMEOUT;
2290                dev->tagset.numa_node = dev->ctrl.numa_node;
2291                dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth,
2292                                                BLK_MQ_MAX_DEPTH) - 1;
2293                dev->tagset.cmd_size = sizeof(struct nvme_iod);
2294                dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2295                dev->tagset.driver_data = dev;
2296
2297                /*
2298                 * Some Apple controllers requires tags to be unique
2299                 * across admin and IO queue, so reserve the first 32
2300                 * tags of the IO queue.
2301                 */
2302                if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2303                        dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2304
2305                ret = blk_mq_alloc_tag_set(&dev->tagset);
2306                if (ret) {
2307                        dev_warn(dev->ctrl.device,
2308                                "IO queues tagset allocation failed %d\n", ret);
2309                        return;
2310                }
2311                dev->ctrl.tagset = &dev->tagset;
2312        } else {
2313                blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2314
2315                /* Free previously allocated queues that are no longer usable */
2316                nvme_free_queues(dev, dev->online_queues);
2317        }
2318
2319        nvme_dbbuf_set(dev);
2320}
2321
2322static int nvme_pci_enable(struct nvme_dev *dev)
2323{
2324        int result = -ENOMEM;
2325        struct pci_dev *pdev = to_pci_dev(dev->dev);
2326
2327        if (pci_enable_device_mem(pdev))
2328                return result;
2329
2330        pci_set_master(pdev);
2331
2332        if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
2333                goto disable;
2334
2335        if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2336                result = -ENODEV;
2337                goto disable;
2338        }
2339
2340        /*
2341         * Some devices and/or platforms don't advertise or work with INTx
2342         * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2343         * adjust this later.
2344         */
2345        result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2346        if (result < 0)
2347                return result;
2348
2349        dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2350
2351        dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2352                                io_queue_depth);
2353        dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2354        dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2355        dev->dbs = dev->bar + 4096;
2356
2357        /*
2358         * Some Apple controllers require a non-standard SQE size.
2359         * Interestingly they also seem to ignore the CC:IOSQES register
2360         * so we don't bother updating it here.
2361         */
2362        if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2363                dev->io_sqes = 7;
2364        else
2365                dev->io_sqes = NVME_NVM_IOSQES;
2366
2367        /*
2368         * Temporary fix for the Apple controller found in the MacBook8,1 and
2369         * some MacBook7,1 to avoid controller resets and data loss.
2370         */
2371        if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2372                dev->q_depth = 2;
2373                dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2374                        "set queue depth=%u to work around controller resets\n",
2375                        dev->q_depth);
2376        } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2377                   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2378                   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2379                dev->q_depth = 64;
2380                dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2381                        "set queue depth=%u\n", dev->q_depth);
2382        }
2383
2384        /*
2385         * Controllers with the shared tags quirk need the IO queue to be
2386         * big enough so that we get 32 tags for the admin queue
2387         */
2388        if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2389            (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2390                dev->q_depth = NVME_AQ_DEPTH + 2;
2391                dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2392                         dev->q_depth);
2393        }
2394
2395
2396        nvme_map_cmb(dev);
2397
2398        pci_enable_pcie_error_reporting(pdev);
2399        pci_save_state(pdev);
2400        return 0;
2401
2402 disable:
2403        pci_disable_device(pdev);
2404        return result;
2405}
2406
2407static void nvme_dev_unmap(struct nvme_dev *dev)
2408{
2409        if (dev->bar)
2410                iounmap(dev->bar);
2411        pci_release_mem_regions(to_pci_dev(dev->dev));
2412}
2413
2414static void nvme_pci_disable(struct nvme_dev *dev)
2415{
2416        struct pci_dev *pdev = to_pci_dev(dev->dev);
2417
2418        pci_free_irq_vectors(pdev);
2419
2420        if (pci_is_enabled(pdev)) {
2421                pci_disable_pcie_error_reporting(pdev);
2422                pci_disable_device(pdev);
2423        }
2424}
2425
2426static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2427{
2428        bool dead = true, freeze = false;
2429        struct pci_dev *pdev = to_pci_dev(dev->dev);
2430
2431        mutex_lock(&dev->shutdown_lock);
2432        if (pci_is_enabled(pdev)) {
2433                u32 csts = readl(dev->bar + NVME_REG_CSTS);
2434
2435                if (dev->ctrl.state == NVME_CTRL_LIVE ||
2436                    dev->ctrl.state == NVME_CTRL_RESETTING) {
2437                        freeze = true;
2438                        nvme_start_freeze(&dev->ctrl);
2439                }
2440                dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2441                        pdev->error_state  != pci_channel_io_normal);
2442        }
2443
2444        /*
2445         * Give the controller a chance to complete all entered requests if
2446         * doing a safe shutdown.
2447         */
2448        if (!dead && shutdown && freeze)
2449                nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2450
2451        nvme_stop_queues(&dev->ctrl);
2452
2453        if (!dead && dev->ctrl.queue_count > 0) {
2454                nvme_disable_io_queues(dev);
2455                nvme_disable_admin_queue(dev, shutdown);
2456        }
2457        nvme_suspend_io_queues(dev);
2458        nvme_suspend_queue(&dev->queues[0]);
2459        nvme_pci_disable(dev);
2460        nvme_reap_pending_cqes(dev);
2461
2462        blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2463        blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2464        blk_mq_tagset_wait_completed_request(&dev->tagset);
2465        blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2466
2467        /*
2468         * The driver will not be starting up queues again if shutting down so
2469         * must flush all entered requests to their failed completion to avoid
2470         * deadlocking blk-mq hot-cpu notifier.
2471         */
2472        if (shutdown) {
2473                nvme_start_queues(&dev->ctrl);
2474                if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2475                        blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2476        }
2477        mutex_unlock(&dev->shutdown_lock);
2478}
2479
2480static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2481{
2482        if (!nvme_wait_reset(&dev->ctrl))
2483                return -EBUSY;
2484        nvme_dev_disable(dev, shutdown);
2485        return 0;
2486}
2487
2488static int nvme_setup_prp_pools(struct nvme_dev *dev)
2489{
2490        dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2491                                                NVME_CTRL_PAGE_SIZE,
2492                                                NVME_CTRL_PAGE_SIZE, 0);
2493        if (!dev->prp_page_pool)
2494                return -ENOMEM;
2495
2496        /* Optimisation for I/Os between 4k and 128k */
2497        dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2498                                                256, 256, 0);
2499        if (!dev->prp_small_pool) {
2500                dma_pool_destroy(dev->prp_page_pool);
2501                return -ENOMEM;
2502        }
2503        return 0;
2504}
2505
2506static void nvme_release_prp_pools(struct nvme_dev *dev)
2507{
2508        dma_pool_destroy(dev->prp_page_pool);
2509        dma_pool_destroy(dev->prp_small_pool);
2510}
2511
2512static void nvme_free_tagset(struct nvme_dev *dev)
2513{
2514        if (dev->tagset.tags)
2515                blk_mq_free_tag_set(&dev->tagset);
2516        dev->ctrl.tagset = NULL;
2517}
2518
2519static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2520{
2521        struct nvme_dev *dev = to_nvme_dev(ctrl);
2522
2523        nvme_dbbuf_dma_free(dev);
2524        nvme_free_tagset(dev);
2525        if (dev->ctrl.admin_q)
2526                blk_put_queue(dev->ctrl.admin_q);
2527        free_opal_dev(dev->ctrl.opal_dev);
2528        mempool_destroy(dev->iod_mempool);
2529        put_device(dev->dev);
2530        kfree(dev->queues);
2531        kfree(dev);
2532}
2533
2534static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2535{
2536        /*
2537         * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2538         * may be holding this pci_dev's device lock.
2539         */
2540        nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2541        nvme_get_ctrl(&dev->ctrl);
2542        nvme_dev_disable(dev, false);
2543        nvme_kill_queues(&dev->ctrl);
2544        if (!queue_work(nvme_wq, &dev->remove_work))
2545                nvme_put_ctrl(&dev->ctrl);
2546}
2547
2548static void nvme_reset_work(struct work_struct *work)
2549{
2550        struct nvme_dev *dev =
2551                container_of(work, struct nvme_dev, ctrl.reset_work);
2552        bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2553        int result;
2554
2555        if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) {
2556                result = -ENODEV;
2557                goto out;
2558        }
2559
2560        /*
2561         * If we're called to reset a live controller first shut it down before
2562         * moving on.
2563         */
2564        if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2565                nvme_dev_disable(dev, false);
2566        nvme_sync_queues(&dev->ctrl);
2567
2568        mutex_lock(&dev->shutdown_lock);
2569        result = nvme_pci_enable(dev);
2570        if (result)
2571                goto out_unlock;
2572
2573        result = nvme_pci_configure_admin_queue(dev);
2574        if (result)
2575                goto out_unlock;
2576
2577        result = nvme_alloc_admin_tags(dev);
2578        if (result)
2579                goto out_unlock;
2580
2581        /*
2582         * Limit the max command size to prevent iod->sg allocations going
2583         * over a single page.
2584         */
2585        dev->ctrl.max_hw_sectors = min_t(u32,
2586                NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2587        dev->ctrl.max_segments = NVME_MAX_SEGS;
2588
2589        /*
2590         * Don't limit the IOMMU merged segment size.
2591         */
2592        dma_set_max_seg_size(dev->dev, 0xffffffff);
2593
2594        mutex_unlock(&dev->shutdown_lock);
2595
2596        /*
2597         * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2598         * initializing procedure here.
2599         */
2600        if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2601                dev_warn(dev->ctrl.device,
2602                        "failed to mark controller CONNECTING\n");
2603                result = -EBUSY;
2604                goto out;
2605        }
2606
2607        /*
2608         * We do not support an SGL for metadata (yet), so we are limited to a
2609         * single integrity segment for the separate metadata pointer.
2610         */
2611        dev->ctrl.max_integrity_segments = 1;
2612
2613        result = nvme_init_identify(&dev->ctrl);
2614        if (result)
2615                goto out;
2616
2617        if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2618                if (!dev->ctrl.opal_dev)
2619                        dev->ctrl.opal_dev =
2620                                init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2621                else if (was_suspend)
2622                        opal_unlock_from_suspend(dev->ctrl.opal_dev);
2623        } else {
2624                free_opal_dev(dev->ctrl.opal_dev);
2625                dev->ctrl.opal_dev = NULL;
2626        }
2627
2628        if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2629                result = nvme_dbbuf_dma_alloc(dev);
2630                if (result)
2631                        dev_warn(dev->dev,
2632                                 "unable to allocate dma for dbbuf\n");
2633        }
2634
2635        if (dev->ctrl.hmpre) {
2636                result = nvme_setup_host_mem(dev);
2637                if (result < 0)
2638                        goto out;
2639        }
2640
2641        result = nvme_setup_io_queues(dev);
2642        if (result)
2643                goto out;
2644
2645        /*
2646         * Keep the controller around but remove all namespaces if we don't have
2647         * any working I/O queue.
2648         */
2649        if (dev->online_queues < 2) {
2650                dev_warn(dev->ctrl.device, "IO queues not created\n");
2651                nvme_kill_queues(&dev->ctrl);
2652                nvme_remove_namespaces(&dev->ctrl);
2653                nvme_free_tagset(dev);
2654        } else {
2655                nvme_start_queues(&dev->ctrl);
2656                nvme_wait_freeze(&dev->ctrl);
2657                nvme_dev_add(dev);
2658                nvme_unfreeze(&dev->ctrl);
2659        }
2660
2661        /*
2662         * If only admin queue live, keep it to do further investigation or
2663         * recovery.
2664         */
2665        if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2666                dev_warn(dev->ctrl.device,
2667                        "failed to mark controller live state\n");
2668                result = -ENODEV;
2669                goto out;
2670        }
2671
2672        nvme_start_ctrl(&dev->ctrl);
2673        return;
2674
2675 out_unlock:
2676        mutex_unlock(&dev->shutdown_lock);
2677 out:
2678        if (result)
2679                dev_warn(dev->ctrl.device,
2680                         "Removing after probe failure status: %d\n", result);
2681        nvme_remove_dead_ctrl(dev);
2682}
2683
2684static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2685{
2686        struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2687        struct pci_dev *pdev = to_pci_dev(dev->dev);
2688
2689        if (pci_get_drvdata(pdev))
2690                device_release_driver(&pdev->dev);
2691        nvme_put_ctrl(&dev->ctrl);
2692}
2693
2694static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2695{
2696        *val = readl(to_nvme_dev(ctrl)->bar + off);
2697        return 0;
2698}
2699
2700static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2701{
2702        writel(val, to_nvme_dev(ctrl)->bar + off);
2703        return 0;
2704}
2705
2706static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2707{
2708        *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2709        return 0;
2710}
2711
2712static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2713{
2714        struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2715
2716        return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2717}
2718
2719static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2720        .name                   = "pcie",
2721        .module                 = THIS_MODULE,
2722        .flags                  = NVME_F_METADATA_SUPPORTED |
2723                                  NVME_F_PCI_P2PDMA,
2724        .reg_read32             = nvme_pci_reg_read32,
2725        .reg_write32            = nvme_pci_reg_write32,
2726        .reg_read64             = nvme_pci_reg_read64,
2727        .free_ctrl              = nvme_pci_free_ctrl,
2728        .submit_async_event     = nvme_pci_submit_async_event,
2729        .get_address            = nvme_pci_get_address,
2730};
2731
2732static int nvme_dev_map(struct nvme_dev *dev)
2733{
2734        struct pci_dev *pdev = to_pci_dev(dev->dev);
2735
2736        if (pci_request_mem_regions(pdev, "nvme"))
2737                return -ENODEV;
2738
2739        if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2740                goto release;
2741
2742        return 0;
2743  release:
2744        pci_release_mem_regions(pdev);
2745        return -ENODEV;
2746}
2747
2748static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2749{
2750        if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2751                /*
2752                 * Several Samsung devices seem to drop off the PCIe bus
2753                 * randomly when APST is on and uses the deepest sleep state.
2754                 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2755                 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2756                 * 950 PRO 256GB", but it seems to be restricted to two Dell
2757                 * laptops.
2758                 */
2759                if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2760                    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2761                     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2762                        return NVME_QUIRK_NO_DEEPEST_PS;
2763        } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2764                /*
2765                 * Samsung SSD 960 EVO drops off the PCIe bus after system
2766                 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2767                 * within few minutes after bootup on a Coffee Lake board -
2768                 * ASUS PRIME Z370-A
2769                 */
2770                if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2771                    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2772                     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2773                        return NVME_QUIRK_NO_APST;
2774        } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2775                    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2776                   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2777                /*
2778                 * Forcing to use host managed nvme power settings for
2779                 * lowest idle power with quick resume latency on
2780                 * Samsung and Toshiba SSDs based on suspend behavior
2781                 * on Coffee Lake board for LENOVO C640
2782                 */
2783                if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2784                     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2785                        return NVME_QUIRK_SIMPLE_SUSPEND;
2786        }
2787
2788        return 0;
2789}
2790
2791#ifdef CONFIG_ACPI
2792static bool nvme_acpi_storage_d3(struct pci_dev *dev)
2793{
2794        struct acpi_device *adev;
2795        struct pci_dev *root;
2796        acpi_handle handle;
2797        acpi_status status;
2798        u8 val;
2799
2800        /*
2801         * Look for _DSD property specifying that the storage device on the port
2802         * must use D3 to support deep platform power savings during
2803         * suspend-to-idle.
2804         */
2805        root = pcie_find_root_port(dev);
2806        if (!root)
2807                return false;
2808
2809        adev = ACPI_COMPANION(&root->dev);
2810        if (!adev)
2811                return false;
2812
2813        /*
2814         * The property is defined in the PXSX device for South complex ports
2815         * and in the PEGP device for North complex ports.
2816         */
2817        status = acpi_get_handle(adev->handle, "PXSX", &handle);
2818        if (ACPI_FAILURE(status)) {
2819                status = acpi_get_handle(adev->handle, "PEGP", &handle);
2820                if (ACPI_FAILURE(status))
2821                        return false;
2822        }
2823
2824        if (acpi_bus_get_device(handle, &adev))
2825                return false;
2826
2827        if (fwnode_property_read_u8(acpi_fwnode_handle(adev), "StorageD3Enable",
2828                        &val))
2829                return false;
2830        return val == 1;
2831}
2832#else
2833static inline bool nvme_acpi_storage_d3(struct pci_dev *dev)
2834{
2835        return false;
2836}
2837#endif /* CONFIG_ACPI */
2838
2839static void nvme_async_probe(void *data, async_cookie_t cookie)
2840{
2841        struct nvme_dev *dev = data;
2842
2843        flush_work(&dev->ctrl.reset_work);
2844        flush_work(&dev->ctrl.scan_work);
2845        nvme_put_ctrl(&dev->ctrl);
2846}
2847
2848static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2849{
2850        int node, result = -ENOMEM;
2851        struct nvme_dev *dev;
2852        unsigned long quirks = id->driver_data;
2853        size_t alloc_size;
2854
2855        node = dev_to_node(&pdev->dev);
2856        if (node == NUMA_NO_NODE)
2857                set_dev_node(&pdev->dev, first_memory_node);
2858
2859        dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2860        if (!dev)
2861                return -ENOMEM;
2862
2863        dev->nr_write_queues = write_queues;
2864        dev->nr_poll_queues = poll_queues;
2865        dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2866        dev->queues = kcalloc_node(dev->nr_allocated_queues,
2867                        sizeof(struct nvme_queue), GFP_KERNEL, node);
2868        if (!dev->queues)
2869                goto free;
2870
2871        dev->dev = get_device(&pdev->dev);
2872        pci_set_drvdata(pdev, dev);
2873
2874        result = nvme_dev_map(dev);
2875        if (result)
2876                goto put_pci;
2877
2878        INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2879        INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2880        mutex_init(&dev->shutdown_lock);
2881
2882        result = nvme_setup_prp_pools(dev);
2883        if (result)
2884                goto unmap;
2885
2886        quirks |= check_vendor_combination_bug(pdev);
2887
2888        if (!noacpi && nvme_acpi_storage_d3(pdev)) {
2889                /*
2890                 * Some systems use a bios work around to ask for D3 on
2891                 * platforms that support kernel managed suspend.
2892                 */
2893                dev_info(&pdev->dev,
2894                         "platform quirk: setting simple suspend\n");
2895                quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2896        }
2897
2898        /*
2899         * Double check that our mempool alloc size will cover the biggest
2900         * command we support.
2901         */
2902        alloc_size = nvme_pci_iod_alloc_size();
2903        WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2904
2905        dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2906                                                mempool_kfree,
2907                                                (void *) alloc_size,
2908                                                GFP_KERNEL, node);
2909        if (!dev->iod_mempool) {
2910                result = -ENOMEM;
2911                goto release_pools;
2912        }
2913
2914        result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2915                        quirks);
2916        if (result)
2917                goto release_mempool;
2918
2919        dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2920
2921        nvme_reset_ctrl(&dev->ctrl);
2922        async_schedule(nvme_async_probe, dev);
2923
2924        return 0;
2925
2926 release_mempool:
2927        mempool_destroy(dev->iod_mempool);
2928 release_pools:
2929        nvme_release_prp_pools(dev);
2930 unmap:
2931        nvme_dev_unmap(dev);
2932 put_pci:
2933        put_device(dev->dev);
2934 free:
2935        kfree(dev->queues);
2936        kfree(dev);
2937        return result;
2938}
2939
2940static void nvme_reset_prepare(struct pci_dev *pdev)
2941{
2942        struct nvme_dev *dev = pci_get_drvdata(pdev);
2943
2944        /*
2945         * We don't need to check the return value from waiting for the reset
2946         * state as pci_dev device lock is held, making it impossible to race
2947         * with ->remove().
2948         */
2949        nvme_disable_prepare_reset(dev, false);
2950        nvme_sync_queues(&dev->ctrl);
2951}
2952
2953static void nvme_reset_done(struct pci_dev *pdev)
2954{
2955        struct nvme_dev *dev = pci_get_drvdata(pdev);
2956
2957        if (!nvme_try_sched_reset(&dev->ctrl))
2958                flush_work(&dev->ctrl.reset_work);
2959}
2960
2961static void nvme_shutdown(struct pci_dev *pdev)
2962{
2963        struct nvme_dev *dev = pci_get_drvdata(pdev);
2964
2965        nvme_disable_prepare_reset(dev, true);
2966}
2967
2968/*
2969 * The driver's remove may be called on a device in a partially initialized
2970 * state. This function must not have any dependencies on the device state in
2971 * order to proceed.
2972 */
2973static void nvme_remove(struct pci_dev *pdev)
2974{
2975        struct nvme_dev *dev = pci_get_drvdata(pdev);
2976
2977        nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2978        pci_set_drvdata(pdev, NULL);
2979
2980        if (!pci_device_is_present(pdev)) {
2981                nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2982                nvme_dev_disable(dev, true);
2983                nvme_dev_remove_admin(dev);
2984        }
2985
2986        flush_work(&dev->ctrl.reset_work);
2987        nvme_stop_ctrl(&dev->ctrl);
2988        nvme_remove_namespaces(&dev->ctrl);
2989        nvme_dev_disable(dev, true);
2990        nvme_release_cmb(dev);
2991        nvme_free_host_mem(dev);
2992        nvme_dev_remove_admin(dev);
2993        nvme_free_queues(dev, 0);
2994        nvme_release_prp_pools(dev);
2995        nvme_dev_unmap(dev);
2996        nvme_uninit_ctrl(&dev->ctrl);
2997}
2998
2999#ifdef CONFIG_PM_SLEEP
3000static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3001{
3002        return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3003}
3004
3005static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3006{
3007        return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3008}
3009
3010static int nvme_resume(struct device *dev)
3011{
3012        struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3013        struct nvme_ctrl *ctrl = &ndev->ctrl;
3014
3015        if (ndev->last_ps == U32_MAX ||
3016            nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3017                return nvme_try_sched_reset(&ndev->ctrl);
3018        return 0;
3019}
3020
3021static int nvme_suspend(struct device *dev)
3022{
3023        struct pci_dev *pdev = to_pci_dev(dev);
3024        struct nvme_dev *ndev = pci_get_drvdata(pdev);
3025        struct nvme_ctrl *ctrl = &ndev->ctrl;
3026        int ret = -EBUSY;
3027
3028        ndev->last_ps = U32_MAX;
3029
3030        /*
3031         * The platform does not remove power for a kernel managed suspend so
3032         * use host managed nvme power settings for lowest idle power if
3033         * possible. This should have quicker resume latency than a full device
3034         * shutdown.  But if the firmware is involved after the suspend or the
3035         * device does not support any non-default power states, shut down the
3036         * device fully.
3037         *
3038         * If ASPM is not enabled for the device, shut down the device and allow
3039         * the PCI bus layer to put it into D3 in order to take the PCIe link
3040         * down, so as to allow the platform to achieve its minimum low-power
3041         * state (which may not be possible if the link is up).
3042         *
3043         * If a host memory buffer is enabled, shut down the device as the NVMe
3044         * specification allows the device to access the host memory buffer in
3045         * host DRAM from all power states, but hosts will fail access to DRAM
3046         * during S3.
3047         */
3048        if (pm_suspend_via_firmware() || !ctrl->npss ||
3049            !pcie_aspm_enabled(pdev) ||
3050            ndev->nr_host_mem_descs ||
3051            (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3052                return nvme_disable_prepare_reset(ndev, true);
3053
3054        nvme_start_freeze(ctrl);
3055        nvme_wait_freeze(ctrl);
3056        nvme_sync_queues(ctrl);
3057
3058        if (ctrl->state != NVME_CTRL_LIVE)
3059                goto unfreeze;
3060
3061        ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3062        if (ret < 0)
3063                goto unfreeze;
3064
3065        /*
3066         * A saved state prevents pci pm from generically controlling the
3067         * device's power. If we're using protocol specific settings, we don't
3068         * want pci interfering.
3069         */
3070        pci_save_state(pdev);
3071
3072        ret = nvme_set_power_state(ctrl, ctrl->npss);
3073        if (ret < 0)
3074                goto unfreeze;
3075
3076        if (ret) {
3077                /* discard the saved state */
3078                pci_load_saved_state(pdev, NULL);
3079
3080                /*
3081                 * Clearing npss forces a controller reset on resume. The
3082                 * correct value will be rediscovered then.
3083                 */
3084                ret = nvme_disable_prepare_reset(ndev, true);
3085                ctrl->npss = 0;
3086        }
3087unfreeze:
3088        nvme_unfreeze(ctrl);
3089        return ret;
3090}
3091
3092static int nvme_simple_suspend(struct device *dev)
3093{
3094        struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3095
3096        return nvme_disable_prepare_reset(ndev, true);
3097}
3098
3099static int nvme_simple_resume(struct device *dev)
3100{
3101        struct pci_dev *pdev = to_pci_dev(dev);
3102        struct nvme_dev *ndev = pci_get_drvdata(pdev);
3103
3104        return nvme_try_sched_reset(&ndev->ctrl);
3105}
3106
3107static const struct dev_pm_ops nvme_dev_pm_ops = {
3108        .suspend        = nvme_suspend,
3109        .resume         = nvme_resume,
3110        .freeze         = nvme_simple_suspend,
3111        .thaw           = nvme_simple_resume,
3112        .poweroff       = nvme_simple_suspend,
3113        .restore        = nvme_simple_resume,
3114};
3115#endif /* CONFIG_PM_SLEEP */
3116
3117static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3118                                                pci_channel_state_t state)
3119{
3120        struct nvme_dev *dev = pci_get_drvdata(pdev);
3121
3122        /*
3123         * A frozen channel requires a reset. When detected, this method will
3124         * shutdown the controller to quiesce. The controller will be restarted
3125         * after the slot reset through driver's slot_reset callback.
3126         */
3127        switch (state) {
3128        case pci_channel_io_normal:
3129                return PCI_ERS_RESULT_CAN_RECOVER;
3130        case pci_channel_io_frozen:
3131                dev_warn(dev->ctrl.device,
3132                        "frozen state error detected, reset controller\n");
3133                nvme_dev_disable(dev, false);
3134                return PCI_ERS_RESULT_NEED_RESET;
3135        case pci_channel_io_perm_failure:
3136                dev_warn(dev->ctrl.device,
3137                        "failure state error detected, request disconnect\n");
3138                return PCI_ERS_RESULT_DISCONNECT;
3139        }
3140        return PCI_ERS_RESULT_NEED_RESET;
3141}
3142
3143static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3144{
3145        struct nvme_dev *dev = pci_get_drvdata(pdev);
3146
3147        dev_info(dev->ctrl.device, "restart after slot reset\n");
3148        pci_restore_state(pdev);
3149        nvme_reset_ctrl(&dev->ctrl);
3150        return PCI_ERS_RESULT_RECOVERED;
3151}
3152
3153static void nvme_error_resume(struct pci_dev *pdev)
3154{
3155        struct nvme_dev *dev = pci_get_drvdata(pdev);
3156
3157        flush_work(&dev->ctrl.reset_work);
3158}
3159
3160static const struct pci_error_handlers nvme_err_handler = {
3161        .error_detected = nvme_error_detected,
3162        .slot_reset     = nvme_slot_reset,
3163        .resume         = nvme_error_resume,
3164        .reset_prepare  = nvme_reset_prepare,
3165        .reset_done     = nvme_reset_done,
3166};
3167
3168static const struct pci_device_id nvme_id_table[] = {
3169        { PCI_VDEVICE(INTEL, 0x0953),   /* Intel 750/P3500/P3600/P3700 */
3170                .driver_data = NVME_QUIRK_STRIPE_SIZE |
3171                                NVME_QUIRK_DEALLOCATE_ZEROES, },
3172        { PCI_VDEVICE(INTEL, 0x0a53),   /* Intel P3520 */
3173                .driver_data = NVME_QUIRK_STRIPE_SIZE |
3174                                NVME_QUIRK_DEALLOCATE_ZEROES, },
3175        { PCI_VDEVICE(INTEL, 0x0a54),   /* Intel P4500/P4600 */
3176                .driver_data = NVME_QUIRK_STRIPE_SIZE |
3177                                NVME_QUIRK_DEALLOCATE_ZEROES, },
3178        { PCI_VDEVICE(INTEL, 0x0a55),   /* Dell Express Flash P4600 */
3179                .driver_data = NVME_QUIRK_STRIPE_SIZE |
3180                                NVME_QUIRK_DEALLOCATE_ZEROES, },
3181        { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
3182                .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3183                                NVME_QUIRK_MEDIUM_PRIO_SQ |
3184                                NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3185                                NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3186        { PCI_VDEVICE(INTEL, 0xf1a6),   /* Intel 760p/Pro 7600p */
3187                .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3188        { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
3189                .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3190                                NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3191        { PCI_DEVICE(0x126f, 0x2263),   /* Silicon Motion unidentified */
3192                .driver_data = NVME_QUIRK_NO_NS_DESC_LIST, },
3193        { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3194                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3195        { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
3196                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3197        { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
3198                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3199        { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
3200                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3201        { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3202                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3203        { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3204                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3205        { PCI_DEVICE(0x1d1d, 0x1f1f),   /* LighNVM qemu device */
3206                .driver_data = NVME_QUIRK_LIGHTNVM, },
3207        { PCI_DEVICE(0x1d1d, 0x2807),   /* CNEX WL */
3208                .driver_data = NVME_QUIRK_LIGHTNVM, },
3209        { PCI_DEVICE(0x1d1d, 0x2601),   /* CNEX Granby */
3210                .driver_data = NVME_QUIRK_LIGHTNVM, },
3211        { PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3212                .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3213        { PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3214                .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3215                                NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3216        { PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3217                .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3218        { PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3219                .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3220        { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3221                .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3222        { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3223        { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3224                .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3225                                NVME_QUIRK_128_BYTES_SQES |
3226                                NVME_QUIRK_SHARED_TAGS },
3227
3228        { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3229        { 0, }
3230};
3231MODULE_DEVICE_TABLE(pci, nvme_id_table);
3232
3233static struct pci_driver nvme_driver = {
3234        .name           = "nvme",
3235        .id_table       = nvme_id_table,
3236        .probe          = nvme_probe,
3237        .remove         = nvme_remove,
3238        .shutdown       = nvme_shutdown,
3239#ifdef CONFIG_PM_SLEEP
3240        .driver         = {
3241                .pm     = &nvme_dev_pm_ops,
3242        },
3243#endif
3244        .sriov_configure = pci_sriov_configure_simple,
3245        .err_handler    = &nvme_err_handler,
3246};
3247
3248static int __init nvme_init(void)
3249{
3250        BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3251        BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3252        BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3253        BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3254
3255        return pci_register_driver(&nvme_driver);
3256}
3257
3258static void __exit nvme_exit(void)
3259{
3260        pci_unregister_driver(&nvme_driver);
3261        flush_workqueue(nvme_wq);
3262}
3263
3264MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3265MODULE_LICENSE("GPL");
3266MODULE_VERSION("1.0");
3267module_init(nvme_init);
3268module_exit(nvme_exit);
3269