1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30#include <linux/kernel.h>
31#include <linux/module.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/spinlock.h>
35#include <linux/platform_device.h>
36#include <linux/log2.h>
37#include <linux/pm.h>
38#include <linux/of.h>
39#include <linux/of_platform.h>
40#ifdef CONFIG_X86
41#include <asm/i8259.h>
42#include <asm/processor.h>
43#include <linux/dmi.h>
44#endif
45
46
47#include <linux/mc146818rtc.h>
48
49#ifdef CONFIG_ACPI
50
51
52
53
54
55
56
57
58static bool use_acpi_alarm;
59module_param(use_acpi_alarm, bool, 0444);
60
61static inline int cmos_use_acpi_alarm(void)
62{
63 return use_acpi_alarm;
64}
65#else
66
67static inline int cmos_use_acpi_alarm(void)
68{
69 return 0;
70}
71#endif
72
73struct cmos_rtc {
74 struct rtc_device *rtc;
75 struct device *dev;
76 int irq;
77 struct resource *iomem;
78 time64_t alarm_expires;
79
80 void (*wake_on)(struct device *);
81 void (*wake_off)(struct device *);
82
83 u8 enabled_wake;
84 u8 suspend_ctrl;
85
86
87 u8 day_alrm;
88 u8 mon_alrm;
89 u8 century;
90
91 struct rtc_wkalrm saved_wkalrm;
92};
93
94
95#define is_valid_irq(n) ((n) > 0)
96
97static const char driver_name[] = "rtc_cmos";
98
99
100
101
102
103#define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
104
105static inline int is_intr(u8 rtc_intr)
106{
107 if (!(rtc_intr & RTC_IRQF))
108 return 0;
109 return rtc_intr & RTC_IRQMASK;
110}
111
112
113
114
115
116
117
118
119
120
121
122
123
124#ifdef CONFIG_HPET_EMULATE_RTC
125#include <asm/hpet.h>
126#else
127
128static inline int is_hpet_enabled(void)
129{
130 return 0;
131}
132
133static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
134{
135 return 0;
136}
137
138static inline int hpet_set_rtc_irq_bit(unsigned long mask)
139{
140 return 0;
141}
142
143static inline int
144hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
145{
146 return 0;
147}
148
149static inline int hpet_set_periodic_freq(unsigned long freq)
150{
151 return 0;
152}
153
154static inline int hpet_rtc_dropped_irq(void)
155{
156 return 0;
157}
158
159static inline int hpet_rtc_timer_init(void)
160{
161 return 0;
162}
163
164extern irq_handler_t hpet_rtc_interrupt;
165
166static inline int hpet_register_irq_handler(irq_handler_t handler)
167{
168 return 0;
169}
170
171static inline int hpet_unregister_irq_handler(irq_handler_t handler)
172{
173 return 0;
174}
175
176#endif
177
178
179static inline int use_hpet_alarm(void)
180{
181 return is_hpet_enabled() && !cmos_use_acpi_alarm();
182}
183
184
185
186#ifdef RTC_PORT
187
188
189
190
191
192#define can_bank2 true
193
194static inline unsigned char cmos_read_bank2(unsigned char addr)
195{
196 outb(addr, RTC_PORT(2));
197 return inb(RTC_PORT(3));
198}
199
200static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
201{
202 outb(addr, RTC_PORT(2));
203 outb(val, RTC_PORT(3));
204}
205
206#else
207
208#define can_bank2 false
209
210static inline unsigned char cmos_read_bank2(unsigned char addr)
211{
212 return 0;
213}
214
215static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
216{
217}
218
219#endif
220
221
222
223static int cmos_read_time(struct device *dev, struct rtc_time *t)
224{
225
226
227
228
229 if (!pm_trace_rtc_valid())
230 return -EIO;
231
232
233
234
235
236 mc146818_get_time(t);
237 return 0;
238}
239
240static int cmos_set_time(struct device *dev, struct rtc_time *t)
241{
242
243
244
245
246
247
248 return mc146818_set_time(t);
249}
250
251static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
252{
253 struct cmos_rtc *cmos = dev_get_drvdata(dev);
254 unsigned char rtc_control;
255
256
257 if (!is_valid_irq(cmos->irq))
258 return -EIO;
259
260
261
262
263
264
265 spin_lock_irq(&rtc_lock);
266 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
267 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
268 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
269
270 if (cmos->day_alrm) {
271
272 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
273 if (!t->time.tm_mday)
274 t->time.tm_mday = -1;
275
276 if (cmos->mon_alrm) {
277 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
278 if (!t->time.tm_mon)
279 t->time.tm_mon = -1;
280 }
281 }
282
283 rtc_control = CMOS_READ(RTC_CONTROL);
284 spin_unlock_irq(&rtc_lock);
285
286 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
287 if (((unsigned)t->time.tm_sec) < 0x60)
288 t->time.tm_sec = bcd2bin(t->time.tm_sec);
289 else
290 t->time.tm_sec = -1;
291 if (((unsigned)t->time.tm_min) < 0x60)
292 t->time.tm_min = bcd2bin(t->time.tm_min);
293 else
294 t->time.tm_min = -1;
295 if (((unsigned)t->time.tm_hour) < 0x24)
296 t->time.tm_hour = bcd2bin(t->time.tm_hour);
297 else
298 t->time.tm_hour = -1;
299
300 if (cmos->day_alrm) {
301 if (((unsigned)t->time.tm_mday) <= 0x31)
302 t->time.tm_mday = bcd2bin(t->time.tm_mday);
303 else
304 t->time.tm_mday = -1;
305
306 if (cmos->mon_alrm) {
307 if (((unsigned)t->time.tm_mon) <= 0x12)
308 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
309 else
310 t->time.tm_mon = -1;
311 }
312 }
313 }
314
315 t->enabled = !!(rtc_control & RTC_AIE);
316 t->pending = 0;
317
318 return 0;
319}
320
321static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
322{
323 unsigned char rtc_intr;
324
325
326
327
328 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
329
330 if (use_hpet_alarm())
331 return;
332
333 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
334 if (is_intr(rtc_intr))
335 rtc_update_irq(cmos->rtc, 1, rtc_intr);
336}
337
338static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
339{
340 unsigned char rtc_control;
341
342
343
344
345 rtc_control = CMOS_READ(RTC_CONTROL);
346 cmos_checkintr(cmos, rtc_control);
347
348 rtc_control |= mask;
349 CMOS_WRITE(rtc_control, RTC_CONTROL);
350 if (use_hpet_alarm())
351 hpet_set_rtc_irq_bit(mask);
352
353 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
354 if (cmos->wake_on)
355 cmos->wake_on(cmos->dev);
356 }
357
358 cmos_checkintr(cmos, rtc_control);
359}
360
361static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
362{
363 unsigned char rtc_control;
364
365 rtc_control = CMOS_READ(RTC_CONTROL);
366 rtc_control &= ~mask;
367 CMOS_WRITE(rtc_control, RTC_CONTROL);
368 if (use_hpet_alarm())
369 hpet_mask_rtc_irq_bit(mask);
370
371 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
372 if (cmos->wake_off)
373 cmos->wake_off(cmos->dev);
374 }
375
376 cmos_checkintr(cmos, rtc_control);
377}
378
379static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
380{
381 struct cmos_rtc *cmos = dev_get_drvdata(dev);
382 struct rtc_time now;
383
384 cmos_read_time(dev, &now);
385
386 if (!cmos->day_alrm) {
387 time64_t t_max_date;
388 time64_t t_alrm;
389
390 t_max_date = rtc_tm_to_time64(&now);
391 t_max_date += 24 * 60 * 60 - 1;
392 t_alrm = rtc_tm_to_time64(&t->time);
393 if (t_alrm > t_max_date) {
394 dev_err(dev,
395 "Alarms can be up to one day in the future\n");
396 return -EINVAL;
397 }
398 } else if (!cmos->mon_alrm) {
399 struct rtc_time max_date = now;
400 time64_t t_max_date;
401 time64_t t_alrm;
402 int max_mday;
403
404 if (max_date.tm_mon == 11) {
405 max_date.tm_mon = 0;
406 max_date.tm_year += 1;
407 } else {
408 max_date.tm_mon += 1;
409 }
410 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
411 if (max_date.tm_mday > max_mday)
412 max_date.tm_mday = max_mday;
413
414 t_max_date = rtc_tm_to_time64(&max_date);
415 t_max_date -= 1;
416 t_alrm = rtc_tm_to_time64(&t->time);
417 if (t_alrm > t_max_date) {
418 dev_err(dev,
419 "Alarms can be up to one month in the future\n");
420 return -EINVAL;
421 }
422 } else {
423 struct rtc_time max_date = now;
424 time64_t t_max_date;
425 time64_t t_alrm;
426 int max_mday;
427
428 max_date.tm_year += 1;
429 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
430 if (max_date.tm_mday > max_mday)
431 max_date.tm_mday = max_mday;
432
433 t_max_date = rtc_tm_to_time64(&max_date);
434 t_max_date -= 1;
435 t_alrm = rtc_tm_to_time64(&t->time);
436 if (t_alrm > t_max_date) {
437 dev_err(dev,
438 "Alarms can be up to one year in the future\n");
439 return -EINVAL;
440 }
441 }
442
443 return 0;
444}
445
446static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
447{
448 struct cmos_rtc *cmos = dev_get_drvdata(dev);
449 unsigned char mon, mday, hrs, min, sec, rtc_control;
450 int ret;
451
452
453 if (!is_valid_irq(cmos->irq))
454 return -EIO;
455
456 ret = cmos_validate_alarm(dev, t);
457 if (ret < 0)
458 return ret;
459
460 mon = t->time.tm_mon + 1;
461 mday = t->time.tm_mday;
462 hrs = t->time.tm_hour;
463 min = t->time.tm_min;
464 sec = t->time.tm_sec;
465
466 rtc_control = CMOS_READ(RTC_CONTROL);
467 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
468
469 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
470 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
471 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
472 min = (min < 60) ? bin2bcd(min) : 0xff;
473 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
474 }
475
476 spin_lock_irq(&rtc_lock);
477
478
479 cmos_irq_disable(cmos, RTC_AIE);
480
481
482 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
483 CMOS_WRITE(min, RTC_MINUTES_ALARM);
484 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
485
486
487 if (cmos->day_alrm) {
488 CMOS_WRITE(mday, cmos->day_alrm);
489 if (cmos->mon_alrm)
490 CMOS_WRITE(mon, cmos->mon_alrm);
491 }
492
493 if (use_hpet_alarm()) {
494
495
496
497
498 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min,
499 t->time.tm_sec);
500 }
501
502 if (t->enabled)
503 cmos_irq_enable(cmos, RTC_AIE);
504
505 spin_unlock_irq(&rtc_lock);
506
507 cmos->alarm_expires = rtc_tm_to_time64(&t->time);
508
509 return 0;
510}
511
512static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
513{
514 struct cmos_rtc *cmos = dev_get_drvdata(dev);
515 unsigned long flags;
516
517 spin_lock_irqsave(&rtc_lock, flags);
518
519 if (enabled)
520 cmos_irq_enable(cmos, RTC_AIE);
521 else
522 cmos_irq_disable(cmos, RTC_AIE);
523
524 spin_unlock_irqrestore(&rtc_lock, flags);
525 return 0;
526}
527
528#if IS_ENABLED(CONFIG_RTC_INTF_PROC)
529
530static int cmos_procfs(struct device *dev, struct seq_file *seq)
531{
532 struct cmos_rtc *cmos = dev_get_drvdata(dev);
533 unsigned char rtc_control, valid;
534
535 spin_lock_irq(&rtc_lock);
536 rtc_control = CMOS_READ(RTC_CONTROL);
537 valid = CMOS_READ(RTC_VALID);
538 spin_unlock_irq(&rtc_lock);
539
540
541
542
543 seq_printf(seq,
544 "periodic_IRQ\t: %s\n"
545 "update_IRQ\t: %s\n"
546 "HPET_emulated\t: %s\n"
547
548 "BCD\t\t: %s\n"
549 "DST_enable\t: %s\n"
550 "periodic_freq\t: %d\n"
551 "batt_status\t: %s\n",
552 (rtc_control & RTC_PIE) ? "yes" : "no",
553 (rtc_control & RTC_UIE) ? "yes" : "no",
554 use_hpet_alarm() ? "yes" : "no",
555
556 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
557 (rtc_control & RTC_DST_EN) ? "yes" : "no",
558 cmos->rtc->irq_freq,
559 (valid & RTC_VRT) ? "okay" : "dead");
560
561 return 0;
562}
563
564#else
565#define cmos_procfs NULL
566#endif
567
568static const struct rtc_class_ops cmos_rtc_ops = {
569 .read_time = cmos_read_time,
570 .set_time = cmos_set_time,
571 .read_alarm = cmos_read_alarm,
572 .set_alarm = cmos_set_alarm,
573 .proc = cmos_procfs,
574 .alarm_irq_enable = cmos_alarm_irq_enable,
575};
576
577static const struct rtc_class_ops cmos_rtc_ops_no_alarm = {
578 .read_time = cmos_read_time,
579 .set_time = cmos_set_time,
580 .proc = cmos_procfs,
581};
582
583
584
585
586
587
588
589
590
591#define NVRAM_OFFSET (RTC_REG_D + 1)
592
593static int cmos_nvram_read(void *priv, unsigned int off, void *val,
594 size_t count)
595{
596 unsigned char *buf = val;
597 int retval;
598
599 off += NVRAM_OFFSET;
600 spin_lock_irq(&rtc_lock);
601 for (retval = 0; count; count--, off++, retval++) {
602 if (off < 128)
603 *buf++ = CMOS_READ(off);
604 else if (can_bank2)
605 *buf++ = cmos_read_bank2(off);
606 else
607 break;
608 }
609 spin_unlock_irq(&rtc_lock);
610
611 return retval;
612}
613
614static int cmos_nvram_write(void *priv, unsigned int off, void *val,
615 size_t count)
616{
617 struct cmos_rtc *cmos = priv;
618 unsigned char *buf = val;
619 int retval;
620
621
622
623
624
625
626 off += NVRAM_OFFSET;
627 spin_lock_irq(&rtc_lock);
628 for (retval = 0; count; count--, off++, retval++) {
629
630 if (off == cmos->day_alrm
631 || off == cmos->mon_alrm
632 || off == cmos->century)
633 buf++;
634 else if (off < 128)
635 CMOS_WRITE(*buf++, off);
636 else if (can_bank2)
637 cmos_write_bank2(*buf++, off);
638 else
639 break;
640 }
641 spin_unlock_irq(&rtc_lock);
642
643 return retval;
644}
645
646
647
648static struct cmos_rtc cmos_rtc;
649
650static irqreturn_t cmos_interrupt(int irq, void *p)
651{
652 unsigned long flags;
653 u8 irqstat;
654 u8 rtc_control;
655
656 spin_lock_irqsave(&rtc_lock, flags);
657
658
659
660
661
662
663
664
665 irqstat = CMOS_READ(RTC_INTR_FLAGS);
666 rtc_control = CMOS_READ(RTC_CONTROL);
667 if (use_hpet_alarm())
668 irqstat = (unsigned long)irq & 0xF0;
669
670
671
672
673 if (!cmos_rtc.suspend_ctrl)
674 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
675 else
676 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
677
678
679
680
681
682 if (irqstat & RTC_AIE) {
683 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
684 rtc_control &= ~RTC_AIE;
685 CMOS_WRITE(rtc_control, RTC_CONTROL);
686 if (use_hpet_alarm())
687 hpet_mask_rtc_irq_bit(RTC_AIE);
688 CMOS_READ(RTC_INTR_FLAGS);
689 }
690 spin_unlock_irqrestore(&rtc_lock, flags);
691
692 if (is_intr(irqstat)) {
693 rtc_update_irq(p, 1, irqstat);
694 return IRQ_HANDLED;
695 } else
696 return IRQ_NONE;
697}
698
699#ifdef CONFIG_PNP
700#define INITSECTION
701
702#else
703#define INITSECTION __init
704#endif
705
706static int INITSECTION
707cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
708{
709 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
710 int retval = 0;
711 unsigned char rtc_control;
712 unsigned address_space;
713 u32 flags = 0;
714 struct nvmem_config nvmem_cfg = {
715 .name = "cmos_nvram",
716 .word_size = 1,
717 .stride = 1,
718 .reg_read = cmos_nvram_read,
719 .reg_write = cmos_nvram_write,
720 .priv = &cmos_rtc,
721 };
722
723
724 if (cmos_rtc.dev)
725 return -EBUSY;
726
727 if (!ports)
728 return -ENODEV;
729
730
731
732
733
734
735 if (RTC_IOMAPPED)
736 ports = request_region(ports->start, resource_size(ports),
737 driver_name);
738 else
739 ports = request_mem_region(ports->start, resource_size(ports),
740 driver_name);
741 if (!ports) {
742 dev_dbg(dev, "i/o registers already in use\n");
743 return -EBUSY;
744 }
745
746 cmos_rtc.irq = rtc_irq;
747 cmos_rtc.iomem = ports;
748
749
750
751
752
753
754#if defined(CONFIG_ATARI)
755 address_space = 64;
756#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
757 || defined(__sparc__) || defined(__mips__) \
758 || defined(__powerpc__)
759 address_space = 128;
760#else
761#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
762 address_space = 128;
763#endif
764 if (can_bank2 && ports->end > (ports->start + 1))
765 address_space = 256;
766
767
768
769
770
771
772
773
774
775
776 if (info) {
777 if (info->flags)
778 flags = info->flags;
779 if (info->address_space)
780 address_space = info->address_space;
781
782 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
783 cmos_rtc.day_alrm = info->rtc_day_alarm;
784 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
785 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
786 if (info->rtc_century && info->rtc_century < 128)
787 cmos_rtc.century = info->rtc_century;
788
789 if (info->wake_on && info->wake_off) {
790 cmos_rtc.wake_on = info->wake_on;
791 cmos_rtc.wake_off = info->wake_off;
792 }
793 }
794
795 cmos_rtc.dev = dev;
796 dev_set_drvdata(dev, &cmos_rtc);
797
798 cmos_rtc.rtc = devm_rtc_allocate_device(dev);
799 if (IS_ERR(cmos_rtc.rtc)) {
800 retval = PTR_ERR(cmos_rtc.rtc);
801 goto cleanup0;
802 }
803
804 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
805
806 spin_lock_irq(&rtc_lock);
807
808 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
809
810
811
812
813
814
815 cmos_rtc.rtc->irq_freq = 1024;
816 if (use_hpet_alarm())
817 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
818 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
819 }
820
821
822 if (is_valid_irq(rtc_irq))
823 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
824
825 rtc_control = CMOS_READ(RTC_CONTROL);
826
827 spin_unlock_irq(&rtc_lock);
828
829 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
830 dev_warn(dev, "only 24-hr supported\n");
831 retval = -ENXIO;
832 goto cleanup1;
833 }
834
835 if (use_hpet_alarm())
836 hpet_rtc_timer_init();
837
838 if (is_valid_irq(rtc_irq)) {
839 irq_handler_t rtc_cmos_int_handler;
840
841 if (use_hpet_alarm()) {
842 rtc_cmos_int_handler = hpet_rtc_interrupt;
843 retval = hpet_register_irq_handler(cmos_interrupt);
844 if (retval) {
845 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
846 dev_warn(dev, "hpet_register_irq_handler "
847 " failed in rtc_init().");
848 goto cleanup1;
849 }
850 } else
851 rtc_cmos_int_handler = cmos_interrupt;
852
853 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
854 0, dev_name(&cmos_rtc.rtc->dev),
855 cmos_rtc.rtc);
856 if (retval < 0) {
857 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
858 goto cleanup1;
859 }
860
861 cmos_rtc.rtc->ops = &cmos_rtc_ops;
862 } else {
863 cmos_rtc.rtc->ops = &cmos_rtc_ops_no_alarm;
864 }
865
866 cmos_rtc.rtc->nvram_old_abi = true;
867 retval = rtc_register_device(cmos_rtc.rtc);
868 if (retval)
869 goto cleanup2;
870
871
872 nvmem_cfg.size = address_space - NVRAM_OFFSET;
873 if (rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg))
874 dev_err(dev, "nvmem registration failed\n");
875
876 dev_info(dev, "%s%s, %d bytes nvram%s\n",
877 !is_valid_irq(rtc_irq) ? "no alarms" :
878 cmos_rtc.mon_alrm ? "alarms up to one year" :
879 cmos_rtc.day_alrm ? "alarms up to one month" :
880 "alarms up to one day",
881 cmos_rtc.century ? ", y3k" : "",
882 nvmem_cfg.size,
883 use_hpet_alarm() ? ", hpet irqs" : "");
884
885 return 0;
886
887cleanup2:
888 if (is_valid_irq(rtc_irq))
889 free_irq(rtc_irq, cmos_rtc.rtc);
890cleanup1:
891 cmos_rtc.dev = NULL;
892cleanup0:
893 if (RTC_IOMAPPED)
894 release_region(ports->start, resource_size(ports));
895 else
896 release_mem_region(ports->start, resource_size(ports));
897 return retval;
898}
899
900static void cmos_do_shutdown(int rtc_irq)
901{
902 spin_lock_irq(&rtc_lock);
903 if (is_valid_irq(rtc_irq))
904 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
905 spin_unlock_irq(&rtc_lock);
906}
907
908static void cmos_do_remove(struct device *dev)
909{
910 struct cmos_rtc *cmos = dev_get_drvdata(dev);
911 struct resource *ports;
912
913 cmos_do_shutdown(cmos->irq);
914
915 if (is_valid_irq(cmos->irq)) {
916 free_irq(cmos->irq, cmos->rtc);
917 if (use_hpet_alarm())
918 hpet_unregister_irq_handler(cmos_interrupt);
919 }
920
921 cmos->rtc = NULL;
922
923 ports = cmos->iomem;
924 if (RTC_IOMAPPED)
925 release_region(ports->start, resource_size(ports));
926 else
927 release_mem_region(ports->start, resource_size(ports));
928 cmos->iomem = NULL;
929
930 cmos->dev = NULL;
931}
932
933static int cmos_aie_poweroff(struct device *dev)
934{
935 struct cmos_rtc *cmos = dev_get_drvdata(dev);
936 struct rtc_time now;
937 time64_t t_now;
938 int retval = 0;
939 unsigned char rtc_control;
940
941 if (!cmos->alarm_expires)
942 return -EINVAL;
943
944 spin_lock_irq(&rtc_lock);
945 rtc_control = CMOS_READ(RTC_CONTROL);
946 spin_unlock_irq(&rtc_lock);
947
948
949 if (rtc_control & RTC_AIE)
950 return -EBUSY;
951
952 cmos_read_time(dev, &now);
953 t_now = rtc_tm_to_time64(&now);
954
955
956
957
958
959
960
961
962
963
964 if (cmos->alarm_expires == t_now + 1) {
965 struct rtc_wkalrm alarm;
966
967
968 rtc_time64_to_tm(t_now - 1, &alarm.time);
969 alarm.enabled = 0;
970 retval = cmos_set_alarm(dev, &alarm);
971 } else if (cmos->alarm_expires > t_now + 1) {
972 retval = -EBUSY;
973 }
974
975 return retval;
976}
977
978static int cmos_suspend(struct device *dev)
979{
980 struct cmos_rtc *cmos = dev_get_drvdata(dev);
981 unsigned char tmp;
982
983
984 spin_lock_irq(&rtc_lock);
985 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
986 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
987 unsigned char mask;
988
989 if (device_may_wakeup(dev))
990 mask = RTC_IRQMASK & ~RTC_AIE;
991 else
992 mask = RTC_IRQMASK;
993 tmp &= ~mask;
994 CMOS_WRITE(tmp, RTC_CONTROL);
995 if (use_hpet_alarm())
996 hpet_mask_rtc_irq_bit(mask);
997 cmos_checkintr(cmos, tmp);
998 }
999 spin_unlock_irq(&rtc_lock);
1000
1001 if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
1002 cmos->enabled_wake = 1;
1003 if (cmos->wake_on)
1004 cmos->wake_on(dev);
1005 else
1006 enable_irq_wake(cmos->irq);
1007 }
1008
1009 memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm));
1010 cmos_read_alarm(dev, &cmos->saved_wkalrm);
1011
1012 dev_dbg(dev, "suspend%s, ctrl %02x\n",
1013 (tmp & RTC_AIE) ? ", alarm may wake" : "",
1014 tmp);
1015
1016 return 0;
1017}
1018
1019
1020
1021
1022
1023
1024
1025static inline int cmos_poweroff(struct device *dev)
1026{
1027 if (!IS_ENABLED(CONFIG_PM))
1028 return -ENOSYS;
1029
1030 return cmos_suspend(dev);
1031}
1032
1033static void cmos_check_wkalrm(struct device *dev)
1034{
1035 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1036 struct rtc_wkalrm current_alarm;
1037 time64_t t_now;
1038 time64_t t_current_expires;
1039 time64_t t_saved_expires;
1040 struct rtc_time now;
1041
1042
1043 if (!(cmos->suspend_ctrl & RTC_AIE))
1044 return;
1045
1046 cmos_read_time(dev, &now);
1047 t_now = rtc_tm_to_time64(&now);
1048
1049
1050
1051
1052
1053 if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1054 cmos_interrupt(0, (void *)cmos->rtc);
1055 return;
1056 }
1057
1058 memset(¤t_alarm, 0, sizeof(struct rtc_wkalrm));
1059 cmos_read_alarm(dev, ¤t_alarm);
1060 t_current_expires = rtc_tm_to_time64(¤t_alarm.time);
1061 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1062 if (t_current_expires != t_saved_expires ||
1063 cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1064 cmos_set_alarm(dev, &cmos->saved_wkalrm);
1065 }
1066}
1067
1068static void cmos_check_acpi_rtc_status(struct device *dev,
1069 unsigned char *rtc_control);
1070
1071static int __maybe_unused cmos_resume(struct device *dev)
1072{
1073 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1074 unsigned char tmp;
1075
1076 if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1077 if (cmos->wake_off)
1078 cmos->wake_off(dev);
1079 else
1080 disable_irq_wake(cmos->irq);
1081 cmos->enabled_wake = 0;
1082 }
1083
1084
1085 cmos_check_wkalrm(dev);
1086
1087 spin_lock_irq(&rtc_lock);
1088 tmp = cmos->suspend_ctrl;
1089 cmos->suspend_ctrl = 0;
1090
1091 if (tmp & RTC_IRQMASK) {
1092 unsigned char mask;
1093
1094 if (device_may_wakeup(dev) && use_hpet_alarm())
1095 hpet_rtc_timer_init();
1096
1097 do {
1098 CMOS_WRITE(tmp, RTC_CONTROL);
1099 if (use_hpet_alarm())
1100 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1101
1102 mask = CMOS_READ(RTC_INTR_FLAGS);
1103 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1104 if (!use_hpet_alarm() || !is_intr(mask))
1105 break;
1106
1107
1108
1109
1110 rtc_update_irq(cmos->rtc, 1, mask);
1111 tmp &= ~RTC_AIE;
1112 hpet_mask_rtc_irq_bit(RTC_AIE);
1113 } while (mask & RTC_AIE);
1114
1115 if (tmp & RTC_AIE)
1116 cmos_check_acpi_rtc_status(dev, &tmp);
1117 }
1118 spin_unlock_irq(&rtc_lock);
1119
1120 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1121
1122 return 0;
1123}
1124
1125static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137#ifdef CONFIG_ACPI
1138
1139#include <linux/acpi.h>
1140
1141static u32 rtc_handler(void *context)
1142{
1143 struct device *dev = context;
1144 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1145 unsigned char rtc_control = 0;
1146 unsigned char rtc_intr;
1147 unsigned long flags;
1148
1149
1150
1151
1152
1153
1154
1155 if (cmos_use_acpi_alarm())
1156 cmos_interrupt(0, (void *)cmos->rtc);
1157 else {
1158
1159 spin_lock_irqsave(&rtc_lock, flags);
1160 if (cmos_rtc.suspend_ctrl)
1161 rtc_control = CMOS_READ(RTC_CONTROL);
1162 if (rtc_control & RTC_AIE) {
1163 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1164 CMOS_WRITE(rtc_control, RTC_CONTROL);
1165 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1166 rtc_update_irq(cmos->rtc, 1, rtc_intr);
1167 }
1168 spin_unlock_irqrestore(&rtc_lock, flags);
1169 }
1170
1171 pm_wakeup_hard_event(dev);
1172 acpi_clear_event(ACPI_EVENT_RTC);
1173 acpi_disable_event(ACPI_EVENT_RTC, 0);
1174 return ACPI_INTERRUPT_HANDLED;
1175}
1176
1177static inline void rtc_wake_setup(struct device *dev)
1178{
1179 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1180
1181
1182
1183
1184 acpi_clear_event(ACPI_EVENT_RTC);
1185 acpi_disable_event(ACPI_EVENT_RTC, 0);
1186}
1187
1188static void rtc_wake_on(struct device *dev)
1189{
1190 acpi_clear_event(ACPI_EVENT_RTC);
1191 acpi_enable_event(ACPI_EVENT_RTC, 0);
1192}
1193
1194static void rtc_wake_off(struct device *dev)
1195{
1196 acpi_disable_event(ACPI_EVENT_RTC, 0);
1197}
1198
1199#ifdef CONFIG_X86
1200
1201static void use_acpi_alarm_quirks(void)
1202{
1203 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1204 return;
1205
1206 if (!(acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0))
1207 return;
1208
1209 if (!is_hpet_enabled())
1210 return;
1211
1212 if (dmi_get_bios_year() < 2015)
1213 return;
1214
1215 use_acpi_alarm = true;
1216}
1217#else
1218static inline void use_acpi_alarm_quirks(void) { }
1219#endif
1220
1221
1222
1223
1224
1225
1226static struct cmos_rtc_board_info acpi_rtc_info;
1227
1228static void cmos_wake_setup(struct device *dev)
1229{
1230 if (acpi_disabled)
1231 return;
1232
1233 use_acpi_alarm_quirks();
1234
1235 rtc_wake_setup(dev);
1236 acpi_rtc_info.wake_on = rtc_wake_on;
1237 acpi_rtc_info.wake_off = rtc_wake_off;
1238
1239
1240 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1241 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1242 acpi_gbl_FADT.month_alarm);
1243 acpi_gbl_FADT.month_alarm = 0;
1244 }
1245
1246 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1247 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1248 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1249
1250
1251 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1252 dev_info(dev, "RTC can wake from S4\n");
1253
1254 dev->platform_data = &acpi_rtc_info;
1255
1256
1257 device_init_wakeup(dev, 1);
1258}
1259
1260static void cmos_check_acpi_rtc_status(struct device *dev,
1261 unsigned char *rtc_control)
1262{
1263 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1264 acpi_event_status rtc_status;
1265 acpi_status status;
1266
1267 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1268 return;
1269
1270 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1271 if (ACPI_FAILURE(status)) {
1272 dev_err(dev, "Could not get RTC status\n");
1273 } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1274 unsigned char mask;
1275 *rtc_control &= ~RTC_AIE;
1276 CMOS_WRITE(*rtc_control, RTC_CONTROL);
1277 mask = CMOS_READ(RTC_INTR_FLAGS);
1278 rtc_update_irq(cmos->rtc, 1, mask);
1279 }
1280}
1281
1282#else
1283
1284static void cmos_wake_setup(struct device *dev)
1285{
1286}
1287
1288static void cmos_check_acpi_rtc_status(struct device *dev,
1289 unsigned char *rtc_control)
1290{
1291}
1292
1293#endif
1294
1295#ifdef CONFIG_PNP
1296
1297#include <linux/pnp.h>
1298
1299static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1300{
1301 cmos_wake_setup(&pnp->dev);
1302
1303 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1304 unsigned int irq = 0;
1305#ifdef CONFIG_X86
1306
1307
1308
1309
1310 if (nr_legacy_irqs())
1311 irq = RTC_IRQ;
1312#endif
1313 return cmos_do_probe(&pnp->dev,
1314 pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1315 } else {
1316 return cmos_do_probe(&pnp->dev,
1317 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1318 pnp_irq(pnp, 0));
1319 }
1320}
1321
1322static void cmos_pnp_remove(struct pnp_dev *pnp)
1323{
1324 cmos_do_remove(&pnp->dev);
1325}
1326
1327static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1328{
1329 struct device *dev = &pnp->dev;
1330 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1331
1332 if (system_state == SYSTEM_POWER_OFF) {
1333 int retval = cmos_poweroff(dev);
1334
1335 if (cmos_aie_poweroff(dev) < 0 && !retval)
1336 return;
1337 }
1338
1339 cmos_do_shutdown(cmos->irq);
1340}
1341
1342static const struct pnp_device_id rtc_ids[] = {
1343 { .id = "PNP0b00", },
1344 { .id = "PNP0b01", },
1345 { .id = "PNP0b02", },
1346 { },
1347};
1348MODULE_DEVICE_TABLE(pnp, rtc_ids);
1349
1350static struct pnp_driver cmos_pnp_driver = {
1351 .name = driver_name,
1352 .id_table = rtc_ids,
1353 .probe = cmos_pnp_probe,
1354 .remove = cmos_pnp_remove,
1355 .shutdown = cmos_pnp_shutdown,
1356
1357
1358 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1359 .driver = {
1360 .pm = &cmos_pm_ops,
1361 },
1362};
1363
1364#endif
1365
1366#ifdef CONFIG_OF
1367static const struct of_device_id of_cmos_match[] = {
1368 {
1369 .compatible = "motorola,mc146818",
1370 },
1371 { },
1372};
1373MODULE_DEVICE_TABLE(of, of_cmos_match);
1374
1375static __init void cmos_of_init(struct platform_device *pdev)
1376{
1377 struct device_node *node = pdev->dev.of_node;
1378 const __be32 *val;
1379
1380 if (!node)
1381 return;
1382
1383 val = of_get_property(node, "ctrl-reg", NULL);
1384 if (val)
1385 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1386
1387 val = of_get_property(node, "freq-reg", NULL);
1388 if (val)
1389 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1390}
1391#else
1392static inline void cmos_of_init(struct platform_device *pdev) {}
1393#endif
1394
1395
1396
1397
1398
1399
1400static int __init cmos_platform_probe(struct platform_device *pdev)
1401{
1402 struct resource *resource;
1403 int irq;
1404
1405 cmos_of_init(pdev);
1406 cmos_wake_setup(&pdev->dev);
1407
1408 if (RTC_IOMAPPED)
1409 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1410 else
1411 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1412 irq = platform_get_irq(pdev, 0);
1413 if (irq < 0)
1414 irq = -1;
1415
1416 return cmos_do_probe(&pdev->dev, resource, irq);
1417}
1418
1419static int cmos_platform_remove(struct platform_device *pdev)
1420{
1421 cmos_do_remove(&pdev->dev);
1422 return 0;
1423}
1424
1425static void cmos_platform_shutdown(struct platform_device *pdev)
1426{
1427 struct device *dev = &pdev->dev;
1428 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1429
1430 if (system_state == SYSTEM_POWER_OFF) {
1431 int retval = cmos_poweroff(dev);
1432
1433 if (cmos_aie_poweroff(dev) < 0 && !retval)
1434 return;
1435 }
1436
1437 cmos_do_shutdown(cmos->irq);
1438}
1439
1440
1441MODULE_ALIAS("platform:rtc_cmos");
1442
1443static struct platform_driver cmos_platform_driver = {
1444 .remove = cmos_platform_remove,
1445 .shutdown = cmos_platform_shutdown,
1446 .driver = {
1447 .name = driver_name,
1448 .pm = &cmos_pm_ops,
1449 .of_match_table = of_match_ptr(of_cmos_match),
1450 }
1451};
1452
1453#ifdef CONFIG_PNP
1454static bool pnp_driver_registered;
1455#endif
1456static bool platform_driver_registered;
1457
1458static int __init cmos_init(void)
1459{
1460 int retval = 0;
1461
1462#ifdef CONFIG_PNP
1463 retval = pnp_register_driver(&cmos_pnp_driver);
1464 if (retval == 0)
1465 pnp_driver_registered = true;
1466#endif
1467
1468 if (!cmos_rtc.dev) {
1469 retval = platform_driver_probe(&cmos_platform_driver,
1470 cmos_platform_probe);
1471 if (retval == 0)
1472 platform_driver_registered = true;
1473 }
1474
1475 if (retval == 0)
1476 return 0;
1477
1478#ifdef CONFIG_PNP
1479 if (pnp_driver_registered)
1480 pnp_unregister_driver(&cmos_pnp_driver);
1481#endif
1482 return retval;
1483}
1484module_init(cmos_init);
1485
1486static void __exit cmos_exit(void)
1487{
1488#ifdef CONFIG_PNP
1489 if (pnp_driver_registered)
1490 pnp_unregister_driver(&cmos_pnp_driver);
1491#endif
1492 if (platform_driver_registered)
1493 platform_driver_unregister(&cmos_platform_driver);
1494}
1495module_exit(cmos_exit);
1496
1497
1498MODULE_AUTHOR("David Brownell");
1499MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1500MODULE_LICENSE("GPL");
1501