linux/drivers/scsi/advansys.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
   4 *
   5 * Copyright (c) 1995-2000 Advanced System Products, Inc.
   6 * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
   7 * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
   8 * Copyright (c) 2014 Hannes Reinecke <hare@suse.de>
   9 * All Rights Reserved.
  10 */
  11
  12/*
  13 * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
  14 * changed its name to ConnectCom Solutions, Inc.
  15 * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
  16 */
  17
  18#include <linux/module.h>
  19#include <linux/string.h>
  20#include <linux/kernel.h>
  21#include <linux/types.h>
  22#include <linux/ioport.h>
  23#include <linux/interrupt.h>
  24#include <linux/delay.h>
  25#include <linux/slab.h>
  26#include <linux/mm.h>
  27#include <linux/proc_fs.h>
  28#include <linux/init.h>
  29#include <linux/blkdev.h>
  30#include <linux/isa.h>
  31#include <linux/eisa.h>
  32#include <linux/pci.h>
  33#include <linux/spinlock.h>
  34#include <linux/dma-mapping.h>
  35#include <linux/firmware.h>
  36#include <linux/dmapool.h>
  37
  38#include <asm/io.h>
  39#include <asm/dma.h>
  40
  41#include <scsi/scsi_cmnd.h>
  42#include <scsi/scsi_device.h>
  43#include <scsi/scsi_tcq.h>
  44#include <scsi/scsi.h>
  45#include <scsi/scsi_host.h>
  46
  47#define DRV_NAME "advansys"
  48#define ASC_VERSION "3.5"       /* AdvanSys Driver Version */
  49
  50/* FIXME:
  51 *
  52 *  1. Use scsi_transport_spi
  53 *  2. advansys_info is not safe against multiple simultaneous callers
  54 *  3. Add module_param to override ISA/VLB ioport array
  55 */
  56
  57/* Enable driver /proc statistics. */
  58#define ADVANSYS_STATS
  59
  60/* Enable driver tracing. */
  61#undef ADVANSYS_DEBUG
  62
  63typedef unsigned char uchar;
  64
  65#define isodd_word(val)   ((((uint)val) & (uint)0x0001) != 0)
  66
  67#define PCI_VENDOR_ID_ASP               0x10cd
  68#define PCI_DEVICE_ID_ASP_1200A         0x1100
  69#define PCI_DEVICE_ID_ASP_ABP940        0x1200
  70#define PCI_DEVICE_ID_ASP_ABP940U       0x1300
  71#define PCI_DEVICE_ID_ASP_ABP940UW      0x2300
  72#define PCI_DEVICE_ID_38C0800_REV1      0x2500
  73#define PCI_DEVICE_ID_38C1600_REV1      0x2700
  74
  75#define PortAddr                 unsigned int   /* port address size  */
  76#define inp(port)                inb(port)
  77#define outp(port, byte)         outb((byte), (port))
  78
  79#define inpw(port)               inw(port)
  80#define outpw(port, word)        outw((word), (port))
  81
  82#define ASC_MAX_SG_QUEUE    7
  83#define ASC_MAX_SG_LIST     255
  84
  85#define ASC_CS_TYPE  unsigned short
  86
  87#define ASC_IS_ISA          (0x0001)
  88#define ASC_IS_ISAPNP       (0x0081)
  89#define ASC_IS_EISA         (0x0002)
  90#define ASC_IS_PCI          (0x0004)
  91#define ASC_IS_PCI_ULTRA    (0x0104)
  92#define ASC_IS_PCMCIA       (0x0008)
  93#define ASC_IS_MCA          (0x0020)
  94#define ASC_IS_VL           (0x0040)
  95#define ASC_IS_WIDESCSI_16  (0x0100)
  96#define ASC_IS_WIDESCSI_32  (0x0200)
  97#define ASC_IS_BIG_ENDIAN   (0x8000)
  98
  99#define ASC_CHIP_MIN_VER_VL      (0x01)
 100#define ASC_CHIP_MAX_VER_VL      (0x07)
 101#define ASC_CHIP_MIN_VER_PCI     (0x09)
 102#define ASC_CHIP_MAX_VER_PCI     (0x0F)
 103#define ASC_CHIP_VER_PCI_BIT     (0x08)
 104#define ASC_CHIP_MIN_VER_ISA     (0x11)
 105#define ASC_CHIP_MIN_VER_ISA_PNP (0x21)
 106#define ASC_CHIP_MAX_VER_ISA     (0x27)
 107#define ASC_CHIP_VER_ISA_BIT     (0x30)
 108#define ASC_CHIP_VER_ISAPNP_BIT  (0x20)
 109#define ASC_CHIP_VER_ASYN_BUG    (0x21)
 110#define ASC_CHIP_VER_PCI             0x08
 111#define ASC_CHIP_VER_PCI_ULTRA_3150  (ASC_CHIP_VER_PCI | 0x02)
 112#define ASC_CHIP_VER_PCI_ULTRA_3050  (ASC_CHIP_VER_PCI | 0x03)
 113#define ASC_CHIP_MIN_VER_EISA (0x41)
 114#define ASC_CHIP_MAX_VER_EISA (0x47)
 115#define ASC_CHIP_VER_EISA_BIT (0x40)
 116#define ASC_CHIP_LATEST_VER_EISA   ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
 117#define ASC_MAX_VL_DMA_COUNT    (0x07FFFFFFL)
 118#define ASC_MAX_PCI_DMA_COUNT   (0xFFFFFFFFL)
 119#define ASC_MAX_ISA_DMA_COUNT   (0x00FFFFFFL)
 120
 121#define ASC_SCSI_ID_BITS  3
 122#define ASC_SCSI_TIX_TYPE     uchar
 123#define ASC_ALL_DEVICE_BIT_SET  0xFF
 124#define ASC_SCSI_BIT_ID_TYPE  uchar
 125#define ASC_MAX_TID       7
 126#define ASC_MAX_LUN       7
 127#define ASC_SCSI_WIDTH_BIT_SET  0xFF
 128#define ASC_MAX_SENSE_LEN   32
 129#define ASC_MIN_SENSE_LEN   14
 130#define ASC_SCSI_RESET_HOLD_TIME_US  60
 131
 132/*
 133 * Narrow boards only support 12-byte commands, while wide boards
 134 * extend to 16-byte commands.
 135 */
 136#define ASC_MAX_CDB_LEN     12
 137#define ADV_MAX_CDB_LEN     16
 138
 139#define MS_SDTR_LEN    0x03
 140#define MS_WDTR_LEN    0x02
 141
 142#define ASC_SG_LIST_PER_Q   7
 143#define QS_FREE        0x00
 144#define QS_READY       0x01
 145#define QS_DISC1       0x02
 146#define QS_DISC2       0x04
 147#define QS_BUSY        0x08
 148#define QS_ABORTED     0x40
 149#define QS_DONE        0x80
 150#define QC_NO_CALLBACK   0x01
 151#define QC_SG_SWAP_QUEUE 0x02
 152#define QC_SG_HEAD       0x04
 153#define QC_DATA_IN       0x08
 154#define QC_DATA_OUT      0x10
 155#define QC_URGENT        0x20
 156#define QC_MSG_OUT       0x40
 157#define QC_REQ_SENSE     0x80
 158#define QCSG_SG_XFER_LIST  0x02
 159#define QCSG_SG_XFER_MORE  0x04
 160#define QCSG_SG_XFER_END   0x08
 161#define QD_IN_PROGRESS       0x00
 162#define QD_NO_ERROR          0x01
 163#define QD_ABORTED_BY_HOST   0x02
 164#define QD_WITH_ERROR        0x04
 165#define QD_INVALID_REQUEST   0x80
 166#define QD_INVALID_HOST_NUM  0x81
 167#define QD_INVALID_DEVICE    0x82
 168#define QD_ERR_INTERNAL      0xFF
 169#define QHSTA_NO_ERROR               0x00
 170#define QHSTA_M_SEL_TIMEOUT          0x11
 171#define QHSTA_M_DATA_OVER_RUN        0x12
 172#define QHSTA_M_DATA_UNDER_RUN       0x12
 173#define QHSTA_M_UNEXPECTED_BUS_FREE  0x13
 174#define QHSTA_M_BAD_BUS_PHASE_SEQ    0x14
 175#define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
 176#define QHSTA_D_ASC_DVC_ERROR_CODE_SET  0x22
 177#define QHSTA_D_HOST_ABORT_FAILED       0x23
 178#define QHSTA_D_EXE_SCSI_Q_FAILED       0x24
 179#define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
 180#define QHSTA_D_ASPI_NO_BUF_POOL        0x26
 181#define QHSTA_M_WTM_TIMEOUT         0x41
 182#define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
 183#define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
 184#define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
 185#define QHSTA_M_TARGET_STATUS_BUSY  0x45
 186#define QHSTA_M_BAD_TAG_CODE        0x46
 187#define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY  0x47
 188#define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
 189#define QHSTA_D_LRAM_CMP_ERROR        0x81
 190#define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
 191#define ASC_FLAG_SCSIQ_REQ        0x01
 192#define ASC_FLAG_BIOS_SCSIQ_REQ   0x02
 193#define ASC_FLAG_BIOS_ASYNC_IO    0x04
 194#define ASC_FLAG_SRB_LINEAR_ADDR  0x08
 195#define ASC_FLAG_WIN16            0x10
 196#define ASC_FLAG_WIN32            0x20
 197#define ASC_FLAG_ISA_OVER_16MB    0x40
 198#define ASC_FLAG_DOS_VM_CALLBACK  0x80
 199#define ASC_TAG_FLAG_EXTRA_BYTES               0x10
 200#define ASC_TAG_FLAG_DISABLE_DISCONNECT        0x04
 201#define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX  0x08
 202#define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
 203#define ASC_SCSIQ_CPY_BEG              4
 204#define ASC_SCSIQ_SGHD_CPY_BEG         2
 205#define ASC_SCSIQ_B_FWD                0
 206#define ASC_SCSIQ_B_BWD                1
 207#define ASC_SCSIQ_B_STATUS             2
 208#define ASC_SCSIQ_B_QNO                3
 209#define ASC_SCSIQ_B_CNTL               4
 210#define ASC_SCSIQ_B_SG_QUEUE_CNT       5
 211#define ASC_SCSIQ_D_DATA_ADDR          8
 212#define ASC_SCSIQ_D_DATA_CNT          12
 213#define ASC_SCSIQ_B_SENSE_LEN         20
 214#define ASC_SCSIQ_DONE_INFO_BEG       22
 215#define ASC_SCSIQ_D_SRBPTR            22
 216#define ASC_SCSIQ_B_TARGET_IX         26
 217#define ASC_SCSIQ_B_CDB_LEN           28
 218#define ASC_SCSIQ_B_TAG_CODE          29
 219#define ASC_SCSIQ_W_VM_ID             30
 220#define ASC_SCSIQ_DONE_STATUS         32
 221#define ASC_SCSIQ_HOST_STATUS         33
 222#define ASC_SCSIQ_SCSI_STATUS         34
 223#define ASC_SCSIQ_CDB_BEG             36
 224#define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
 225#define ASC_SCSIQ_DW_REMAIN_XFER_CNT  60
 226#define ASC_SCSIQ_B_FIRST_SG_WK_QP    48
 227#define ASC_SCSIQ_B_SG_WK_QP          49
 228#define ASC_SCSIQ_B_SG_WK_IX          50
 229#define ASC_SCSIQ_W_ALT_DC1           52
 230#define ASC_SCSIQ_B_LIST_CNT          6
 231#define ASC_SCSIQ_B_CUR_LIST_CNT      7
 232#define ASC_SGQ_B_SG_CNTL             4
 233#define ASC_SGQ_B_SG_HEAD_QP          5
 234#define ASC_SGQ_B_SG_LIST_CNT         6
 235#define ASC_SGQ_B_SG_CUR_LIST_CNT     7
 236#define ASC_SGQ_LIST_BEG              8
 237#define ASC_DEF_SCSI1_QNG    4
 238#define ASC_MAX_SCSI1_QNG    4
 239#define ASC_DEF_SCSI2_QNG    16
 240#define ASC_MAX_SCSI2_QNG    32
 241#define ASC_TAG_CODE_MASK    0x23
 242#define ASC_STOP_REQ_RISC_STOP      0x01
 243#define ASC_STOP_ACK_RISC_STOP      0x03
 244#define ASC_STOP_CLEAN_UP_BUSY_Q    0x10
 245#define ASC_STOP_CLEAN_UP_DISC_Q    0x20
 246#define ASC_STOP_HOST_REQ_RISC_HALT 0x40
 247#define ASC_TIDLUN_TO_IX(tid, lun)  (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
 248#define ASC_TID_TO_TARGET_ID(tid)   (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
 249#define ASC_TIX_TO_TARGET_ID(tix)   (0x01 << ((tix) & ASC_MAX_TID))
 250#define ASC_TIX_TO_TID(tix)         ((tix) & ASC_MAX_TID)
 251#define ASC_TID_TO_TIX(tid)         ((tid) & ASC_MAX_TID)
 252#define ASC_TIX_TO_LUN(tix)         (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
 253#define ASC_QNO_TO_QADDR(q_no)      ((ASC_QADR_BEG)+((int)(q_no) << 6))
 254
 255typedef struct asc_scsiq_1 {
 256        uchar status;
 257        uchar q_no;
 258        uchar cntl;
 259        uchar sg_queue_cnt;
 260        uchar target_id;
 261        uchar target_lun;
 262        __le32 data_addr;
 263        __le32 data_cnt;
 264        __le32 sense_addr;
 265        uchar sense_len;
 266        uchar extra_bytes;
 267} ASC_SCSIQ_1;
 268
 269typedef struct asc_scsiq_2 {
 270        u32 srb_tag;
 271        uchar target_ix;
 272        uchar flag;
 273        uchar cdb_len;
 274        uchar tag_code;
 275        ushort vm_id;
 276} ASC_SCSIQ_2;
 277
 278typedef struct asc_scsiq_3 {
 279        uchar done_stat;
 280        uchar host_stat;
 281        uchar scsi_stat;
 282        uchar scsi_msg;
 283} ASC_SCSIQ_3;
 284
 285typedef struct asc_scsiq_4 {
 286        uchar cdb[ASC_MAX_CDB_LEN];
 287        uchar y_first_sg_list_qp;
 288        uchar y_working_sg_qp;
 289        uchar y_working_sg_ix;
 290        uchar y_res;
 291        ushort x_req_count;
 292        ushort x_reconnect_rtn;
 293        __le32 x_saved_data_addr;
 294        __le32 x_saved_data_cnt;
 295} ASC_SCSIQ_4;
 296
 297typedef struct asc_q_done_info {
 298        ASC_SCSIQ_2 d2;
 299        ASC_SCSIQ_3 d3;
 300        uchar q_status;
 301        uchar q_no;
 302        uchar cntl;
 303        uchar sense_len;
 304        uchar extra_bytes;
 305        uchar res;
 306        u32 remain_bytes;
 307} ASC_QDONE_INFO;
 308
 309typedef struct asc_sg_list {
 310        __le32 addr;
 311        __le32 bytes;
 312} ASC_SG_LIST;
 313
 314typedef struct asc_sg_head {
 315        ushort entry_cnt;
 316        ushort queue_cnt;
 317        ushort entry_to_copy;
 318        ushort res;
 319        ASC_SG_LIST sg_list[];
 320} ASC_SG_HEAD;
 321
 322typedef struct asc_scsi_q {
 323        ASC_SCSIQ_1 q1;
 324        ASC_SCSIQ_2 q2;
 325        uchar *cdbptr;
 326        ASC_SG_HEAD *sg_head;
 327        ushort remain_sg_entry_cnt;
 328        ushort next_sg_index;
 329} ASC_SCSI_Q;
 330
 331typedef struct asc_scsi_bios_req_q {
 332        ASC_SCSIQ_1 r1;
 333        ASC_SCSIQ_2 r2;
 334        uchar *cdbptr;
 335        ASC_SG_HEAD *sg_head;
 336        uchar *sense_ptr;
 337        ASC_SCSIQ_3 r3;
 338        uchar cdb[ASC_MAX_CDB_LEN];
 339        uchar sense[ASC_MIN_SENSE_LEN];
 340} ASC_SCSI_BIOS_REQ_Q;
 341
 342typedef struct asc_risc_q {
 343        uchar fwd;
 344        uchar bwd;
 345        ASC_SCSIQ_1 i1;
 346        ASC_SCSIQ_2 i2;
 347        ASC_SCSIQ_3 i3;
 348        ASC_SCSIQ_4 i4;
 349} ASC_RISC_Q;
 350
 351typedef struct asc_sg_list_q {
 352        uchar seq_no;
 353        uchar q_no;
 354        uchar cntl;
 355        uchar sg_head_qp;
 356        uchar sg_list_cnt;
 357        uchar sg_cur_list_cnt;
 358} ASC_SG_LIST_Q;
 359
 360typedef struct asc_risc_sg_list_q {
 361        uchar fwd;
 362        uchar bwd;
 363        ASC_SG_LIST_Q sg;
 364        ASC_SG_LIST sg_list[7];
 365} ASC_RISC_SG_LIST_Q;
 366
 367#define ASCQ_ERR_Q_STATUS             0x0D
 368#define ASCQ_ERR_CUR_QNG              0x17
 369#define ASCQ_ERR_SG_Q_LINKS           0x18
 370#define ASCQ_ERR_ISR_RE_ENTRY         0x1A
 371#define ASCQ_ERR_CRITICAL_RE_ENTRY    0x1B
 372#define ASCQ_ERR_ISR_ON_CRITICAL      0x1C
 373
 374/*
 375 * Warning code values are set in ASC_DVC_VAR  'warn_code'.
 376 */
 377#define ASC_WARN_NO_ERROR             0x0000
 378#define ASC_WARN_IO_PORT_ROTATE       0x0001
 379#define ASC_WARN_EEPROM_CHKSUM        0x0002
 380#define ASC_WARN_IRQ_MODIFIED         0x0004
 381#define ASC_WARN_AUTO_CONFIG          0x0008
 382#define ASC_WARN_CMD_QNG_CONFLICT     0x0010
 383#define ASC_WARN_EEPROM_RECOVER       0x0020
 384#define ASC_WARN_CFG_MSW_RECOVER      0x0040
 385
 386/*
 387 * Error code values are set in {ASC/ADV}_DVC_VAR  'err_code'.
 388 */
 389#define ASC_IERR_NO_CARRIER             0x0001  /* No more carrier memory */
 390#define ASC_IERR_MCODE_CHKSUM           0x0002  /* micro code check sum error */
 391#define ASC_IERR_SET_PC_ADDR            0x0004
 392#define ASC_IERR_START_STOP_CHIP        0x0008  /* start/stop chip failed */
 393#define ASC_IERR_ILLEGAL_CONNECTION     0x0010  /* Illegal cable connection */
 394#define ASC_IERR_SINGLE_END_DEVICE      0x0020  /* SE device on DIFF bus */
 395#define ASC_IERR_REVERSED_CABLE         0x0040  /* Narrow flat cable reversed */
 396#define ASC_IERR_SET_SCSI_ID            0x0080  /* set SCSI ID failed */
 397#define ASC_IERR_HVD_DEVICE             0x0100  /* HVD device on LVD port */
 398#define ASC_IERR_BAD_SIGNATURE          0x0200  /* signature not found */
 399#define ASC_IERR_NO_BUS_TYPE            0x0400
 400#define ASC_IERR_BIST_PRE_TEST          0x0800  /* BIST pre-test error */
 401#define ASC_IERR_BIST_RAM_TEST          0x1000  /* BIST RAM test error */
 402#define ASC_IERR_BAD_CHIPTYPE           0x2000  /* Invalid chip_type setting */
 403
 404#define ASC_DEF_MAX_TOTAL_QNG   (0xF0)
 405#define ASC_MIN_TAG_Q_PER_DVC   (0x04)
 406#define ASC_MIN_FREE_Q        (0x02)
 407#define ASC_MIN_TOTAL_QNG     ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
 408#define ASC_MAX_TOTAL_QNG 240
 409#define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
 410#define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG   8
 411#define ASC_MAX_PCI_INRAM_TOTAL_QNG  20
 412#define ASC_MAX_INRAM_TAG_QNG   16
 413#define ASC_IOADR_GAP   0x10
 414#define ASC_SYN_MAX_OFFSET         0x0F
 415#define ASC_DEF_SDTR_OFFSET        0x0F
 416#define ASC_SDTR_ULTRA_PCI_10MB_INDEX  0x02
 417#define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
 418
 419/* The narrow chip only supports a limited selection of transfer rates.
 420 * These are encoded in the range 0..7 or 0..15 depending whether the chip
 421 * is Ultra-capable or not.  These tables let us convert from one to the other.
 422 */
 423static const unsigned char asc_syn_xfer_period[8] = {
 424        25, 30, 35, 40, 50, 60, 70, 85
 425};
 426
 427static const unsigned char asc_syn_ultra_xfer_period[16] = {
 428        12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
 429};
 430
 431typedef struct ext_msg {
 432        uchar msg_type;
 433        uchar msg_len;
 434        uchar msg_req;
 435        union {
 436                struct {
 437                        uchar sdtr_xfer_period;
 438                        uchar sdtr_req_ack_offset;
 439                } sdtr;
 440                struct {
 441                        uchar wdtr_width;
 442                } wdtr;
 443                struct {
 444                        uchar mdp_b3;
 445                        uchar mdp_b2;
 446                        uchar mdp_b1;
 447                        uchar mdp_b0;
 448                } mdp;
 449        } u_ext_msg;
 450        uchar res;
 451} EXT_MSG;
 452
 453#define xfer_period     u_ext_msg.sdtr.sdtr_xfer_period
 454#define req_ack_offset  u_ext_msg.sdtr.sdtr_req_ack_offset
 455#define wdtr_width      u_ext_msg.wdtr.wdtr_width
 456#define mdp_b3          u_ext_msg.mdp_b3
 457#define mdp_b2          u_ext_msg.mdp_b2
 458#define mdp_b1          u_ext_msg.mdp_b1
 459#define mdp_b0          u_ext_msg.mdp_b0
 460
 461typedef struct asc_dvc_cfg {
 462        ASC_SCSI_BIT_ID_TYPE can_tagged_qng;
 463        ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled;
 464        ASC_SCSI_BIT_ID_TYPE disc_enable;
 465        ASC_SCSI_BIT_ID_TYPE sdtr_enable;
 466        uchar chip_scsi_id;
 467        uchar isa_dma_speed;
 468        uchar isa_dma_channel;
 469        uchar chip_version;
 470        ushort mcode_date;
 471        ushort mcode_version;
 472        uchar max_tag_qng[ASC_MAX_TID + 1];
 473        uchar sdtr_period_offset[ASC_MAX_TID + 1];
 474        uchar adapter_info[6];
 475} ASC_DVC_CFG;
 476
 477#define ASC_DEF_DVC_CNTL       0xFFFF
 478#define ASC_DEF_CHIP_SCSI_ID   7
 479#define ASC_DEF_ISA_DMA_SPEED  4
 480#define ASC_INIT_STATE_BEG_GET_CFG   0x0001
 481#define ASC_INIT_STATE_END_GET_CFG   0x0002
 482#define ASC_INIT_STATE_BEG_SET_CFG   0x0004
 483#define ASC_INIT_STATE_END_SET_CFG   0x0008
 484#define ASC_INIT_STATE_BEG_LOAD_MC   0x0010
 485#define ASC_INIT_STATE_END_LOAD_MC   0x0020
 486#define ASC_INIT_STATE_BEG_INQUIRY   0x0040
 487#define ASC_INIT_STATE_END_INQUIRY   0x0080
 488#define ASC_INIT_RESET_SCSI_DONE     0x0100
 489#define ASC_INIT_STATE_WITHOUT_EEP   0x8000
 490#define ASC_BUG_FIX_IF_NOT_DWB       0x0001
 491#define ASC_BUG_FIX_ASYN_USE_SYN     0x0002
 492#define ASC_MIN_TAGGED_CMD  7
 493#define ASC_MAX_SCSI_RESET_WAIT      30
 494#define ASC_OVERRUN_BSIZE               64
 495
 496struct asc_dvc_var;             /* Forward Declaration. */
 497
 498typedef struct asc_dvc_var {
 499        PortAddr iop_base;
 500        ushort err_code;
 501        ushort dvc_cntl;
 502        ushort bug_fix_cntl;
 503        ushort bus_type;
 504        ASC_SCSI_BIT_ID_TYPE init_sdtr;
 505        ASC_SCSI_BIT_ID_TYPE sdtr_done;
 506        ASC_SCSI_BIT_ID_TYPE use_tagged_qng;
 507        ASC_SCSI_BIT_ID_TYPE unit_not_ready;
 508        ASC_SCSI_BIT_ID_TYPE queue_full_or_busy;
 509        ASC_SCSI_BIT_ID_TYPE start_motor;
 510        uchar *overrun_buf;
 511        dma_addr_t overrun_dma;
 512        uchar scsi_reset_wait;
 513        uchar chip_no;
 514        bool is_in_int;
 515        uchar max_total_qng;
 516        uchar cur_total_qng;
 517        uchar in_critical_cnt;
 518        uchar last_q_shortage;
 519        ushort init_state;
 520        uchar cur_dvc_qng[ASC_MAX_TID + 1];
 521        uchar max_dvc_qng[ASC_MAX_TID + 1];
 522        ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1];
 523        ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1];
 524        const uchar *sdtr_period_tbl;
 525        ASC_DVC_CFG *cfg;
 526        ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always;
 527        char redo_scam;
 528        ushort res2;
 529        uchar dos_int13_table[ASC_MAX_TID + 1];
 530        unsigned int max_dma_count;
 531        ASC_SCSI_BIT_ID_TYPE no_scam;
 532        ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer;
 533        uchar min_sdtr_index;
 534        uchar max_sdtr_index;
 535        struct asc_board *drv_ptr;
 536        unsigned int uc_break;
 537} ASC_DVC_VAR;
 538
 539typedef struct asc_dvc_inq_info {
 540        uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
 541} ASC_DVC_INQ_INFO;
 542
 543typedef struct asc_cap_info {
 544        u32 lba;
 545        u32 blk_size;
 546} ASC_CAP_INFO;
 547
 548typedef struct asc_cap_info_array {
 549        ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
 550} ASC_CAP_INFO_ARRAY;
 551
 552#define ASC_MCNTL_NO_SEL_TIMEOUT  (ushort)0x0001
 553#define ASC_MCNTL_NULL_TARGET     (ushort)0x0002
 554#define ASC_CNTL_INITIATOR         (ushort)0x0001
 555#define ASC_CNTL_BIOS_GT_1GB       (ushort)0x0002
 556#define ASC_CNTL_BIOS_GT_2_DISK    (ushort)0x0004
 557#define ASC_CNTL_BIOS_REMOVABLE    (ushort)0x0008
 558#define ASC_CNTL_NO_SCAM           (ushort)0x0010
 559#define ASC_CNTL_INT_MULTI_Q       (ushort)0x0080
 560#define ASC_CNTL_NO_LUN_SUPPORT    (ushort)0x0040
 561#define ASC_CNTL_NO_VERIFY_COPY    (ushort)0x0100
 562#define ASC_CNTL_RESET_SCSI        (ushort)0x0200
 563#define ASC_CNTL_INIT_INQUIRY      (ushort)0x0400
 564#define ASC_CNTL_INIT_VERBOSE      (ushort)0x0800
 565#define ASC_CNTL_SCSI_PARITY       (ushort)0x1000
 566#define ASC_CNTL_BURST_MODE        (ushort)0x2000
 567#define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
 568#define ASC_EEP_DVC_CFG_BEG_VL    2
 569#define ASC_EEP_MAX_DVC_ADDR_VL   15
 570#define ASC_EEP_DVC_CFG_BEG      32
 571#define ASC_EEP_MAX_DVC_ADDR     45
 572#define ASC_EEP_MAX_RETRY        20
 573
 574/*
 575 * These macros keep the chip SCSI id and ISA DMA speed
 576 * bitfields in board order. C bitfields aren't portable
 577 * between big and little-endian platforms so they are
 578 * not used.
 579 */
 580
 581#define ASC_EEP_GET_CHIP_ID(cfg)    ((cfg)->id_speed & 0x0f)
 582#define ASC_EEP_GET_DMA_SPD(cfg)    (((cfg)->id_speed & 0xf0) >> 4)
 583#define ASC_EEP_SET_CHIP_ID(cfg, sid) \
 584   ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
 585#define ASC_EEP_SET_DMA_SPD(cfg, spd) \
 586   ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
 587
 588typedef struct asceep_config {
 589        ushort cfg_lsw;
 590        ushort cfg_msw;
 591        uchar init_sdtr;
 592        uchar disc_enable;
 593        uchar use_cmd_qng;
 594        uchar start_motor;
 595        uchar max_total_qng;
 596        uchar max_tag_qng;
 597        uchar bios_scan;
 598        uchar power_up_wait;
 599        uchar no_scam;
 600        uchar id_speed;         /* low order 4 bits is chip scsi id */
 601        /* high order 4 bits is isa dma speed */
 602        uchar dos_int13_table[ASC_MAX_TID + 1];
 603        uchar adapter_info[6];
 604        ushort cntl;
 605        ushort chksum;
 606} ASCEEP_CONFIG;
 607
 608#define ASC_EEP_CMD_READ          0x80
 609#define ASC_EEP_CMD_WRITE         0x40
 610#define ASC_EEP_CMD_WRITE_ABLE    0x30
 611#define ASC_EEP_CMD_WRITE_DISABLE 0x00
 612#define ASCV_MSGOUT_BEG         0x0000
 613#define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
 614#define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
 615#define ASCV_BREAK_SAVED_CODE   (ushort)0x0006
 616#define ASCV_MSGIN_BEG          (ASCV_MSGOUT_BEG+8)
 617#define ASCV_MSGIN_SDTR_PERIOD  (ASCV_MSGIN_BEG+3)
 618#define ASCV_MSGIN_SDTR_OFFSET  (ASCV_MSGIN_BEG+4)
 619#define ASCV_SDTR_DATA_BEG      (ASCV_MSGIN_BEG+8)
 620#define ASCV_SDTR_DONE_BEG      (ASCV_SDTR_DATA_BEG+8)
 621#define ASCV_MAX_DVC_QNG_BEG    (ushort)0x0020
 622#define ASCV_BREAK_ADDR           (ushort)0x0028
 623#define ASCV_BREAK_NOTIFY_COUNT   (ushort)0x002A
 624#define ASCV_BREAK_CONTROL        (ushort)0x002C
 625#define ASCV_BREAK_HIT_COUNT      (ushort)0x002E
 626
 627#define ASCV_ASCDVC_ERR_CODE_W  (ushort)0x0030
 628#define ASCV_MCODE_CHKSUM_W   (ushort)0x0032
 629#define ASCV_MCODE_SIZE_W     (ushort)0x0034
 630#define ASCV_STOP_CODE_B      (ushort)0x0036
 631#define ASCV_DVC_ERR_CODE_B   (ushort)0x0037
 632#define ASCV_OVERRUN_PADDR_D  (ushort)0x0038
 633#define ASCV_OVERRUN_BSIZE_D  (ushort)0x003C
 634#define ASCV_HALTCODE_W       (ushort)0x0040
 635#define ASCV_CHKSUM_W         (ushort)0x0042
 636#define ASCV_MC_DATE_W        (ushort)0x0044
 637#define ASCV_MC_VER_W         (ushort)0x0046
 638#define ASCV_NEXTRDY_B        (ushort)0x0048
 639#define ASCV_DONENEXT_B       (ushort)0x0049
 640#define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
 641#define ASCV_SCSIBUSY_B       (ushort)0x004B
 642#define ASCV_Q_DONE_IN_PROGRESS_B  (ushort)0x004C
 643#define ASCV_CURCDB_B         (ushort)0x004D
 644#define ASCV_RCLUN_B          (ushort)0x004E
 645#define ASCV_BUSY_QHEAD_B     (ushort)0x004F
 646#define ASCV_DISC1_QHEAD_B    (ushort)0x0050
 647#define ASCV_DISC_ENABLE_B    (ushort)0x0052
 648#define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
 649#define ASCV_HOSTSCSI_ID_B    (ushort)0x0055
 650#define ASCV_MCODE_CNTL_B     (ushort)0x0056
 651#define ASCV_NULL_TARGET_B    (ushort)0x0057
 652#define ASCV_FREE_Q_HEAD_W    (ushort)0x0058
 653#define ASCV_DONE_Q_TAIL_W    (ushort)0x005A
 654#define ASCV_FREE_Q_HEAD_B    (ushort)(ASCV_FREE_Q_HEAD_W+1)
 655#define ASCV_DONE_Q_TAIL_B    (ushort)(ASCV_DONE_Q_TAIL_W+1)
 656#define ASCV_HOST_FLAG_B      (ushort)0x005D
 657#define ASCV_TOTAL_READY_Q_B  (ushort)0x0064
 658#define ASCV_VER_SERIAL_B     (ushort)0x0065
 659#define ASCV_HALTCODE_SAVED_W (ushort)0x0066
 660#define ASCV_WTM_FLAG_B       (ushort)0x0068
 661#define ASCV_RISC_FLAG_B      (ushort)0x006A
 662#define ASCV_REQ_SG_LIST_QP   (ushort)0x006B
 663#define ASC_HOST_FLAG_IN_ISR        0x01
 664#define ASC_HOST_FLAG_ACK_INT       0x02
 665#define ASC_RISC_FLAG_GEN_INT      0x01
 666#define ASC_RISC_FLAG_REQ_SG_LIST  0x02
 667#define IOP_CTRL         (0x0F)
 668#define IOP_STATUS       (0x0E)
 669#define IOP_INT_ACK      IOP_STATUS
 670#define IOP_REG_IFC      (0x0D)
 671#define IOP_SYN_OFFSET    (0x0B)
 672#define IOP_EXTRA_CONTROL (0x0D)
 673#define IOP_REG_PC        (0x0C)
 674#define IOP_RAM_ADDR      (0x0A)
 675#define IOP_RAM_DATA      (0x08)
 676#define IOP_EEP_DATA      (0x06)
 677#define IOP_EEP_CMD       (0x07)
 678#define IOP_VERSION       (0x03)
 679#define IOP_CONFIG_HIGH   (0x04)
 680#define IOP_CONFIG_LOW    (0x02)
 681#define IOP_SIG_BYTE      (0x01)
 682#define IOP_SIG_WORD      (0x00)
 683#define IOP_REG_DC1      (0x0E)
 684#define IOP_REG_DC0      (0x0C)
 685#define IOP_REG_SB       (0x0B)
 686#define IOP_REG_DA1      (0x0A)
 687#define IOP_REG_DA0      (0x08)
 688#define IOP_REG_SC       (0x09)
 689#define IOP_DMA_SPEED    (0x07)
 690#define IOP_REG_FLAG     (0x07)
 691#define IOP_FIFO_H       (0x06)
 692#define IOP_FIFO_L       (0x04)
 693#define IOP_REG_ID       (0x05)
 694#define IOP_REG_QP       (0x03)
 695#define IOP_REG_IH       (0x02)
 696#define IOP_REG_IX       (0x01)
 697#define IOP_REG_AX       (0x00)
 698#define IFC_REG_LOCK      (0x00)
 699#define IFC_REG_UNLOCK    (0x09)
 700#define IFC_WR_EN_FILTER  (0x10)
 701#define IFC_RD_NO_EEPROM  (0x10)
 702#define IFC_SLEW_RATE     (0x20)
 703#define IFC_ACT_NEG       (0x40)
 704#define IFC_INP_FILTER    (0x80)
 705#define IFC_INIT_DEFAULT  (IFC_ACT_NEG | IFC_REG_UNLOCK)
 706#define SC_SEL   (uchar)(0x80)
 707#define SC_BSY   (uchar)(0x40)
 708#define SC_ACK   (uchar)(0x20)
 709#define SC_REQ   (uchar)(0x10)
 710#define SC_ATN   (uchar)(0x08)
 711#define SC_IO    (uchar)(0x04)
 712#define SC_CD    (uchar)(0x02)
 713#define SC_MSG   (uchar)(0x01)
 714#define SEC_SCSI_CTL         (uchar)(0x80)
 715#define SEC_ACTIVE_NEGATE    (uchar)(0x40)
 716#define SEC_SLEW_RATE        (uchar)(0x20)
 717#define SEC_ENABLE_FILTER    (uchar)(0x10)
 718#define ASC_HALT_EXTMSG_IN     (ushort)0x8000
 719#define ASC_HALT_CHK_CONDITION (ushort)0x8100
 720#define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
 721#define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX  (ushort)0x8300
 722#define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX   (ushort)0x8400
 723#define ASC_HALT_SDTR_REJECTED (ushort)0x4000
 724#define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
 725#define ASC_MAX_QNO        0xF8
 726#define ASC_DATA_SEC_BEG   (ushort)0x0080
 727#define ASC_DATA_SEC_END   (ushort)0x0080
 728#define ASC_CODE_SEC_BEG   (ushort)0x0080
 729#define ASC_CODE_SEC_END   (ushort)0x0080
 730#define ASC_QADR_BEG       (0x4000)
 731#define ASC_QADR_USED      (ushort)(ASC_MAX_QNO * 64)
 732#define ASC_QADR_END       (ushort)0x7FFF
 733#define ASC_QLAST_ADR      (ushort)0x7FC0
 734#define ASC_QBLK_SIZE      0x40
 735#define ASC_BIOS_DATA_QBEG 0xF8
 736#define ASC_MIN_ACTIVE_QNO 0x01
 737#define ASC_QLINK_END      0xFF
 738#define ASC_EEPROM_WORDS   0x10
 739#define ASC_MAX_MGS_LEN    0x10
 740#define ASC_BIOS_ADDR_DEF  0xDC00
 741#define ASC_BIOS_SIZE      0x3800
 742#define ASC_BIOS_RAM_OFF   0x3800
 743#define ASC_BIOS_RAM_SIZE  0x800
 744#define ASC_BIOS_MIN_ADDR  0xC000
 745#define ASC_BIOS_MAX_ADDR  0xEC00
 746#define ASC_BIOS_BANK_SIZE 0x0400
 747#define ASC_MCODE_START_ADDR  0x0080
 748#define ASC_CFG0_HOST_INT_ON    0x0020
 749#define ASC_CFG0_BIOS_ON        0x0040
 750#define ASC_CFG0_VERA_BURST_ON  0x0080
 751#define ASC_CFG0_SCSI_PARITY_ON 0x0800
 752#define ASC_CFG1_SCSI_TARGET_ON 0x0080
 753#define ASC_CFG1_LRAM_8BITS_ON  0x0800
 754#define ASC_CFG_MSW_CLR_MASK    0x3080
 755#define CSW_TEST1             (ASC_CS_TYPE)0x8000
 756#define CSW_AUTO_CONFIG       (ASC_CS_TYPE)0x4000
 757#define CSW_RESERVED1         (ASC_CS_TYPE)0x2000
 758#define CSW_IRQ_WRITTEN       (ASC_CS_TYPE)0x1000
 759#define CSW_33MHZ_SELECTED    (ASC_CS_TYPE)0x0800
 760#define CSW_TEST2             (ASC_CS_TYPE)0x0400
 761#define CSW_TEST3             (ASC_CS_TYPE)0x0200
 762#define CSW_RESERVED2         (ASC_CS_TYPE)0x0100
 763#define CSW_DMA_DONE          (ASC_CS_TYPE)0x0080
 764#define CSW_FIFO_RDY          (ASC_CS_TYPE)0x0040
 765#define CSW_EEP_READ_DONE     (ASC_CS_TYPE)0x0020
 766#define CSW_HALTED            (ASC_CS_TYPE)0x0010
 767#define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
 768#define CSW_PARITY_ERR        (ASC_CS_TYPE)0x0004
 769#define CSW_SCSI_RESET_LATCH  (ASC_CS_TYPE)0x0002
 770#define CSW_INT_PENDING       (ASC_CS_TYPE)0x0001
 771#define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
 772#define CIW_INT_ACK      (ASC_CS_TYPE)0x0100
 773#define CIW_TEST1        (ASC_CS_TYPE)0x0200
 774#define CIW_TEST2        (ASC_CS_TYPE)0x0400
 775#define CIW_SEL_33MHZ    (ASC_CS_TYPE)0x0800
 776#define CIW_IRQ_ACT      (ASC_CS_TYPE)0x1000
 777#define CC_CHIP_RESET   (uchar)0x80
 778#define CC_SCSI_RESET   (uchar)0x40
 779#define CC_HALT         (uchar)0x20
 780#define CC_SINGLE_STEP  (uchar)0x10
 781#define CC_DMA_ABLE     (uchar)0x08
 782#define CC_TEST         (uchar)0x04
 783#define CC_BANK_ONE     (uchar)0x02
 784#define CC_DIAG         (uchar)0x01
 785#define ASC_1000_ID0W      0x04C1
 786#define ASC_1000_ID0W_FIX  0x00C1
 787#define ASC_1000_ID1B      0x25
 788#define ASC_EISA_REV_IOP_MASK  (0x0C83)
 789#define ASC_EISA_CFG_IOP_MASK  (0x0C86)
 790#define ASC_GET_EISA_SLOT(iop)  (PortAddr)((iop) & 0xF000)
 791#define INS_HALTINT        (ushort)0x6281
 792#define INS_HALT           (ushort)0x6280
 793#define INS_SINT           (ushort)0x6200
 794#define INS_RFLAG_WTM      (ushort)0x7380
 795#define ASC_MC_SAVE_CODE_WSIZE  0x500
 796#define ASC_MC_SAVE_DATA_WSIZE  0x40
 797
 798typedef struct asc_mc_saved {
 799        ushort data[ASC_MC_SAVE_DATA_WSIZE];
 800        ushort code[ASC_MC_SAVE_CODE_WSIZE];
 801} ASC_MC_SAVED;
 802
 803#define AscGetQDoneInProgress(port)         AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
 804#define AscPutQDoneInProgress(port, val)    AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
 805#define AscGetVarFreeQHead(port)            AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
 806#define AscGetVarDoneQTail(port)            AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
 807#define AscPutVarFreeQHead(port, val)       AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
 808#define AscPutVarDoneQTail(port, val)       AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
 809#define AscGetRiscVarFreeQHead(port)        AscReadLramByte((port), ASCV_NEXTRDY_B)
 810#define AscGetRiscVarDoneQTail(port)        AscReadLramByte((port), ASCV_DONENEXT_B)
 811#define AscPutRiscVarFreeQHead(port, val)   AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
 812#define AscPutRiscVarDoneQTail(port, val)   AscWriteLramByte((port), ASCV_DONENEXT_B, val)
 813#define AscPutMCodeSDTRDoneAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
 814#define AscGetMCodeSDTRDoneAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
 815#define AscPutMCodeInitSDTRAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
 816#define AscGetMCodeInitSDTRAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
 817#define AscGetChipSignatureByte(port)     (uchar)inp((port)+IOP_SIG_BYTE)
 818#define AscGetChipSignatureWord(port)     (ushort)inpw((port)+IOP_SIG_WORD)
 819#define AscGetChipVerNo(port)             (uchar)inp((port)+IOP_VERSION)
 820#define AscGetChipCfgLsw(port)            (ushort)inpw((port)+IOP_CONFIG_LOW)
 821#define AscGetChipCfgMsw(port)            (ushort)inpw((port)+IOP_CONFIG_HIGH)
 822#define AscSetChipCfgLsw(port, data)      outpw((port)+IOP_CONFIG_LOW, data)
 823#define AscSetChipCfgMsw(port, data)      outpw((port)+IOP_CONFIG_HIGH, data)
 824#define AscGetChipEEPCmd(port)            (uchar)inp((port)+IOP_EEP_CMD)
 825#define AscSetChipEEPCmd(port, data)      outp((port)+IOP_EEP_CMD, data)
 826#define AscGetChipEEPData(port)           (ushort)inpw((port)+IOP_EEP_DATA)
 827#define AscSetChipEEPData(port, data)     outpw((port)+IOP_EEP_DATA, data)
 828#define AscGetChipLramAddr(port)          (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
 829#define AscSetChipLramAddr(port, addr)    outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
 830#define AscGetChipLramData(port)          (ushort)inpw((port)+IOP_RAM_DATA)
 831#define AscSetChipLramData(port, data)    outpw((port)+IOP_RAM_DATA, data)
 832#define AscGetChipIFC(port)               (uchar)inp((port)+IOP_REG_IFC)
 833#define AscSetChipIFC(port, data)          outp((port)+IOP_REG_IFC, data)
 834#define AscGetChipStatus(port)            (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
 835#define AscSetChipStatus(port, cs_val)    outpw((port)+IOP_STATUS, cs_val)
 836#define AscGetChipControl(port)           (uchar)inp((port)+IOP_CTRL)
 837#define AscSetChipControl(port, cc_val)   outp((port)+IOP_CTRL, cc_val)
 838#define AscGetChipSyn(port)               (uchar)inp((port)+IOP_SYN_OFFSET)
 839#define AscSetChipSyn(port, data)         outp((port)+IOP_SYN_OFFSET, data)
 840#define AscSetPCAddr(port, data)          outpw((port)+IOP_REG_PC, data)
 841#define AscGetPCAddr(port)                (ushort)inpw((port)+IOP_REG_PC)
 842#define AscIsIntPending(port)             (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
 843#define AscGetChipScsiID(port)            ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
 844#define AscGetExtraControl(port)          (uchar)inp((port)+IOP_EXTRA_CONTROL)
 845#define AscSetExtraControl(port, data)    outp((port)+IOP_EXTRA_CONTROL, data)
 846#define AscReadChipAX(port)               (ushort)inpw((port)+IOP_REG_AX)
 847#define AscWriteChipAX(port, data)        outpw((port)+IOP_REG_AX, data)
 848#define AscReadChipIX(port)               (uchar)inp((port)+IOP_REG_IX)
 849#define AscWriteChipIX(port, data)        outp((port)+IOP_REG_IX, data)
 850#define AscReadChipIH(port)               (ushort)inpw((port)+IOP_REG_IH)
 851#define AscWriteChipIH(port, data)        outpw((port)+IOP_REG_IH, data)
 852#define AscReadChipQP(port)               (uchar)inp((port)+IOP_REG_QP)
 853#define AscWriteChipQP(port, data)        outp((port)+IOP_REG_QP, data)
 854#define AscReadChipFIFO_L(port)           (ushort)inpw((port)+IOP_REG_FIFO_L)
 855#define AscWriteChipFIFO_L(port, data)    outpw((port)+IOP_REG_FIFO_L, data)
 856#define AscReadChipFIFO_H(port)           (ushort)inpw((port)+IOP_REG_FIFO_H)
 857#define AscWriteChipFIFO_H(port, data)    outpw((port)+IOP_REG_FIFO_H, data)
 858#define AscReadChipDmaSpeed(port)         (uchar)inp((port)+IOP_DMA_SPEED)
 859#define AscWriteChipDmaSpeed(port, data)  outp((port)+IOP_DMA_SPEED, data)
 860#define AscReadChipDA0(port)              (ushort)inpw((port)+IOP_REG_DA0)
 861#define AscWriteChipDA0(port)             outpw((port)+IOP_REG_DA0, data)
 862#define AscReadChipDA1(port)              (ushort)inpw((port)+IOP_REG_DA1)
 863#define AscWriteChipDA1(port)             outpw((port)+IOP_REG_DA1, data)
 864#define AscReadChipDC0(port)              (ushort)inpw((port)+IOP_REG_DC0)
 865#define AscWriteChipDC0(port)             outpw((port)+IOP_REG_DC0, data)
 866#define AscReadChipDC1(port)              (ushort)inpw((port)+IOP_REG_DC1)
 867#define AscWriteChipDC1(port)             outpw((port)+IOP_REG_DC1, data)
 868#define AscReadChipDvcID(port)            (uchar)inp((port)+IOP_REG_ID)
 869#define AscWriteChipDvcID(port, data)     outp((port)+IOP_REG_ID, data)
 870
 871#define AdvPortAddr  void __iomem *     /* Virtual memory address size */
 872
 873/*
 874 * Define Adv Library required memory access macros.
 875 */
 876#define ADV_MEM_READB(addr) readb(addr)
 877#define ADV_MEM_READW(addr) readw(addr)
 878#define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
 879#define ADV_MEM_WRITEW(addr, word) writew(word, addr)
 880#define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
 881
 882/*
 883 * Define total number of simultaneous maximum element scatter-gather
 884 * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
 885 * maximum number of outstanding commands per wide host adapter. Each
 886 * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
 887 * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
 888 * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
 889 * structures or 255 scatter-gather elements.
 890 */
 891#define ADV_TOT_SG_BLOCK        ASC_DEF_MAX_HOST_QNG
 892
 893/*
 894 * Define maximum number of scatter-gather elements per request.
 895 */
 896#define ADV_MAX_SG_LIST         255
 897#define NO_OF_SG_PER_BLOCK              15
 898
 899#define ADV_EEP_DVC_CFG_BEGIN           (0x00)
 900#define ADV_EEP_DVC_CFG_END             (0x15)
 901#define ADV_EEP_DVC_CTL_BEGIN           (0x16)  /* location of OEM name */
 902#define ADV_EEP_MAX_WORD_ADDR           (0x1E)
 903
 904#define ADV_EEP_DELAY_MS                100
 905
 906#define ADV_EEPROM_BIG_ENDIAN          0x8000   /* EEPROM Bit 15 */
 907#define ADV_EEPROM_BIOS_ENABLE         0x4000   /* EEPROM Bit 14 */
 908/*
 909 * For the ASC3550 Bit 13 is Termination Polarity control bit.
 910 * For later ICs Bit 13 controls whether the CIS (Card Information
 911 * Service Section) is loaded from EEPROM.
 912 */
 913#define ADV_EEPROM_TERM_POL            0x2000   /* EEPROM Bit 13 */
 914#define ADV_EEPROM_CIS_LD              0x2000   /* EEPROM Bit 13 */
 915/*
 916 * ASC38C1600 Bit 11
 917 *
 918 * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
 919 * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
 920 * Function 0 will specify INT B.
 921 *
 922 * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
 923 * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
 924 * Function 1 will specify INT A.
 925 */
 926#define ADV_EEPROM_INTAB               0x0800   /* EEPROM Bit 11 */
 927
 928typedef struct adveep_3550_config {
 929        /* Word Offset, Description */
 930
 931        ushort cfg_lsw;         /* 00 power up initialization */
 932        /*  bit 13 set - Term Polarity Control */
 933        /*  bit 14 set - BIOS Enable */
 934        /*  bit 15 set - Big Endian Mode */
 935        ushort cfg_msw;         /* 01 unused      */
 936        ushort disc_enable;     /* 02 disconnect enable */
 937        ushort wdtr_able;       /* 03 Wide DTR able */
 938        ushort sdtr_able;       /* 04 Synchronous DTR able */
 939        ushort start_motor;     /* 05 send start up motor */
 940        ushort tagqng_able;     /* 06 tag queuing able */
 941        ushort bios_scan;       /* 07 BIOS device control */
 942        ushort scam_tolerant;   /* 08 no scam */
 943
 944        uchar adapter_scsi_id;  /* 09 Host Adapter ID */
 945        uchar bios_boot_delay;  /*    power up wait */
 946
 947        uchar scsi_reset_delay; /* 10 reset delay */
 948        uchar bios_id_lun;      /*    first boot device scsi id & lun */
 949        /*    high nibble is lun */
 950        /*    low nibble is scsi id */
 951
 952        uchar termination;      /* 11 0 - automatic */
 953        /*    1 - low off / high off */
 954        /*    2 - low off / high on */
 955        /*    3 - low on  / high on */
 956        /*    There is no low on  / high off */
 957
 958        uchar reserved1;        /*    reserved byte (not used) */
 959
 960        ushort bios_ctrl;       /* 12 BIOS control bits */
 961        /*  bit 0  BIOS don't act as initiator. */
 962        /*  bit 1  BIOS > 1 GB support */
 963        /*  bit 2  BIOS > 2 Disk Support */
 964        /*  bit 3  BIOS don't support removables */
 965        /*  bit 4  BIOS support bootable CD */
 966        /*  bit 5  BIOS scan enabled */
 967        /*  bit 6  BIOS support multiple LUNs */
 968        /*  bit 7  BIOS display of message */
 969        /*  bit 8  SCAM disabled */
 970        /*  bit 9  Reset SCSI bus during init. */
 971        /*  bit 10 */
 972        /*  bit 11 No verbose initialization. */
 973        /*  bit 12 SCSI parity enabled */
 974        /*  bit 13 */
 975        /*  bit 14 */
 976        /*  bit 15 */
 977        ushort ultra_able;      /* 13 ULTRA speed able */
 978        ushort reserved2;       /* 14 reserved */
 979        uchar max_host_qng;     /* 15 maximum host queuing */
 980        uchar max_dvc_qng;      /*    maximum per device queuing */
 981        ushort dvc_cntl;        /* 16 control bit for driver */
 982        ushort bug_fix;         /* 17 control bit for bug fix */
 983        ushort serial_number_word1;     /* 18 Board serial number word 1 */
 984        ushort serial_number_word2;     /* 19 Board serial number word 2 */
 985        ushort serial_number_word3;     /* 20 Board serial number word 3 */
 986        ushort check_sum;       /* 21 EEP check sum */
 987        uchar oem_name[16];     /* 22 OEM name */
 988        ushort dvc_err_code;    /* 30 last device driver error code */
 989        ushort adv_err_code;    /* 31 last uc and Adv Lib error code */
 990        ushort adv_err_addr;    /* 32 last uc error address */
 991        ushort saved_dvc_err_code;      /* 33 saved last dev. driver error code   */
 992        ushort saved_adv_err_code;      /* 34 saved last uc and Adv Lib error code */
 993        ushort saved_adv_err_addr;      /* 35 saved last uc error address         */
 994        ushort num_of_err;      /* 36 number of error */
 995} ADVEEP_3550_CONFIG;
 996
 997typedef struct adveep_38C0800_config {
 998        /* Word Offset, Description */
 999
1000        ushort cfg_lsw;         /* 00 power up initialization */
1001        /*  bit 13 set - Load CIS */
1002        /*  bit 14 set - BIOS Enable */
1003        /*  bit 15 set - Big Endian Mode */
1004        ushort cfg_msw;         /* 01 unused      */
1005        ushort disc_enable;     /* 02 disconnect enable */
1006        ushort wdtr_able;       /* 03 Wide DTR able */
1007        ushort sdtr_speed1;     /* 04 SDTR Speed TID 0-3 */
1008        ushort start_motor;     /* 05 send start up motor */
1009        ushort tagqng_able;     /* 06 tag queuing able */
1010        ushort bios_scan;       /* 07 BIOS device control */
1011        ushort scam_tolerant;   /* 08 no scam */
1012
1013        uchar adapter_scsi_id;  /* 09 Host Adapter ID */
1014        uchar bios_boot_delay;  /*    power up wait */
1015
1016        uchar scsi_reset_delay; /* 10 reset delay */
1017        uchar bios_id_lun;      /*    first boot device scsi id & lun */
1018        /*    high nibble is lun */
1019        /*    low nibble is scsi id */
1020
1021        uchar termination_se;   /* 11 0 - automatic */
1022        /*    1 - low off / high off */
1023        /*    2 - low off / high on */
1024        /*    3 - low on  / high on */
1025        /*    There is no low on  / high off */
1026
1027        uchar termination_lvd;  /* 11 0 - automatic */
1028        /*    1 - low off / high off */
1029        /*    2 - low off / high on */
1030        /*    3 - low on  / high on */
1031        /*    There is no low on  / high off */
1032
1033        ushort bios_ctrl;       /* 12 BIOS control bits */
1034        /*  bit 0  BIOS don't act as initiator. */
1035        /*  bit 1  BIOS > 1 GB support */
1036        /*  bit 2  BIOS > 2 Disk Support */
1037        /*  bit 3  BIOS don't support removables */
1038        /*  bit 4  BIOS support bootable CD */
1039        /*  bit 5  BIOS scan enabled */
1040        /*  bit 6  BIOS support multiple LUNs */
1041        /*  bit 7  BIOS display of message */
1042        /*  bit 8  SCAM disabled */
1043        /*  bit 9  Reset SCSI bus during init. */
1044        /*  bit 10 */
1045        /*  bit 11 No verbose initialization. */
1046        /*  bit 12 SCSI parity enabled */
1047        /*  bit 13 */
1048        /*  bit 14 */
1049        /*  bit 15 */
1050        ushort sdtr_speed2;     /* 13 SDTR speed TID 4-7 */
1051        ushort sdtr_speed3;     /* 14 SDTR speed TID 8-11 */
1052        uchar max_host_qng;     /* 15 maximum host queueing */
1053        uchar max_dvc_qng;      /*    maximum per device queuing */
1054        ushort dvc_cntl;        /* 16 control bit for driver */
1055        ushort sdtr_speed4;     /* 17 SDTR speed 4 TID 12-15 */
1056        ushort serial_number_word1;     /* 18 Board serial number word 1 */
1057        ushort serial_number_word2;     /* 19 Board serial number word 2 */
1058        ushort serial_number_word3;     /* 20 Board serial number word 3 */
1059        ushort check_sum;       /* 21 EEP check sum */
1060        uchar oem_name[16];     /* 22 OEM name */
1061        ushort dvc_err_code;    /* 30 last device driver error code */
1062        ushort adv_err_code;    /* 31 last uc and Adv Lib error code */
1063        ushort adv_err_addr;    /* 32 last uc error address */
1064        ushort saved_dvc_err_code;      /* 33 saved last dev. driver error code   */
1065        ushort saved_adv_err_code;      /* 34 saved last uc and Adv Lib error code */
1066        ushort saved_adv_err_addr;      /* 35 saved last uc error address         */
1067        ushort reserved36;      /* 36 reserved */
1068        ushort reserved37;      /* 37 reserved */
1069        ushort reserved38;      /* 38 reserved */
1070        ushort reserved39;      /* 39 reserved */
1071        ushort reserved40;      /* 40 reserved */
1072        ushort reserved41;      /* 41 reserved */
1073        ushort reserved42;      /* 42 reserved */
1074        ushort reserved43;      /* 43 reserved */
1075        ushort reserved44;      /* 44 reserved */
1076        ushort reserved45;      /* 45 reserved */
1077        ushort reserved46;      /* 46 reserved */
1078        ushort reserved47;      /* 47 reserved */
1079        ushort reserved48;      /* 48 reserved */
1080        ushort reserved49;      /* 49 reserved */
1081        ushort reserved50;      /* 50 reserved */
1082        ushort reserved51;      /* 51 reserved */
1083        ushort reserved52;      /* 52 reserved */
1084        ushort reserved53;      /* 53 reserved */
1085        ushort reserved54;      /* 54 reserved */
1086        ushort reserved55;      /* 55 reserved */
1087        ushort cisptr_lsw;      /* 56 CIS PTR LSW */
1088        ushort cisprt_msw;      /* 57 CIS PTR MSW */
1089        ushort subsysvid;       /* 58 SubSystem Vendor ID */
1090        ushort subsysid;        /* 59 SubSystem ID */
1091        ushort reserved60;      /* 60 reserved */
1092        ushort reserved61;      /* 61 reserved */
1093        ushort reserved62;      /* 62 reserved */
1094        ushort reserved63;      /* 63 reserved */
1095} ADVEEP_38C0800_CONFIG;
1096
1097typedef struct adveep_38C1600_config {
1098        /* Word Offset, Description */
1099
1100        ushort cfg_lsw;         /* 00 power up initialization */
1101        /*  bit 11 set - Func. 0 INTB, Func. 1 INTA */
1102        /*       clear - Func. 0 INTA, Func. 1 INTB */
1103        /*  bit 13 set - Load CIS */
1104        /*  bit 14 set - BIOS Enable */
1105        /*  bit 15 set - Big Endian Mode */
1106        ushort cfg_msw;         /* 01 unused */
1107        ushort disc_enable;     /* 02 disconnect enable */
1108        ushort wdtr_able;       /* 03 Wide DTR able */
1109        ushort sdtr_speed1;     /* 04 SDTR Speed TID 0-3 */
1110        ushort start_motor;     /* 05 send start up motor */
1111        ushort tagqng_able;     /* 06 tag queuing able */
1112        ushort bios_scan;       /* 07 BIOS device control */
1113        ushort scam_tolerant;   /* 08 no scam */
1114
1115        uchar adapter_scsi_id;  /* 09 Host Adapter ID */
1116        uchar bios_boot_delay;  /*    power up wait */
1117
1118        uchar scsi_reset_delay; /* 10 reset delay */
1119        uchar bios_id_lun;      /*    first boot device scsi id & lun */
1120        /*    high nibble is lun */
1121        /*    low nibble is scsi id */
1122
1123        uchar termination_se;   /* 11 0 - automatic */
1124        /*    1 - low off / high off */
1125        /*    2 - low off / high on */
1126        /*    3 - low on  / high on */
1127        /*    There is no low on  / high off */
1128
1129        uchar termination_lvd;  /* 11 0 - automatic */
1130        /*    1 - low off / high off */
1131        /*    2 - low off / high on */
1132        /*    3 - low on  / high on */
1133        /*    There is no low on  / high off */
1134
1135        ushort bios_ctrl;       /* 12 BIOS control bits */
1136        /*  bit 0  BIOS don't act as initiator. */
1137        /*  bit 1  BIOS > 1 GB support */
1138        /*  bit 2  BIOS > 2 Disk Support */
1139        /*  bit 3  BIOS don't support removables */
1140        /*  bit 4  BIOS support bootable CD */
1141        /*  bit 5  BIOS scan enabled */
1142        /*  bit 6  BIOS support multiple LUNs */
1143        /*  bit 7  BIOS display of message */
1144        /*  bit 8  SCAM disabled */
1145        /*  bit 9  Reset SCSI bus during init. */
1146        /*  bit 10 Basic Integrity Checking disabled */
1147        /*  bit 11 No verbose initialization. */
1148        /*  bit 12 SCSI parity enabled */
1149        /*  bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1150        /*  bit 14 */
1151        /*  bit 15 */
1152        ushort sdtr_speed2;     /* 13 SDTR speed TID 4-7 */
1153        ushort sdtr_speed3;     /* 14 SDTR speed TID 8-11 */
1154        uchar max_host_qng;     /* 15 maximum host queueing */
1155        uchar max_dvc_qng;      /*    maximum per device queuing */
1156        ushort dvc_cntl;        /* 16 control bit for driver */
1157        ushort sdtr_speed4;     /* 17 SDTR speed 4 TID 12-15 */
1158        ushort serial_number_word1;     /* 18 Board serial number word 1 */
1159        ushort serial_number_word2;     /* 19 Board serial number word 2 */
1160        ushort serial_number_word3;     /* 20 Board serial number word 3 */
1161        ushort check_sum;       /* 21 EEP check sum */
1162        uchar oem_name[16];     /* 22 OEM name */
1163        ushort dvc_err_code;    /* 30 last device driver error code */
1164        ushort adv_err_code;    /* 31 last uc and Adv Lib error code */
1165        ushort adv_err_addr;    /* 32 last uc error address */
1166        ushort saved_dvc_err_code;      /* 33 saved last dev. driver error code   */
1167        ushort saved_adv_err_code;      /* 34 saved last uc and Adv Lib error code */
1168        ushort saved_adv_err_addr;      /* 35 saved last uc error address         */
1169        ushort reserved36;      /* 36 reserved */
1170        ushort reserved37;      /* 37 reserved */
1171        ushort reserved38;      /* 38 reserved */
1172        ushort reserved39;      /* 39 reserved */
1173        ushort reserved40;      /* 40 reserved */
1174        ushort reserved41;      /* 41 reserved */
1175        ushort reserved42;      /* 42 reserved */
1176        ushort reserved43;      /* 43 reserved */
1177        ushort reserved44;      /* 44 reserved */
1178        ushort reserved45;      /* 45 reserved */
1179        ushort reserved46;      /* 46 reserved */
1180        ushort reserved47;      /* 47 reserved */
1181        ushort reserved48;      /* 48 reserved */
1182        ushort reserved49;      /* 49 reserved */
1183        ushort reserved50;      /* 50 reserved */
1184        ushort reserved51;      /* 51 reserved */
1185        ushort reserved52;      /* 52 reserved */
1186        ushort reserved53;      /* 53 reserved */
1187        ushort reserved54;      /* 54 reserved */
1188        ushort reserved55;      /* 55 reserved */
1189        ushort cisptr_lsw;      /* 56 CIS PTR LSW */
1190        ushort cisprt_msw;      /* 57 CIS PTR MSW */
1191        ushort subsysvid;       /* 58 SubSystem Vendor ID */
1192        ushort subsysid;        /* 59 SubSystem ID */
1193        ushort reserved60;      /* 60 reserved */
1194        ushort reserved61;      /* 61 reserved */
1195        ushort reserved62;      /* 62 reserved */
1196        ushort reserved63;      /* 63 reserved */
1197} ADVEEP_38C1600_CONFIG;
1198
1199/*
1200 * EEPROM Commands
1201 */
1202#define ASC_EEP_CMD_DONE             0x0200
1203
1204/* bios_ctrl */
1205#define BIOS_CTRL_BIOS               0x0001
1206#define BIOS_CTRL_EXTENDED_XLAT      0x0002
1207#define BIOS_CTRL_GT_2_DISK          0x0004
1208#define BIOS_CTRL_BIOS_REMOVABLE     0x0008
1209#define BIOS_CTRL_BOOTABLE_CD        0x0010
1210#define BIOS_CTRL_MULTIPLE_LUN       0x0040
1211#define BIOS_CTRL_DISPLAY_MSG        0x0080
1212#define BIOS_CTRL_NO_SCAM            0x0100
1213#define BIOS_CTRL_RESET_SCSI_BUS     0x0200
1214#define BIOS_CTRL_INIT_VERBOSE       0x0800
1215#define BIOS_CTRL_SCSI_PARITY        0x1000
1216#define BIOS_CTRL_AIPP_DIS           0x2000
1217
1218#define ADV_3550_MEMSIZE   0x2000       /* 8 KB Internal Memory */
1219
1220#define ADV_38C0800_MEMSIZE  0x4000     /* 16 KB Internal Memory */
1221
1222/*
1223 * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1224 * a special 16K Adv Library and Microcode version. After the issue is
1225 * resolved, should restore 32K support.
1226 *
1227 * #define ADV_38C1600_MEMSIZE  0x8000L   * 32 KB Internal Memory *
1228 */
1229#define ADV_38C1600_MEMSIZE  0x4000     /* 16 KB Internal Memory */
1230
1231/*
1232 * Byte I/O register address from base of 'iop_base'.
1233 */
1234#define IOPB_INTR_STATUS_REG    0x00
1235#define IOPB_CHIP_ID_1          0x01
1236#define IOPB_INTR_ENABLES       0x02
1237#define IOPB_CHIP_TYPE_REV      0x03
1238#define IOPB_RES_ADDR_4         0x04
1239#define IOPB_RES_ADDR_5         0x05
1240#define IOPB_RAM_DATA           0x06
1241#define IOPB_RES_ADDR_7         0x07
1242#define IOPB_FLAG_REG           0x08
1243#define IOPB_RES_ADDR_9         0x09
1244#define IOPB_RISC_CSR           0x0A
1245#define IOPB_RES_ADDR_B         0x0B
1246#define IOPB_RES_ADDR_C         0x0C
1247#define IOPB_RES_ADDR_D         0x0D
1248#define IOPB_SOFT_OVER_WR       0x0E
1249#define IOPB_RES_ADDR_F         0x0F
1250#define IOPB_MEM_CFG            0x10
1251#define IOPB_RES_ADDR_11        0x11
1252#define IOPB_GPIO_DATA          0x12
1253#define IOPB_RES_ADDR_13        0x13
1254#define IOPB_FLASH_PAGE         0x14
1255#define IOPB_RES_ADDR_15        0x15
1256#define IOPB_GPIO_CNTL          0x16
1257#define IOPB_RES_ADDR_17        0x17
1258#define IOPB_FLASH_DATA         0x18
1259#define IOPB_RES_ADDR_19        0x19
1260#define IOPB_RES_ADDR_1A        0x1A
1261#define IOPB_RES_ADDR_1B        0x1B
1262#define IOPB_RES_ADDR_1C        0x1C
1263#define IOPB_RES_ADDR_1D        0x1D
1264#define IOPB_RES_ADDR_1E        0x1E
1265#define IOPB_RES_ADDR_1F        0x1F
1266#define IOPB_DMA_CFG0           0x20
1267#define IOPB_DMA_CFG1           0x21
1268#define IOPB_TICKLE             0x22
1269#define IOPB_DMA_REG_WR         0x23
1270#define IOPB_SDMA_STATUS        0x24
1271#define IOPB_SCSI_BYTE_CNT      0x25
1272#define IOPB_HOST_BYTE_CNT      0x26
1273#define IOPB_BYTE_LEFT_TO_XFER  0x27
1274#define IOPB_BYTE_TO_XFER_0     0x28
1275#define IOPB_BYTE_TO_XFER_1     0x29
1276#define IOPB_BYTE_TO_XFER_2     0x2A
1277#define IOPB_BYTE_TO_XFER_3     0x2B
1278#define IOPB_ACC_GRP            0x2C
1279#define IOPB_RES_ADDR_2D        0x2D
1280#define IOPB_DEV_ID             0x2E
1281#define IOPB_RES_ADDR_2F        0x2F
1282#define IOPB_SCSI_DATA          0x30
1283#define IOPB_RES_ADDR_31        0x31
1284#define IOPB_RES_ADDR_32        0x32
1285#define IOPB_SCSI_DATA_HSHK     0x33
1286#define IOPB_SCSI_CTRL          0x34
1287#define IOPB_RES_ADDR_35        0x35
1288#define IOPB_RES_ADDR_36        0x36
1289#define IOPB_RES_ADDR_37        0x37
1290#define IOPB_RAM_BIST           0x38
1291#define IOPB_PLL_TEST           0x39
1292#define IOPB_PCI_INT_CFG        0x3A
1293#define IOPB_RES_ADDR_3B        0x3B
1294#define IOPB_RFIFO_CNT          0x3C
1295#define IOPB_RES_ADDR_3D        0x3D
1296#define IOPB_RES_ADDR_3E        0x3E
1297#define IOPB_RES_ADDR_3F        0x3F
1298
1299/*
1300 * Word I/O register address from base of 'iop_base'.
1301 */
1302#define IOPW_CHIP_ID_0          0x00    /* CID0  */
1303#define IOPW_CTRL_REG           0x02    /* CC    */
1304#define IOPW_RAM_ADDR           0x04    /* LA    */
1305#define IOPW_RAM_DATA           0x06    /* LD    */
1306#define IOPW_RES_ADDR_08        0x08
1307#define IOPW_RISC_CSR           0x0A    /* CSR   */
1308#define IOPW_SCSI_CFG0          0x0C    /* CFG0  */
1309#define IOPW_SCSI_CFG1          0x0E    /* CFG1  */
1310#define IOPW_RES_ADDR_10        0x10
1311#define IOPW_SEL_MASK           0x12    /* SM    */
1312#define IOPW_RES_ADDR_14        0x14
1313#define IOPW_FLASH_ADDR         0x16    /* FA    */
1314#define IOPW_RES_ADDR_18        0x18
1315#define IOPW_EE_CMD             0x1A    /* EC    */
1316#define IOPW_EE_DATA            0x1C    /* ED    */
1317#define IOPW_SFIFO_CNT          0x1E    /* SFC   */
1318#define IOPW_RES_ADDR_20        0x20
1319#define IOPW_Q_BASE             0x22    /* QB    */
1320#define IOPW_QP                 0x24    /* QP    */
1321#define IOPW_IX                 0x26    /* IX    */
1322#define IOPW_SP                 0x28    /* SP    */
1323#define IOPW_PC                 0x2A    /* PC    */
1324#define IOPW_RES_ADDR_2C        0x2C
1325#define IOPW_RES_ADDR_2E        0x2E
1326#define IOPW_SCSI_DATA          0x30    /* SD    */
1327#define IOPW_SCSI_DATA_HSHK     0x32    /* SDH   */
1328#define IOPW_SCSI_CTRL          0x34    /* SC    */
1329#define IOPW_HSHK_CFG           0x36    /* HCFG  */
1330#define IOPW_SXFR_STATUS        0x36    /* SXS   */
1331#define IOPW_SXFR_CNTL          0x38    /* SXL   */
1332#define IOPW_SXFR_CNTH          0x3A    /* SXH   */
1333#define IOPW_RES_ADDR_3C        0x3C
1334#define IOPW_RFIFO_DATA         0x3E    /* RFD   */
1335
1336/*
1337 * Doubleword I/O register address from base of 'iop_base'.
1338 */
1339#define IOPDW_RES_ADDR_0         0x00
1340#define IOPDW_RAM_DATA           0x04
1341#define IOPDW_RES_ADDR_8         0x08
1342#define IOPDW_RES_ADDR_C         0x0C
1343#define IOPDW_RES_ADDR_10        0x10
1344#define IOPDW_COMMA              0x14
1345#define IOPDW_COMMB              0x18
1346#define IOPDW_RES_ADDR_1C        0x1C
1347#define IOPDW_SDMA_ADDR0         0x20
1348#define IOPDW_SDMA_ADDR1         0x24
1349#define IOPDW_SDMA_COUNT         0x28
1350#define IOPDW_SDMA_ERROR         0x2C
1351#define IOPDW_RDMA_ADDR0         0x30
1352#define IOPDW_RDMA_ADDR1         0x34
1353#define IOPDW_RDMA_COUNT         0x38
1354#define IOPDW_RDMA_ERROR         0x3C
1355
1356#define ADV_CHIP_ID_BYTE         0x25
1357#define ADV_CHIP_ID_WORD         0x04C1
1358
1359#define ADV_INTR_ENABLE_HOST_INTR                   0x01
1360#define ADV_INTR_ENABLE_SEL_INTR                    0x02
1361#define ADV_INTR_ENABLE_DPR_INTR                    0x04
1362#define ADV_INTR_ENABLE_RTA_INTR                    0x08
1363#define ADV_INTR_ENABLE_RMA_INTR                    0x10
1364#define ADV_INTR_ENABLE_RST_INTR                    0x20
1365#define ADV_INTR_ENABLE_DPE_INTR                    0x40
1366#define ADV_INTR_ENABLE_GLOBAL_INTR                 0x80
1367
1368#define ADV_INTR_STATUS_INTRA            0x01
1369#define ADV_INTR_STATUS_INTRB            0x02
1370#define ADV_INTR_STATUS_INTRC            0x04
1371
1372#define ADV_RISC_CSR_STOP           (0x0000)
1373#define ADV_RISC_TEST_COND          (0x2000)
1374#define ADV_RISC_CSR_RUN            (0x4000)
1375#define ADV_RISC_CSR_SINGLE_STEP    (0x8000)
1376
1377#define ADV_CTRL_REG_HOST_INTR      0x0100
1378#define ADV_CTRL_REG_SEL_INTR       0x0200
1379#define ADV_CTRL_REG_DPR_INTR       0x0400
1380#define ADV_CTRL_REG_RTA_INTR       0x0800
1381#define ADV_CTRL_REG_RMA_INTR       0x1000
1382#define ADV_CTRL_REG_RES_BIT14      0x2000
1383#define ADV_CTRL_REG_DPE_INTR       0x4000
1384#define ADV_CTRL_REG_POWER_DONE     0x8000
1385#define ADV_CTRL_REG_ANY_INTR       0xFF00
1386
1387#define ADV_CTRL_REG_CMD_RESET             0x00C6
1388#define ADV_CTRL_REG_CMD_WR_IO_REG         0x00C5
1389#define ADV_CTRL_REG_CMD_RD_IO_REG         0x00C4
1390#define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE  0x00C3
1391#define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE  0x00C2
1392
1393#define ADV_TICKLE_NOP                      0x00
1394#define ADV_TICKLE_A                        0x01
1395#define ADV_TICKLE_B                        0x02
1396#define ADV_TICKLE_C                        0x03
1397
1398#define AdvIsIntPending(port) \
1399    (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1400
1401/*
1402 * SCSI_CFG0 Register bit definitions
1403 */
1404#define TIMER_MODEAB    0xC000  /* Watchdog, Second, and Select. Timer Ctrl. */
1405#define PARITY_EN       0x2000  /* Enable SCSI Parity Error detection */
1406#define EVEN_PARITY     0x1000  /* Select Even Parity */
1407#define WD_LONG         0x0800  /* Watchdog Interval, 1: 57 min, 0: 13 sec */
1408#define QUEUE_128       0x0400  /* Queue Size, 1: 128 byte, 0: 64 byte */
1409#define PRIM_MODE       0x0100  /* Primitive SCSI mode */
1410#define SCAM_EN         0x0080  /* Enable SCAM selection */
1411#define SEL_TMO_LONG    0x0040  /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1412#define CFRM_ID         0x0020  /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1413#define OUR_ID_EN       0x0010  /* Enable OUR_ID bits */
1414#define OUR_ID          0x000F  /* SCSI ID */
1415
1416/*
1417 * SCSI_CFG1 Register bit definitions
1418 */
1419#define BIG_ENDIAN      0x8000  /* Enable Big Endian Mode MIO:15, EEP:15 */
1420#define TERM_POL        0x2000  /* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1421#define SLEW_RATE       0x1000  /* SCSI output buffer slew rate */
1422#define FILTER_SEL      0x0C00  /* Filter Period Selection */
1423#define  FLTR_DISABLE    0x0000 /* Input Filtering Disabled */
1424#define  FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */
1425#define  FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */
1426#define ACTIVE_DBL      0x0200  /* Disable Active Negation */
1427#define DIFF_MODE       0x0100  /* SCSI differential Mode (Read-Only) */
1428#define DIFF_SENSE      0x0080  /* 1: No SE cables, 0: SE cable (Read-Only) */
1429#define TERM_CTL_SEL    0x0040  /* Enable TERM_CTL_H and TERM_CTL_L */
1430#define TERM_CTL        0x0030  /* External SCSI Termination Bits */
1431#define  TERM_CTL_H      0x0020 /* Enable External SCSI Upper Termination */
1432#define  TERM_CTL_L      0x0010 /* Enable External SCSI Lower Termination */
1433#define CABLE_DETECT    0x000F  /* External SCSI Cable Connection Status */
1434
1435/*
1436 * Addendum for ASC-38C0800 Chip
1437 *
1438 * The ASC-38C1600 Chip uses the same definitions except that the
1439 * bus mode override bits [12:10] have been moved to byte register
1440 * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1441 * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1442 * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1443 * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1444 * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1445 */
1446#define DIS_TERM_DRV    0x4000  /* 1: Read c_det[3:0], 0: cannot read */
1447#define HVD_LVD_SE      0x1C00  /* Device Detect Bits */
1448#define  HVD             0x1000 /* HVD Device Detect */
1449#define  LVD             0x0800 /* LVD Device Detect */
1450#define  SE              0x0400 /* SE Device Detect */
1451#define TERM_LVD        0x00C0  /* LVD Termination Bits */
1452#define  TERM_LVD_HI     0x0080 /* Enable LVD Upper Termination */
1453#define  TERM_LVD_LO     0x0040 /* Enable LVD Lower Termination */
1454#define TERM_SE         0x0030  /* SE Termination Bits */
1455#define  TERM_SE_HI      0x0020 /* Enable SE Upper Termination */
1456#define  TERM_SE_LO      0x0010 /* Enable SE Lower Termination */
1457#define C_DET_LVD       0x000C  /* LVD Cable Detect Bits */
1458#define  C_DET3          0x0008 /* Cable Detect for LVD External Wide */
1459#define  C_DET2          0x0004 /* Cable Detect for LVD Internal Wide */
1460#define C_DET_SE        0x0003  /* SE Cable Detect Bits */
1461#define  C_DET1          0x0002 /* Cable Detect for SE Internal Wide */
1462#define  C_DET0          0x0001 /* Cable Detect for SE Internal Narrow */
1463
1464#define CABLE_ILLEGAL_A 0x7
1465    /* x 0 0 0  | on  on | Illegal (all 3 connectors are used) */
1466
1467#define CABLE_ILLEGAL_B 0xB
1468    /* 0 x 0 0  | on  on | Illegal (all 3 connectors are used) */
1469
1470/*
1471 * MEM_CFG Register bit definitions
1472 */
1473#define BIOS_EN         0x40    /* BIOS Enable MIO:14,EEP:14 */
1474#define FAST_EE_CLK     0x20    /* Diagnostic Bit */
1475#define RAM_SZ          0x1C    /* Specify size of RAM to RISC */
1476#define  RAM_SZ_2KB      0x00   /* 2 KB */
1477#define  RAM_SZ_4KB      0x04   /* 4 KB */
1478#define  RAM_SZ_8KB      0x08   /* 8 KB */
1479#define  RAM_SZ_16KB     0x0C   /* 16 KB */
1480#define  RAM_SZ_32KB     0x10   /* 32 KB */
1481#define  RAM_SZ_64KB     0x14   /* 64 KB */
1482
1483/*
1484 * DMA_CFG0 Register bit definitions
1485 *
1486 * This register is only accessible to the host.
1487 */
1488#define BC_THRESH_ENB   0x80    /* PCI DMA Start Conditions */
1489#define FIFO_THRESH     0x70    /* PCI DMA FIFO Threshold */
1490#define  FIFO_THRESH_16B  0x00  /* 16 bytes */
1491#define  FIFO_THRESH_32B  0x20  /* 32 bytes */
1492#define  FIFO_THRESH_48B  0x30  /* 48 bytes */
1493#define  FIFO_THRESH_64B  0x40  /* 64 bytes */
1494#define  FIFO_THRESH_80B  0x50  /* 80 bytes (default) */
1495#define  FIFO_THRESH_96B  0x60  /* 96 bytes */
1496#define  FIFO_THRESH_112B 0x70  /* 112 bytes */
1497#define START_CTL       0x0C    /* DMA start conditions */
1498#define  START_CTL_TH    0x00   /* Wait threshold level (default) */
1499#define  START_CTL_ID    0x04   /* Wait SDMA/SBUS idle */
1500#define  START_CTL_THID  0x08   /* Wait threshold and SDMA/SBUS idle */
1501#define  START_CTL_EMFU  0x0C   /* Wait SDMA FIFO empty/full */
1502#define READ_CMD        0x03    /* Memory Read Method */
1503#define  READ_CMD_MR     0x00   /* Memory Read */
1504#define  READ_CMD_MRL    0x02   /* Memory Read Long */
1505#define  READ_CMD_MRM    0x03   /* Memory Read Multiple (default) */
1506
1507/*
1508 * ASC-38C0800 RAM BIST Register bit definitions
1509 */
1510#define RAM_TEST_MODE         0x80
1511#define PRE_TEST_MODE         0x40
1512#define NORMAL_MODE           0x00
1513#define RAM_TEST_DONE         0x10
1514#define RAM_TEST_STATUS       0x0F
1515#define  RAM_TEST_HOST_ERROR   0x08
1516#define  RAM_TEST_INTRAM_ERROR 0x04
1517#define  RAM_TEST_RISC_ERROR   0x02
1518#define  RAM_TEST_SCSI_ERROR   0x01
1519#define  RAM_TEST_SUCCESS      0x00
1520#define PRE_TEST_VALUE        0x05
1521#define NORMAL_VALUE          0x00
1522
1523/*
1524 * ASC38C1600 Definitions
1525 *
1526 * IOPB_PCI_INT_CFG Bit Field Definitions
1527 */
1528
1529#define INTAB_LD        0x80    /* Value loaded from EEPROM Bit 11. */
1530
1531/*
1532 * Bit 1 can be set to change the interrupt for the Function to operate in
1533 * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1534 * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1535 * mode, otherwise the operating mode is undefined.
1536 */
1537#define TOTEMPOLE       0x02
1538
1539/*
1540 * Bit 0 can be used to change the Int Pin for the Function. The value is
1541 * 0 by default for both Functions with Function 0 using INT A and Function
1542 * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1543 * INT A is used.
1544 *
1545 * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1546 * value specified in the PCI Configuration Space.
1547 */
1548#define INTAB           0x01
1549
1550/*
1551 * Adv Library Status Definitions
1552 */
1553#define ADV_TRUE        1
1554#define ADV_FALSE       0
1555#define ADV_SUCCESS     1
1556#define ADV_BUSY        0
1557#define ADV_ERROR       (-1)
1558
1559/*
1560 * ADV_DVC_VAR 'warn_code' values
1561 */
1562#define ASC_WARN_BUSRESET_ERROR         0x0001  /* SCSI Bus Reset error */
1563#define ASC_WARN_EEPROM_CHKSUM          0x0002  /* EEP check sum error */
1564#define ASC_WARN_EEPROM_TERMINATION     0x0004  /* EEP termination bad field */
1565#define ASC_WARN_ERROR                  0xFFFF  /* ADV_ERROR return */
1566
1567#define ADV_MAX_TID                     15      /* max. target identifier */
1568#define ADV_MAX_LUN                     7       /* max. logical unit number */
1569
1570/*
1571 * Fixed locations of microcode operating variables.
1572 */
1573#define ASC_MC_CODE_BEGIN_ADDR          0x0028  /* microcode start address */
1574#define ASC_MC_CODE_END_ADDR            0x002A  /* microcode end address */
1575#define ASC_MC_CODE_CHK_SUM             0x002C  /* microcode code checksum */
1576#define ASC_MC_VERSION_DATE             0x0038  /* microcode version */
1577#define ASC_MC_VERSION_NUM              0x003A  /* microcode number */
1578#define ASC_MC_BIOSMEM                  0x0040  /* BIOS RISC Memory Start */
1579#define ASC_MC_BIOSLEN                  0x0050  /* BIOS RISC Memory Length */
1580#define ASC_MC_BIOS_SIGNATURE           0x0058  /* BIOS Signature 0x55AA */
1581#define ASC_MC_BIOS_VERSION             0x005A  /* BIOS Version (2 bytes) */
1582#define ASC_MC_SDTR_SPEED1              0x0090  /* SDTR Speed for TID 0-3 */
1583#define ASC_MC_SDTR_SPEED2              0x0092  /* SDTR Speed for TID 4-7 */
1584#define ASC_MC_SDTR_SPEED3              0x0094  /* SDTR Speed for TID 8-11 */
1585#define ASC_MC_SDTR_SPEED4              0x0096  /* SDTR Speed for TID 12-15 */
1586#define ASC_MC_CHIP_TYPE                0x009A
1587#define ASC_MC_INTRB_CODE               0x009B
1588#define ASC_MC_WDTR_ABLE                0x009C
1589#define ASC_MC_SDTR_ABLE                0x009E
1590#define ASC_MC_TAGQNG_ABLE              0x00A0
1591#define ASC_MC_DISC_ENABLE              0x00A2
1592#define ASC_MC_IDLE_CMD_STATUS          0x00A4
1593#define ASC_MC_IDLE_CMD                 0x00A6
1594#define ASC_MC_IDLE_CMD_PARAMETER       0x00A8
1595#define ASC_MC_DEFAULT_SCSI_CFG0        0x00AC
1596#define ASC_MC_DEFAULT_SCSI_CFG1        0x00AE
1597#define ASC_MC_DEFAULT_MEM_CFG          0x00B0
1598#define ASC_MC_DEFAULT_SEL_MASK         0x00B2
1599#define ASC_MC_SDTR_DONE                0x00B6
1600#define ASC_MC_NUMBER_OF_QUEUED_CMD     0x00C0
1601#define ASC_MC_NUMBER_OF_MAX_CMD        0x00D0
1602#define ASC_MC_DEVICE_HSHK_CFG_TABLE    0x0100
1603#define ASC_MC_CONTROL_FLAG             0x0122  /* Microcode control flag. */
1604#define ASC_MC_WDTR_DONE                0x0124
1605#define ASC_MC_CAM_MODE_MASK            0x015E  /* CAM mode TID bitmask. */
1606#define ASC_MC_ICQ                      0x0160
1607#define ASC_MC_IRQ                      0x0164
1608#define ASC_MC_PPR_ABLE                 0x017A
1609
1610/*
1611 * BIOS LRAM variable absolute offsets.
1612 */
1613#define BIOS_CODESEG    0x54
1614#define BIOS_CODELEN    0x56
1615#define BIOS_SIGNATURE  0x58
1616#define BIOS_VERSION    0x5A
1617
1618/*
1619 * Microcode Control Flags
1620 *
1621 * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1622 * and handled by the microcode.
1623 */
1624#define CONTROL_FLAG_IGNORE_PERR        0x0001  /* Ignore DMA Parity Errors */
1625#define CONTROL_FLAG_ENABLE_AIPP        0x0002  /* Enabled AIPP checking. */
1626
1627/*
1628 * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1629 */
1630#define HSHK_CFG_WIDE_XFR       0x8000
1631#define HSHK_CFG_RATE           0x0F00
1632#define HSHK_CFG_OFFSET         0x001F
1633
1634#define ASC_DEF_MAX_HOST_QNG    0xFD    /* Max. number of host commands (253) */
1635#define ASC_DEF_MIN_HOST_QNG    0x10    /* Min. number of host commands (16) */
1636#define ASC_DEF_MAX_DVC_QNG     0x3F    /* Max. number commands per device (63) */
1637#define ASC_DEF_MIN_DVC_QNG     0x04    /* Min. number commands per device (4) */
1638
1639#define ASC_QC_DATA_CHECK  0x01 /* Require ASC_QC_DATA_OUT set or clear. */
1640#define ASC_QC_DATA_OUT    0x02 /* Data out DMA transfer. */
1641#define ASC_QC_START_MOTOR 0x04 /* Send auto-start motor before request. */
1642#define ASC_QC_NO_OVERRUN  0x08 /* Don't report overrun. */
1643#define ASC_QC_FREEZE_TIDQ 0x10 /* Freeze TID queue after request. XXX TBD */
1644
1645#define ASC_QSC_NO_DISC     0x01        /* Don't allow disconnect for request. */
1646#define ASC_QSC_NO_TAGMSG   0x02        /* Don't allow tag queuing for request. */
1647#define ASC_QSC_NO_SYNC     0x04        /* Don't use Synch. transfer on request. */
1648#define ASC_QSC_NO_WIDE     0x08        /* Don't use Wide transfer on request. */
1649#define ASC_QSC_REDO_DTR    0x10        /* Renegotiate WDTR/SDTR before request. */
1650/*
1651 * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1652 * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1653 */
1654#define ASC_QSC_HEAD_TAG    0x40        /* Use Head Tag Message (0x21). */
1655#define ASC_QSC_ORDERED_TAG 0x80        /* Use Ordered Tag Message (0x22). */
1656
1657/*
1658 * All fields here are accessed by the board microcode and need to be
1659 * little-endian.
1660 */
1661typedef struct adv_carr_t {
1662        __le32 carr_va; /* Carrier Virtual Address */
1663        __le32 carr_pa; /* Carrier Physical Address */
1664        __le32 areq_vpa;        /* ADV_SCSI_REQ_Q Virtual or Physical Address */
1665        /*
1666         * next_vpa [31:4]            Carrier Virtual or Physical Next Pointer
1667         *
1668         * next_vpa [3:1]             Reserved Bits
1669         * next_vpa [0]               Done Flag set in Response Queue.
1670         */
1671        __le32 next_vpa;
1672} ADV_CARR_T;
1673
1674/*
1675 * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1676 */
1677#define ADV_NEXT_VPA_MASK       0xFFFFFFF0
1678
1679#define ADV_RQ_DONE             0x00000001
1680#define ADV_RQ_GOOD             0x00000002
1681#define ADV_CQ_STOPPER          0x00000000
1682
1683#define ADV_GET_CARRP(carrp) ((carrp) & ADV_NEXT_VPA_MASK)
1684
1685/*
1686 * Each carrier is 64 bytes, and we need three additional
1687 * carrier for icq, irq, and the termination carrier.
1688 */
1689#define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 3)
1690
1691#define ADV_CARRIER_BUFSIZE \
1692        (ADV_CARRIER_COUNT * sizeof(ADV_CARR_T))
1693
1694#define ADV_CHIP_ASC3550          0x01  /* Ultra-Wide IC */
1695#define ADV_CHIP_ASC38C0800       0x02  /* Ultra2-Wide/LVD IC */
1696#define ADV_CHIP_ASC38C1600       0x03  /* Ultra3-Wide/LVD2 IC */
1697
1698/*
1699 * Adapter temporary configuration structure
1700 *
1701 * This structure can be discarded after initialization. Don't add
1702 * fields here needed after initialization.
1703 *
1704 * Field naming convention:
1705 *
1706 *  *_enable indicates the field enables or disables a feature. The
1707 *  value of the field is never reset.
1708 */
1709typedef struct adv_dvc_cfg {
1710        ushort disc_enable;     /* enable disconnection */
1711        uchar chip_version;     /* chip version */
1712        uchar termination;      /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1713        ushort control_flag;    /* Microcode Control Flag */
1714        ushort mcode_date;      /* Microcode date */
1715        ushort mcode_version;   /* Microcode version */
1716        ushort serial1;         /* EEPROM serial number word 1 */
1717        ushort serial2;         /* EEPROM serial number word 2 */
1718        ushort serial3;         /* EEPROM serial number word 3 */
1719} ADV_DVC_CFG;
1720
1721struct adv_dvc_var;
1722struct adv_scsi_req_q;
1723
1724typedef struct adv_sg_block {
1725        uchar reserved1;
1726        uchar reserved2;
1727        uchar reserved3;
1728        uchar sg_cnt;           /* Valid entries in block. */
1729        __le32 sg_ptr;  /* Pointer to next sg block. */
1730        struct {
1731                __le32 sg_addr; /* SG element address. */
1732                __le32 sg_count;        /* SG element count. */
1733        } sg_list[NO_OF_SG_PER_BLOCK];
1734} ADV_SG_BLOCK;
1735
1736/*
1737 * ADV_SCSI_REQ_Q - microcode request structure
1738 *
1739 * All fields in this structure up to byte 60 are used by the microcode.
1740 * The microcode makes assumptions about the size and ordering of fields
1741 * in this structure. Do not change the structure definition here without
1742 * coordinating the change with the microcode.
1743 *
1744 * All fields accessed by microcode must be maintained in little_endian
1745 * order.
1746 */
1747typedef struct adv_scsi_req_q {
1748        uchar cntl;             /* Ucode flags and state (ASC_MC_QC_*). */
1749        uchar target_cmd;
1750        uchar target_id;        /* Device target identifier. */
1751        uchar target_lun;       /* Device target logical unit number. */
1752        __le32 data_addr;       /* Data buffer physical address. */
1753        __le32 data_cnt;        /* Data count. Ucode sets to residual. */
1754        __le32 sense_addr;
1755        __le32 carr_pa;
1756        uchar mflag;
1757        uchar sense_len;
1758        uchar cdb_len;          /* SCSI CDB length. Must <= 16 bytes. */
1759        uchar scsi_cntl;
1760        uchar done_status;      /* Completion status. */
1761        uchar scsi_status;      /* SCSI status byte. */
1762        uchar host_status;      /* Ucode host status. */
1763        uchar sg_working_ix;
1764        uchar cdb[12];          /* SCSI CDB bytes 0-11. */
1765        __le32 sg_real_addr;    /* SG list physical address. */
1766        __le32 scsiq_rptr;
1767        uchar cdb16[4];         /* SCSI CDB bytes 12-15. */
1768        __le32 scsiq_ptr;
1769        __le32 carr_va;
1770        /*
1771         * End of microcode structure - 60 bytes. The rest of the structure
1772         * is used by the Adv Library and ignored by the microcode.
1773         */
1774        u32 srb_tag;
1775        ADV_SG_BLOCK *sg_list_ptr;      /* SG list virtual address. */
1776} ADV_SCSI_REQ_Q;
1777
1778/*
1779 * The following two structures are used to process Wide Board requests.
1780 *
1781 * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1782 * and microcode with the ADV_SCSI_REQ_Q field 'srb_tag' set to the
1783 * SCSI request tag. The adv_req_t structure 'cmndp' field in turn points
1784 * to the Mid-Level SCSI request structure.
1785 *
1786 * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1787 * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1788 * up to 255 scatter-gather elements may be used per request or
1789 * ADV_SCSI_REQ_Q.
1790 *
1791 * Both structures must be 32 byte aligned.
1792 */
1793typedef struct adv_sgblk {
1794        ADV_SG_BLOCK sg_block;  /* Sgblock structure. */
1795        dma_addr_t sg_addr;     /* Physical address */
1796        struct adv_sgblk *next_sgblkp;  /* Next scatter-gather structure. */
1797} adv_sgblk_t;
1798
1799typedef struct adv_req {
1800        ADV_SCSI_REQ_Q scsi_req_q;      /* Adv Library request structure. */
1801        uchar align[24];        /* Request structure padding. */
1802        struct scsi_cmnd *cmndp;        /* Mid-Level SCSI command pointer. */
1803        dma_addr_t req_addr;
1804        adv_sgblk_t *sgblkp;    /* Adv Library scatter-gather pointer. */
1805} adv_req_t __aligned(32);
1806
1807/*
1808 * Adapter operation variable structure.
1809 *
1810 * One structure is required per host adapter.
1811 *
1812 * Field naming convention:
1813 *
1814 *  *_able indicates both whether a feature should be enabled or disabled
1815 *  and whether a device isi capable of the feature. At initialization
1816 *  this field may be set, but later if a device is found to be incapable
1817 *  of the feature, the field is cleared.
1818 */
1819typedef struct adv_dvc_var {
1820        AdvPortAddr iop_base;   /* I/O port address */
1821        ushort err_code;        /* fatal error code */
1822        ushort bios_ctrl;       /* BIOS control word, EEPROM word 12 */
1823        ushort wdtr_able;       /* try WDTR for a device */
1824        ushort sdtr_able;       /* try SDTR for a device */
1825        ushort ultra_able;      /* try SDTR Ultra speed for a device */
1826        ushort sdtr_speed1;     /* EEPROM SDTR Speed for TID 0-3   */
1827        ushort sdtr_speed2;     /* EEPROM SDTR Speed for TID 4-7   */
1828        ushort sdtr_speed3;     /* EEPROM SDTR Speed for TID 8-11  */
1829        ushort sdtr_speed4;     /* EEPROM SDTR Speed for TID 12-15 */
1830        ushort tagqng_able;     /* try tagged queuing with a device */
1831        ushort ppr_able;        /* PPR message capable per TID bitmask. */
1832        uchar max_dvc_qng;      /* maximum number of tagged commands per device */
1833        ushort start_motor;     /* start motor command allowed */
1834        uchar scsi_reset_wait;  /* delay in seconds after scsi bus reset */
1835        uchar chip_no;          /* should be assigned by caller */
1836        uchar max_host_qng;     /* maximum number of Q'ed command allowed */
1837        ushort no_scam;         /* scam_tolerant of EEPROM */
1838        struct asc_board *drv_ptr;      /* driver pointer to private structure */
1839        uchar chip_scsi_id;     /* chip SCSI target ID */
1840        uchar chip_type;
1841        uchar bist_err_code;
1842        ADV_CARR_T *carrier;
1843        ADV_CARR_T *carr_freelist;      /* Carrier free list. */
1844        dma_addr_t carrier_addr;
1845        ADV_CARR_T *icq_sp;     /* Initiator command queue stopper pointer. */
1846        ADV_CARR_T *irq_sp;     /* Initiator response queue stopper pointer. */
1847        ushort carr_pending_cnt;        /* Count of pending carriers. */
1848        /*
1849         * Note: The following fields will not be used after initialization. The
1850         * driver may discard the buffer after initialization is done.
1851         */
1852        ADV_DVC_CFG *cfg;       /* temporary configuration structure  */
1853} ADV_DVC_VAR;
1854
1855/*
1856 * Microcode idle loop commands
1857 */
1858#define IDLE_CMD_COMPLETED           0
1859#define IDLE_CMD_STOP_CHIP           0x0001
1860#define IDLE_CMD_STOP_CHIP_SEND_INT  0x0002
1861#define IDLE_CMD_SEND_INT            0x0004
1862#define IDLE_CMD_ABORT               0x0008
1863#define IDLE_CMD_DEVICE_RESET        0x0010
1864#define IDLE_CMD_SCSI_RESET_START    0x0020     /* Assert SCSI Bus Reset */
1865#define IDLE_CMD_SCSI_RESET_END      0x0040     /* Deassert SCSI Bus Reset */
1866#define IDLE_CMD_SCSIREQ             0x0080
1867
1868#define IDLE_CMD_STATUS_SUCCESS      0x0001
1869#define IDLE_CMD_STATUS_FAILURE      0x0002
1870
1871/*
1872 * AdvSendIdleCmd() flag definitions.
1873 */
1874#define ADV_NOWAIT     0x01
1875
1876/*
1877 * Wait loop time out values.
1878 */
1879#define SCSI_WAIT_100_MSEC           100UL      /* 100 milliseconds */
1880#define SCSI_US_PER_MSEC             1000       /* microseconds per millisecond */
1881#define SCSI_MAX_RETRY               10 /* retry count */
1882
1883#define ADV_ASYNC_RDMA_FAILURE          0x01    /* Fatal RDMA failure. */
1884#define ADV_ASYNC_SCSI_BUS_RESET_DET    0x02    /* Detected SCSI Bus Reset. */
1885#define ADV_ASYNC_CARRIER_READY_FAILURE 0x03    /* Carrier Ready failure. */
1886#define ADV_RDMA_IN_CARR_AND_Q_INVALID  0x04    /* RDMAed-in data invalid. */
1887
1888#define ADV_HOST_SCSI_BUS_RESET      0x80       /* Host Initiated SCSI Bus Reset. */
1889
1890/* Read byte from a register. */
1891#define AdvReadByteRegister(iop_base, reg_off) \
1892     (ADV_MEM_READB((iop_base) + (reg_off)))
1893
1894/* Write byte to a register. */
1895#define AdvWriteByteRegister(iop_base, reg_off, byte) \
1896     (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1897
1898/* Read word (2 bytes) from a register. */
1899#define AdvReadWordRegister(iop_base, reg_off) \
1900     (ADV_MEM_READW((iop_base) + (reg_off)))
1901
1902/* Write word (2 bytes) to a register. */
1903#define AdvWriteWordRegister(iop_base, reg_off, word) \
1904     (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
1905
1906/* Write dword (4 bytes) to a register. */
1907#define AdvWriteDWordRegister(iop_base, reg_off, dword) \
1908     (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
1909
1910/* Read byte from LRAM. */
1911#define AdvReadByteLram(iop_base, addr, byte) \
1912do { \
1913    ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
1914    (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
1915} while (0)
1916
1917/* Write byte to LRAM. */
1918#define AdvWriteByteLram(iop_base, addr, byte) \
1919    (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1920     ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
1921
1922/* Read word (2 bytes) from LRAM. */
1923#define AdvReadWordLram(iop_base, addr, word) \
1924do { \
1925    ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
1926    (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
1927} while (0)
1928
1929/* Write word (2 bytes) to LRAM. */
1930#define AdvWriteWordLram(iop_base, addr, word) \
1931    (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1932     ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
1933
1934/* Write little-endian double word (4 bytes) to LRAM */
1935/* Because of unspecified C language ordering don't use auto-increment. */
1936#define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
1937    ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1938      ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
1939                     cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
1940     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
1941      ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
1942                     cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
1943
1944/* Read word (2 bytes) from LRAM assuming that the address is already set. */
1945#define AdvReadWordAutoIncLram(iop_base) \
1946     (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
1947
1948/* Write word (2 bytes) to LRAM assuming that the address is already set. */
1949#define AdvWriteWordAutoIncLram(iop_base, word) \
1950     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
1951
1952/*
1953 * Define macro to check for Condor signature.
1954 *
1955 * Evaluate to ADV_TRUE if a Condor chip is found the specified port
1956 * address 'iop_base'. Otherwise evalue to ADV_FALSE.
1957 */
1958#define AdvFindSignature(iop_base) \
1959    (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
1960    ADV_CHIP_ID_BYTE) && \
1961     (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
1962    ADV_CHIP_ID_WORD)) ?  ADV_TRUE : ADV_FALSE)
1963
1964/*
1965 * Define macro to Return the version number of the chip at 'iop_base'.
1966 *
1967 * The second parameter 'bus_type' is currently unused.
1968 */
1969#define AdvGetChipVersion(iop_base, bus_type) \
1970    AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
1971
1972/*
1973 * Abort an SRB in the chip's RISC Memory. The 'srb_tag' argument must
1974 * match the ADV_SCSI_REQ_Q 'srb_tag' field.
1975 *
1976 * If the request has not yet been sent to the device it will simply be
1977 * aborted from RISC memory. If the request is disconnected it will be
1978 * aborted on reselection by sending an Abort Message to the target ID.
1979 *
1980 * Return value:
1981 *      ADV_TRUE(1) - Queue was successfully aborted.
1982 *      ADV_FALSE(0) - Queue was not found on the active queue list.
1983 */
1984#define AdvAbortQueue(asc_dvc, srb_tag) \
1985     AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
1986                    (ADV_DCNT) (srb_tag))
1987
1988/*
1989 * Send a Bus Device Reset Message to the specified target ID.
1990 *
1991 * All outstanding commands will be purged if sending the
1992 * Bus Device Reset Message is successful.
1993 *
1994 * Return Value:
1995 *      ADV_TRUE(1) - All requests on the target are purged.
1996 *      ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
1997 *                     are not purged.
1998 */
1999#define AdvResetDevice(asc_dvc, target_id) \
2000     AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET,  \
2001                    (ADV_DCNT) (target_id))
2002
2003/*
2004 * SCSI Wide Type definition.
2005 */
2006#define ADV_SCSI_BIT_ID_TYPE   ushort
2007
2008/*
2009 * AdvInitScsiTarget() 'cntl_flag' options.
2010 */
2011#define ADV_SCAN_LUN           0x01
2012#define ADV_CAPINFO_NOLUN      0x02
2013
2014/*
2015 * Convert target id to target id bit mask.
2016 */
2017#define ADV_TID_TO_TIDMASK(tid)   (0x01 << ((tid) & ADV_MAX_TID))
2018
2019/*
2020 * ADV_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2021 */
2022
2023#define QD_NO_STATUS         0x00       /* Request not completed yet. */
2024#define QD_NO_ERROR          0x01
2025#define QD_ABORTED_BY_HOST   0x02
2026#define QD_WITH_ERROR        0x04
2027
2028#define QHSTA_NO_ERROR              0x00
2029#define QHSTA_M_SEL_TIMEOUT         0x11
2030#define QHSTA_M_DATA_OVER_RUN       0x12
2031#define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2032#define QHSTA_M_QUEUE_ABORTED       0x15
2033#define QHSTA_M_SXFR_SDMA_ERR       0x16        /* SXFR_STATUS SCSI DMA Error */
2034#define QHSTA_M_SXFR_SXFR_PERR      0x17        /* SXFR_STATUS SCSI Bus Parity Error */
2035#define QHSTA_M_RDMA_PERR           0x18        /* RISC PCI DMA parity error */
2036#define QHSTA_M_SXFR_OFF_UFLW       0x19        /* SXFR_STATUS Offset Underflow */
2037#define QHSTA_M_SXFR_OFF_OFLW       0x20        /* SXFR_STATUS Offset Overflow */
2038#define QHSTA_M_SXFR_WD_TMO         0x21        /* SXFR_STATUS Watchdog Timeout */
2039#define QHSTA_M_SXFR_DESELECTED     0x22        /* SXFR_STATUS Deselected */
2040/* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2041#define QHSTA_M_SXFR_XFR_OFLW       0x12        /* SXFR_STATUS Transfer Overflow */
2042#define QHSTA_M_SXFR_XFR_PH_ERR     0x24        /* SXFR_STATUS Transfer Phase Error */
2043#define QHSTA_M_SXFR_UNKNOWN_ERROR  0x25        /* SXFR_STATUS Unknown Error */
2044#define QHSTA_M_SCSI_BUS_RESET      0x30        /* Request aborted from SBR */
2045#define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31       /* Request aborted from unsol. SBR */
2046#define QHSTA_M_BUS_DEVICE_RESET    0x32        /* Request aborted from BDR */
2047#define QHSTA_M_DIRECTION_ERR       0x35        /* Data Phase mismatch */
2048#define QHSTA_M_DIRECTION_ERR_HUNG  0x36        /* Data Phase mismatch and bus hang */
2049#define QHSTA_M_WTM_TIMEOUT         0x41
2050#define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
2051#define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
2052#define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2053#define QHSTA_M_INVALID_DEVICE      0x45        /* Bad target ID */
2054#define QHSTA_M_FROZEN_TIDQ         0x46        /* TID Queue frozen. */
2055#define QHSTA_M_SGBACKUP_ERROR      0x47        /* Scatter-Gather backup error */
2056
2057/* Return the address that is aligned at the next doubleword >= to 'addr'. */
2058#define ADV_32BALIGN(addr)     (((ulong) (addr) + 0x1F) & ~0x1F)
2059
2060/*
2061 * Total contiguous memory needed for driver SG blocks.
2062 *
2063 * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2064 * number of scatter-gather elements the driver supports in a
2065 * single request.
2066 */
2067
2068#define ADV_SG_LIST_MAX_BYTE_SIZE \
2069         (sizeof(ADV_SG_BLOCK) * \
2070          ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2071
2072/* struct asc_board flags */
2073#define ASC_IS_WIDE_BOARD       0x04    /* AdvanSys Wide Board */
2074
2075#define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2076
2077#define NO_ISA_DMA              0xff    /* No ISA DMA Channel Used */
2078
2079#define ASC_INFO_SIZE           128     /* advansys_info() line size */
2080
2081/* Asc Library return codes */
2082#define ASC_TRUE        1
2083#define ASC_FALSE       0
2084#define ASC_NOERROR     1
2085#define ASC_BUSY        0
2086#define ASC_ERROR       (-1)
2087
2088/* struct scsi_cmnd function return codes */
2089#define STATUS_BYTE(byte)   (byte)
2090#define MSG_BYTE(byte)      ((byte) << 8)
2091#define HOST_BYTE(byte)     ((byte) << 16)
2092#define DRIVER_BYTE(byte)   ((byte) << 24)
2093
2094#define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2095#ifndef ADVANSYS_STATS
2096#define ASC_STATS_ADD(shost, counter, count)
2097#else /* ADVANSYS_STATS */
2098#define ASC_STATS_ADD(shost, counter, count) \
2099        (((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2100#endif /* ADVANSYS_STATS */
2101
2102/* If the result wraps when calculating tenths, return 0. */
2103#define ASC_TENTHS(num, den) \
2104    (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2105    0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2106
2107/*
2108 * Display a message to the console.
2109 */
2110#define ASC_PRINT(s) \
2111    { \
2112        printk("advansys: "); \
2113        printk(s); \
2114    }
2115
2116#define ASC_PRINT1(s, a1) \
2117    { \
2118        printk("advansys: "); \
2119        printk((s), (a1)); \
2120    }
2121
2122#define ASC_PRINT2(s, a1, a2) \
2123    { \
2124        printk("advansys: "); \
2125        printk((s), (a1), (a2)); \
2126    }
2127
2128#define ASC_PRINT3(s, a1, a2, a3) \
2129    { \
2130        printk("advansys: "); \
2131        printk((s), (a1), (a2), (a3)); \
2132    }
2133
2134#define ASC_PRINT4(s, a1, a2, a3, a4) \
2135    { \
2136        printk("advansys: "); \
2137        printk((s), (a1), (a2), (a3), (a4)); \
2138    }
2139
2140#ifndef ADVANSYS_DEBUG
2141
2142#define ASC_DBG(lvl, s...)
2143#define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2144#define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2145#define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2146#define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2147#define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2148#define ASC_DBG_PRT_HEX(lvl, name, start, length)
2149#define ASC_DBG_PRT_CDB(lvl, cdb, len)
2150#define ASC_DBG_PRT_SENSE(lvl, sense, len)
2151#define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2152
2153#else /* ADVANSYS_DEBUG */
2154
2155/*
2156 * Debugging Message Levels:
2157 * 0: Errors Only
2158 * 1: High-Level Tracing
2159 * 2-N: Verbose Tracing
2160 */
2161
2162#define ASC_DBG(lvl, format, arg...) {                                  \
2163        if (asc_dbglvl >= (lvl))                                        \
2164                printk(KERN_DEBUG "%s: %s: " format, DRV_NAME,          \
2165                        __func__ , ## arg);                             \
2166}
2167
2168#define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2169    { \
2170        if (asc_dbglvl >= (lvl)) { \
2171            asc_prt_scsi_host(s); \
2172        } \
2173    }
2174
2175#define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2176    { \
2177        if (asc_dbglvl >= (lvl)) { \
2178            asc_prt_asc_scsi_q(scsiqp); \
2179        } \
2180    }
2181
2182#define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2183    { \
2184        if (asc_dbglvl >= (lvl)) { \
2185            asc_prt_asc_qdone_info(qdone); \
2186        } \
2187    }
2188
2189#define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2190    { \
2191        if (asc_dbglvl >= (lvl)) { \
2192            asc_prt_adv_scsi_req_q(scsiqp); \
2193        } \
2194    }
2195
2196#define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2197    { \
2198        if (asc_dbglvl >= (lvl)) { \
2199            asc_prt_hex((name), (start), (length)); \
2200        } \
2201    }
2202
2203#define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2204        ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2205
2206#define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2207        ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2208
2209#define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2210        ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2211#endif /* ADVANSYS_DEBUG */
2212
2213#ifdef ADVANSYS_STATS
2214
2215/* Per board statistics structure */
2216struct asc_stats {
2217        /* Driver Entrypoint Statistics */
2218        unsigned int queuecommand;      /* # calls to advansys_queuecommand() */
2219        unsigned int reset;             /* # calls to advansys_eh_bus_reset() */
2220        unsigned int biosparam; /* # calls to advansys_biosparam() */
2221        unsigned int interrupt; /* # advansys_interrupt() calls */
2222        unsigned int callback;  /* # calls to asc/adv_isr_callback() */
2223        unsigned int done;              /* # calls to request's scsi_done function */
2224        unsigned int build_error;       /* # asc/adv_build_req() ASC_ERROR returns. */
2225        unsigned int adv_build_noreq;   /* # adv_build_req() adv_req_t alloc. fail. */
2226        unsigned int adv_build_nosg;    /* # adv_build_req() adv_sgblk_t alloc. fail. */
2227        /* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2228        unsigned int exe_noerror;       /* # ASC_NOERROR returns. */
2229        unsigned int exe_busy;  /* # ASC_BUSY returns. */
2230        unsigned int exe_error; /* # ASC_ERROR returns. */
2231        unsigned int exe_unknown;       /* # unknown returns. */
2232        /* Data Transfer Statistics */
2233        unsigned int xfer_cnt;  /* # I/O requests received */
2234        unsigned int xfer_elem; /* # scatter-gather elements */
2235        unsigned int xfer_sect; /* # 512-byte blocks */
2236};
2237#endif /* ADVANSYS_STATS */
2238
2239/*
2240 * Structure allocated for each board.
2241 *
2242 * This structure is allocated by scsi_host_alloc() at the end
2243 * of the 'Scsi_Host' structure starting at the 'hostdata'
2244 * field. It is guaranteed to be allocated from DMA-able memory.
2245 */
2246struct asc_board {
2247        struct device *dev;
2248        struct Scsi_Host *shost;
2249        uint flags;             /* Board flags */
2250        unsigned int irq;
2251        union {
2252                ASC_DVC_VAR asc_dvc_var;        /* Narrow board */
2253                ADV_DVC_VAR adv_dvc_var;        /* Wide board */
2254        } dvc_var;
2255        union {
2256                ASC_DVC_CFG asc_dvc_cfg;        /* Narrow board */
2257                ADV_DVC_CFG adv_dvc_cfg;        /* Wide board */
2258        } dvc_cfg;
2259        ushort asc_n_io_port;   /* Number I/O ports. */
2260        ADV_SCSI_BIT_ID_TYPE init_tidmask;      /* Target init./valid mask */
2261        ushort reqcnt[ADV_MAX_TID + 1]; /* Starvation request count */
2262        ADV_SCSI_BIT_ID_TYPE queue_full;        /* Queue full mask */
2263        ushort queue_full_cnt[ADV_MAX_TID + 1]; /* Queue full count */
2264        union {
2265                ASCEEP_CONFIG asc_eep;  /* Narrow EEPROM config. */
2266                ADVEEP_3550_CONFIG adv_3550_eep;        /* 3550 EEPROM config. */
2267                ADVEEP_38C0800_CONFIG adv_38C0800_eep;  /* 38C0800 EEPROM config. */
2268                ADVEEP_38C1600_CONFIG adv_38C1600_eep;  /* 38C1600 EEPROM config. */
2269        } eep_config;
2270        /* /proc/scsi/advansys/[0...] */
2271#ifdef ADVANSYS_STATS
2272        struct asc_stats asc_stats;     /* Board statistics */
2273#endif                          /* ADVANSYS_STATS */
2274        /*
2275         * The following fields are used only for Narrow Boards.
2276         */
2277        uchar sdtr_data[ASC_MAX_TID + 1];       /* SDTR information */
2278        /*
2279         * The following fields are used only for Wide Boards.
2280         */
2281        void __iomem *ioremap_addr;     /* I/O Memory remap address. */
2282        ushort ioport;          /* I/O Port address. */
2283        adv_req_t *adv_reqp;    /* Request structures. */
2284        dma_addr_t adv_reqp_addr;
2285        size_t adv_reqp_size;
2286        struct dma_pool *adv_sgblk_pool;        /* Scatter-gather structures. */
2287        ushort bios_signature;  /* BIOS Signature. */
2288        ushort bios_version;    /* BIOS Version. */
2289        ushort bios_codeseg;    /* BIOS Code Segment. */
2290        ushort bios_codelen;    /* BIOS Code Segment Length. */
2291};
2292
2293#define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2294                                                        dvc_var.asc_dvc_var)
2295#define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2296                                                        dvc_var.adv_dvc_var)
2297#define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2298
2299#ifdef ADVANSYS_DEBUG
2300static int asc_dbglvl = 3;
2301
2302/*
2303 * asc_prt_asc_dvc_var()
2304 */
2305static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h)
2306{
2307        printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h);
2308
2309        printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2310               "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl);
2311
2312        printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type,
2313                (unsigned)h->init_sdtr);
2314
2315        printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2316               "chip_no 0x%x,\n", (unsigned)h->sdtr_done,
2317               (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready,
2318               (unsigned)h->chip_no);
2319
2320        printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2321               "%u,\n", (unsigned)h->queue_full_or_busy,
2322               (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2323
2324        printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2325               "in_critical_cnt %u,\n", (unsigned)h->is_in_int,
2326               (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng,
2327               (unsigned)h->in_critical_cnt);
2328
2329        printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2330               "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage,
2331               (unsigned)h->init_state, (unsigned)h->no_scam,
2332               (unsigned)h->pci_fix_asyn_xfer);
2333
2334        printk(" cfg 0x%lx\n", (ulong)h->cfg);
2335}
2336
2337/*
2338 * asc_prt_asc_dvc_cfg()
2339 */
2340static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h)
2341{
2342        printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h);
2343
2344        printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2345               h->can_tagged_qng, h->cmd_qng_enabled);
2346        printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2347               h->disc_enable, h->sdtr_enable);
2348
2349        printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, "
2350                "chip_version %d,\n", h->chip_scsi_id, h->isa_dma_speed,
2351                h->isa_dma_channel, h->chip_version);
2352
2353        printk(" mcode_date 0x%x, mcode_version %d\n",
2354                h->mcode_date, h->mcode_version);
2355}
2356
2357/*
2358 * asc_prt_adv_dvc_var()
2359 *
2360 * Display an ADV_DVC_VAR structure.
2361 */
2362static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h)
2363{
2364        printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h);
2365
2366        printk("  iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2367               (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able);
2368
2369        printk("  sdtr_able 0x%x, wdtr_able 0x%x\n",
2370               (unsigned)h->sdtr_able, (unsigned)h->wdtr_able);
2371
2372        printk("  start_motor 0x%x, scsi_reset_wait 0x%x\n",
2373               (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2374
2375        printk("  max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%p\n",
2376               (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng,
2377               h->carr_freelist);
2378
2379        printk("  icq_sp 0x%p, irq_sp 0x%p\n", h->icq_sp, h->irq_sp);
2380
2381        printk("  no_scam 0x%x, tagqng_able 0x%x\n",
2382               (unsigned)h->no_scam, (unsigned)h->tagqng_able);
2383
2384        printk("  chip_scsi_id 0x%x, cfg 0x%lx\n",
2385               (unsigned)h->chip_scsi_id, (ulong)h->cfg);
2386}
2387
2388/*
2389 * asc_prt_adv_dvc_cfg()
2390 *
2391 * Display an ADV_DVC_CFG structure.
2392 */
2393static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h)
2394{
2395        printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h);
2396
2397        printk("  disc_enable 0x%x, termination 0x%x\n",
2398               h->disc_enable, h->termination);
2399
2400        printk("  chip_version 0x%x, mcode_date 0x%x\n",
2401               h->chip_version, h->mcode_date);
2402
2403        printk("  mcode_version 0x%x, control_flag 0x%x\n",
2404               h->mcode_version, h->control_flag);
2405}
2406
2407/*
2408 * asc_prt_scsi_host()
2409 */
2410static void asc_prt_scsi_host(struct Scsi_Host *s)
2411{
2412        struct asc_board *boardp = shost_priv(s);
2413
2414        printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev));
2415        printk(" host_busy %d, host_no %d,\n",
2416               scsi_host_busy(s), s->host_no);
2417
2418        printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2419               (ulong)s->base, (ulong)s->io_port, boardp->irq);
2420
2421        printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2422               s->dma_channel, s->this_id, s->can_queue);
2423
2424        printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n",
2425               s->cmd_per_lun, s->sg_tablesize, s->unchecked_isa_dma);
2426
2427        if (ASC_NARROW_BOARD(boardp)) {
2428                asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var);
2429                asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg);
2430        } else {
2431                asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var);
2432                asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg);
2433        }
2434}
2435
2436/*
2437 * asc_prt_hex()
2438 *
2439 * Print hexadecimal output in 4 byte groupings 32 bytes
2440 * or 8 double-words per line.
2441 */
2442static void asc_prt_hex(char *f, uchar *s, int l)
2443{
2444        int i;
2445        int j;
2446        int k;
2447        int m;
2448
2449        printk("%s: (%d bytes)\n", f, l);
2450
2451        for (i = 0; i < l; i += 32) {
2452
2453                /* Display a maximum of 8 double-words per line. */
2454                if ((k = (l - i) / 4) >= 8) {
2455                        k = 8;
2456                        m = 0;
2457                } else {
2458                        m = (l - i) % 4;
2459                }
2460
2461                for (j = 0; j < k; j++) {
2462                        printk(" %2.2X%2.2X%2.2X%2.2X",
2463                               (unsigned)s[i + (j * 4)],
2464                               (unsigned)s[i + (j * 4) + 1],
2465                               (unsigned)s[i + (j * 4) + 2],
2466                               (unsigned)s[i + (j * 4) + 3]);
2467                }
2468
2469                switch (m) {
2470                case 0:
2471                default:
2472                        break;
2473                case 1:
2474                        printk(" %2.2X", (unsigned)s[i + (j * 4)]);
2475                        break;
2476                case 2:
2477                        printk(" %2.2X%2.2X",
2478                               (unsigned)s[i + (j * 4)],
2479                               (unsigned)s[i + (j * 4) + 1]);
2480                        break;
2481                case 3:
2482                        printk(" %2.2X%2.2X%2.2X",
2483                               (unsigned)s[i + (j * 4) + 1],
2484                               (unsigned)s[i + (j * 4) + 2],
2485                               (unsigned)s[i + (j * 4) + 3]);
2486                        break;
2487                }
2488
2489                printk("\n");
2490        }
2491}
2492
2493/*
2494 * asc_prt_asc_scsi_q()
2495 */
2496static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q)
2497{
2498        ASC_SG_HEAD *sgp;
2499        int i;
2500
2501        printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q);
2502
2503        printk
2504            (" target_ix 0x%x, target_lun %u, srb_tag 0x%x, tag_code 0x%x,\n",
2505             q->q2.target_ix, q->q1.target_lun, q->q2.srb_tag,
2506             q->q2.tag_code);
2507
2508        printk
2509            (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2510             (ulong)le32_to_cpu(q->q1.data_addr),
2511             (ulong)le32_to_cpu(q->q1.data_cnt),
2512             (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len);
2513
2514        printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2515               (ulong)q->cdbptr, q->q2.cdb_len,
2516               (ulong)q->sg_head, q->q1.sg_queue_cnt);
2517
2518        if (q->sg_head) {
2519                sgp = q->sg_head;
2520                printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp);
2521                printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt,
2522                       sgp->queue_cnt);
2523                for (i = 0; i < sgp->entry_cnt; i++) {
2524                        printk(" [%u]: addr 0x%lx, bytes %lu\n",
2525                               i, (ulong)le32_to_cpu(sgp->sg_list[i].addr),
2526                               (ulong)le32_to_cpu(sgp->sg_list[i].bytes));
2527                }
2528
2529        }
2530}
2531
2532/*
2533 * asc_prt_asc_qdone_info()
2534 */
2535static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q)
2536{
2537        printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q);
2538        printk(" srb_tag 0x%x, target_ix %u, cdb_len %u, tag_code %u,\n",
2539               q->d2.srb_tag, q->d2.target_ix, q->d2.cdb_len,
2540               q->d2.tag_code);
2541        printk
2542            (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2543             q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg);
2544}
2545
2546/*
2547 * asc_prt_adv_sgblock()
2548 *
2549 * Display an ADV_SG_BLOCK structure.
2550 */
2551static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b)
2552{
2553        int i;
2554
2555        printk(" ADV_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2556               (ulong)b, sgblockno);
2557        printk("  sg_cnt %u, sg_ptr 0x%x\n",
2558               b->sg_cnt, (u32)le32_to_cpu(b->sg_ptr));
2559        BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK);
2560        if (b->sg_ptr != 0)
2561                BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK);
2562        for (i = 0; i < b->sg_cnt; i++) {
2563                printk("  [%u]: sg_addr 0x%x, sg_count 0x%x\n",
2564                       i, (u32)le32_to_cpu(b->sg_list[i].sg_addr),
2565                       (u32)le32_to_cpu(b->sg_list[i].sg_count));
2566        }
2567}
2568
2569/*
2570 * asc_prt_adv_scsi_req_q()
2571 *
2572 * Display an ADV_SCSI_REQ_Q structure.
2573 */
2574static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q)
2575{
2576        int sg_blk_cnt;
2577        struct adv_sg_block *sg_ptr;
2578        adv_sgblk_t *sgblkp;
2579
2580        printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q);
2581
2582        printk("  target_id %u, target_lun %u, srb_tag 0x%x\n",
2583               q->target_id, q->target_lun, q->srb_tag);
2584
2585        printk("  cntl 0x%x, data_addr 0x%lx\n",
2586               q->cntl, (ulong)le32_to_cpu(q->data_addr));
2587
2588        printk("  data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2589               (ulong)le32_to_cpu(q->data_cnt),
2590               (ulong)le32_to_cpu(q->sense_addr), q->sense_len);
2591
2592        printk
2593            ("  cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2594             q->cdb_len, q->done_status, q->host_status, q->scsi_status);
2595
2596        printk("  sg_working_ix 0x%x, target_cmd %u\n",
2597               q->sg_working_ix, q->target_cmd);
2598
2599        printk("  scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2600               (ulong)le32_to_cpu(q->scsiq_rptr),
2601               (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr);
2602
2603        /* Display the request's ADV_SG_BLOCK structures. */
2604        if (q->sg_list_ptr != NULL) {
2605                sgblkp = container_of(q->sg_list_ptr, adv_sgblk_t, sg_block);
2606                sg_blk_cnt = 0;
2607                while (sgblkp) {
2608                        sg_ptr = &sgblkp->sg_block;
2609                        asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr);
2610                        if (sg_ptr->sg_ptr == 0) {
2611                                break;
2612                        }
2613                        sgblkp = sgblkp->next_sgblkp;
2614                        sg_blk_cnt++;
2615                }
2616        }
2617}
2618#endif /* ADVANSYS_DEBUG */
2619
2620/*
2621 * advansys_info()
2622 *
2623 * Return suitable for printing on the console with the argument
2624 * adapter's configuration information.
2625 *
2626 * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2627 * otherwise the static 'info' array will be overrun.
2628 */
2629static const char *advansys_info(struct Scsi_Host *shost)
2630{
2631        static char info[ASC_INFO_SIZE];
2632        struct asc_board *boardp = shost_priv(shost);
2633        ASC_DVC_VAR *asc_dvc_varp;
2634        ADV_DVC_VAR *adv_dvc_varp;
2635        char *busname;
2636        char *widename = NULL;
2637
2638        if (ASC_NARROW_BOARD(boardp)) {
2639                asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2640                ASC_DBG(1, "begin\n");
2641                if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
2642                        if ((asc_dvc_varp->bus_type & ASC_IS_ISAPNP) ==
2643                            ASC_IS_ISAPNP) {
2644                                busname = "ISA PnP";
2645                        } else {
2646                                busname = "ISA";
2647                        }
2648                        sprintf(info,
2649                                "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X",
2650                                ASC_VERSION, busname,
2651                                (ulong)shost->io_port,
2652                                (ulong)shost->io_port + ASC_IOADR_GAP - 1,
2653                                boardp->irq, shost->dma_channel);
2654                } else {
2655                        if (asc_dvc_varp->bus_type & ASC_IS_VL) {
2656                                busname = "VL";
2657                        } else if (asc_dvc_varp->bus_type & ASC_IS_EISA) {
2658                                busname = "EISA";
2659                        } else if (asc_dvc_varp->bus_type & ASC_IS_PCI) {
2660                                if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA)
2661                                    == ASC_IS_PCI_ULTRA) {
2662                                        busname = "PCI Ultra";
2663                                } else {
2664                                        busname = "PCI";
2665                                }
2666                        } else {
2667                                busname = "?";
2668                                shost_printk(KERN_ERR, shost, "unknown bus "
2669                                        "type %d\n", asc_dvc_varp->bus_type);
2670                        }
2671                        sprintf(info,
2672                                "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2673                                ASC_VERSION, busname, (ulong)shost->io_port,
2674                                (ulong)shost->io_port + ASC_IOADR_GAP - 1,
2675                                boardp->irq);
2676                }
2677        } else {
2678                /*
2679                 * Wide Adapter Information
2680                 *
2681                 * Memory-mapped I/O is used instead of I/O space to access
2682                 * the adapter, but display the I/O Port range. The Memory
2683                 * I/O address is displayed through the driver /proc file.
2684                 */
2685                adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2686                if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2687                        widename = "Ultra-Wide";
2688                } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2689                        widename = "Ultra2-Wide";
2690                } else {
2691                        widename = "Ultra3-Wide";
2692                }
2693                sprintf(info,
2694                        "AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2695                        ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base,
2696                        (ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq);
2697        }
2698        BUG_ON(strlen(info) >= ASC_INFO_SIZE);
2699        ASC_DBG(1, "end\n");
2700        return info;
2701}
2702
2703#ifdef CONFIG_PROC_FS
2704
2705/*
2706 * asc_prt_board_devices()
2707 *
2708 * Print driver information for devices attached to the board.
2709 */
2710static void asc_prt_board_devices(struct seq_file *m, struct Scsi_Host *shost)
2711{
2712        struct asc_board *boardp = shost_priv(shost);
2713        int chip_scsi_id;
2714        int i;
2715
2716        seq_printf(m,
2717                   "\nDevice Information for AdvanSys SCSI Host %d:\n",
2718                   shost->host_no);
2719
2720        if (ASC_NARROW_BOARD(boardp)) {
2721                chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
2722        } else {
2723                chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
2724        }
2725
2726        seq_puts(m, "Target IDs Detected:");
2727        for (i = 0; i <= ADV_MAX_TID; i++) {
2728                if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i))
2729                        seq_printf(m, " %X,", i);
2730        }
2731        seq_printf(m, " (%X=Host Adapter)\n", chip_scsi_id);
2732}
2733
2734/*
2735 * Display Wide Board BIOS Information.
2736 */
2737static void asc_prt_adv_bios(struct seq_file *m, struct Scsi_Host *shost)
2738{
2739        struct asc_board *boardp = shost_priv(shost);
2740        ushort major, minor, letter;
2741
2742        seq_puts(m, "\nROM BIOS Version: ");
2743
2744        /*
2745         * If the BIOS saved a valid signature, then fill in
2746         * the BIOS code segment base address.
2747         */
2748        if (boardp->bios_signature != 0x55AA) {
2749                seq_puts(m, "Disabled or Pre-3.1\n"
2750                        "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n"
2751                        "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2752        } else {
2753                major = (boardp->bios_version >> 12) & 0xF;
2754                minor = (boardp->bios_version >> 8) & 0xF;
2755                letter = (boardp->bios_version & 0xFF);
2756
2757                seq_printf(m, "%d.%d%c\n",
2758                                   major, minor,
2759                                   letter >= 26 ? '?' : letter + 'A');
2760                /*
2761                 * Current available ROM BIOS release is 3.1I for UW
2762                 * and 3.2I for U2W. This code doesn't differentiate
2763                 * UW and U2W boards.
2764                 */
2765                if (major < 3 || (major <= 3 && minor < 1) ||
2766                    (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) {
2767                        seq_puts(m, "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n"
2768                                "ftp://ftp.connectcom.net/pub\n");
2769                }
2770        }
2771}
2772
2773/*
2774 * Add serial number to information bar if signature AAh
2775 * is found in at bit 15-9 (7 bits) of word 1.
2776 *
2777 * Serial Number consists fo 12 alpha-numeric digits.
2778 *
2779 *       1 - Product type (A,B,C,D..)  Word0: 15-13 (3 bits)
2780 *       2 - MFG Location (A,B,C,D..)  Word0: 12-10 (3 bits)
2781 *     3-4 - Product ID (0-99)         Word0: 9-0 (10 bits)
2782 *       5 - Product revision (A-J)    Word0:  "         "
2783 *
2784 *           Signature                 Word1: 15-9 (7 bits)
2785 *       6 - Year (0-9)                Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
2786 *     7-8 - Week of the year (1-52)   Word1: 5-0 (6 bits)
2787 *
2788 *    9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
2789 *
2790 * Note 1: Only production cards will have a serial number.
2791 *
2792 * Note 2: Signature is most significant 7 bits (0xFE).
2793 *
2794 * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
2795 */
2796static int asc_get_eeprom_string(ushort *serialnum, uchar *cp)
2797{
2798        ushort w, num;
2799
2800        if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) {
2801                return ASC_FALSE;
2802        } else {
2803                /*
2804                 * First word - 6 digits.
2805                 */
2806                w = serialnum[0];
2807
2808                /* Product type - 1st digit. */
2809                if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') {
2810                        /* Product type is P=Prototype */
2811                        *cp += 0x8;
2812                }
2813                cp++;
2814
2815                /* Manufacturing location - 2nd digit. */
2816                *cp++ = 'A' + ((w & 0x1C00) >> 10);
2817
2818                /* Product ID - 3rd, 4th digits. */
2819                num = w & 0x3FF;
2820                *cp++ = '0' + (num / 100);
2821                num %= 100;
2822                *cp++ = '0' + (num / 10);
2823
2824                /* Product revision - 5th digit. */
2825                *cp++ = 'A' + (num % 10);
2826
2827                /*
2828                 * Second word
2829                 */
2830                w = serialnum[1];
2831
2832                /*
2833                 * Year - 6th digit.
2834                 *
2835                 * If bit 15 of third word is set, then the
2836                 * last digit of the year is greater than 7.
2837                 */
2838                if (serialnum[2] & 0x8000) {
2839                        *cp++ = '8' + ((w & 0x1C0) >> 6);
2840                } else {
2841                        *cp++ = '0' + ((w & 0x1C0) >> 6);
2842                }
2843
2844                /* Week of year - 7th, 8th digits. */
2845                num = w & 0x003F;
2846                *cp++ = '0' + num / 10;
2847                num %= 10;
2848                *cp++ = '0' + num;
2849
2850                /*
2851                 * Third word
2852                 */
2853                w = serialnum[2] & 0x7FFF;
2854
2855                /* Serial number - 9th digit. */
2856                *cp++ = 'A' + (w / 1000);
2857
2858                /* 10th, 11th, 12th digits. */
2859                num = w % 1000;
2860                *cp++ = '0' + num / 100;
2861                num %= 100;
2862                *cp++ = '0' + num / 10;
2863                num %= 10;
2864                *cp++ = '0' + num;
2865
2866                *cp = '\0';     /* Null Terminate the string. */
2867                return ASC_TRUE;
2868        }
2869}
2870
2871/*
2872 * asc_prt_asc_board_eeprom()
2873 *
2874 * Print board EEPROM configuration.
2875 */
2876static void asc_prt_asc_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
2877{
2878        struct asc_board *boardp = shost_priv(shost);
2879        ASC_DVC_VAR *asc_dvc_varp;
2880        ASCEEP_CONFIG *ep;
2881        int i;
2882#ifdef CONFIG_ISA
2883        int isa_dma_speed[] = { 10, 8, 7, 6, 5, 4, 3, 2 };
2884#endif /* CONFIG_ISA */
2885        uchar serialstr[13];
2886
2887        asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2888        ep = &boardp->eep_config.asc_eep;
2889
2890        seq_printf(m,
2891                   "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
2892                   shost->host_no);
2893
2894        if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr)
2895            == ASC_TRUE)
2896                seq_printf(m, " Serial Number: %s\n", serialstr);
2897        else if (ep->adapter_info[5] == 0xBB)
2898                seq_puts(m,
2899                         " Default Settings Used for EEPROM-less Adapter.\n");
2900        else
2901                seq_puts(m, " Serial Number Signature Not Present.\n");
2902
2903        seq_printf(m,
2904                   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2905                   ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng,
2906                   ep->max_tag_qng);
2907
2908        seq_printf(m,
2909                   " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam);
2910
2911        seq_puts(m, " Target ID:           ");
2912        for (i = 0; i <= ASC_MAX_TID; i++)
2913                seq_printf(m, " %d", i);
2914
2915        seq_puts(m, "\n Disconnects:         ");
2916        for (i = 0; i <= ASC_MAX_TID; i++)
2917                seq_printf(m, " %c",
2918                           (ep->disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2919
2920        seq_puts(m, "\n Command Queuing:     ");
2921        for (i = 0; i <= ASC_MAX_TID; i++)
2922                seq_printf(m, " %c",
2923                           (ep->use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2924
2925        seq_puts(m, "\n Start Motor:         ");
2926        for (i = 0; i <= ASC_MAX_TID; i++)
2927                seq_printf(m, " %c",
2928                           (ep->start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2929
2930        seq_puts(m, "\n Synchronous Transfer:");
2931        for (i = 0; i <= ASC_MAX_TID; i++)
2932                seq_printf(m, " %c",
2933                           (ep->init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2934        seq_putc(m, '\n');
2935
2936#ifdef CONFIG_ISA
2937        if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
2938                seq_printf(m,
2939                           " Host ISA DMA speed:   %d MB/S\n",
2940                           isa_dma_speed[ASC_EEP_GET_DMA_SPD(ep)]);
2941        }
2942#endif /* CONFIG_ISA */
2943}
2944
2945/*
2946 * asc_prt_adv_board_eeprom()
2947 *
2948 * Print board EEPROM configuration.
2949 */
2950static void asc_prt_adv_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
2951{
2952        struct asc_board *boardp = shost_priv(shost);
2953        ADV_DVC_VAR *adv_dvc_varp;
2954        int i;
2955        char *termstr;
2956        uchar serialstr[13];
2957        ADVEEP_3550_CONFIG *ep_3550 = NULL;
2958        ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL;
2959        ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL;
2960        ushort word;
2961        ushort *wordp;
2962        ushort sdtr_speed = 0;
2963
2964        adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2965        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2966                ep_3550 = &boardp->eep_config.adv_3550_eep;
2967        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2968                ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
2969        } else {
2970                ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
2971        }
2972
2973        seq_printf(m,
2974                   "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
2975                   shost->host_no);
2976
2977        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2978                wordp = &ep_3550->serial_number_word1;
2979        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2980                wordp = &ep_38C0800->serial_number_word1;
2981        } else {
2982                wordp = &ep_38C1600->serial_number_word1;
2983        }
2984
2985        if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE)
2986                seq_printf(m, " Serial Number: %s\n", serialstr);
2987        else
2988                seq_puts(m, " Serial Number Signature Not Present.\n");
2989
2990        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
2991                seq_printf(m,
2992                           " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2993                           ep_3550->adapter_scsi_id,
2994                           ep_3550->max_host_qng, ep_3550->max_dvc_qng);
2995        else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
2996                seq_printf(m,
2997                           " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2998                           ep_38C0800->adapter_scsi_id,
2999                           ep_38C0800->max_host_qng,
3000                           ep_38C0800->max_dvc_qng);
3001        else
3002                seq_printf(m,
3003                           " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3004                           ep_38C1600->adapter_scsi_id,
3005                           ep_38C1600->max_host_qng,
3006                           ep_38C1600->max_dvc_qng);
3007        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3008                word = ep_3550->termination;
3009        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3010                word = ep_38C0800->termination_lvd;
3011        } else {
3012                word = ep_38C1600->termination_lvd;
3013        }
3014        switch (word) {
3015        case 1:
3016                termstr = "Low Off/High Off";
3017                break;
3018        case 2:
3019                termstr = "Low Off/High On";
3020                break;
3021        case 3:
3022                termstr = "Low On/High On";
3023                break;
3024        default:
3025        case 0:
3026                termstr = "Automatic";
3027                break;
3028        }
3029
3030        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
3031                seq_printf(m,
3032                           " termination: %u (%s), bios_ctrl: 0x%x\n",
3033                           ep_3550->termination, termstr,
3034                           ep_3550->bios_ctrl);
3035        else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
3036                seq_printf(m,
3037                           " termination: %u (%s), bios_ctrl: 0x%x\n",
3038                           ep_38C0800->termination_lvd, termstr,
3039                           ep_38C0800->bios_ctrl);
3040        else
3041                seq_printf(m,
3042                           " termination: %u (%s), bios_ctrl: 0x%x\n",
3043                           ep_38C1600->termination_lvd, termstr,
3044                           ep_38C1600->bios_ctrl);
3045
3046        seq_puts(m, " Target ID:           ");
3047        for (i = 0; i <= ADV_MAX_TID; i++)
3048                seq_printf(m, " %X", i);
3049        seq_putc(m, '\n');
3050
3051        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3052                word = ep_3550->disc_enable;
3053        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3054                word = ep_38C0800->disc_enable;
3055        } else {
3056                word = ep_38C1600->disc_enable;
3057        }
3058        seq_puts(m, " Disconnects:         ");
3059        for (i = 0; i <= ADV_MAX_TID; i++)
3060                seq_printf(m, " %c",
3061                           (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3062        seq_putc(m, '\n');
3063
3064        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3065                word = ep_3550->tagqng_able;
3066        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3067                word = ep_38C0800->tagqng_able;
3068        } else {
3069                word = ep_38C1600->tagqng_able;
3070        }
3071        seq_puts(m, " Command Queuing:     ");
3072        for (i = 0; i <= ADV_MAX_TID; i++)
3073                seq_printf(m, " %c",
3074                           (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3075        seq_putc(m, '\n');
3076
3077        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3078                word = ep_3550->start_motor;
3079        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3080                word = ep_38C0800->start_motor;
3081        } else {
3082                word = ep_38C1600->start_motor;
3083        }
3084        seq_puts(m, " Start Motor:         ");
3085        for (i = 0; i <= ADV_MAX_TID; i++)
3086                seq_printf(m, " %c",
3087                           (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3088        seq_putc(m, '\n');
3089
3090        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3091                seq_puts(m, " Synchronous Transfer:");
3092                for (i = 0; i <= ADV_MAX_TID; i++)
3093                        seq_printf(m, " %c",
3094                                   (ep_3550->sdtr_able & ADV_TID_TO_TIDMASK(i)) ?
3095                                   'Y' : 'N');
3096                seq_putc(m, '\n');
3097        }
3098
3099        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3100                seq_puts(m, " Ultra Transfer:      ");
3101                for (i = 0; i <= ADV_MAX_TID; i++)
3102                        seq_printf(m, " %c",
3103                                   (ep_3550->ultra_able & ADV_TID_TO_TIDMASK(i))
3104                                   ? 'Y' : 'N');
3105                seq_putc(m, '\n');
3106        }
3107
3108        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3109                word = ep_3550->wdtr_able;
3110        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3111                word = ep_38C0800->wdtr_able;
3112        } else {
3113                word = ep_38C1600->wdtr_able;
3114        }
3115        seq_puts(m, " Wide Transfer:       ");
3116        for (i = 0; i <= ADV_MAX_TID; i++)
3117                seq_printf(m, " %c",
3118                           (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3119        seq_putc(m, '\n');
3120
3121        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 ||
3122            adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) {
3123                seq_puts(m, " Synchronous Transfer Speed (Mhz):\n  ");
3124                for (i = 0; i <= ADV_MAX_TID; i++) {
3125                        char *speed_str;
3126
3127                        if (i == 0) {
3128                                sdtr_speed = adv_dvc_varp->sdtr_speed1;
3129                        } else if (i == 4) {
3130                                sdtr_speed = adv_dvc_varp->sdtr_speed2;
3131                        } else if (i == 8) {
3132                                sdtr_speed = adv_dvc_varp->sdtr_speed3;
3133                        } else if (i == 12) {
3134                                sdtr_speed = adv_dvc_varp->sdtr_speed4;
3135                        }
3136                        switch (sdtr_speed & ADV_MAX_TID) {
3137                        case 0:
3138                                speed_str = "Off";
3139                                break;
3140                        case 1:
3141                                speed_str = "  5";
3142                                break;
3143                        case 2:
3144                                speed_str = " 10";
3145                                break;
3146                        case 3:
3147                                speed_str = " 20";
3148                                break;
3149                        case 4:
3150                                speed_str = " 40";
3151                                break;
3152                        case 5:
3153                                speed_str = " 80";
3154                                break;
3155                        default:
3156                                speed_str = "Unk";
3157                                break;
3158                        }
3159                        seq_printf(m, "%X:%s ", i, speed_str);
3160                        if (i == 7)
3161                                seq_puts(m, "\n  ");
3162                        sdtr_speed >>= 4;
3163                }
3164                seq_putc(m, '\n');
3165        }
3166}
3167
3168/*
3169 * asc_prt_driver_conf()
3170 */
3171static void asc_prt_driver_conf(struct seq_file *m, struct Scsi_Host *shost)
3172{
3173        struct asc_board *boardp = shost_priv(shost);
3174        int chip_scsi_id;
3175
3176        seq_printf(m,
3177                "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3178                shost->host_no);
3179
3180        seq_printf(m,
3181                   " host_busy %d, max_id %u, max_lun %llu, max_channel %u\n",
3182                   scsi_host_busy(shost), shost->max_id,
3183                   shost->max_lun, shost->max_channel);
3184
3185        seq_printf(m,
3186                   " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3187                   shost->unique_id, shost->can_queue, shost->this_id,
3188                   shost->sg_tablesize, shost->cmd_per_lun);
3189
3190        seq_printf(m,
3191                   " unchecked_isa_dma %d\n",
3192                   shost->unchecked_isa_dma);
3193
3194        seq_printf(m,
3195                   " flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n",
3196                   boardp->flags, shost->last_reset, jiffies,
3197                   boardp->asc_n_io_port);
3198
3199        seq_printf(m, " io_port 0x%lx\n", shost->io_port);
3200
3201        if (ASC_NARROW_BOARD(boardp)) {
3202                chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
3203        } else {
3204                chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
3205        }
3206}
3207
3208/*
3209 * asc_prt_asc_board_info()
3210 *
3211 * Print dynamic board configuration information.
3212 */
3213static void asc_prt_asc_board_info(struct seq_file *m, struct Scsi_Host *shost)
3214{
3215        struct asc_board *boardp = shost_priv(shost);
3216        int chip_scsi_id;
3217        ASC_DVC_VAR *v;
3218        ASC_DVC_CFG *c;
3219        int i;
3220        int renegotiate = 0;
3221
3222        v = &boardp->dvc_var.asc_dvc_var;
3223        c = &boardp->dvc_cfg.asc_dvc_cfg;
3224        chip_scsi_id = c->chip_scsi_id;
3225
3226        seq_printf(m,
3227                   "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3228                   shost->host_no);
3229
3230        seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3231                   "mcode_version 0x%x, err_code %u\n",
3232                   c->chip_version, c->mcode_date, c->mcode_version,
3233                   v->err_code);
3234
3235        /* Current number of commands waiting for the host. */
3236        seq_printf(m,
3237                   " Total Command Pending: %d\n", v->cur_total_qng);
3238
3239        seq_puts(m, " Command Queuing:");
3240        for (i = 0; i <= ASC_MAX_TID; i++) {
3241                if ((chip_scsi_id == i) ||
3242                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3243                        continue;
3244                }
3245                seq_printf(m, " %X:%c",
3246                           i,
3247                           (v->use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3248        }
3249
3250        /* Current number of commands waiting for a device. */
3251        seq_puts(m, "\n Command Queue Pending:");
3252        for (i = 0; i <= ASC_MAX_TID; i++) {
3253                if ((chip_scsi_id == i) ||
3254                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3255                        continue;
3256                }
3257                seq_printf(m, " %X:%u", i, v->cur_dvc_qng[i]);
3258        }
3259
3260        /* Current limit on number of commands that can be sent to a device. */
3261        seq_puts(m, "\n Command Queue Limit:");
3262        for (i = 0; i <= ASC_MAX_TID; i++) {
3263                if ((chip_scsi_id == i) ||
3264                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3265                        continue;
3266                }
3267                seq_printf(m, " %X:%u", i, v->max_dvc_qng[i]);
3268        }
3269
3270        /* Indicate whether the device has returned queue full status. */
3271        seq_puts(m, "\n Command Queue Full:");
3272        for (i = 0; i <= ASC_MAX_TID; i++) {
3273                if ((chip_scsi_id == i) ||
3274                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3275                        continue;
3276                }
3277                if (boardp->queue_full & ADV_TID_TO_TIDMASK(i))
3278                        seq_printf(m, " %X:Y-%d",
3279                                   i, boardp->queue_full_cnt[i]);
3280                else
3281                        seq_printf(m, " %X:N", i);
3282        }
3283
3284        seq_puts(m, "\n Synchronous Transfer:");
3285        for (i = 0; i <= ASC_MAX_TID; i++) {
3286                if ((chip_scsi_id == i) ||
3287                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3288                        continue;
3289                }
3290                seq_printf(m, " %X:%c",
3291                           i,
3292                           (v->sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3293        }
3294        seq_putc(m, '\n');
3295
3296        for (i = 0; i <= ASC_MAX_TID; i++) {
3297                uchar syn_period_ix;
3298
3299                if ((chip_scsi_id == i) ||
3300                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3301                    ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) {
3302                        continue;
3303                }
3304
3305                seq_printf(m, "  %X:", i);
3306
3307                if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) {
3308                        seq_puts(m, " Asynchronous");
3309                } else {
3310                        syn_period_ix =
3311                            (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index -
3312                                                           1);
3313
3314                        seq_printf(m,
3315                                   " Transfer Period Factor: %d (%d.%d Mhz),",
3316                                   v->sdtr_period_tbl[syn_period_ix],
3317                                   250 / v->sdtr_period_tbl[syn_period_ix],
3318                                   ASC_TENTHS(250,
3319                                              v->sdtr_period_tbl[syn_period_ix]));
3320
3321                        seq_printf(m, " REQ/ACK Offset: %d",
3322                                   boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET);
3323                }
3324
3325                if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3326                        seq_puts(m, "*\n");
3327                        renegotiate = 1;
3328                } else {
3329                        seq_putc(m, '\n');
3330                }
3331        }
3332
3333        if (renegotiate) {
3334                seq_puts(m, " * = Re-negotiation pending before next command.\n");
3335        }
3336}
3337
3338/*
3339 * asc_prt_adv_board_info()
3340 *
3341 * Print dynamic board configuration information.
3342 */
3343static void asc_prt_adv_board_info(struct seq_file *m, struct Scsi_Host *shost)
3344{
3345        struct asc_board *boardp = shost_priv(shost);
3346        int i;
3347        ADV_DVC_VAR *v;
3348        ADV_DVC_CFG *c;
3349        AdvPortAddr iop_base;
3350        ushort chip_scsi_id;
3351        ushort lramword;
3352        uchar lrambyte;
3353        ushort tagqng_able;
3354        ushort sdtr_able, wdtr_able;
3355        ushort wdtr_done, sdtr_done;
3356        ushort period = 0;
3357        int renegotiate = 0;
3358
3359        v = &boardp->dvc_var.adv_dvc_var;
3360        c = &boardp->dvc_cfg.adv_dvc_cfg;
3361        iop_base = v->iop_base;
3362        chip_scsi_id = v->chip_scsi_id;
3363
3364        seq_printf(m,
3365                   "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3366                   shost->host_no);
3367
3368        seq_printf(m,
3369                   " iop_base 0x%lx, cable_detect: %X, err_code %u\n",
3370                   (unsigned long)v->iop_base,
3371                   AdvReadWordRegister(iop_base,IOPW_SCSI_CFG1) & CABLE_DETECT,
3372                   v->err_code);
3373
3374        seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3375                   "mcode_version 0x%x\n", c->chip_version,
3376                   c->mcode_date, c->mcode_version);
3377
3378        AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
3379        seq_puts(m, " Queuing Enabled:");
3380        for (i = 0; i <= ADV_MAX_TID; i++) {
3381                if ((chip_scsi_id == i) ||
3382                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3383                        continue;
3384                }
3385
3386                seq_printf(m, " %X:%c",
3387                           i,
3388                           (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3389        }
3390
3391        seq_puts(m, "\n Queue Limit:");
3392        for (i = 0; i <= ADV_MAX_TID; i++) {
3393                if ((chip_scsi_id == i) ||
3394                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3395                        continue;
3396                }
3397
3398                AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i,
3399                                lrambyte);
3400
3401                seq_printf(m, " %X:%d", i, lrambyte);
3402        }
3403
3404        seq_puts(m, "\n Command Pending:");
3405        for (i = 0; i <= ADV_MAX_TID; i++) {
3406                if ((chip_scsi_id == i) ||
3407                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3408                        continue;
3409                }
3410
3411                AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i,
3412                                lrambyte);
3413
3414                seq_printf(m, " %X:%d", i, lrambyte);
3415        }
3416        seq_putc(m, '\n');
3417
3418        AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
3419        seq_puts(m, " Wide Enabled:");
3420        for (i = 0; i <= ADV_MAX_TID; i++) {
3421                if ((chip_scsi_id == i) ||
3422                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3423                        continue;
3424                }
3425
3426                seq_printf(m, " %X:%c",
3427                           i,
3428                           (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3429        }
3430        seq_putc(m, '\n');
3431
3432        AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done);
3433        seq_puts(m, " Transfer Bit Width:");
3434        for (i = 0; i <= ADV_MAX_TID; i++) {
3435                if ((chip_scsi_id == i) ||
3436                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3437                        continue;
3438                }
3439
3440                AdvReadWordLram(iop_base,
3441                                ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3442                                lramword);
3443
3444                seq_printf(m, " %X:%d",
3445                           i, (lramword & 0x8000) ? 16 : 8);
3446
3447                if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) &&
3448                    (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3449                        seq_putc(m, '*');
3450                        renegotiate = 1;
3451                }
3452        }
3453        seq_putc(m, '\n');
3454
3455        AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
3456        seq_puts(m, " Synchronous Enabled:");
3457        for (i = 0; i <= ADV_MAX_TID; i++) {
3458                if ((chip_scsi_id == i) ||
3459                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3460                        continue;
3461                }
3462
3463                seq_printf(m, " %X:%c",
3464                           i,
3465                           (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3466        }
3467        seq_putc(m, '\n');
3468
3469        AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done);
3470        for (i = 0; i <= ADV_MAX_TID; i++) {
3471
3472                AdvReadWordLram(iop_base,
3473                                ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3474                                lramword);
3475                lramword &= ~0x8000;
3476
3477                if ((chip_scsi_id == i) ||
3478                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3479                    ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) {
3480                        continue;
3481                }
3482
3483                seq_printf(m, "  %X:", i);
3484
3485                if ((lramword & 0x1F) == 0) {   /* Check for REQ/ACK Offset 0. */
3486                        seq_puts(m, " Asynchronous");
3487                } else {
3488                        seq_puts(m, " Transfer Period Factor: ");
3489
3490                        if ((lramword & 0x1F00) == 0x1100) {    /* 80 Mhz */
3491                                seq_puts(m, "9 (80.0 Mhz),");
3492                        } else if ((lramword & 0x1F00) == 0x1000) {     /* 40 Mhz */
3493                                seq_puts(m, "10 (40.0 Mhz),");
3494                        } else {        /* 20 Mhz or below. */
3495
3496                                period = (((lramword >> 8) * 25) + 50) / 4;
3497
3498                                if (period == 0) {      /* Should never happen. */
3499                                        seq_printf(m, "%d (? Mhz), ", period);
3500                                } else {
3501                                        seq_printf(m,
3502                                                   "%d (%d.%d Mhz),",
3503                                                   period, 250 / period,
3504                                                   ASC_TENTHS(250, period));
3505                                }
3506                        }
3507
3508                        seq_printf(m, " REQ/ACK Offset: %d",
3509                                   lramword & 0x1F);
3510                }
3511
3512                if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3513                        seq_puts(m, "*\n");
3514                        renegotiate = 1;
3515                } else {
3516                        seq_putc(m, '\n');
3517                }
3518        }
3519
3520        if (renegotiate) {
3521                seq_puts(m, " * = Re-negotiation pending before next command.\n");
3522        }
3523}
3524
3525#ifdef ADVANSYS_STATS
3526/*
3527 * asc_prt_board_stats()
3528 */
3529static void asc_prt_board_stats(struct seq_file *m, struct Scsi_Host *shost)
3530{
3531        struct asc_board *boardp = shost_priv(shost);
3532        struct asc_stats *s = &boardp->asc_stats;
3533
3534        seq_printf(m,
3535                   "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
3536                   shost->host_no);
3537
3538        seq_printf(m,
3539                   " queuecommand %u, reset %u, biosparam %u, interrupt %u\n",
3540                   s->queuecommand, s->reset, s->biosparam,
3541                   s->interrupt);
3542
3543        seq_printf(m,
3544                   " callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n",
3545                   s->callback, s->done, s->build_error,
3546                   s->adv_build_noreq, s->adv_build_nosg);
3547
3548        seq_printf(m,
3549                   " exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n",
3550                   s->exe_noerror, s->exe_busy, s->exe_error,
3551                   s->exe_unknown);
3552
3553        /*
3554         * Display data transfer statistics.
3555         */
3556        if (s->xfer_cnt > 0) {
3557                seq_printf(m, " xfer_cnt %u, xfer_elem %u, ",
3558                           s->xfer_cnt, s->xfer_elem);
3559
3560                seq_printf(m, "xfer_bytes %u.%01u kb\n",
3561                           s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2));
3562
3563                /* Scatter gather transfer statistics */
3564                seq_printf(m, " avg_num_elem %u.%01u, ",
3565                           s->xfer_elem / s->xfer_cnt,
3566                           ASC_TENTHS(s->xfer_elem, s->xfer_cnt));
3567
3568                seq_printf(m, "avg_elem_size %u.%01u kb, ",
3569                           (s->xfer_sect / 2) / s->xfer_elem,
3570                           ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem));
3571
3572                seq_printf(m, "avg_xfer_size %u.%01u kb\n",
3573                           (s->xfer_sect / 2) / s->xfer_cnt,
3574                           ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt));
3575        }
3576}
3577#endif /* ADVANSYS_STATS */
3578
3579/*
3580 * advansys_show_info() - /proc/scsi/advansys/{0,1,2,3,...}
3581 *
3582 * m: seq_file to print into
3583 * shost: Scsi_Host
3584 *
3585 * Return the number of bytes read from or written to a
3586 * /proc/scsi/advansys/[0...] file.
3587 */
3588static int
3589advansys_show_info(struct seq_file *m, struct Scsi_Host *shost)
3590{
3591        struct asc_board *boardp = shost_priv(shost);
3592
3593        ASC_DBG(1, "begin\n");
3594
3595        /*
3596         * User read of /proc/scsi/advansys/[0...] file.
3597         */
3598
3599        /*
3600         * Get board configuration information.
3601         *
3602         * advansys_info() returns the board string from its own static buffer.
3603         */
3604        /* Copy board information. */
3605        seq_printf(m, "%s\n", (char *)advansys_info(shost));
3606        /*
3607         * Display Wide Board BIOS Information.
3608         */
3609        if (!ASC_NARROW_BOARD(boardp))
3610                asc_prt_adv_bios(m, shost);
3611
3612        /*
3613         * Display driver information for each device attached to the board.
3614         */
3615        asc_prt_board_devices(m, shost);
3616
3617        /*
3618         * Display EEPROM configuration for the board.
3619         */
3620        if (ASC_NARROW_BOARD(boardp))
3621                asc_prt_asc_board_eeprom(m, shost);
3622        else
3623                asc_prt_adv_board_eeprom(m, shost);
3624
3625        /*
3626         * Display driver configuration and information for the board.
3627         */
3628        asc_prt_driver_conf(m, shost);
3629
3630#ifdef ADVANSYS_STATS
3631        /*
3632         * Display driver statistics for the board.
3633         */
3634        asc_prt_board_stats(m, shost);
3635#endif /* ADVANSYS_STATS */
3636
3637        /*
3638         * Display Asc Library dynamic configuration information
3639         * for the board.
3640         */
3641        if (ASC_NARROW_BOARD(boardp))
3642                asc_prt_asc_board_info(m, shost);
3643        else
3644                asc_prt_adv_board_info(m, shost);
3645        return 0;
3646}
3647#endif /* CONFIG_PROC_FS */
3648
3649static void asc_scsi_done(struct scsi_cmnd *scp)
3650{
3651        scsi_dma_unmap(scp);
3652        ASC_STATS(scp->device->host, done);
3653        scp->scsi_done(scp);
3654}
3655
3656static void AscSetBank(PortAddr iop_base, uchar bank)
3657{
3658        uchar val;
3659
3660        val = AscGetChipControl(iop_base) &
3661            (~
3662             (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET |
3663              CC_CHIP_RESET));
3664        if (bank == 1) {
3665                val |= CC_BANK_ONE;
3666        } else if (bank == 2) {
3667                val |= CC_DIAG | CC_BANK_ONE;
3668        } else {
3669                val &= ~CC_BANK_ONE;
3670        }
3671        AscSetChipControl(iop_base, val);
3672}
3673
3674static void AscSetChipIH(PortAddr iop_base, ushort ins_code)
3675{
3676        AscSetBank(iop_base, 1);
3677        AscWriteChipIH(iop_base, ins_code);
3678        AscSetBank(iop_base, 0);
3679}
3680
3681static int AscStartChip(PortAddr iop_base)
3682{
3683        AscSetChipControl(iop_base, 0);
3684        if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3685                return (0);
3686        }
3687        return (1);
3688}
3689
3690static bool AscStopChip(PortAddr iop_base)
3691{
3692        uchar cc_val;
3693
3694        cc_val =
3695            AscGetChipControl(iop_base) &
3696            (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG));
3697        AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT));
3698        AscSetChipIH(iop_base, INS_HALT);
3699        AscSetChipIH(iop_base, INS_RFLAG_WTM);
3700        if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) {
3701                return false;
3702        }
3703        return true;
3704}
3705
3706static bool AscIsChipHalted(PortAddr iop_base)
3707{
3708        if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3709                if ((AscGetChipControl(iop_base) & CC_HALT) != 0) {
3710                        return true;
3711                }
3712        }
3713        return false;
3714}
3715
3716static bool AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc)
3717{
3718        PortAddr iop_base;
3719        int i = 10;
3720
3721        iop_base = asc_dvc->iop_base;
3722        while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE)
3723               && (i-- > 0)) {
3724                mdelay(100);
3725        }
3726        AscStopChip(iop_base);
3727        AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT);
3728        udelay(60);
3729        AscSetChipIH(iop_base, INS_RFLAG_WTM);
3730        AscSetChipIH(iop_base, INS_HALT);
3731        AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT);
3732        AscSetChipControl(iop_base, CC_HALT);
3733        mdelay(200);
3734        AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
3735        AscSetChipStatus(iop_base, 0);
3736        return (AscIsChipHalted(iop_base));
3737}
3738
3739static int AscFindSignature(PortAddr iop_base)
3740{
3741        ushort sig_word;
3742
3743        ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
3744                 iop_base, AscGetChipSignatureByte(iop_base));
3745        if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) {
3746                ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
3747                         iop_base, AscGetChipSignatureWord(iop_base));
3748                sig_word = AscGetChipSignatureWord(iop_base);
3749                if ((sig_word == (ushort)ASC_1000_ID0W) ||
3750                    (sig_word == (ushort)ASC_1000_ID0W_FIX)) {
3751                        return (1);
3752                }
3753        }
3754        return (0);
3755}
3756
3757static void AscEnableInterrupt(PortAddr iop_base)
3758{
3759        ushort cfg;
3760
3761        cfg = AscGetChipCfgLsw(iop_base);
3762        AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON);
3763}
3764
3765static void AscDisableInterrupt(PortAddr iop_base)
3766{
3767        ushort cfg;
3768
3769        cfg = AscGetChipCfgLsw(iop_base);
3770        AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON));
3771}
3772
3773static uchar AscReadLramByte(PortAddr iop_base, ushort addr)
3774{
3775        unsigned char byte_data;
3776        unsigned short word_data;
3777
3778        if (isodd_word(addr)) {
3779                AscSetChipLramAddr(iop_base, addr - 1);
3780                word_data = AscGetChipLramData(iop_base);
3781                byte_data = (word_data >> 8) & 0xFF;
3782        } else {
3783                AscSetChipLramAddr(iop_base, addr);
3784                word_data = AscGetChipLramData(iop_base);
3785                byte_data = word_data & 0xFF;
3786        }
3787        return byte_data;
3788}
3789
3790static ushort AscReadLramWord(PortAddr iop_base, ushort addr)
3791{
3792        ushort word_data;
3793
3794        AscSetChipLramAddr(iop_base, addr);
3795        word_data = AscGetChipLramData(iop_base);
3796        return (word_data);
3797}
3798
3799static void
3800AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words)
3801{
3802        int i;
3803
3804        AscSetChipLramAddr(iop_base, s_addr);
3805        for (i = 0; i < words; i++) {
3806                AscSetChipLramData(iop_base, set_wval);
3807        }
3808}
3809
3810static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val)
3811{
3812        AscSetChipLramAddr(iop_base, addr);
3813        AscSetChipLramData(iop_base, word_val);
3814}
3815
3816static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val)
3817{
3818        ushort word_data;
3819
3820        if (isodd_word(addr)) {
3821                addr--;
3822                word_data = AscReadLramWord(iop_base, addr);
3823                word_data &= 0x00FF;
3824                word_data |= (((ushort)byte_val << 8) & 0xFF00);
3825        } else {
3826                word_data = AscReadLramWord(iop_base, addr);
3827                word_data &= 0xFF00;
3828                word_data |= ((ushort)byte_val & 0x00FF);
3829        }
3830        AscWriteLramWord(iop_base, addr, word_data);
3831}
3832
3833/*
3834 * Copy 2 bytes to LRAM.
3835 *
3836 * The source data is assumed to be in little-endian order in memory
3837 * and is maintained in little-endian order when written to LRAM.
3838 */
3839static void
3840AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr,
3841                        const uchar *s_buffer, int words)
3842{
3843        int i;
3844
3845        AscSetChipLramAddr(iop_base, s_addr);
3846        for (i = 0; i < 2 * words; i += 2) {
3847                /*
3848                 * On a little-endian system the second argument below
3849                 * produces a little-endian ushort which is written to
3850                 * LRAM in little-endian order. On a big-endian system
3851                 * the second argument produces a big-endian ushort which
3852                 * is "transparently" byte-swapped by outpw() and written
3853                 * in little-endian order to LRAM.
3854                 */
3855                outpw(iop_base + IOP_RAM_DATA,
3856                      ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);
3857        }
3858}
3859
3860/*
3861 * Copy 4 bytes to LRAM.
3862 *
3863 * The source data is assumed to be in little-endian order in memory
3864 * and is maintained in little-endian order when written to LRAM.
3865 */
3866static void
3867AscMemDWordCopyPtrToLram(PortAddr iop_base,
3868                         ushort s_addr, uchar *s_buffer, int dwords)
3869{
3870        int i;
3871
3872        AscSetChipLramAddr(iop_base, s_addr);
3873        for (i = 0; i < 4 * dwords; i += 4) {
3874                outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);   /* LSW */
3875                outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]);       /* MSW */
3876        }
3877}
3878
3879/*
3880 * Copy 2 bytes from LRAM.
3881 *
3882 * The source data is assumed to be in little-endian order in LRAM
3883 * and is maintained in little-endian order when written to memory.
3884 */
3885static void
3886AscMemWordCopyPtrFromLram(PortAddr iop_base,
3887                          ushort s_addr, uchar *d_buffer, int words)
3888{
3889        int i;
3890        ushort word;
3891
3892        AscSetChipLramAddr(iop_base, s_addr);
3893        for (i = 0; i < 2 * words; i += 2) {
3894                word = inpw(iop_base + IOP_RAM_DATA);
3895                d_buffer[i] = word & 0xff;
3896                d_buffer[i + 1] = (word >> 8) & 0xff;
3897        }
3898}
3899
3900static u32 AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words)
3901{
3902        u32 sum = 0;
3903        int i;
3904
3905        for (i = 0; i < words; i++, s_addr += 2) {
3906                sum += AscReadLramWord(iop_base, s_addr);
3907        }
3908        return (sum);
3909}
3910
3911static void AscInitLram(ASC_DVC_VAR *asc_dvc)
3912{
3913        uchar i;
3914        ushort s_addr;
3915        PortAddr iop_base;
3916
3917        iop_base = asc_dvc->iop_base;
3918        AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0,
3919                          (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) *
3920                                    64) >> 1));
3921        i = ASC_MIN_ACTIVE_QNO;
3922        s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE;
3923        AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3924                         (uchar)(i + 1));
3925        AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3926                         (uchar)(asc_dvc->max_total_qng));
3927        AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3928                         (uchar)i);
3929        i++;
3930        s_addr += ASC_QBLK_SIZE;
3931        for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) {
3932                AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3933                                 (uchar)(i + 1));
3934                AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3935                                 (uchar)(i - 1));
3936                AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3937                                 (uchar)i);
3938        }
3939        AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3940                         (uchar)ASC_QLINK_END);
3941        AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3942                         (uchar)(asc_dvc->max_total_qng - 1));
3943        AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3944                         (uchar)asc_dvc->max_total_qng);
3945        i++;
3946        s_addr += ASC_QBLK_SIZE;
3947        for (; i <= (uchar)(asc_dvc->max_total_qng + 3);
3948             i++, s_addr += ASC_QBLK_SIZE) {
3949                AscWriteLramByte(iop_base,
3950                                 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i);
3951                AscWriteLramByte(iop_base,
3952                                 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i);
3953                AscWriteLramByte(iop_base,
3954                                 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i);
3955        }
3956}
3957
3958static u32
3959AscLoadMicroCode(PortAddr iop_base, ushort s_addr,
3960                 const uchar *mcode_buf, ushort mcode_size)
3961{
3962        u32 chksum;
3963        ushort mcode_word_size;
3964        ushort mcode_chksum;
3965
3966        /* Write the microcode buffer starting at LRAM address 0. */
3967        mcode_word_size = (ushort)(mcode_size >> 1);
3968        AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size);
3969        AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size);
3970
3971        chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size);
3972        ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum);
3973        mcode_chksum = (ushort)AscMemSumLramWord(iop_base,
3974                                                 (ushort)ASC_CODE_SEC_BEG,
3975                                                 (ushort)((mcode_size -
3976                                                           s_addr - (ushort)
3977                                                           ASC_CODE_SEC_BEG) /
3978                                                          2));
3979        ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum);
3980        AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum);
3981        AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size);
3982        return chksum;
3983}
3984
3985static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc)
3986{
3987        PortAddr iop_base;
3988        int i;
3989        ushort lram_addr;
3990
3991        iop_base = asc_dvc->iop_base;
3992        AscPutRiscVarFreeQHead(iop_base, 1);
3993        AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng);
3994        AscPutVarFreeQHead(iop_base, 1);
3995        AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng);
3996        AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B,
3997                         (uchar)((int)asc_dvc->max_total_qng + 1));
3998        AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B,
3999                         (uchar)((int)asc_dvc->max_total_qng + 2));
4000        AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B,
4001                         asc_dvc->max_total_qng);
4002        AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0);
4003        AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
4004        AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0);
4005        AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0);
4006        AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0);
4007        AscPutQDoneInProgress(iop_base, 0);
4008        lram_addr = ASC_QADR_BEG;
4009        for (i = 0; i < 32; i++, lram_addr += 2) {
4010                AscWriteLramWord(iop_base, lram_addr, 0);
4011        }
4012}
4013
4014static int AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc)
4015{
4016        int i;
4017        int warn_code;
4018        PortAddr iop_base;
4019        __le32 phy_addr;
4020        __le32 phy_size;
4021        struct asc_board *board = asc_dvc_to_board(asc_dvc);
4022
4023        iop_base = asc_dvc->iop_base;
4024        warn_code = 0;
4025        for (i = 0; i <= ASC_MAX_TID; i++) {
4026                AscPutMCodeInitSDTRAtID(iop_base, i,
4027                                        asc_dvc->cfg->sdtr_period_offset[i]);
4028        }
4029
4030        AscInitQLinkVar(asc_dvc);
4031        AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B,
4032                         asc_dvc->cfg->disc_enable);
4033        AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B,
4034                         ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id));
4035
4036        /* Ensure overrun buffer is aligned on an 8 byte boundary. */
4037        BUG_ON((unsigned long)asc_dvc->overrun_buf & 7);
4038        asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf,
4039                                        ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4040        if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) {
4041                warn_code = -ENOMEM;
4042                goto err_dma_map;
4043        }
4044        phy_addr = cpu_to_le32(asc_dvc->overrun_dma);
4045        AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D,
4046                                 (uchar *)&phy_addr, 1);
4047        phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE);
4048        AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D,
4049                                 (uchar *)&phy_size, 1);
4050
4051        asc_dvc->cfg->mcode_date =
4052            AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W);
4053        asc_dvc->cfg->mcode_version =
4054            AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W);
4055
4056        AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
4057        if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
4058                asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
4059                warn_code = -EINVAL;
4060                goto err_mcode_start;
4061        }
4062        if (AscStartChip(iop_base) != 1) {
4063                asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
4064                warn_code = -EIO;
4065                goto err_mcode_start;
4066        }
4067
4068        return warn_code;
4069
4070err_mcode_start:
4071        dma_unmap_single(board->dev, asc_dvc->overrun_dma,
4072                         ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4073err_dma_map:
4074        asc_dvc->overrun_dma = 0;
4075        return warn_code;
4076}
4077
4078static int AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc)
4079{
4080        const struct firmware *fw;
4081        const char fwname[] = "advansys/mcode.bin";
4082        int err;
4083        unsigned long chksum;
4084        int warn_code;
4085        PortAddr iop_base;
4086
4087        iop_base = asc_dvc->iop_base;
4088        warn_code = 0;
4089        if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) &&
4090            !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) {
4091                AscResetChipAndScsiBus(asc_dvc);
4092                mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
4093        }
4094        asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC;
4095        if (asc_dvc->err_code != 0)
4096                return ASC_ERROR;
4097        if (!AscFindSignature(asc_dvc->iop_base)) {
4098                asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
4099                return warn_code;
4100        }
4101        AscDisableInterrupt(iop_base);
4102        AscInitLram(asc_dvc);
4103
4104        err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4105        if (err) {
4106                printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4107                       fwname, err);
4108                asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4109                return err;
4110        }
4111        if (fw->size < 4) {
4112                printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4113                       fw->size, fwname);
4114                release_firmware(fw);
4115                asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4116                return -EINVAL;
4117        }
4118        chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4119                 (fw->data[1] << 8) | fw->data[0];
4120        ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum);
4121        if (AscLoadMicroCode(iop_base, 0, &fw->data[4],
4122                             fw->size - 4) != chksum) {
4123                asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4124                release_firmware(fw);
4125                return warn_code;
4126        }
4127        release_firmware(fw);
4128        warn_code |= AscInitMicroCodeVar(asc_dvc);
4129        if (!asc_dvc->overrun_dma)
4130                return warn_code;
4131        asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC;
4132        AscEnableInterrupt(iop_base);
4133        return warn_code;
4134}
4135
4136/*
4137 * Load the Microcode
4138 *
4139 * Write the microcode image to RISC memory starting at address 0.
4140 *
4141 * The microcode is stored compressed in the following format:
4142 *
4143 *  254 word (508 byte) table indexed by byte code followed
4144 *  by the following byte codes:
4145 *
4146 *    1-Byte Code:
4147 *      00: Emit word 0 in table.
4148 *      01: Emit word 1 in table.
4149 *      .
4150 *      FD: Emit word 253 in table.
4151 *
4152 *    Multi-Byte Code:
4153 *      FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4154 *      FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4155 *
4156 * Returns 0 or an error if the checksum doesn't match
4157 */
4158static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf,
4159                            int size, int memsize, int chksum)
4160{
4161        int i, j, end, len = 0;
4162        u32 sum;
4163
4164        AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4165
4166        for (i = 253 * 2; i < size; i++) {
4167                if (buf[i] == 0xff) {
4168                        unsigned short word = (buf[i + 3] << 8) | buf[i + 2];
4169                        for (j = 0; j < buf[i + 1]; j++) {
4170                                AdvWriteWordAutoIncLram(iop_base, word);
4171                                len += 2;
4172                        }
4173                        i += 3;
4174                } else if (buf[i] == 0xfe) {
4175                        unsigned short word = (buf[i + 2] << 8) | buf[i + 1];
4176                        AdvWriteWordAutoIncLram(iop_base, word);
4177                        i += 2;
4178                        len += 2;
4179                } else {
4180                        unsigned int off = buf[i] * 2;
4181                        unsigned short word = (buf[off + 1] << 8) | buf[off];
4182                        AdvWriteWordAutoIncLram(iop_base, word);
4183                        len += 2;
4184                }
4185        }
4186
4187        end = len;
4188
4189        while (len < memsize) {
4190                AdvWriteWordAutoIncLram(iop_base, 0);
4191                len += 2;
4192        }
4193
4194        /* Verify the microcode checksum. */
4195        sum = 0;
4196        AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4197
4198        for (len = 0; len < end; len += 2) {
4199                sum += AdvReadWordAutoIncLram(iop_base);
4200        }
4201
4202        if (sum != chksum)
4203                return ASC_IERR_MCODE_CHKSUM;
4204
4205        return 0;
4206}
4207
4208static void AdvBuildCarrierFreelist(struct adv_dvc_var *adv_dvc)
4209{
4210        off_t carr_offset = 0, next_offset;
4211        dma_addr_t carr_paddr;
4212        int carr_num = ADV_CARRIER_BUFSIZE / sizeof(ADV_CARR_T), i;
4213
4214        for (i = 0; i < carr_num; i++) {
4215                carr_offset = i * sizeof(ADV_CARR_T);
4216                /* Get physical address of the carrier 'carrp'. */
4217                carr_paddr = adv_dvc->carrier_addr + carr_offset;
4218
4219                adv_dvc->carrier[i].carr_pa = cpu_to_le32(carr_paddr);
4220                adv_dvc->carrier[i].carr_va = cpu_to_le32(carr_offset);
4221                adv_dvc->carrier[i].areq_vpa = 0;
4222                next_offset = carr_offset + sizeof(ADV_CARR_T);
4223                if (i == carr_num)
4224                        next_offset = ~0;
4225                adv_dvc->carrier[i].next_vpa = cpu_to_le32(next_offset);
4226        }
4227        /*
4228         * We cannot have a carrier with 'carr_va' of '0', as
4229         * a reference to this carrier would be interpreted as
4230         * list termination.
4231         * So start at carrier 1 with the freelist.
4232         */
4233        adv_dvc->carr_freelist = &adv_dvc->carrier[1];
4234}
4235
4236static ADV_CARR_T *adv_get_carrier(struct adv_dvc_var *adv_dvc, u32 offset)
4237{
4238        int index;
4239
4240        BUG_ON(offset > ADV_CARRIER_BUFSIZE);
4241
4242        index = offset / sizeof(ADV_CARR_T);
4243        return &adv_dvc->carrier[index];
4244}
4245
4246static ADV_CARR_T *adv_get_next_carrier(struct adv_dvc_var *adv_dvc)
4247{
4248        ADV_CARR_T *carrp = adv_dvc->carr_freelist;
4249        u32 next_vpa = le32_to_cpu(carrp->next_vpa);
4250
4251        if (next_vpa == 0 || next_vpa == ~0) {
4252                ASC_DBG(1, "invalid vpa offset 0x%x\n", next_vpa);
4253                return NULL;
4254        }
4255
4256        adv_dvc->carr_freelist = adv_get_carrier(adv_dvc, next_vpa);
4257        /*
4258         * insert stopper carrier to terminate list
4259         */
4260        carrp->next_vpa = cpu_to_le32(ADV_CQ_STOPPER);
4261
4262        return carrp;
4263}
4264
4265/*
4266 * 'offset' is the index in the request pointer array
4267 */
4268static adv_req_t * adv_get_reqp(struct adv_dvc_var *adv_dvc, u32 offset)
4269{
4270        struct asc_board *boardp = adv_dvc->drv_ptr;
4271
4272        BUG_ON(offset > adv_dvc->max_host_qng);
4273        return &boardp->adv_reqp[offset];
4274}
4275
4276/*
4277 * Send an idle command to the chip and wait for completion.
4278 *
4279 * Command completion is polled for once per microsecond.
4280 *
4281 * The function can be called from anywhere including an interrupt handler.
4282 * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4283 * functions to prevent reentrancy.
4284 *
4285 * Return Values:
4286 *   ADV_TRUE - command completed successfully
4287 *   ADV_FALSE - command failed
4288 *   ADV_ERROR - command timed out
4289 */
4290static int
4291AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc,
4292               ushort idle_cmd, u32 idle_cmd_parameter)
4293{
4294        int result, i, j;
4295        AdvPortAddr iop_base;
4296
4297        iop_base = asc_dvc->iop_base;
4298
4299        /*
4300         * Clear the idle command status which is set by the microcode
4301         * to a non-zero value to indicate when the command is completed.
4302         * The non-zero result is one of the IDLE_CMD_STATUS_* values
4303         */
4304        AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0);
4305
4306        /*
4307         * Write the idle command value after the idle command parameter
4308         * has been written to avoid a race condition. If the order is not
4309         * followed, the microcode may process the idle command before the
4310         * parameters have been written to LRAM.
4311         */
4312        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER,
4313                                cpu_to_le32(idle_cmd_parameter));
4314        AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd);
4315
4316        /*
4317         * Tickle the RISC to tell it to process the idle command.
4318         */
4319        AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B);
4320        if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
4321                /*
4322                 * Clear the tickle value. In the ASC-3550 the RISC flag
4323                 * command 'clr_tickle_b' does not work unless the host
4324                 * value is cleared.
4325                 */
4326                AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP);
4327        }
4328
4329        /* Wait for up to 100 millisecond for the idle command to timeout. */
4330        for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
4331                /* Poll once each microsecond for command completion. */
4332                for (j = 0; j < SCSI_US_PER_MSEC; j++) {
4333                        AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS,
4334                                        result);
4335                        if (result != 0)
4336                                return result;
4337                        udelay(1);
4338                }
4339        }
4340
4341        BUG();          /* The idle command should never timeout. */
4342        return ADV_ERROR;
4343}
4344
4345/*
4346 * Reset SCSI Bus and purge all outstanding requests.
4347 *
4348 * Return Value:
4349 *      ADV_TRUE(1) -   All requests are purged and SCSI Bus is reset.
4350 *      ADV_FALSE(0) -  Microcode command failed.
4351 *      ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
4352 *                      may be hung which requires driver recovery.
4353 */
4354static int AdvResetSB(ADV_DVC_VAR *asc_dvc)
4355{
4356        int status;
4357
4358        /*
4359         * Send the SCSI Bus Reset idle start idle command which asserts
4360         * the SCSI Bus Reset signal.
4361         */
4362        status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L);
4363        if (status != ADV_TRUE) {
4364                return status;
4365        }
4366
4367        /*
4368         * Delay for the specified SCSI Bus Reset hold time.
4369         *
4370         * The hold time delay is done on the host because the RISC has no
4371         * microsecond accurate timer.
4372         */
4373        udelay(ASC_SCSI_RESET_HOLD_TIME_US);
4374
4375        /*
4376         * Send the SCSI Bus Reset end idle command which de-asserts
4377         * the SCSI Bus Reset signal and purges any pending requests.
4378         */
4379        status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L);
4380        if (status != ADV_TRUE) {
4381                return status;
4382        }
4383
4384        mdelay(asc_dvc->scsi_reset_wait * 1000);        /* XXX: msleep? */
4385
4386        return status;
4387}
4388
4389/*
4390 * Initialize the ASC-3550.
4391 *
4392 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4393 *
4394 * For a non-fatal error return a warning code. If there are no warnings
4395 * then 0 is returned.
4396 *
4397 * Needed after initialization for error recovery.
4398 */
4399static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc)
4400{
4401        const struct firmware *fw;
4402        const char fwname[] = "advansys/3550.bin";
4403        AdvPortAddr iop_base;
4404        ushort warn_code;
4405        int begin_addr;
4406        int end_addr;
4407        ushort code_sum;
4408        int word;
4409        int i;
4410        int err;
4411        unsigned long chksum;
4412        ushort scsi_cfg1;
4413        uchar tid;
4414        ushort bios_mem[ASC_MC_BIOSLEN / 2];    /* BIOS RISC Memory 0x40-0x8F. */
4415        ushort wdtr_able = 0, sdtr_able, tagqng_able;
4416        uchar max_cmd[ADV_MAX_TID + 1];
4417
4418        /* If there is already an error, don't continue. */
4419        if (asc_dvc->err_code != 0)
4420                return ADV_ERROR;
4421
4422        /*
4423         * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
4424         */
4425        if (asc_dvc->chip_type != ADV_CHIP_ASC3550) {
4426                asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
4427                return ADV_ERROR;
4428        }
4429
4430        warn_code = 0;
4431        iop_base = asc_dvc->iop_base;
4432
4433        /*
4434         * Save the RISC memory BIOS region before writing the microcode.
4435         * The BIOS may already be loaded and using its RISC LRAM region
4436         * so its region must be saved and restored.
4437         *
4438         * Note: This code makes the assumption, which is currently true,
4439         * that a chip reset does not clear RISC LRAM.
4440         */
4441        for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4442                AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4443                                bios_mem[i]);
4444        }
4445
4446        /*
4447         * Save current per TID negotiated values.
4448         */
4449        if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) {
4450                ushort bios_version, major, minor;
4451
4452                bios_version =
4453                    bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2];
4454                major = (bios_version >> 12) & 0xF;
4455                minor = (bios_version >> 8) & 0xF;
4456                if (major < 3 || (major == 3 && minor == 1)) {
4457                        /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
4458                        AdvReadWordLram(iop_base, 0x120, wdtr_able);
4459                } else {
4460                        AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4461                }
4462        }
4463        AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4464        AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
4465        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4466                AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
4467                                max_cmd[tid]);
4468        }
4469
4470        err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4471        if (err) {
4472                printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4473                       fwname, err);
4474                asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4475                return err;
4476        }
4477        if (fw->size < 4) {
4478                printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4479                       fw->size, fwname);
4480                release_firmware(fw);
4481                asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4482                return -EINVAL;
4483        }
4484        chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4485                 (fw->data[1] << 8) | fw->data[0];
4486        asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
4487                                             fw->size - 4, ADV_3550_MEMSIZE,
4488                                             chksum);
4489        release_firmware(fw);
4490        if (asc_dvc->err_code)
4491                return ADV_ERROR;
4492
4493        /*
4494         * Restore the RISC memory BIOS region.
4495         */
4496        for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4497                AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4498                                 bios_mem[i]);
4499        }
4500
4501        /*
4502         * Calculate and write the microcode code checksum to the microcode
4503         * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
4504         */
4505        AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
4506        AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
4507        code_sum = 0;
4508        AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
4509        for (word = begin_addr; word < end_addr; word += 2) {
4510                code_sum += AdvReadWordAutoIncLram(iop_base);
4511        }
4512        AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
4513
4514        /*
4515         * Read and save microcode version and date.
4516         */
4517        AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
4518                        asc_dvc->cfg->mcode_date);
4519        AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
4520                        asc_dvc->cfg->mcode_version);
4521
4522        /*
4523         * Set the chip type to indicate the ASC3550.
4524         */
4525        AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550);
4526
4527        /*
4528         * If the PCI Configuration Command Register "Parity Error Response
4529         * Control" Bit was clear (0), then set the microcode variable
4530         * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
4531         * to ignore DMA parity errors.
4532         */
4533        if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
4534                AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4535                word |= CONTROL_FLAG_IGNORE_PERR;
4536                AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4537        }
4538
4539        /*
4540         * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
4541         * threshold of 128 bytes. This register is only accessible to the host.
4542         */
4543        AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
4544                             START_CTL_EMFU | READ_CMD_MRM);
4545
4546        /*
4547         * Microcode operating variables for WDTR, SDTR, and command tag
4548         * queuing will be set in slave_configure() based on what a
4549         * device reports it is capable of in Inquiry byte 7.
4550         *
4551         * If SCSI Bus Resets have been disabled, then directly set
4552         * SDTR and WDTR from the EEPROM configuration. This will allow
4553         * the BIOS and warm boot to work without a SCSI bus hang on
4554         * the Inquiry caused by host and target mismatched DTR values.
4555         * Without the SCSI Bus Reset, before an Inquiry a device can't
4556         * be assumed to be in Asynchronous, Narrow mode.
4557         */
4558        if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
4559                AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
4560                                 asc_dvc->wdtr_able);
4561                AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
4562                                 asc_dvc->sdtr_able);
4563        }
4564
4565        /*
4566         * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
4567         * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
4568         * bitmask. These values determine the maximum SDTR speed negotiated
4569         * with a device.
4570         *
4571         * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
4572         * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
4573         * without determining here whether the device supports SDTR.
4574         *
4575         * 4-bit speed  SDTR speed name
4576         * ===========  ===============
4577         * 0000b (0x0)  SDTR disabled
4578         * 0001b (0x1)  5 Mhz
4579         * 0010b (0x2)  10 Mhz
4580         * 0011b (0x3)  20 Mhz (Ultra)
4581         * 0100b (0x4)  40 Mhz (LVD/Ultra2)
4582         * 0101b (0x5)  80 Mhz (LVD2/Ultra3)
4583         * 0110b (0x6)  Undefined
4584         * .
4585         * 1111b (0xF)  Undefined
4586         */
4587        word = 0;
4588        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4589                if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) {
4590                        /* Set Ultra speed for TID 'tid'. */
4591                        word |= (0x3 << (4 * (tid % 4)));
4592                } else {
4593                        /* Set Fast speed for TID 'tid'. */
4594                        word |= (0x2 << (4 * (tid % 4)));
4595                }
4596                if (tid == 3) { /* Check if done with sdtr_speed1. */
4597                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word);
4598                        word = 0;
4599                } else if (tid == 7) {  /* Check if done with sdtr_speed2. */
4600                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word);
4601                        word = 0;
4602                } else if (tid == 11) { /* Check if done with sdtr_speed3. */
4603                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word);
4604                        word = 0;
4605                } else if (tid == 15) { /* Check if done with sdtr_speed4. */
4606                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word);
4607                        /* End of loop. */
4608                }
4609        }
4610
4611        /*
4612         * Set microcode operating variable for the disconnect per TID bitmask.
4613         */
4614        AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
4615                         asc_dvc->cfg->disc_enable);
4616
4617        /*
4618         * Set SCSI_CFG0 Microcode Default Value.
4619         *
4620         * The microcode will set the SCSI_CFG0 register using this value
4621         * after it is started below.
4622         */
4623        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
4624                         PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
4625                         asc_dvc->chip_scsi_id);
4626
4627        /*
4628         * Determine SCSI_CFG1 Microcode Default Value.
4629         *
4630         * The microcode will set the SCSI_CFG1 register using this value
4631         * after it is started below.
4632         */
4633
4634        /* Read current SCSI_CFG1 Register value. */
4635        scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
4636
4637        /*
4638         * If all three connectors are in use, return an error.
4639         */
4640        if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
4641            (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
4642                asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION;
4643                return ADV_ERROR;
4644        }
4645
4646        /*
4647         * If the internal narrow cable is reversed all of the SCSI_CTRL
4648         * register signals will be set. Check for and return an error if
4649         * this condition is found.
4650         */
4651        if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
4652                asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
4653                return ADV_ERROR;
4654        }
4655
4656        /*
4657         * If this is a differential board and a single-ended device
4658         * is attached to one of the connectors, return an error.
4659         */
4660        if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) {
4661                asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE;
4662                return ADV_ERROR;
4663        }
4664
4665        /*
4666         * If automatic termination control is enabled, then set the
4667         * termination value based on a table listed in a_condor.h.
4668         *
4669         * If manual termination was specified with an EEPROM setting
4670         * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
4671         * is ready to be 'ored' into SCSI_CFG1.
4672         */
4673        if (asc_dvc->cfg->termination == 0) {
4674                /*
4675                 * The software always controls termination by setting TERM_CTL_SEL.
4676                 * If TERM_CTL_SEL were set to 0, the hardware would set termination.
4677                 */
4678                asc_dvc->cfg->termination |= TERM_CTL_SEL;
4679
4680                switch (scsi_cfg1 & CABLE_DETECT) {
4681                        /* TERM_CTL_H: on, TERM_CTL_L: on */
4682                case 0x3:
4683                case 0x7:
4684                case 0xB:
4685                case 0xD:
4686                case 0xE:
4687                case 0xF:
4688                        asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L);
4689                        break;
4690
4691                        /* TERM_CTL_H: on, TERM_CTL_L: off */
4692                case 0x1:
4693                case 0x5:
4694                case 0x9:
4695                case 0xA:
4696                case 0xC:
4697                        asc_dvc->cfg->termination |= TERM_CTL_H;
4698                        break;
4699
4700                        /* TERM_CTL_H: off, TERM_CTL_L: off */
4701                case 0x2:
4702                case 0x6:
4703                        break;
4704                }
4705        }
4706
4707        /*
4708         * Clear any set TERM_CTL_H and TERM_CTL_L bits.
4709         */
4710        scsi_cfg1 &= ~TERM_CTL;
4711
4712        /*
4713         * Invert the TERM_CTL_H and TERM_CTL_L bits and then
4714         * set 'scsi_cfg1'. The TERM_POL bit does not need to be
4715         * referenced, because the hardware internally inverts
4716         * the Termination High and Low bits if TERM_POL is set.
4717         */
4718        scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL));
4719
4720        /*
4721         * Set SCSI_CFG1 Microcode Default Value
4722         *
4723         * Set filter value and possibly modified termination control
4724         * bits in the Microcode SCSI_CFG1 Register Value.
4725         *
4726         * The microcode will set the SCSI_CFG1 register using this value
4727         * after it is started below.
4728         */
4729        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1,
4730                         FLTR_DISABLE | scsi_cfg1);
4731
4732        /*
4733         * Set MEM_CFG Microcode Default Value
4734         *
4735         * The microcode will set the MEM_CFG register using this value
4736         * after it is started below.
4737         *
4738         * MEM_CFG may be accessed as a word or byte, but only bits 0-7
4739         * are defined.
4740         *
4741         * ASC-3550 has 8KB internal memory.
4742         */
4743        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
4744                         BIOS_EN | RAM_SZ_8KB);
4745
4746        /*
4747         * Set SEL_MASK Microcode Default Value
4748         *
4749         * The microcode will set the SEL_MASK register using this value
4750         * after it is started below.
4751         */
4752        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
4753                         ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
4754
4755        AdvBuildCarrierFreelist(asc_dvc);
4756
4757        /*
4758         * Set-up the Host->RISC Initiator Command Queue (ICQ).
4759         */
4760
4761        asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
4762        if (!asc_dvc->icq_sp) {
4763                asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4764                return ADV_ERROR;
4765        }
4766
4767        /*
4768         * Set RISC ICQ physical address start value.
4769         */
4770        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
4771
4772        /*
4773         * Set-up the RISC->Host Initiator Response Queue (IRQ).
4774         */
4775        asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
4776        if (!asc_dvc->irq_sp) {
4777                asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4778                return ADV_ERROR;
4779        }
4780
4781        /*
4782         * Set RISC IRQ physical address start value.
4783         */
4784        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
4785        asc_dvc->carr_pending_cnt = 0;
4786
4787        AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
4788                             (ADV_INTR_ENABLE_HOST_INTR |
4789                              ADV_INTR_ENABLE_GLOBAL_INTR));
4790
4791        AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
4792        AdvWriteWordRegister(iop_base, IOPW_PC, word);
4793
4794        /* finally, finally, gentlemen, start your engine */
4795        AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
4796
4797        /*
4798         * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
4799         * Resets should be performed. The RISC has to be running
4800         * to issue a SCSI Bus Reset.
4801         */
4802        if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
4803                /*
4804                 * If the BIOS Signature is present in memory, restore the
4805                 * BIOS Handshake Configuration Table and do not perform
4806                 * a SCSI Bus Reset.
4807                 */
4808                if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
4809                    0x55AA) {
4810                        /*
4811                         * Restore per TID negotiated values.
4812                         */
4813                        AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4814                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4815                        AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
4816                                         tagqng_able);
4817                        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4818                                AdvWriteByteLram(iop_base,
4819                                                 ASC_MC_NUMBER_OF_MAX_CMD + tid,
4820                                                 max_cmd[tid]);
4821                        }
4822                } else {
4823                        if (AdvResetSB(asc_dvc) != ADV_TRUE) {
4824                                warn_code = ASC_WARN_BUSRESET_ERROR;
4825                        }
4826                }
4827        }
4828
4829        return warn_code;
4830}
4831
4832/*
4833 * Initialize the ASC-38C0800.
4834 *
4835 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4836 *
4837 * For a non-fatal error return a warning code. If there are no warnings
4838 * then 0 is returned.
4839 *
4840 * Needed after initialization for error recovery.
4841 */
4842static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
4843{
4844        const struct firmware *fw;
4845        const char fwname[] = "advansys/38C0800.bin";
4846        AdvPortAddr iop_base;
4847        ushort warn_code;
4848        int begin_addr;
4849        int end_addr;
4850        ushort code_sum;
4851        int word;
4852        int i;
4853        int err;
4854        unsigned long chksum;
4855        ushort scsi_cfg1;
4856        uchar byte;
4857        uchar tid;
4858        ushort bios_mem[ASC_MC_BIOSLEN / 2];    /* BIOS RISC Memory 0x40-0x8F. */
4859        ushort wdtr_able, sdtr_able, tagqng_able;
4860        uchar max_cmd[ADV_MAX_TID + 1];
4861
4862        /* If there is already an error, don't continue. */
4863        if (asc_dvc->err_code != 0)
4864                return ADV_ERROR;
4865
4866        /*
4867         * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
4868         */
4869        if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) {
4870                asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
4871                return ADV_ERROR;
4872        }
4873
4874        warn_code = 0;
4875        iop_base = asc_dvc->iop_base;
4876
4877        /*
4878         * Save the RISC memory BIOS region before writing the microcode.
4879         * The BIOS may already be loaded and using its RISC LRAM region
4880         * so its region must be saved and restored.
4881         *
4882         * Note: This code makes the assumption, which is currently true,
4883         * that a chip reset does not clear RISC LRAM.
4884         */
4885        for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4886                AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4887                                bios_mem[i]);
4888        }
4889
4890        /*
4891         * Save current per TID negotiated values.
4892         */
4893        AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4894        AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4895        AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
4896        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4897                AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
4898                                max_cmd[tid]);
4899        }
4900
4901        /*
4902         * RAM BIST (RAM Built-In Self Test)
4903         *
4904         * Address : I/O base + offset 0x38h register (byte).
4905         * Function: Bit 7-6(RW) : RAM mode
4906         *                          Normal Mode   : 0x00
4907         *                          Pre-test Mode : 0x40
4908         *                          RAM Test Mode : 0x80
4909         *           Bit 5       : unused
4910         *           Bit 4(RO)   : Done bit
4911         *           Bit 3-0(RO) : Status
4912         *                          Host Error    : 0x08
4913         *                          Int_RAM Error : 0x04
4914         *                          RISC Error    : 0x02
4915         *                          SCSI Error    : 0x01
4916         *                          No Error      : 0x00
4917         *
4918         * Note: RAM BIST code should be put right here, before loading the
4919         * microcode and after saving the RISC memory BIOS region.
4920         */
4921
4922        /*
4923         * LRAM Pre-test
4924         *
4925         * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
4926         * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
4927         * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
4928         * to NORMAL_MODE, return an error too.
4929         */
4930        for (i = 0; i < 2; i++) {
4931                AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
4932                mdelay(10);     /* Wait for 10ms before reading back. */
4933                byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
4934                if ((byte & RAM_TEST_DONE) == 0
4935                    || (byte & 0x0F) != PRE_TEST_VALUE) {
4936                        asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
4937                        return ADV_ERROR;
4938                }
4939
4940                AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
4941                mdelay(10);     /* Wait for 10ms before reading back. */
4942                if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
4943                    != NORMAL_VALUE) {
4944                        asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
4945                        return ADV_ERROR;
4946                }
4947        }
4948
4949        /*
4950         * LRAM Test - It takes about 1.5 ms to run through the test.
4951         *
4952         * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
4953         * If Done bit not set or Status not 0, save register byte, set the
4954         * err_code, and return an error.
4955         */
4956        AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
4957        mdelay(10);     /* Wait for 10ms before checking status. */
4958
4959        byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
4960        if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
4961                /* Get here if Done bit not set or Status not 0. */
4962                asc_dvc->bist_err_code = byte;  /* for BIOS display message */
4963                asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
4964                return ADV_ERROR;
4965        }
4966
4967        /* We need to reset back to normal mode after LRAM test passes. */
4968        AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
4969
4970        err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4971        if (err) {
4972                printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4973                       fwname, err);
4974                asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4975                return err;
4976        }
4977        if (fw->size < 4) {
4978                printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4979                       fw->size, fwname);
4980                release_firmware(fw);
4981                asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4982                return -EINVAL;
4983        }
4984        chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4985                 (fw->data[1] << 8) | fw->data[0];
4986        asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
4987                                             fw->size - 4, ADV_38C0800_MEMSIZE,
4988                                             chksum);
4989        release_firmware(fw);
4990        if (asc_dvc->err_code)
4991                return ADV_ERROR;
4992
4993        /*
4994         * Restore the RISC memory BIOS region.
4995         */
4996        for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4997                AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4998                                 bios_mem[i]);
4999        }
5000
5001        /*
5002         * Calculate and write the microcode code checksum to the microcode
5003         * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5004         */
5005        AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5006        AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5007        code_sum = 0;
5008        AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5009        for (word = begin_addr; word < end_addr; word += 2) {
5010                code_sum += AdvReadWordAutoIncLram(iop_base);
5011        }
5012        AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5013
5014        /*
5015         * Read microcode version and date.
5016         */
5017        AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5018                        asc_dvc->cfg->mcode_date);
5019        AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5020                        asc_dvc->cfg->mcode_version);
5021
5022        /*
5023         * Set the chip type to indicate the ASC38C0800.
5024         */
5025        AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800);
5026
5027        /*
5028         * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5029         * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5030         * cable detection and then we are able to read C_DET[3:0].
5031         *
5032         * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5033         * Microcode Default Value' section below.
5034         */
5035        scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5036        AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5037                             scsi_cfg1 | DIS_TERM_DRV);
5038
5039        /*
5040         * If the PCI Configuration Command Register "Parity Error Response
5041         * Control" Bit was clear (0), then set the microcode variable
5042         * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5043         * to ignore DMA parity errors.
5044         */
5045        if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5046                AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5047                word |= CONTROL_FLAG_IGNORE_PERR;
5048                AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5049        }
5050
5051        /*
5052         * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
5053         * bits for the default FIFO threshold.
5054         *
5055         * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
5056         *
5057         * For DMA Errata #4 set the BC_THRESH_ENB bit.
5058         */
5059        AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5060                             BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH |
5061                             READ_CMD_MRM);
5062
5063        /*
5064         * Microcode operating variables for WDTR, SDTR, and command tag
5065         * queuing will be set in slave_configure() based on what a
5066         * device reports it is capable of in Inquiry byte 7.
5067         *
5068         * If SCSI Bus Resets have been disabled, then directly set
5069         * SDTR and WDTR from the EEPROM configuration. This will allow
5070         * the BIOS and warm boot to work without a SCSI bus hang on
5071         * the Inquiry caused by host and target mismatched DTR values.
5072         * Without the SCSI Bus Reset, before an Inquiry a device can't
5073         * be assumed to be in Asynchronous, Narrow mode.
5074         */
5075        if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5076                AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5077                                 asc_dvc->wdtr_able);
5078                AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5079                                 asc_dvc->sdtr_able);
5080        }
5081
5082        /*
5083         * Set microcode operating variables for DISC and SDTR_SPEED1,
5084         * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5085         * configuration values.
5086         *
5087         * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5088         * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5089         * without determining here whether the device supports SDTR.
5090         */
5091        AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5092                         asc_dvc->cfg->disc_enable);
5093        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5094        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5095        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5096        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5097
5098        /*
5099         * Set SCSI_CFG0 Microcode Default Value.
5100         *
5101         * The microcode will set the SCSI_CFG0 register using this value
5102         * after it is started below.
5103         */
5104        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5105                         PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5106                         asc_dvc->chip_scsi_id);
5107
5108        /*
5109         * Determine SCSI_CFG1 Microcode Default Value.
5110         *
5111         * The microcode will set the SCSI_CFG1 register using this value
5112         * after it is started below.
5113         */
5114
5115        /* Read current SCSI_CFG1 Register value. */
5116        scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5117
5118        /*
5119         * If the internal narrow cable is reversed all of the SCSI_CTRL
5120         * register signals will be set. Check for and return an error if
5121         * this condition is found.
5122         */
5123        if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5124                asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5125                return ADV_ERROR;
5126        }
5127
5128        /*
5129         * All kind of combinations of devices attached to one of four
5130         * connectors are acceptable except HVD device attached. For example,
5131         * LVD device can be attached to SE connector while SE device attached
5132         * to LVD connector.  If LVD device attached to SE connector, it only
5133         * runs up to Ultra speed.
5134         *
5135         * If an HVD device is attached to one of LVD connectors, return an
5136         * error.  However, there is no way to detect HVD device attached to
5137         * SE connectors.
5138         */
5139        if (scsi_cfg1 & HVD) {
5140                asc_dvc->err_code = ASC_IERR_HVD_DEVICE;
5141                return ADV_ERROR;
5142        }
5143
5144        /*
5145         * If either SE or LVD automatic termination control is enabled, then
5146         * set the termination value based on a table listed in a_condor.h.
5147         *
5148         * If manual termination was specified with an EEPROM setting then
5149         * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5150         * to be 'ored' into SCSI_CFG1.
5151         */
5152        if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5153                /* SE automatic termination control is enabled. */
5154                switch (scsi_cfg1 & C_DET_SE) {
5155                        /* TERM_SE_HI: on, TERM_SE_LO: on */
5156                case 0x1:
5157                case 0x2:
5158                case 0x3:
5159                        asc_dvc->cfg->termination |= TERM_SE;
5160                        break;
5161
5162                        /* TERM_SE_HI: on, TERM_SE_LO: off */
5163                case 0x0:
5164                        asc_dvc->cfg->termination |= TERM_SE_HI;
5165                        break;
5166                }
5167        }
5168
5169        if ((asc_dvc->cfg->termination & TERM_LVD) == 0) {
5170                /* LVD automatic termination control is enabled. */
5171                switch (scsi_cfg1 & C_DET_LVD) {
5172                        /* TERM_LVD_HI: on, TERM_LVD_LO: on */
5173                case 0x4:
5174                case 0x8:
5175                case 0xC:
5176                        asc_dvc->cfg->termination |= TERM_LVD;
5177                        break;
5178
5179                        /* TERM_LVD_HI: off, TERM_LVD_LO: off */
5180                case 0x0:
5181                        break;
5182                }
5183        }
5184
5185        /*
5186         * Clear any set TERM_SE and TERM_LVD bits.
5187         */
5188        scsi_cfg1 &= (~TERM_SE & ~TERM_LVD);
5189
5190        /*
5191         * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5192         */
5193        scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0);
5194
5195        /*
5196         * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5197         * bits and set possibly modified termination control bits in the
5198         * Microcode SCSI_CFG1 Register Value.
5199         */
5200        scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE);
5201
5202        /*
5203         * Set SCSI_CFG1 Microcode Default Value
5204         *
5205         * Set possibly modified termination control and reset DIS_TERM_DRV
5206         * bits in the Microcode SCSI_CFG1 Register Value.
5207         *
5208         * The microcode will set the SCSI_CFG1 register using this value
5209         * after it is started below.
5210         */
5211        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5212
5213        /*
5214         * Set MEM_CFG Microcode Default Value
5215         *
5216         * The microcode will set the MEM_CFG register using this value
5217         * after it is started below.
5218         *
5219         * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5220         * are defined.
5221         *
5222         * ASC-38C0800 has 16KB internal memory.
5223         */
5224        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5225                         BIOS_EN | RAM_SZ_16KB);
5226
5227        /*
5228         * Set SEL_MASK Microcode Default Value
5229         *
5230         * The microcode will set the SEL_MASK register using this value
5231         * after it is started below.
5232         */
5233        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5234                         ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5235
5236        AdvBuildCarrierFreelist(asc_dvc);
5237
5238        /*
5239         * Set-up the Host->RISC Initiator Command Queue (ICQ).
5240         */
5241
5242        asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
5243        if (!asc_dvc->icq_sp) {
5244                ASC_DBG(0, "Failed to get ICQ carrier\n");
5245                asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5246                return ADV_ERROR;
5247        }
5248
5249        /*
5250         * Set RISC ICQ physical address start value.
5251         * carr_pa is LE, must be native before write
5252         */
5253        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5254
5255        /*
5256         * Set-up the RISC->Host Initiator Response Queue (IRQ).
5257         */
5258        asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
5259        if (!asc_dvc->irq_sp) {
5260                ASC_DBG(0, "Failed to get IRQ carrier\n");
5261                asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5262                return ADV_ERROR;
5263        }
5264
5265        /*
5266         * Set RISC IRQ physical address start value.
5267         *
5268         * carr_pa is LE, must be native before write *
5269         */
5270        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5271        asc_dvc->carr_pending_cnt = 0;
5272
5273        AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5274                             (ADV_INTR_ENABLE_HOST_INTR |
5275                              ADV_INTR_ENABLE_GLOBAL_INTR));
5276
5277        AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5278        AdvWriteWordRegister(iop_base, IOPW_PC, word);
5279
5280        /* finally, finally, gentlemen, start your engine */
5281        AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5282
5283        /*
5284         * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5285         * Resets should be performed. The RISC has to be running
5286         * to issue a SCSI Bus Reset.
5287         */
5288        if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5289                /*
5290                 * If the BIOS Signature is present in memory, restore the
5291                 * BIOS Handshake Configuration Table and do not perform
5292                 * a SCSI Bus Reset.
5293                 */
5294                if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5295                    0x55AA) {
5296                        /*
5297                         * Restore per TID negotiated values.
5298                         */
5299                        AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5300                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5301                        AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5302                                         tagqng_able);
5303                        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5304                                AdvWriteByteLram(iop_base,
5305                                                 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5306                                                 max_cmd[tid]);
5307                        }
5308                } else {
5309                        if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5310                                warn_code = ASC_WARN_BUSRESET_ERROR;
5311                        }
5312                }
5313        }
5314
5315        return warn_code;
5316}
5317
5318/*
5319 * Initialize the ASC-38C1600.
5320 *
5321 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
5322 *
5323 * For a non-fatal error return a warning code. If there are no warnings
5324 * then 0 is returned.
5325 *
5326 * Needed after initialization for error recovery.
5327 */
5328static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
5329{
5330        const struct firmware *fw;
5331        const char fwname[] = "advansys/38C1600.bin";
5332        AdvPortAddr iop_base;
5333        ushort warn_code;
5334        int begin_addr;
5335        int end_addr;
5336        ushort code_sum;
5337        long word;
5338        int i;
5339        int err;
5340        unsigned long chksum;
5341        ushort scsi_cfg1;
5342        uchar byte;
5343        uchar tid;
5344        ushort bios_mem[ASC_MC_BIOSLEN / 2];    /* BIOS RISC Memory 0x40-0x8F. */
5345        ushort wdtr_able, sdtr_able, ppr_able, tagqng_able;
5346        uchar max_cmd[ASC_MAX_TID + 1];
5347
5348        /* If there is already an error, don't continue. */
5349        if (asc_dvc->err_code != 0) {
5350                return ADV_ERROR;
5351        }
5352
5353        /*
5354         * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
5355         */
5356        if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
5357                asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5358                return ADV_ERROR;
5359        }
5360
5361        warn_code = 0;
5362        iop_base = asc_dvc->iop_base;
5363
5364        /*
5365         * Save the RISC memory BIOS region before writing the microcode.
5366         * The BIOS may already be loaded and using its RISC LRAM region
5367         * so its region must be saved and restored.
5368         *
5369         * Note: This code makes the assumption, which is currently true,
5370         * that a chip reset does not clear RISC LRAM.
5371         */
5372        for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5373                AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5374                                bios_mem[i]);
5375        }
5376
5377        /*
5378         * Save current per TID negotiated values.
5379         */
5380        AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5381        AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5382        AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5383        AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5384        for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5385                AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5386                                max_cmd[tid]);
5387        }
5388
5389        /*
5390         * RAM BIST (Built-In Self Test)
5391         *
5392         * Address : I/O base + offset 0x38h register (byte).
5393         * Function: Bit 7-6(RW) : RAM mode
5394         *                          Normal Mode   : 0x00
5395         *                          Pre-test Mode : 0x40
5396         *                          RAM Test Mode : 0x80
5397         *           Bit 5       : unused
5398         *           Bit 4(RO)   : Done bit
5399         *           Bit 3-0(RO) : Status
5400         *                          Host Error    : 0x08
5401         *                          Int_RAM Error : 0x04
5402         *                          RISC Error    : 0x02
5403         *                          SCSI Error    : 0x01
5404         *                          No Error      : 0x00
5405         *
5406         * Note: RAM BIST code should be put right here, before loading the
5407         * microcode and after saving the RISC memory BIOS region.
5408         */
5409
5410        /*
5411         * LRAM Pre-test
5412         *
5413         * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5414         * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5415         * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5416         * to NORMAL_MODE, return an error too.
5417         */
5418        for (i = 0; i < 2; i++) {
5419                AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
5420                mdelay(10);     /* Wait for 10ms before reading back. */
5421                byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5422                if ((byte & RAM_TEST_DONE) == 0
5423                    || (byte & 0x0F) != PRE_TEST_VALUE) {
5424                        asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5425                        return ADV_ERROR;
5426                }
5427
5428                AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5429                mdelay(10);     /* Wait for 10ms before reading back. */
5430                if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
5431                    != NORMAL_VALUE) {
5432                        asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5433                        return ADV_ERROR;
5434                }
5435        }
5436
5437        /*
5438         * LRAM Test - It takes about 1.5 ms to run through the test.
5439         *
5440         * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5441         * If Done bit not set or Status not 0, save register byte, set the
5442         * err_code, and return an error.
5443         */
5444        AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
5445        mdelay(10);     /* Wait for 10ms before checking status. */
5446
5447        byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5448        if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
5449                /* Get here if Done bit not set or Status not 0. */
5450                asc_dvc->bist_err_code = byte;  /* for BIOS display message */
5451                asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
5452                return ADV_ERROR;
5453        }
5454
5455        /* We need to reset back to normal mode after LRAM test passes. */
5456        AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5457
5458        err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5459        if (err) {
5460                printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5461                       fwname, err);
5462                asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5463                return err;
5464        }
5465        if (fw->size < 4) {
5466                printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5467                       fw->size, fwname);
5468                release_firmware(fw);
5469                asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5470                return -EINVAL;
5471        }
5472        chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5473                 (fw->data[1] << 8) | fw->data[0];
5474        asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5475                                             fw->size - 4, ADV_38C1600_MEMSIZE,
5476                                             chksum);
5477        release_firmware(fw);
5478        if (asc_dvc->err_code)
5479                return ADV_ERROR;
5480
5481        /*
5482         * Restore the RISC memory BIOS region.
5483         */
5484        for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5485                AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5486                                 bios_mem[i]);
5487        }
5488
5489        /*
5490         * Calculate and write the microcode code checksum to the microcode
5491         * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5492         */
5493        AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5494        AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5495        code_sum = 0;
5496        AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5497        for (word = begin_addr; word < end_addr; word += 2) {
5498                code_sum += AdvReadWordAutoIncLram(iop_base);
5499        }
5500        AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5501
5502        /*
5503         * Read microcode version and date.
5504         */
5505        AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5506                        asc_dvc->cfg->mcode_date);
5507        AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5508                        asc_dvc->cfg->mcode_version);
5509
5510        /*
5511         * Set the chip type to indicate the ASC38C1600.
5512         */
5513        AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600);
5514
5515        /*
5516         * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5517         * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5518         * cable detection and then we are able to read C_DET[3:0].
5519         *
5520         * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5521         * Microcode Default Value' section below.
5522         */
5523        scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5524        AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5525                             scsi_cfg1 | DIS_TERM_DRV);
5526
5527        /*
5528         * If the PCI Configuration Command Register "Parity Error Response
5529         * Control" Bit was clear (0), then set the microcode variable
5530         * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5531         * to ignore DMA parity errors.
5532         */
5533        if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5534                AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5535                word |= CONTROL_FLAG_IGNORE_PERR;
5536                AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5537        }
5538
5539        /*
5540         * If the BIOS control flag AIPP (Asynchronous Information
5541         * Phase Protection) disable bit is not set, then set the firmware
5542         * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
5543         * AIPP checking and encoding.
5544         */
5545        if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
5546                AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5547                word |= CONTROL_FLAG_ENABLE_AIPP;
5548                AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5549        }
5550
5551        /*
5552         * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
5553         * and START_CTL_TH [3:2].
5554         */
5555        AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5556                             FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
5557
5558        /*
5559         * Microcode operating variables for WDTR, SDTR, and command tag
5560         * queuing will be set in slave_configure() based on what a
5561         * device reports it is capable of in Inquiry byte 7.
5562         *
5563         * If SCSI Bus Resets have been disabled, then directly set
5564         * SDTR and WDTR from the EEPROM configuration. This will allow
5565         * the BIOS and warm boot to work without a SCSI bus hang on
5566         * the Inquiry caused by host and target mismatched DTR values.
5567         * Without the SCSI Bus Reset, before an Inquiry a device can't
5568         * be assumed to be in Asynchronous, Narrow mode.
5569         */
5570        if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5571                AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5572                                 asc_dvc->wdtr_able);
5573                AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5574                                 asc_dvc->sdtr_able);
5575        }
5576
5577        /*
5578         * Set microcode operating variables for DISC and SDTR_SPEED1,
5579         * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5580         * configuration values.
5581         *
5582         * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5583         * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5584         * without determining here whether the device supports SDTR.
5585         */
5586        AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5587                         asc_dvc->cfg->disc_enable);
5588        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5589        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5590        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5591        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5592
5593        /*
5594         * Set SCSI_CFG0 Microcode Default Value.
5595         *
5596         * The microcode will set the SCSI_CFG0 register using this value
5597         * after it is started below.
5598         */
5599        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5600                         PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5601                         asc_dvc->chip_scsi_id);
5602
5603        /*
5604         * Calculate SCSI_CFG1 Microcode Default Value.
5605         *
5606         * The microcode will set the SCSI_CFG1 register using this value
5607         * after it is started below.
5608         *
5609         * Each ASC-38C1600 function has only two cable detect bits.
5610         * The bus mode override bits are in IOPB_SOFT_OVER_WR.
5611         */
5612        scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5613
5614        /*
5615         * If the cable is reversed all of the SCSI_CTRL register signals
5616         * will be set. Check for and return an error if this condition is
5617         * found.
5618         */
5619        if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5620                asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5621                return ADV_ERROR;
5622        }
5623
5624        /*
5625         * Each ASC-38C1600 function has two connectors. Only an HVD device
5626         * can not be connected to either connector. An LVD device or SE device
5627         * may be connected to either connecor. If an SE device is connected,
5628         * then at most Ultra speed (20 Mhz) can be used on both connectors.
5629         *
5630         * If an HVD device is attached, return an error.
5631         */
5632        if (scsi_cfg1 & HVD) {
5633                asc_dvc->err_code |= ASC_IERR_HVD_DEVICE;
5634                return ADV_ERROR;
5635        }
5636
5637        /*
5638         * Each function in the ASC-38C1600 uses only the SE cable detect and
5639         * termination because there are two connectors for each function. Each
5640         * function may use either LVD or SE mode. Corresponding the SE automatic
5641         * termination control EEPROM bits are used for each function. Each
5642         * function has its own EEPROM. If SE automatic control is enabled for
5643         * the function, then set the termination value based on a table listed
5644         * in a_condor.h.
5645         *
5646         * If manual termination is specified in the EEPROM for the function,
5647         * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
5648         * ready to be 'ored' into SCSI_CFG1.
5649         */
5650        if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5651                struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
5652                /* SE automatic termination control is enabled. */
5653                switch (scsi_cfg1 & C_DET_SE) {
5654                        /* TERM_SE_HI: on, TERM_SE_LO: on */
5655                case 0x1:
5656                case 0x2:
5657                case 0x3:
5658                        asc_dvc->cfg->termination |= TERM_SE;
5659                        break;
5660
5661                case 0x0:
5662                        if (PCI_FUNC(pdev->devfn) == 0) {
5663                                /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
5664                        } else {
5665                                /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
5666                                asc_dvc->cfg->termination |= TERM_SE_HI;
5667                        }
5668                        break;
5669                }
5670        }
5671
5672        /*
5673         * Clear any set TERM_SE bits.
5674         */
5675        scsi_cfg1 &= ~TERM_SE;
5676
5677        /*
5678         * Invert the TERM_SE bits and then set 'scsi_cfg1'.
5679         */
5680        scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE);
5681
5682        /*
5683         * Clear Big Endian and Terminator Polarity bits and set possibly
5684         * modified termination control bits in the Microcode SCSI_CFG1
5685         * Register Value.
5686         *
5687         * Big Endian bit is not used even on big endian machines.
5688         */
5689        scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL);
5690
5691        /*
5692         * Set SCSI_CFG1 Microcode Default Value
5693         *
5694         * Set possibly modified termination control bits in the Microcode
5695         * SCSI_CFG1 Register Value.
5696         *
5697         * The microcode will set the SCSI_CFG1 register using this value
5698         * after it is started below.
5699         */
5700        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5701
5702        /*
5703         * Set MEM_CFG Microcode Default Value
5704         *
5705         * The microcode will set the MEM_CFG register using this value
5706         * after it is started below.
5707         *
5708         * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5709         * are defined.
5710         *
5711         * ASC-38C1600 has 32KB internal memory.
5712         *
5713         * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
5714         * out a special 16K Adv Library and Microcode version. After the issue
5715         * resolved, we should turn back to the 32K support. Both a_condor.h and
5716         * mcode.sas files also need to be updated.
5717         *
5718         * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5719         *  BIOS_EN | RAM_SZ_32KB);
5720         */
5721        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5722                         BIOS_EN | RAM_SZ_16KB);
5723
5724        /*
5725         * Set SEL_MASK Microcode Default Value
5726         *
5727         * The microcode will set the SEL_MASK register using this value
5728         * after it is started below.
5729         */
5730        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5731                         ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5732
5733        AdvBuildCarrierFreelist(asc_dvc);
5734
5735        /*
5736         * Set-up the Host->RISC Initiator Command Queue (ICQ).
5737         */
5738        asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
5739        if (!asc_dvc->icq_sp) {
5740                asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5741                return ADV_ERROR;
5742        }
5743
5744        /*
5745         * Set RISC ICQ physical address start value. Initialize the
5746         * COMMA register to the same value otherwise the RISC will
5747         * prematurely detect a command is available.
5748         */
5749        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5750        AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
5751                              le32_to_cpu(asc_dvc->icq_sp->carr_pa));
5752
5753        /*
5754         * Set-up the RISC->Host Initiator Response Queue (IRQ).
5755         */
5756        asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
5757        if (!asc_dvc->irq_sp) {
5758                asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5759                return ADV_ERROR;
5760        }
5761
5762        /*
5763         * Set RISC IRQ physical address start value.
5764         */
5765        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5766        asc_dvc->carr_pending_cnt = 0;
5767
5768        AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5769                             (ADV_INTR_ENABLE_HOST_INTR |
5770                              ADV_INTR_ENABLE_GLOBAL_INTR));
5771        AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5772        AdvWriteWordRegister(iop_base, IOPW_PC, word);
5773
5774        /* finally, finally, gentlemen, start your engine */
5775        AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5776
5777        /*
5778         * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5779         * Resets should be performed. The RISC has to be running
5780         * to issue a SCSI Bus Reset.
5781         */
5782        if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5783                /*
5784                 * If the BIOS Signature is present in memory, restore the
5785                 * per TID microcode operating variables.
5786                 */
5787                if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5788                    0x55AA) {
5789                        /*
5790                         * Restore per TID negotiated values.
5791                         */
5792                        AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5793                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5794                        AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5795                        AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5796                                         tagqng_able);
5797                        for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5798                                AdvWriteByteLram(iop_base,
5799                                                 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5800                                                 max_cmd[tid]);
5801                        }
5802                } else {
5803                        if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5804                                warn_code = ASC_WARN_BUSRESET_ERROR;
5805                        }
5806                }
5807        }
5808
5809        return warn_code;
5810}
5811
5812/*
5813 * Reset chip and SCSI Bus.
5814 *
5815 * Return Value:
5816 *      ADV_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
5817 *      ADV_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
5818 */
5819static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc)
5820{
5821        int status;
5822        ushort wdtr_able, sdtr_able, tagqng_able;
5823        ushort ppr_able = 0;
5824        uchar tid, max_cmd[ADV_MAX_TID + 1];
5825        AdvPortAddr iop_base;
5826        ushort bios_sig;
5827
5828        iop_base = asc_dvc->iop_base;
5829
5830        /*
5831         * Save current per TID negotiated values.
5832         */
5833        AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5834        AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5835        if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5836                AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5837        }
5838        AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5839        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5840                AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5841                                max_cmd[tid]);
5842        }
5843
5844        /*
5845         * Force the AdvInitAsc3550/38C0800Driver() function to
5846         * perform a SCSI Bus Reset by clearing the BIOS signature word.
5847         * The initialization functions assumes a SCSI Bus Reset is not
5848         * needed if the BIOS signature word is present.
5849         */
5850        AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
5851        AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0);
5852
5853        /*
5854         * Stop chip and reset it.
5855         */
5856        AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP);
5857        AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET);
5858        mdelay(100);
5859        AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
5860                             ADV_CTRL_REG_CMD_WR_IO_REG);
5861
5862        /*
5863         * Reset Adv Library error code, if any, and try
5864         * re-initializing the chip.
5865         */
5866        asc_dvc->err_code = 0;
5867        if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5868                status = AdvInitAsc38C1600Driver(asc_dvc);
5869        } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
5870                status = AdvInitAsc38C0800Driver(asc_dvc);
5871        } else {
5872                status = AdvInitAsc3550Driver(asc_dvc);
5873        }
5874
5875        /* Translate initialization return value to status value. */
5876        if (status == 0) {
5877                status = ADV_TRUE;
5878        } else {
5879                status = ADV_FALSE;
5880        }
5881
5882        /*
5883         * Restore the BIOS signature word.
5884         */
5885        AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
5886
5887        /*
5888         * Restore per TID negotiated values.
5889         */
5890        AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5891        AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5892        if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5893                AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5894        }
5895        AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5896        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5897                AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5898                                 max_cmd[tid]);
5899        }
5900
5901        return status;
5902}
5903
5904/*
5905 * adv_async_callback() - Adv Library asynchronous event callback function.
5906 */
5907static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code)
5908{
5909        switch (code) {
5910        case ADV_ASYNC_SCSI_BUS_RESET_DET:
5911                /*
5912                 * The firmware detected a SCSI Bus reset.
5913                 */
5914                ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
5915                break;
5916
5917        case ADV_ASYNC_RDMA_FAILURE:
5918                /*
5919                 * Handle RDMA failure by resetting the SCSI Bus and
5920                 * possibly the chip if it is unresponsive. Log the error
5921                 * with a unique code.
5922                 */
5923                ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
5924                AdvResetChipAndSB(adv_dvc_varp);
5925                break;
5926
5927        case ADV_HOST_SCSI_BUS_RESET:
5928                /*
5929                 * Host generated SCSI bus reset occurred.
5930                 */
5931                ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
5932                break;
5933
5934        default:
5935                ASC_DBG(0, "unknown code 0x%x\n", code);
5936                break;
5937        }
5938}
5939
5940/*
5941 * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
5942 *
5943 * Callback function for the Wide SCSI Adv Library.
5944 */
5945static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp)
5946{
5947        struct asc_board *boardp = adv_dvc_varp->drv_ptr;
5948        adv_req_t *reqp;
5949        adv_sgblk_t *sgblkp;
5950        struct scsi_cmnd *scp;
5951        u32 resid_cnt;
5952        dma_addr_t sense_addr;
5953
5954        ASC_DBG(1, "adv_dvc_varp 0x%p, scsiqp 0x%p\n",
5955                adv_dvc_varp, scsiqp);
5956        ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
5957
5958        /*
5959         * Get the adv_req_t structure for the command that has been
5960         * completed. The adv_req_t structure actually contains the
5961         * completed ADV_SCSI_REQ_Q structure.
5962         */
5963        scp = scsi_host_find_tag(boardp->shost, scsiqp->srb_tag);
5964
5965        ASC_DBG(1, "scp 0x%p\n", scp);
5966        if (scp == NULL) {
5967                ASC_PRINT
5968                    ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
5969                return;
5970        }
5971        ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
5972
5973        reqp = (adv_req_t *)scp->host_scribble;
5974        ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp);
5975        if (reqp == NULL) {
5976                ASC_PRINT("adv_isr_callback: reqp is NULL\n");
5977                return;
5978        }
5979        /*
5980         * Remove backreferences to avoid duplicate
5981         * command completions.
5982         */
5983        scp->host_scribble = NULL;
5984        reqp->cmndp = NULL;
5985
5986        ASC_STATS(boardp->shost, callback);
5987        ASC_DBG(1, "shost 0x%p\n", boardp->shost);
5988
5989        sense_addr = le32_to_cpu(scsiqp->sense_addr);
5990        dma_unmap_single(boardp->dev, sense_addr,
5991                         SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
5992
5993        /*
5994         * 'done_status' contains the command's ending status.
5995         */
5996        switch (scsiqp->done_status) {
5997        case QD_NO_ERROR:
5998                ASC_DBG(2, "QD_NO_ERROR\n");
5999                scp->result = 0;
6000
6001                /*
6002                 * Check for an underrun condition.
6003                 *
6004                 * If there was no error and an underrun condition, then
6005                 * then return the number of underrun bytes.
6006                 */
6007                resid_cnt = le32_to_cpu(scsiqp->data_cnt);
6008                if (scsi_bufflen(scp) != 0 && resid_cnt != 0 &&
6009                    resid_cnt <= scsi_bufflen(scp)) {
6010                        ASC_DBG(1, "underrun condition %lu bytes\n",
6011                                 (ulong)resid_cnt);
6012                        scsi_set_resid(scp, resid_cnt);
6013                }
6014                break;
6015
6016        case QD_WITH_ERROR:
6017                ASC_DBG(2, "QD_WITH_ERROR\n");
6018                switch (scsiqp->host_status) {
6019                case QHSTA_NO_ERROR:
6020                        if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) {
6021                                ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6022                                ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6023                                                  SCSI_SENSE_BUFFERSIZE);
6024                                /*
6025                                 * Note: The 'status_byte()' macro used by
6026                                 * target drivers defined in scsi.h shifts the
6027                                 * status byte returned by host drivers right
6028                                 * by 1 bit.  This is why target drivers also
6029                                 * use right shifted status byte definitions.
6030                                 * For instance target drivers use
6031                                 * CHECK_CONDITION, defined to 0x1, instead of
6032                                 * the SCSI defined check condition value of
6033                                 * 0x2. Host drivers are supposed to return
6034                                 * the status byte as it is defined by SCSI.
6035                                 */
6036                                scp->result = DRIVER_BYTE(DRIVER_SENSE) |
6037                                    STATUS_BYTE(scsiqp->scsi_status);
6038                        } else {
6039                                scp->result = STATUS_BYTE(scsiqp->scsi_status);
6040                        }
6041                        break;
6042
6043                default:
6044                        /* Some other QHSTA error occurred. */
6045                        ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status);
6046                        scp->result = HOST_BYTE(DID_BAD_TARGET);
6047                        break;
6048                }
6049                break;
6050
6051        case QD_ABORTED_BY_HOST:
6052                ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6053                scp->result =
6054                    HOST_BYTE(DID_ABORT) | STATUS_BYTE(scsiqp->scsi_status);
6055                break;
6056
6057        default:
6058                ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status);
6059                scp->result =
6060                    HOST_BYTE(DID_ERROR) | STATUS_BYTE(scsiqp->scsi_status);
6061                break;
6062        }
6063
6064        /*
6065         * If the 'init_tidmask' bit isn't already set for the target and the
6066         * current request finished normally, then set the bit for the target
6067         * to indicate that a device is present.
6068         */
6069        if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6070            scsiqp->done_status == QD_NO_ERROR &&
6071            scsiqp->host_status == QHSTA_NO_ERROR) {
6072                boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6073        }
6074
6075        asc_scsi_done(scp);
6076
6077        /*
6078         * Free all 'adv_sgblk_t' structures allocated for the request.
6079         */
6080        while ((sgblkp = reqp->sgblkp) != NULL) {
6081                /* Remove 'sgblkp' from the request list. */
6082                reqp->sgblkp = sgblkp->next_sgblkp;
6083
6084                dma_pool_free(boardp->adv_sgblk_pool, sgblkp,
6085                              sgblkp->sg_addr);
6086        }
6087
6088        ASC_DBG(1, "done\n");
6089}
6090
6091/*
6092 * Adv Library Interrupt Service Routine
6093 *
6094 *  This function is called by a driver's interrupt service routine.
6095 *  The function disables and re-enables interrupts.
6096 *
6097 *  When a microcode idle command is completed, the ADV_DVC_VAR
6098 *  'idle_cmd_done' field is set to ADV_TRUE.
6099 *
6100 *  Note: AdvISR() can be called when interrupts are disabled or even
6101 *  when there is no hardware interrupt condition present. It will
6102 *  always check for completed idle commands and microcode requests.
6103 *  This is an important feature that shouldn't be changed because it
6104 *  allows commands to be completed from polling mode loops.
6105 *
6106 * Return:
6107 *   ADV_TRUE(1) - interrupt was pending
6108 *   ADV_FALSE(0) - no interrupt was pending
6109 */
6110static int AdvISR(ADV_DVC_VAR *asc_dvc)
6111{
6112        AdvPortAddr iop_base;
6113        uchar int_stat;
6114        ushort target_bit;
6115        ADV_CARR_T *free_carrp;
6116        __le32 irq_next_vpa;
6117        ADV_SCSI_REQ_Q *scsiq;
6118        adv_req_t *reqp;
6119
6120        iop_base = asc_dvc->iop_base;
6121
6122        /* Reading the register clears the interrupt. */
6123        int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG);
6124
6125        if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB |
6126                         ADV_INTR_STATUS_INTRC)) == 0) {
6127                return ADV_FALSE;
6128        }
6129
6130        /*
6131         * Notify the driver of an asynchronous microcode condition by
6132         * calling the adv_async_callback function. The function
6133         * is passed the microcode ASC_MC_INTRB_CODE byte value.
6134         */
6135        if (int_stat & ADV_INTR_STATUS_INTRB) {
6136                uchar intrb_code;
6137
6138                AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code);
6139
6140                if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
6141                    asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6142                        if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
6143                            asc_dvc->carr_pending_cnt != 0) {
6144                                AdvWriteByteRegister(iop_base, IOPB_TICKLE,
6145                                                     ADV_TICKLE_A);
6146                                if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
6147                                        AdvWriteByteRegister(iop_base,
6148                                                             IOPB_TICKLE,
6149                                                             ADV_TICKLE_NOP);
6150                                }
6151                        }
6152                }
6153
6154                adv_async_callback(asc_dvc, intrb_code);
6155        }
6156
6157        /*
6158         * Check if the IRQ stopper carrier contains a completed request.
6159         */
6160        while (((irq_next_vpa =
6161                 le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ADV_RQ_DONE) != 0) {
6162                /*
6163                 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6164                 * The RISC will have set 'areq_vpa' to a virtual address.
6165                 *
6166                 * The firmware will have copied the ADV_SCSI_REQ_Q.scsiq_ptr
6167                 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6168                 * below complements the conversion of ADV_SCSI_REQ_Q.scsiq_ptr'
6169                 * in AdvExeScsiQueue().
6170                 */
6171                u32 pa_offset = le32_to_cpu(asc_dvc->irq_sp->areq_vpa);
6172                ASC_DBG(1, "irq_sp %p areq_vpa %u\n",
6173                        asc_dvc->irq_sp, pa_offset);
6174                reqp = adv_get_reqp(asc_dvc, pa_offset);
6175                scsiq = &reqp->scsi_req_q;
6176
6177                /*
6178                 * Request finished with good status and the queue was not
6179                 * DMAed to host memory by the firmware. Set all status fields
6180                 * to indicate good status.
6181                 */
6182                if ((irq_next_vpa & ADV_RQ_GOOD) != 0) {
6183                        scsiq->done_status = QD_NO_ERROR;
6184                        scsiq->host_status = scsiq->scsi_status = 0;
6185                        scsiq->data_cnt = 0L;
6186                }
6187
6188                /*
6189                 * Advance the stopper pointer to the next carrier
6190                 * ignoring the lower four bits. Free the previous
6191                 * stopper carrier.
6192                 */
6193                free_carrp = asc_dvc->irq_sp;
6194                asc_dvc->irq_sp = adv_get_carrier(asc_dvc,
6195                                                  ADV_GET_CARRP(irq_next_vpa));
6196
6197                free_carrp->next_vpa = asc_dvc->carr_freelist->carr_va;
6198                asc_dvc->carr_freelist = free_carrp;
6199                asc_dvc->carr_pending_cnt--;
6200
6201                target_bit = ADV_TID_TO_TIDMASK(scsiq->target_id);
6202
6203                /*
6204                 * Clear request microcode control flag.
6205                 */
6206                scsiq->cntl = 0;
6207
6208                /*
6209                 * Notify the driver of the completed request by passing
6210                 * the ADV_SCSI_REQ_Q pointer to its callback function.
6211                 */
6212                adv_isr_callback(asc_dvc, scsiq);
6213                /*
6214                 * Note: After the driver callback function is called, 'scsiq'
6215                 * can no longer be referenced.
6216                 *
6217                 * Fall through and continue processing other completed
6218                 * requests...
6219                 */
6220        }
6221        return ADV_TRUE;
6222}
6223
6224static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code)
6225{
6226        if (asc_dvc->err_code == 0) {
6227                asc_dvc->err_code = err_code;
6228                AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W,
6229                                 err_code);
6230        }
6231        return err_code;
6232}
6233
6234static void AscAckInterrupt(PortAddr iop_base)
6235{
6236        uchar host_flag;
6237        uchar risc_flag;
6238        ushort loop;
6239
6240        loop = 0;
6241        do {
6242                risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B);
6243                if (loop++ > 0x7FFF) {
6244                        break;
6245                }
6246        } while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0);
6247        host_flag =
6248            AscReadLramByte(iop_base,
6249                            ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT);
6250        AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
6251                         (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT));
6252        AscSetChipStatus(iop_base, CIW_INT_ACK);
6253        loop = 0;
6254        while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) {
6255                AscSetChipStatus(iop_base, CIW_INT_ACK);
6256                if (loop++ > 3) {
6257                        break;
6258                }
6259        }
6260        AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
6261}
6262
6263static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time)
6264{
6265        const uchar *period_table;
6266        int max_index;
6267        int min_index;
6268        int i;
6269
6270        period_table = asc_dvc->sdtr_period_tbl;
6271        max_index = (int)asc_dvc->max_sdtr_index;
6272        min_index = (int)asc_dvc->min_sdtr_index;
6273        if ((syn_time <= period_table[max_index])) {
6274                for (i = min_index; i < (max_index - 1); i++) {
6275                        if (syn_time <= period_table[i]) {
6276                                return (uchar)i;
6277                        }
6278                }
6279                return (uchar)max_index;
6280        } else {
6281                return (uchar)(max_index + 1);
6282        }
6283}
6284
6285static uchar
6286AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset)
6287{
6288        PortAddr iop_base = asc_dvc->iop_base;
6289        uchar sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6290        EXT_MSG sdtr_buf = {
6291                .msg_type = EXTENDED_MESSAGE,
6292                .msg_len = MS_SDTR_LEN,
6293                .msg_req = EXTENDED_SDTR,
6294                .xfer_period = sdtr_period,
6295                .req_ack_offset = sdtr_offset,
6296        };
6297        sdtr_offset &= ASC_SYN_MAX_OFFSET;
6298
6299        if (sdtr_period_index <= asc_dvc->max_sdtr_index) {
6300                AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6301                                        (uchar *)&sdtr_buf,
6302                                        sizeof(EXT_MSG) >> 1);
6303                return ((sdtr_period_index << 4) | sdtr_offset);
6304        } else {
6305                sdtr_buf.req_ack_offset = 0;
6306                AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6307                                        (uchar *)&sdtr_buf,
6308                                        sizeof(EXT_MSG) >> 1);
6309                return 0;
6310        }
6311}
6312
6313static uchar
6314AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset)
6315{
6316        uchar byte;
6317        uchar sdtr_period_ix;
6318
6319        sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6320        if (sdtr_period_ix > asc_dvc->max_sdtr_index)
6321                return 0xFF;
6322        byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET);
6323        return byte;
6324}
6325
6326static bool AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data)
6327{
6328        ASC_SCSI_BIT_ID_TYPE org_id;
6329        int i;
6330        bool sta = true;
6331
6332        AscSetBank(iop_base, 1);
6333        org_id = AscReadChipDvcID(iop_base);
6334        for (i = 0; i <= ASC_MAX_TID; i++) {
6335                if (org_id == (0x01 << i))
6336                        break;
6337        }
6338        org_id = (ASC_SCSI_BIT_ID_TYPE) i;
6339        AscWriteChipDvcID(iop_base, id);
6340        if (AscReadChipDvcID(iop_base) == (0x01 << id)) {
6341                AscSetBank(iop_base, 0);
6342                AscSetChipSyn(iop_base, sdtr_data);
6343                if (AscGetChipSyn(iop_base) != sdtr_data) {
6344                        sta = false;
6345                }
6346        } else {
6347                sta = false;
6348        }
6349        AscSetBank(iop_base, 1);
6350        AscWriteChipDvcID(iop_base, org_id);
6351        AscSetBank(iop_base, 0);
6352        return (sta);
6353}
6354
6355static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no)
6356{
6357        AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
6358        AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data);
6359}
6360
6361static void AscIsrChipHalted(ASC_DVC_VAR *asc_dvc)
6362{
6363        EXT_MSG ext_msg;
6364        EXT_MSG out_msg;
6365        ushort halt_q_addr;
6366        bool sdtr_accept;
6367        ushort int_halt_code;
6368        ASC_SCSI_BIT_ID_TYPE scsi_busy;
6369        ASC_SCSI_BIT_ID_TYPE target_id;
6370        PortAddr iop_base;
6371        uchar tag_code;
6372        uchar q_status;
6373        uchar halt_qp;
6374        uchar sdtr_data;
6375        uchar target_ix;
6376        uchar q_cntl, tid_no;
6377        uchar cur_dvc_qng;
6378        uchar asyn_sdtr;
6379        uchar scsi_status;
6380        struct asc_board *boardp;
6381
6382        BUG_ON(!asc_dvc->drv_ptr);
6383        boardp = asc_dvc->drv_ptr;
6384
6385        iop_base = asc_dvc->iop_base;
6386        int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W);
6387
6388        halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B);
6389        halt_q_addr = ASC_QNO_TO_QADDR(halt_qp);
6390        target_ix = AscReadLramByte(iop_base,
6391                                    (ushort)(halt_q_addr +
6392                                             (ushort)ASC_SCSIQ_B_TARGET_IX));
6393        q_cntl = AscReadLramByte(iop_base,
6394                            (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL));
6395        tid_no = ASC_TIX_TO_TID(target_ix);
6396        target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no);
6397        if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6398                asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB;
6399        } else {
6400                asyn_sdtr = 0;
6401        }
6402        if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) {
6403                if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6404                        AscSetChipSDTR(iop_base, 0, tid_no);
6405                        boardp->sdtr_data[tid_no] = 0;
6406                }
6407                AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6408                return;
6409        } else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) {
6410                if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6411                        AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6412                        boardp->sdtr_data[tid_no] = asyn_sdtr;
6413                }
6414                AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6415                return;
6416        } else if (int_halt_code == ASC_HALT_EXTMSG_IN) {
6417                AscMemWordCopyPtrFromLram(iop_base,
6418                                          ASCV_MSGIN_BEG,
6419                                          (uchar *)&ext_msg,
6420                                          sizeof(EXT_MSG) >> 1);
6421
6422                if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6423                    ext_msg.msg_req == EXTENDED_SDTR &&
6424                    ext_msg.msg_len == MS_SDTR_LEN) {
6425                        sdtr_accept = true;
6426                        if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) {
6427
6428                                sdtr_accept = false;
6429                                ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET;
6430                        }
6431                        if ((ext_msg.xfer_period <
6432                             asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index])
6433                            || (ext_msg.xfer_period >
6434                                asc_dvc->sdtr_period_tbl[asc_dvc->
6435                                                         max_sdtr_index])) {
6436                                sdtr_accept = false;
6437                                ext_msg.xfer_period =
6438                                    asc_dvc->sdtr_period_tbl[asc_dvc->
6439                                                             min_sdtr_index];
6440                        }
6441                        if (sdtr_accept) {
6442                                sdtr_data =
6443                                    AscCalSDTRData(asc_dvc, ext_msg.xfer_period,
6444                                                   ext_msg.req_ack_offset);
6445                                if (sdtr_data == 0xFF) {
6446
6447                                        q_cntl |= QC_MSG_OUT;
6448                                        asc_dvc->init_sdtr &= ~target_id;
6449                                        asc_dvc->sdtr_done &= ~target_id;
6450                                        AscSetChipSDTR(iop_base, asyn_sdtr,
6451                                                       tid_no);
6452                                        boardp->sdtr_data[tid_no] = asyn_sdtr;
6453                                }
6454                        }
6455                        if (ext_msg.req_ack_offset == 0) {
6456
6457                                q_cntl &= ~QC_MSG_OUT;
6458                                asc_dvc->init_sdtr &= ~target_id;
6459                                asc_dvc->sdtr_done &= ~target_id;
6460                                AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6461                        } else {
6462                                if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
6463                                        q_cntl &= ~QC_MSG_OUT;
6464                                        asc_dvc->sdtr_done |= target_id;
6465                                        asc_dvc->init_sdtr |= target_id;
6466                                        asc_dvc->pci_fix_asyn_xfer &=
6467                                            ~target_id;
6468                                        sdtr_data =
6469                                            AscCalSDTRData(asc_dvc,
6470                                                           ext_msg.xfer_period,
6471                                                           ext_msg.
6472                                                           req_ack_offset);
6473                                        AscSetChipSDTR(iop_base, sdtr_data,
6474                                                       tid_no);
6475                                        boardp->sdtr_data[tid_no] = sdtr_data;
6476                                } else {
6477                                        q_cntl |= QC_MSG_OUT;
6478                                        AscMsgOutSDTR(asc_dvc,
6479                                                      ext_msg.xfer_period,
6480                                                      ext_msg.req_ack_offset);
6481                                        asc_dvc->pci_fix_asyn_xfer &=
6482                                            ~target_id;
6483                                        sdtr_data =
6484                                            AscCalSDTRData(asc_dvc,
6485                                                           ext_msg.xfer_period,
6486                                                           ext_msg.
6487                                                           req_ack_offset);
6488                                        AscSetChipSDTR(iop_base, sdtr_data,
6489                                                       tid_no);
6490                                        boardp->sdtr_data[tid_no] = sdtr_data;
6491                                        asc_dvc->sdtr_done |= target_id;
6492                                        asc_dvc->init_sdtr |= target_id;
6493                                }
6494                        }
6495
6496                        AscWriteLramByte(iop_base,
6497                                         (ushort)(halt_q_addr +
6498                                                  (ushort)ASC_SCSIQ_B_CNTL),
6499                                         q_cntl);
6500                        AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6501                        return;
6502                } else if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6503                           ext_msg.msg_req == EXTENDED_WDTR &&
6504                           ext_msg.msg_len == MS_WDTR_LEN) {
6505
6506                        ext_msg.wdtr_width = 0;
6507                        AscMemWordCopyPtrToLram(iop_base,
6508                                                ASCV_MSGOUT_BEG,
6509                                                (uchar *)&ext_msg,
6510                                                sizeof(EXT_MSG) >> 1);
6511                        q_cntl |= QC_MSG_OUT;
6512                        AscWriteLramByte(iop_base,
6513                                         (ushort)(halt_q_addr +
6514                                                  (ushort)ASC_SCSIQ_B_CNTL),
6515                                         q_cntl);
6516                        AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6517                        return;
6518                } else {
6519
6520                        ext_msg.msg_type = MESSAGE_REJECT;
6521                        AscMemWordCopyPtrToLram(iop_base,
6522                                                ASCV_MSGOUT_BEG,
6523                                                (uchar *)&ext_msg,
6524                                                sizeof(EXT_MSG) >> 1);
6525                        q_cntl |= QC_MSG_OUT;
6526                        AscWriteLramByte(iop_base,
6527                                         (ushort)(halt_q_addr +
6528                                                  (ushort)ASC_SCSIQ_B_CNTL),
6529                                         q_cntl);
6530                        AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6531                        return;
6532                }
6533        } else if (int_halt_code == ASC_HALT_CHK_CONDITION) {
6534
6535                q_cntl |= QC_REQ_SENSE;
6536
6537                if ((asc_dvc->init_sdtr & target_id) != 0) {
6538
6539                        asc_dvc->sdtr_done &= ~target_id;
6540
6541                        sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
6542                        q_cntl |= QC_MSG_OUT;
6543                        AscMsgOutSDTR(asc_dvc,
6544                                      asc_dvc->
6545                                      sdtr_period_tbl[(sdtr_data >> 4) &
6546                                                      (uchar)(asc_dvc->
6547                                                              max_sdtr_index -
6548                                                              1)],
6549                                      (uchar)(sdtr_data & (uchar)
6550                                              ASC_SYN_MAX_OFFSET));
6551                }
6552
6553                AscWriteLramByte(iop_base,
6554                                 (ushort)(halt_q_addr +
6555                                          (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6556
6557                tag_code = AscReadLramByte(iop_base,
6558                                           (ushort)(halt_q_addr + (ushort)
6559                                                    ASC_SCSIQ_B_TAG_CODE));
6560                tag_code &= 0xDC;
6561                if ((asc_dvc->pci_fix_asyn_xfer & target_id)
6562                    && !(asc_dvc->pci_fix_asyn_xfer_always & target_id)
6563                    ) {
6564
6565                        tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT
6566                                     | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX);
6567
6568                }
6569                AscWriteLramByte(iop_base,
6570                                 (ushort)(halt_q_addr +
6571                                          (ushort)ASC_SCSIQ_B_TAG_CODE),
6572                                 tag_code);
6573
6574                q_status = AscReadLramByte(iop_base,
6575                                           (ushort)(halt_q_addr + (ushort)
6576                                                    ASC_SCSIQ_B_STATUS));
6577                q_status |= (QS_READY | QS_BUSY);
6578                AscWriteLramByte(iop_base,
6579                                 (ushort)(halt_q_addr +
6580                                          (ushort)ASC_SCSIQ_B_STATUS),
6581                                 q_status);
6582
6583                scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B);
6584                scsi_busy &= ~target_id;
6585                AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6586
6587                AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6588                return;
6589        } else if (int_halt_code == ASC_HALT_SDTR_REJECTED) {
6590
6591                AscMemWordCopyPtrFromLram(iop_base,
6592                                          ASCV_MSGOUT_BEG,
6593                                          (uchar *)&out_msg,
6594                                          sizeof(EXT_MSG) >> 1);
6595
6596                if ((out_msg.msg_type == EXTENDED_MESSAGE) &&
6597                    (out_msg.msg_len == MS_SDTR_LEN) &&
6598                    (out_msg.msg_req == EXTENDED_SDTR)) {
6599
6600                        asc_dvc->init_sdtr &= ~target_id;
6601                        asc_dvc->sdtr_done &= ~target_id;
6602                        AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6603                        boardp->sdtr_data[tid_no] = asyn_sdtr;
6604                }
6605                q_cntl &= ~QC_MSG_OUT;
6606                AscWriteLramByte(iop_base,
6607                                 (ushort)(halt_q_addr +
6608                                          (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6609                AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6610                return;
6611        } else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) {
6612
6613                scsi_status = AscReadLramByte(iop_base,
6614                                              (ushort)((ushort)halt_q_addr +
6615                                                       (ushort)
6616                                                       ASC_SCSIQ_SCSI_STATUS));
6617                cur_dvc_qng =
6618                    AscReadLramByte(iop_base,
6619                                    (ushort)((ushort)ASC_QADR_BEG +
6620                                             (ushort)target_ix));
6621                if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) {
6622
6623                        scsi_busy = AscReadLramByte(iop_base,
6624                                                    (ushort)ASCV_SCSIBUSY_B);
6625                        scsi_busy |= target_id;
6626                        AscWriteLramByte(iop_base,
6627                                         (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6628                        asc_dvc->queue_full_or_busy |= target_id;
6629
6630                        if (scsi_status == SAM_STAT_TASK_SET_FULL) {
6631                                if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) {
6632                                        cur_dvc_qng -= 1;
6633                                        asc_dvc->max_dvc_qng[tid_no] =
6634                                            cur_dvc_qng;
6635
6636                                        AscWriteLramByte(iop_base,
6637                                                         (ushort)((ushort)
6638                                                                  ASCV_MAX_DVC_QNG_BEG
6639                                                                  + (ushort)
6640                                                                  tid_no),
6641                                                         cur_dvc_qng);
6642
6643                                        /*
6644                                         * Set the device queue depth to the
6645                                         * number of active requests when the
6646                                         * QUEUE FULL condition was encountered.
6647                                         */
6648                                        boardp->queue_full |= target_id;
6649                                        boardp->queue_full_cnt[tid_no] =
6650                                            cur_dvc_qng;
6651                                }
6652                        }
6653                }
6654                AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6655                return;
6656        }
6657        return;
6658}
6659
6660/*
6661 * void
6662 * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
6663 *
6664 * Calling/Exit State:
6665 *    none
6666 *
6667 * Description:
6668 *     Input an ASC_QDONE_INFO structure from the chip
6669 */
6670static void
6671DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
6672{
6673        int i;
6674        ushort word;
6675
6676        AscSetChipLramAddr(iop_base, s_addr);
6677        for (i = 0; i < 2 * words; i += 2) {
6678                if (i == 10) {
6679                        continue;
6680                }
6681                word = inpw(iop_base + IOP_RAM_DATA);
6682                inbuf[i] = word & 0xff;
6683                inbuf[i + 1] = (word >> 8) & 0xff;
6684        }
6685        ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words);
6686}
6687
6688static uchar
6689_AscCopyLramScsiDoneQ(PortAddr iop_base,
6690                      ushort q_addr,
6691                      ASC_QDONE_INFO *scsiq, unsigned int max_dma_count)
6692{
6693        ushort _val;
6694        uchar sg_queue_cnt;
6695
6696        DvcGetQinfo(iop_base,
6697                    q_addr + ASC_SCSIQ_DONE_INFO_BEG,
6698                    (uchar *)scsiq,
6699                    (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2);
6700
6701        _val = AscReadLramWord(iop_base,
6702                               (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS));
6703        scsiq->q_status = (uchar)_val;
6704        scsiq->q_no = (uchar)(_val >> 8);
6705        _val = AscReadLramWord(iop_base,
6706                               (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL));
6707        scsiq->cntl = (uchar)_val;
6708        sg_queue_cnt = (uchar)(_val >> 8);
6709        _val = AscReadLramWord(iop_base,
6710                               (ushort)(q_addr +
6711                                        (ushort)ASC_SCSIQ_B_SENSE_LEN));
6712        scsiq->sense_len = (uchar)_val;
6713        scsiq->extra_bytes = (uchar)(_val >> 8);
6714
6715        /*
6716         * Read high word of remain bytes from alternate location.
6717         */
6718        scsiq->remain_bytes = (((u32)AscReadLramWord(iop_base,
6719                                                     (ushort)(q_addr +
6720                                                              (ushort)
6721                                                              ASC_SCSIQ_W_ALT_DC1)))
6722                               << 16);
6723        /*
6724         * Read low word of remain bytes from original location.
6725         */
6726        scsiq->remain_bytes += AscReadLramWord(iop_base,
6727                                               (ushort)(q_addr + (ushort)
6728                                                        ASC_SCSIQ_DW_REMAIN_XFER_CNT));
6729
6730        scsiq->remain_bytes &= max_dma_count;
6731        return sg_queue_cnt;
6732}
6733
6734/*
6735 * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
6736 *
6737 * Interrupt callback function for the Narrow SCSI Asc Library.
6738 */
6739static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep)
6740{
6741        struct asc_board *boardp = asc_dvc_varp->drv_ptr;
6742        u32 srb_tag;
6743        struct scsi_cmnd *scp;
6744
6745        ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep);
6746        ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep);
6747
6748        /*
6749         * Decrease the srb_tag by 1 to find the SCSI command
6750         */
6751        srb_tag = qdonep->d2.srb_tag - 1;
6752        scp = scsi_host_find_tag(boardp->shost, srb_tag);
6753        if (!scp)
6754                return;
6755
6756        ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
6757
6758        ASC_STATS(boardp->shost, callback);
6759
6760        dma_unmap_single(boardp->dev, scp->SCp.dma_handle,
6761                         SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
6762        /*
6763         * 'qdonep' contains the command's ending status.
6764         */
6765        switch (qdonep->d3.done_stat) {
6766        case QD_NO_ERROR:
6767                ASC_DBG(2, "QD_NO_ERROR\n");
6768                scp->result = 0;
6769
6770                /*
6771                 * Check for an underrun condition.
6772                 *
6773                 * If there was no error and an underrun condition, then
6774                 * return the number of underrun bytes.
6775                 */
6776                if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 &&
6777                    qdonep->remain_bytes <= scsi_bufflen(scp)) {
6778                        ASC_DBG(1, "underrun condition %u bytes\n",
6779                                 (unsigned)qdonep->remain_bytes);
6780                        scsi_set_resid(scp, qdonep->remain_bytes);
6781                }
6782                break;
6783
6784        case QD_WITH_ERROR:
6785                ASC_DBG(2, "QD_WITH_ERROR\n");
6786                switch (qdonep->d3.host_stat) {
6787                case QHSTA_NO_ERROR:
6788                        if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) {
6789                                ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6790                                ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6791                                                  SCSI_SENSE_BUFFERSIZE);
6792                                /*
6793                                 * Note: The 'status_byte()' macro used by
6794                                 * target drivers defined in scsi.h shifts the
6795                                 * status byte returned by host drivers right
6796                                 * by 1 bit.  This is why target drivers also
6797                                 * use right shifted status byte definitions.
6798                                 * For instance target drivers use
6799                                 * CHECK_CONDITION, defined to 0x1, instead of
6800                                 * the SCSI defined check condition value of
6801                                 * 0x2. Host drivers are supposed to return
6802                                 * the status byte as it is defined by SCSI.
6803                                 */
6804                                scp->result = DRIVER_BYTE(DRIVER_SENSE) |
6805                                    STATUS_BYTE(qdonep->d3.scsi_stat);
6806                        } else {
6807                                scp->result = STATUS_BYTE(qdonep->d3.scsi_stat);
6808                        }
6809                        break;
6810
6811                default:
6812                        /* QHSTA error occurred */
6813                        ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat);
6814                        scp->result = HOST_BYTE(DID_BAD_TARGET);
6815                        break;
6816                }
6817                break;
6818
6819        case QD_ABORTED_BY_HOST:
6820                ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6821                scp->result =
6822                    HOST_BYTE(DID_ABORT) | MSG_BYTE(qdonep->d3.
6823                                                    scsi_msg) |
6824                    STATUS_BYTE(qdonep->d3.scsi_stat);
6825                break;
6826
6827        default:
6828                ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat);
6829                scp->result =
6830                    HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3.
6831                                                    scsi_msg) |
6832                    STATUS_BYTE(qdonep->d3.scsi_stat);
6833                break;
6834        }
6835
6836        /*
6837         * If the 'init_tidmask' bit isn't already set for the target and the
6838         * current request finished normally, then set the bit for the target
6839         * to indicate that a device is present.
6840         */
6841        if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6842            qdonep->d3.done_stat == QD_NO_ERROR &&
6843            qdonep->d3.host_stat == QHSTA_NO_ERROR) {
6844                boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6845        }
6846
6847        asc_scsi_done(scp);
6848}
6849
6850static int AscIsrQDone(ASC_DVC_VAR *asc_dvc)
6851{
6852        uchar next_qp;
6853        uchar n_q_used;
6854        uchar sg_list_qp;
6855        uchar sg_queue_cnt;
6856        uchar q_cnt;
6857        uchar done_q_tail;
6858        uchar tid_no;
6859        ASC_SCSI_BIT_ID_TYPE scsi_busy;
6860        ASC_SCSI_BIT_ID_TYPE target_id;
6861        PortAddr iop_base;
6862        ushort q_addr;
6863        ushort sg_q_addr;
6864        uchar cur_target_qng;
6865        ASC_QDONE_INFO scsiq_buf;
6866        ASC_QDONE_INFO *scsiq;
6867        bool false_overrun;
6868
6869        iop_base = asc_dvc->iop_base;
6870        n_q_used = 1;
6871        scsiq = (ASC_QDONE_INFO *)&scsiq_buf;
6872        done_q_tail = (uchar)AscGetVarDoneQTail(iop_base);
6873        q_addr = ASC_QNO_TO_QADDR(done_q_tail);
6874        next_qp = AscReadLramByte(iop_base,
6875                                  (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD));
6876        if (next_qp != ASC_QLINK_END) {
6877                AscPutVarDoneQTail(iop_base, next_qp);
6878                q_addr = ASC_QNO_TO_QADDR(next_qp);
6879                sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq,
6880                                                     asc_dvc->max_dma_count);
6881                AscWriteLramByte(iop_base,
6882                                 (ushort)(q_addr +
6883                                          (ushort)ASC_SCSIQ_B_STATUS),
6884                                 (uchar)(scsiq->
6885                                         q_status & (uchar)~(QS_READY |
6886                                                             QS_ABORTED)));
6887                tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix);
6888                target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix);
6889                if ((scsiq->cntl & QC_SG_HEAD) != 0) {
6890                        sg_q_addr = q_addr;
6891                        sg_list_qp = next_qp;
6892                        for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) {
6893                                sg_list_qp = AscReadLramByte(iop_base,
6894                                                             (ushort)(sg_q_addr
6895                                                                      + (ushort)
6896                                                                      ASC_SCSIQ_B_FWD));
6897                                sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp);
6898                                if (sg_list_qp == ASC_QLINK_END) {
6899                                        AscSetLibErrorCode(asc_dvc,
6900                                                           ASCQ_ERR_SG_Q_LINKS);
6901                                        scsiq->d3.done_stat = QD_WITH_ERROR;
6902                                        scsiq->d3.host_stat =
6903                                            QHSTA_D_QDONE_SG_LIST_CORRUPTED;
6904                                        goto FATAL_ERR_QDONE;
6905                                }
6906                                AscWriteLramByte(iop_base,
6907                                                 (ushort)(sg_q_addr + (ushort)
6908                                                          ASC_SCSIQ_B_STATUS),
6909                                                 QS_FREE);
6910                        }
6911                        n_q_used = sg_queue_cnt + 1;
6912                        AscPutVarDoneQTail(iop_base, sg_list_qp);
6913                }
6914                if (asc_dvc->queue_full_or_busy & target_id) {
6915                        cur_target_qng = AscReadLramByte(iop_base,
6916                                                         (ushort)((ushort)
6917                                                                  ASC_QADR_BEG
6918                                                                  + (ushort)
6919                                                                  scsiq->d2.
6920                                                                  target_ix));
6921                        if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) {
6922                                scsi_busy = AscReadLramByte(iop_base, (ushort)
6923                                                            ASCV_SCSIBUSY_B);
6924                                scsi_busy &= ~target_id;
6925                                AscWriteLramByte(iop_base,
6926                                                 (ushort)ASCV_SCSIBUSY_B,
6927                                                 scsi_busy);
6928                                asc_dvc->queue_full_or_busy &= ~target_id;
6929                        }
6930                }
6931                if (asc_dvc->cur_total_qng >= n_q_used) {
6932                        asc_dvc->cur_total_qng -= n_q_used;
6933                        if (asc_dvc->cur_dvc_qng[tid_no] != 0) {
6934                                asc_dvc->cur_dvc_qng[tid_no]--;
6935                        }
6936                } else {
6937                        AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG);
6938                        scsiq->d3.done_stat = QD_WITH_ERROR;
6939                        goto FATAL_ERR_QDONE;
6940                }
6941                if ((scsiq->d2.srb_tag == 0UL) ||
6942                    ((scsiq->q_status & QS_ABORTED) != 0)) {
6943                        return (0x11);
6944                } else if (scsiq->q_status == QS_DONE) {
6945                        /*
6946                         * This is also curious.
6947                         * false_overrun will _always_ be set to 'false'
6948                         */
6949                        false_overrun = false;
6950                        if (scsiq->extra_bytes != 0) {
6951                                scsiq->remain_bytes += scsiq->extra_bytes;
6952                        }
6953                        if (scsiq->d3.done_stat == QD_WITH_ERROR) {
6954                                if (scsiq->d3.host_stat ==
6955                                    QHSTA_M_DATA_OVER_RUN) {
6956                                        if ((scsiq->
6957                                             cntl & (QC_DATA_IN | QC_DATA_OUT))
6958                                            == 0) {
6959                                                scsiq->d3.done_stat =
6960                                                    QD_NO_ERROR;
6961                                                scsiq->d3.host_stat =
6962                                                    QHSTA_NO_ERROR;
6963                                        } else if (false_overrun) {
6964                                                scsiq->d3.done_stat =
6965                                                    QD_NO_ERROR;
6966                                                scsiq->d3.host_stat =
6967                                                    QHSTA_NO_ERROR;
6968                                        }
6969                                } else if (scsiq->d3.host_stat ==
6970                                           QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) {
6971                                        AscStopChip(iop_base);
6972                                        AscSetChipControl(iop_base,
6973                                                          (uchar)(CC_SCSI_RESET
6974                                                                  | CC_HALT));
6975                                        udelay(60);
6976                                        AscSetChipControl(iop_base, CC_HALT);
6977                                        AscSetChipStatus(iop_base,
6978                                                         CIW_CLR_SCSI_RESET_INT);
6979                                        AscSetChipStatus(iop_base, 0);
6980                                        AscSetChipControl(iop_base, 0);
6981                                }
6982                        }
6983                        if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
6984                                asc_isr_callback(asc_dvc, scsiq);
6985                        } else {
6986                                if ((AscReadLramByte(iop_base,
6987                                                     (ushort)(q_addr + (ushort)
6988                                                              ASC_SCSIQ_CDB_BEG))
6989                                     == START_STOP)) {
6990                                        asc_dvc->unit_not_ready &= ~target_id;
6991                                        if (scsiq->d3.done_stat != QD_NO_ERROR) {
6992                                                asc_dvc->start_motor &=
6993                                                    ~target_id;
6994                                        }
6995                                }
6996                        }
6997                        return (1);
6998                } else {
6999                        AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS);
7000 FATAL_ERR_QDONE:
7001                        if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
7002                                asc_isr_callback(asc_dvc, scsiq);
7003                        }
7004                        return (0x80);
7005                }
7006        }
7007        return (0);
7008}
7009
7010static int AscISR(ASC_DVC_VAR *asc_dvc)
7011{
7012        ASC_CS_TYPE chipstat;
7013        PortAddr iop_base;
7014        ushort saved_ram_addr;
7015        uchar ctrl_reg;
7016        uchar saved_ctrl_reg;
7017        int int_pending;
7018        int status;
7019        uchar host_flag;
7020
7021        iop_base = asc_dvc->iop_base;
7022        int_pending = ASC_FALSE;
7023
7024        if (AscIsIntPending(iop_base) == 0)
7025                return int_pending;
7026
7027        if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) {
7028                return ASC_ERROR;
7029        }
7030        if (asc_dvc->in_critical_cnt != 0) {
7031                AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL);
7032                return ASC_ERROR;
7033        }
7034        if (asc_dvc->is_in_int) {
7035                AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY);
7036                return ASC_ERROR;
7037        }
7038        asc_dvc->is_in_int = true;
7039        ctrl_reg = AscGetChipControl(iop_base);
7040        saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET |
7041                                       CC_SINGLE_STEP | CC_DIAG | CC_TEST));
7042        chipstat = AscGetChipStatus(iop_base);
7043        if (chipstat & CSW_SCSI_RESET_LATCH) {
7044                if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) {
7045                        int i = 10;
7046                        int_pending = ASC_TRUE;
7047                        asc_dvc->sdtr_done = 0;
7048                        saved_ctrl_reg &= (uchar)(~CC_HALT);
7049                        while ((AscGetChipStatus(iop_base) &
7050                                CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) {
7051                                mdelay(100);
7052                        }
7053                        AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT));
7054                        AscSetChipControl(iop_base, CC_HALT);
7055                        AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
7056                        AscSetChipStatus(iop_base, 0);
7057                        chipstat = AscGetChipStatus(iop_base);
7058                }
7059        }
7060        saved_ram_addr = AscGetChipLramAddr(iop_base);
7061        host_flag = AscReadLramByte(iop_base,
7062                                    ASCV_HOST_FLAG_B) &
7063            (uchar)(~ASC_HOST_FLAG_IN_ISR);
7064        AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
7065                         (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR));
7066        if ((chipstat & CSW_INT_PENDING) || (int_pending)) {
7067                AscAckInterrupt(iop_base);
7068                int_pending = ASC_TRUE;
7069                if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) {
7070                        AscIsrChipHalted(asc_dvc);
7071                        saved_ctrl_reg &= (uchar)(~CC_HALT);
7072                } else {
7073                        if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) {
7074                                while (((status =
7075                                         AscIsrQDone(asc_dvc)) & 0x01) != 0) {
7076                                }
7077                        } else {
7078                                do {
7079                                        if ((status =
7080                                             AscIsrQDone(asc_dvc)) == 1) {
7081                                                break;
7082                                        }
7083                                } while (status == 0x11);
7084                        }
7085                        if ((status & 0x80) != 0)
7086                                int_pending = ASC_ERROR;
7087                }
7088        }
7089        AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
7090        AscSetChipLramAddr(iop_base, saved_ram_addr);
7091        AscSetChipControl(iop_base, saved_ctrl_reg);
7092        asc_dvc->is_in_int = false;
7093        return int_pending;
7094}
7095
7096/*
7097 * advansys_reset()
7098 *
7099 * Reset the host associated with the command 'scp'.
7100 *
7101 * This function runs its own thread. Interrupts must be blocked but
7102 * sleeping is allowed and no locking other than for host structures is
7103 * required. Returns SUCCESS or FAILED.
7104 */
7105static int advansys_reset(struct scsi_cmnd *scp)
7106{
7107        struct Scsi_Host *shost = scp->device->host;
7108        struct asc_board *boardp = shost_priv(shost);
7109        unsigned long flags;
7110        int status;
7111        int ret = SUCCESS;
7112
7113        ASC_DBG(1, "0x%p\n", scp);
7114
7115        ASC_STATS(shost, reset);
7116
7117        scmd_printk(KERN_INFO, scp, "SCSI host reset started...\n");
7118
7119        if (ASC_NARROW_BOARD(boardp)) {
7120                ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7121
7122                /* Reset the chip and SCSI bus. */
7123                ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7124                status = AscInitAsc1000Driver(asc_dvc);
7125
7126                /* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
7127                if (asc_dvc->err_code || !asc_dvc->overrun_dma) {
7128                        scmd_printk(KERN_INFO, scp, "SCSI host reset error: "
7129                                    "0x%x, status: 0x%x\n", asc_dvc->err_code,
7130                                    status);
7131                        ret = FAILED;
7132                } else if (status) {
7133                        scmd_printk(KERN_INFO, scp, "SCSI host reset warning: "
7134                                    "0x%x\n", status);
7135                } else {
7136                        scmd_printk(KERN_INFO, scp, "SCSI host reset "
7137                                    "successful\n");
7138                }
7139
7140                ASC_DBG(1, "after AscInitAsc1000Driver()\n");
7141        } else {
7142                /*
7143                 * If the suggest reset bus flags are set, then reset the bus.
7144                 * Otherwise only reset the device.
7145                 */
7146                ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
7147
7148                /*
7149                 * Reset the chip and SCSI bus.
7150                 */
7151                ASC_DBG(1, "before AdvResetChipAndSB()\n");
7152                switch (AdvResetChipAndSB(adv_dvc)) {
7153                case ASC_TRUE:
7154                        scmd_printk(KERN_INFO, scp, "SCSI host reset "
7155                                    "successful\n");
7156                        break;
7157                case ASC_FALSE:
7158                default:
7159                        scmd_printk(KERN_INFO, scp, "SCSI host reset error\n");
7160                        ret = FAILED;
7161                        break;
7162                }
7163                spin_lock_irqsave(shost->host_lock, flags);
7164                AdvISR(adv_dvc);
7165                spin_unlock_irqrestore(shost->host_lock, flags);
7166        }
7167
7168        ASC_DBG(1, "ret %d\n", ret);
7169
7170        return ret;
7171}
7172
7173/*
7174 * advansys_biosparam()
7175 *
7176 * Translate disk drive geometry if the "BIOS greater than 1 GB"
7177 * support is enabled for a drive.
7178 *
7179 * ip (information pointer) is an int array with the following definition:
7180 * ip[0]: heads
7181 * ip[1]: sectors
7182 * ip[2]: cylinders
7183 */
7184static int
7185advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev,
7186                   sector_t capacity, int ip[])
7187{
7188        struct asc_board *boardp = shost_priv(sdev->host);
7189
7190        ASC_DBG(1, "begin\n");
7191        ASC_STATS(sdev->host, biosparam);
7192        if (ASC_NARROW_BOARD(boardp)) {
7193                if ((boardp->dvc_var.asc_dvc_var.dvc_cntl &
7194                     ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) {
7195                        ip[0] = 255;
7196                        ip[1] = 63;
7197                } else {
7198                        ip[0] = 64;
7199                        ip[1] = 32;
7200                }
7201        } else {
7202                if ((boardp->dvc_var.adv_dvc_var.bios_ctrl &
7203                     BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) {
7204                        ip[0] = 255;
7205                        ip[1] = 63;
7206                } else {
7207                        ip[0] = 64;
7208                        ip[1] = 32;
7209                }
7210        }
7211        ip[2] = (unsigned long)capacity / (ip[0] * ip[1]);
7212        ASC_DBG(1, "end\n");
7213        return 0;
7214}
7215
7216/*
7217 * First-level interrupt handler.
7218 *
7219 * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
7220 */
7221static irqreturn_t advansys_interrupt(int irq, void *dev_id)
7222{
7223        struct Scsi_Host *shost = dev_id;
7224        struct asc_board *boardp = shost_priv(shost);
7225        irqreturn_t result = IRQ_NONE;
7226        unsigned long flags;
7227
7228        ASC_DBG(2, "boardp 0x%p\n", boardp);
7229        spin_lock_irqsave(shost->host_lock, flags);
7230        if (ASC_NARROW_BOARD(boardp)) {
7231                if (AscIsIntPending(shost->io_port)) {
7232                        result = IRQ_HANDLED;
7233                        ASC_STATS(shost, interrupt);
7234                        ASC_DBG(1, "before AscISR()\n");
7235                        AscISR(&boardp->dvc_var.asc_dvc_var);
7236                }
7237        } else {
7238                ASC_DBG(1, "before AdvISR()\n");
7239                if (AdvISR(&boardp->dvc_var.adv_dvc_var)) {
7240                        result = IRQ_HANDLED;
7241                        ASC_STATS(shost, interrupt);
7242                }
7243        }
7244        spin_unlock_irqrestore(shost->host_lock, flags);
7245
7246        ASC_DBG(1, "end\n");
7247        return result;
7248}
7249
7250static bool AscHostReqRiscHalt(PortAddr iop_base)
7251{
7252        int count = 0;
7253        bool sta = false;
7254        uchar saved_stop_code;
7255
7256        if (AscIsChipHalted(iop_base))
7257                return true;
7258        saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B);
7259        AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
7260                         ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP);
7261        do {
7262                if (AscIsChipHalted(iop_base)) {
7263                        sta = true;
7264                        break;
7265                }
7266                mdelay(100);
7267        } while (count++ < 20);
7268        AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code);
7269        return sta;
7270}
7271
7272static bool
7273AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data)
7274{
7275        bool sta = false;
7276
7277        if (AscHostReqRiscHalt(iop_base)) {
7278                sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
7279                AscStartChip(iop_base);
7280        }
7281        return sta;
7282}
7283
7284static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev)
7285{
7286        char type = sdev->type;
7287        ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id;
7288
7289        if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN))
7290                return;
7291        if (asc_dvc->init_sdtr & tid_bits)
7292                return;
7293
7294        if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0))
7295                asc_dvc->pci_fix_asyn_xfer_always |= tid_bits;
7296
7297        asc_dvc->pci_fix_asyn_xfer |= tid_bits;
7298        if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) ||
7299            (type == TYPE_ROM) || (type == TYPE_TAPE))
7300                asc_dvc->pci_fix_asyn_xfer &= ~tid_bits;
7301
7302        if (asc_dvc->pci_fix_asyn_xfer & tid_bits)
7303                AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id,
7304                                        ASYN_SDTR_DATA_FIX_PCI_REV_AB);
7305}
7306
7307static void
7308advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc)
7309{
7310        ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id;
7311        ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng;
7312
7313        if (sdev->lun == 0) {
7314                ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr;
7315                if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) {
7316                        asc_dvc->init_sdtr |= tid_bit;
7317                } else {
7318                        asc_dvc->init_sdtr &= ~tid_bit;
7319                }
7320
7321                if (orig_init_sdtr != asc_dvc->init_sdtr)
7322                        AscAsyncFix(asc_dvc, sdev);
7323        }
7324
7325        if (sdev->tagged_supported) {
7326                if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) {
7327                        if (sdev->lun == 0) {
7328                                asc_dvc->cfg->can_tagged_qng |= tid_bit;
7329                                asc_dvc->use_tagged_qng |= tid_bit;
7330                        }
7331                        scsi_change_queue_depth(sdev, 
7332                                                asc_dvc->max_dvc_qng[sdev->id]);
7333                }
7334        } else {
7335                if (sdev->lun == 0) {
7336                        asc_dvc->cfg->can_tagged_qng &= ~tid_bit;
7337                        asc_dvc->use_tagged_qng &= ~tid_bit;
7338                }
7339        }
7340
7341        if ((sdev->lun == 0) &&
7342            (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) {
7343                AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B,
7344                                 asc_dvc->cfg->disc_enable);
7345                AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B,
7346                                 asc_dvc->use_tagged_qng);
7347                AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B,
7348                                 asc_dvc->cfg->can_tagged_qng);
7349
7350                asc_dvc->max_dvc_qng[sdev->id] =
7351                                        asc_dvc->cfg->max_tag_qng[sdev->id];
7352                AscWriteLramByte(asc_dvc->iop_base,
7353                                 (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id),
7354                                 asc_dvc->max_dvc_qng[sdev->id]);
7355        }
7356}
7357
7358/*
7359 * Wide Transfers
7360 *
7361 * If the EEPROM enabled WDTR for the device and the device supports wide
7362 * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
7363 * write the new value to the microcode.
7364 */
7365static void
7366advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask)
7367{
7368        unsigned short cfg_word;
7369        AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7370        if ((cfg_word & tidmask) != 0)
7371                return;
7372
7373        cfg_word |= tidmask;
7374        AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7375
7376        /*
7377         * Clear the microcode SDTR and WDTR negotiation done indicators for
7378         * the target to cause it to negotiate with the new setting set above.
7379         * WDTR when accepted causes the target to enter asynchronous mode, so
7380         * SDTR must be negotiated.
7381         */
7382        AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7383        cfg_word &= ~tidmask;
7384        AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7385        AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7386        cfg_word &= ~tidmask;
7387        AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7388}
7389
7390/*
7391 * Synchronous Transfers
7392 *
7393 * If the EEPROM enabled SDTR for the device and the device
7394 * supports synchronous transfers, then turn on the device's
7395 * 'sdtr_able' bit. Write the new value to the microcode.
7396 */
7397static void
7398advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask)
7399{
7400        unsigned short cfg_word;
7401        AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7402        if ((cfg_word & tidmask) != 0)
7403                return;
7404
7405        cfg_word |= tidmask;
7406        AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7407
7408        /*
7409         * Clear the microcode "SDTR negotiation" done indicator for the
7410         * target to cause it to negotiate with the new setting set above.
7411         */
7412        AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7413        cfg_word &= ~tidmask;
7414        AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7415}
7416
7417/*
7418 * PPR (Parallel Protocol Request) Capable
7419 *
7420 * If the device supports DT mode, then it must be PPR capable.
7421 * The PPR message will be used in place of the SDTR and WDTR
7422 * messages to negotiate synchronous speed and offset, transfer
7423 * width, and protocol options.
7424 */
7425static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc,
7426                                AdvPortAddr iop_base, unsigned short tidmask)
7427{
7428        AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7429        adv_dvc->ppr_able |= tidmask;
7430        AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7431}
7432
7433static void
7434advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc)
7435{
7436        AdvPortAddr iop_base = adv_dvc->iop_base;
7437        unsigned short tidmask = 1 << sdev->id;
7438
7439        if (sdev->lun == 0) {
7440                /*
7441                 * Handle WDTR, SDTR, and Tag Queuing. If the feature
7442                 * is enabled in the EEPROM and the device supports the
7443                 * feature, then enable it in the microcode.
7444                 */
7445
7446                if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr)
7447                        advansys_wide_enable_wdtr(iop_base, tidmask);
7448                if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr)
7449                        advansys_wide_enable_sdtr(iop_base, tidmask);
7450                if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr)
7451                        advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask);
7452
7453                /*
7454                 * Tag Queuing is disabled for the BIOS which runs in polled
7455                 * mode and would see no benefit from Tag Queuing. Also by
7456                 * disabling Tag Queuing in the BIOS devices with Tag Queuing
7457                 * bugs will at least work with the BIOS.
7458                 */
7459                if ((adv_dvc->tagqng_able & tidmask) &&
7460                    sdev->tagged_supported) {
7461                        unsigned short cfg_word;
7462                        AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word);
7463                        cfg_word |= tidmask;
7464                        AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
7465                                         cfg_word);
7466                        AdvWriteByteLram(iop_base,
7467                                         ASC_MC_NUMBER_OF_MAX_CMD + sdev->id,
7468                                         adv_dvc->max_dvc_qng);
7469                }
7470        }
7471
7472        if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported)
7473                scsi_change_queue_depth(sdev, adv_dvc->max_dvc_qng);
7474}
7475
7476/*
7477 * Set the number of commands to queue per device for the
7478 * specified host adapter.
7479 */
7480static int advansys_slave_configure(struct scsi_device *sdev)
7481{
7482        struct asc_board *boardp = shost_priv(sdev->host);
7483
7484        if (ASC_NARROW_BOARD(boardp))
7485                advansys_narrow_slave_configure(sdev,
7486                                                &boardp->dvc_var.asc_dvc_var);
7487        else
7488                advansys_wide_slave_configure(sdev,
7489                                                &boardp->dvc_var.adv_dvc_var);
7490
7491        return 0;
7492}
7493
7494static __le32 asc_get_sense_buffer_dma(struct scsi_cmnd *scp)
7495{
7496        struct asc_board *board = shost_priv(scp->device->host);
7497
7498        scp->SCp.dma_handle = dma_map_single(board->dev, scp->sense_buffer,
7499                                             SCSI_SENSE_BUFFERSIZE,
7500                                             DMA_FROM_DEVICE);
7501        if (dma_mapping_error(board->dev, scp->SCp.dma_handle)) {
7502                ASC_DBG(1, "failed to map sense buffer\n");
7503                return 0;
7504        }
7505        return cpu_to_le32(scp->SCp.dma_handle);
7506}
7507
7508static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
7509                        struct asc_scsi_q *asc_scsi_q)
7510{
7511        struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7512        int use_sg;
7513        u32 srb_tag;
7514
7515        memset(asc_scsi_q, 0, sizeof(*asc_scsi_q));
7516
7517        /*
7518         * Set the srb_tag to the command tag + 1, as
7519         * srb_tag '0' is used internally by the chip.
7520         */
7521        srb_tag = scp->request->tag + 1;
7522        asc_scsi_q->q2.srb_tag = srb_tag;
7523
7524        /*
7525         * Build the ASC_SCSI_Q request.
7526         */
7527        asc_scsi_q->cdbptr = &scp->cmnd[0];
7528        asc_scsi_q->q2.cdb_len = scp->cmd_len;
7529        asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id);
7530        asc_scsi_q->q1.target_lun = scp->device->lun;
7531        asc_scsi_q->q2.target_ix =
7532            ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun);
7533        asc_scsi_q->q1.sense_addr = asc_get_sense_buffer_dma(scp);
7534        asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE;
7535        if (!asc_scsi_q->q1.sense_addr)
7536                return ASC_BUSY;
7537
7538        /*
7539         * If there are any outstanding requests for the current target,
7540         * then every 255th request send an ORDERED request. This heuristic
7541         * tries to retain the benefit of request sorting while preventing
7542         * request starvation. 255 is the max number of tags or pending commands
7543         * a device may have outstanding.
7544         *
7545         * The request count is incremented below for every successfully
7546         * started request.
7547         *
7548         */
7549        if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) &&
7550            (boardp->reqcnt[scp->device->id] % 255) == 0) {
7551                asc_scsi_q->q2.tag_code = ORDERED_QUEUE_TAG;
7552        } else {
7553                asc_scsi_q->q2.tag_code = SIMPLE_QUEUE_TAG;
7554        }
7555
7556        /* Build ASC_SCSI_Q */
7557        use_sg = scsi_dma_map(scp);
7558        if (use_sg < 0) {
7559                ASC_DBG(1, "failed to map sglist\n");
7560                return ASC_BUSY;
7561        } else if (use_sg > 0) {
7562                int sgcnt;
7563                struct scatterlist *slp;
7564                struct asc_sg_head *asc_sg_head;
7565
7566                if (use_sg > scp->device->host->sg_tablesize) {
7567                        scmd_printk(KERN_ERR, scp, "use_sg %d > "
7568                                "sg_tablesize %d\n", use_sg,
7569                                scp->device->host->sg_tablesize);
7570                        scsi_dma_unmap(scp);
7571                        scp->result = HOST_BYTE(DID_ERROR);
7572                        return ASC_ERROR;
7573                }
7574
7575                asc_sg_head = kzalloc(sizeof(asc_scsi_q->sg_head) +
7576                        use_sg * sizeof(struct asc_sg_list), GFP_ATOMIC);
7577                if (!asc_sg_head) {
7578                        scsi_dma_unmap(scp);
7579                        scp->result = HOST_BYTE(DID_SOFT_ERROR);
7580                        return ASC_ERROR;
7581                }
7582
7583                asc_scsi_q->q1.cntl |= QC_SG_HEAD;
7584                asc_scsi_q->sg_head = asc_sg_head;
7585                asc_scsi_q->q1.data_cnt = 0;
7586                asc_scsi_q->q1.data_addr = 0;
7587                /* This is a byte value, otherwise it would need to be swapped. */
7588                asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg;
7589                ASC_STATS_ADD(scp->device->host, xfer_elem,
7590                              asc_sg_head->entry_cnt);
7591
7592                /*
7593                 * Convert scatter-gather list into ASC_SG_HEAD list.
7594                 */
7595                scsi_for_each_sg(scp, slp, use_sg, sgcnt) {
7596                        asc_sg_head->sg_list[sgcnt].addr =
7597                            cpu_to_le32(sg_dma_address(slp));
7598                        asc_sg_head->sg_list[sgcnt].bytes =
7599                            cpu_to_le32(sg_dma_len(slp));
7600                        ASC_STATS_ADD(scp->device->host, xfer_sect,
7601                                      DIV_ROUND_UP(sg_dma_len(slp), 512));
7602                }
7603        }
7604
7605        ASC_STATS(scp->device->host, xfer_cnt);
7606
7607        ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q);
7608        ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
7609
7610        return ASC_NOERROR;
7611}
7612
7613/*
7614 * Build scatter-gather list for Adv Library (Wide Board).
7615 *
7616 * Additional ADV_SG_BLOCK structures will need to be allocated
7617 * if the total number of scatter-gather elements exceeds
7618 * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
7619 * assumed to be physically contiguous.
7620 *
7621 * Return:
7622 *      ADV_SUCCESS(1) - SG List successfully created
7623 *      ADV_ERROR(-1) - SG List creation failed
7624 */
7625static int
7626adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp,
7627               ADV_SCSI_REQ_Q *scsiqp, struct scsi_cmnd *scp, int use_sg)
7628{
7629        adv_sgblk_t *sgblkp, *prev_sgblkp;
7630        struct scatterlist *slp;
7631        int sg_elem_cnt;
7632        ADV_SG_BLOCK *sg_block, *prev_sg_block;
7633        dma_addr_t sgblk_paddr;
7634        int i;
7635
7636        slp = scsi_sglist(scp);
7637        sg_elem_cnt = use_sg;
7638        prev_sgblkp = NULL;
7639        prev_sg_block = NULL;
7640        reqp->sgblkp = NULL;
7641
7642        for (;;) {
7643                /*
7644                 * Allocate a 'adv_sgblk_t' structure from the board free
7645                 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
7646                 * (15) scatter-gather elements.
7647                 */
7648                sgblkp = dma_pool_alloc(boardp->adv_sgblk_pool, GFP_ATOMIC,
7649                                        &sgblk_paddr);
7650                if (!sgblkp) {
7651                        ASC_DBG(1, "no free adv_sgblk_t\n");
7652                        ASC_STATS(scp->device->host, adv_build_nosg);
7653
7654                        /*
7655                         * Allocation failed. Free 'adv_sgblk_t' structures
7656                         * already allocated for the request.
7657                         */
7658                        while ((sgblkp = reqp->sgblkp) != NULL) {
7659                                /* Remove 'sgblkp' from the request list. */
7660                                reqp->sgblkp = sgblkp->next_sgblkp;
7661                                sgblkp->next_sgblkp = NULL;
7662                                dma_pool_free(boardp->adv_sgblk_pool, sgblkp,
7663                                              sgblkp->sg_addr);
7664                        }
7665                        return ASC_BUSY;
7666                }
7667                /* Complete 'adv_sgblk_t' board allocation. */
7668                sgblkp->sg_addr = sgblk_paddr;
7669                sgblkp->next_sgblkp = NULL;
7670                sg_block = &sgblkp->sg_block;
7671
7672                /*
7673                 * Check if this is the first 'adv_sgblk_t' for the
7674                 * request.
7675                 */
7676                if (reqp->sgblkp == NULL) {
7677                        /* Request's first scatter-gather block. */
7678                        reqp->sgblkp = sgblkp;
7679
7680                        /*
7681                         * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
7682                         * address pointers.
7683                         */
7684                        scsiqp->sg_list_ptr = sg_block;
7685                        scsiqp->sg_real_addr = cpu_to_le32(sgblk_paddr);
7686                } else {
7687                        /* Request's second or later scatter-gather block. */
7688                        prev_sgblkp->next_sgblkp = sgblkp;
7689
7690                        /*
7691                         * Point the previous ADV_SG_BLOCK structure to
7692                         * the newly allocated ADV_SG_BLOCK structure.
7693                         */
7694                        prev_sg_block->sg_ptr = cpu_to_le32(sgblk_paddr);
7695                }
7696
7697                for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) {
7698                        sg_block->sg_list[i].sg_addr =
7699                                        cpu_to_le32(sg_dma_address(slp));
7700                        sg_block->sg_list[i].sg_count =
7701                                        cpu_to_le32(sg_dma_len(slp));
7702                        ASC_STATS_ADD(scp->device->host, xfer_sect,
7703                                      DIV_ROUND_UP(sg_dma_len(slp), 512));
7704
7705                        if (--sg_elem_cnt == 0) {
7706                                /*
7707                                 * Last ADV_SG_BLOCK and scatter-gather entry.
7708                                 */
7709                                sg_block->sg_cnt = i + 1;
7710                                sg_block->sg_ptr = 0L; /* Last ADV_SG_BLOCK in list. */
7711                                return ADV_SUCCESS;
7712                        }
7713                        slp = sg_next(slp);
7714                }
7715                sg_block->sg_cnt = NO_OF_SG_PER_BLOCK;
7716                prev_sg_block = sg_block;
7717                prev_sgblkp = sgblkp;
7718        }
7719}
7720
7721/*
7722 * Build a request structure for the Adv Library (Wide Board).
7723 *
7724 * If an adv_req_t can not be allocated to issue the request,
7725 * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
7726 *
7727 * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the
7728 * microcode for DMA addresses or math operations are byte swapped
7729 * to little-endian order.
7730 */
7731static int
7732adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
7733              adv_req_t **adv_reqpp)
7734{
7735        u32 srb_tag = scp->request->tag;
7736        adv_req_t *reqp;
7737        ADV_SCSI_REQ_Q *scsiqp;
7738        int ret;
7739        int use_sg;
7740        dma_addr_t sense_addr;
7741
7742        /*
7743         * Allocate an adv_req_t structure from the board to execute
7744         * the command.
7745         */
7746        reqp = &boardp->adv_reqp[srb_tag];
7747        if (reqp->cmndp && reqp->cmndp != scp ) {
7748                ASC_DBG(1, "no free adv_req_t\n");
7749                ASC_STATS(scp->device->host, adv_build_noreq);
7750                return ASC_BUSY;
7751        }
7752
7753        reqp->req_addr = boardp->adv_reqp_addr + (srb_tag * sizeof(adv_req_t));
7754
7755        scsiqp = &reqp->scsi_req_q;
7756
7757        /*
7758         * Initialize the structure.
7759         */
7760        scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0;
7761
7762        /*
7763         * Set the srb_tag to the command tag.
7764         */
7765        scsiqp->srb_tag = srb_tag;
7766
7767        /*
7768         * Set 'host_scribble' to point to the adv_req_t structure.
7769         */
7770        reqp->cmndp = scp;
7771        scp->host_scribble = (void *)reqp;
7772
7773        /*
7774         * Build the ADV_SCSI_REQ_Q request.
7775         */
7776
7777        /* Set CDB length and copy it to the request structure.  */
7778        scsiqp->cdb_len = scp->cmd_len;
7779        /* Copy first 12 CDB bytes to cdb[]. */
7780        memcpy(scsiqp->cdb, scp->cmnd, scp->cmd_len < 12 ? scp->cmd_len : 12);
7781        /* Copy last 4 CDB bytes, if present, to cdb16[]. */
7782        if (scp->cmd_len > 12) {
7783                int cdb16_len = scp->cmd_len - 12;
7784
7785                memcpy(scsiqp->cdb16, &scp->cmnd[12], cdb16_len);
7786        }
7787
7788        scsiqp->target_id = scp->device->id;
7789        scsiqp->target_lun = scp->device->lun;
7790
7791        sense_addr = dma_map_single(boardp->dev, scp->sense_buffer,
7792                                    SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7793        if (dma_mapping_error(boardp->dev, sense_addr)) {
7794                ASC_DBG(1, "failed to map sense buffer\n");
7795                ASC_STATS(scp->device->host, adv_build_noreq);
7796                return ASC_BUSY;
7797        }
7798        scsiqp->sense_addr = cpu_to_le32(sense_addr);
7799        scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE;
7800
7801        /* Build ADV_SCSI_REQ_Q */
7802
7803        use_sg = scsi_dma_map(scp);
7804        if (use_sg < 0) {
7805                ASC_DBG(1, "failed to map SG list\n");
7806                ASC_STATS(scp->device->host, adv_build_noreq);
7807                return ASC_BUSY;
7808        } else if (use_sg == 0) {
7809                /* Zero-length transfer */
7810                reqp->sgblkp = NULL;
7811                scsiqp->data_cnt = 0;
7812
7813                scsiqp->data_addr = 0;
7814                scsiqp->sg_list_ptr = NULL;
7815                scsiqp->sg_real_addr = 0;
7816        } else {
7817                if (use_sg > ADV_MAX_SG_LIST) {
7818                        scmd_printk(KERN_ERR, scp, "use_sg %d > "
7819                                   "ADV_MAX_SG_LIST %d\n", use_sg,
7820                                   scp->device->host->sg_tablesize);
7821                        scsi_dma_unmap(scp);
7822                        scp->result = HOST_BYTE(DID_ERROR);
7823                        reqp->cmndp = NULL;
7824                        scp->host_scribble = NULL;
7825
7826                        return ASC_ERROR;
7827                }
7828
7829                scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp));
7830
7831                ret = adv_get_sglist(boardp, reqp, scsiqp, scp, use_sg);
7832                if (ret != ADV_SUCCESS) {
7833                        scsi_dma_unmap(scp);
7834                        scp->result = HOST_BYTE(DID_ERROR);
7835                        reqp->cmndp = NULL;
7836                        scp->host_scribble = NULL;
7837
7838                        return ret;
7839                }
7840
7841                ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg);
7842        }
7843
7844        ASC_STATS(scp->device->host, xfer_cnt);
7845
7846        ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
7847        ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
7848
7849        *adv_reqpp = reqp;
7850
7851        return ASC_NOERROR;
7852}
7853
7854static int AscSgListToQueue(int sg_list)
7855{
7856        int n_sg_list_qs;
7857
7858        n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q);
7859        if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0)
7860                n_sg_list_qs++;
7861        return n_sg_list_qs + 1;
7862}
7863
7864static uint
7865AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs)
7866{
7867        uint cur_used_qs;
7868        uint cur_free_qs;
7869        ASC_SCSI_BIT_ID_TYPE target_id;
7870        uchar tid_no;
7871
7872        target_id = ASC_TIX_TO_TARGET_ID(target_ix);
7873        tid_no = ASC_TIX_TO_TID(target_ix);
7874        if ((asc_dvc->unit_not_ready & target_id) ||
7875            (asc_dvc->queue_full_or_busy & target_id)) {
7876                return 0;
7877        }
7878        if (n_qs == 1) {
7879                cur_used_qs = (uint) asc_dvc->cur_total_qng +
7880                    (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q;
7881        } else {
7882                cur_used_qs = (uint) asc_dvc->cur_total_qng +
7883                    (uint) ASC_MIN_FREE_Q;
7884        }
7885        if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) {
7886                cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs;
7887                if (asc_dvc->cur_dvc_qng[tid_no] >=
7888                    asc_dvc->max_dvc_qng[tid_no]) {
7889                        return 0;
7890                }
7891                return cur_free_qs;
7892        }
7893        if (n_qs > 1) {
7894                if ((n_qs > asc_dvc->last_q_shortage)
7895                    && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) {
7896                        asc_dvc->last_q_shortage = n_qs;
7897                }
7898        }
7899        return 0;
7900}
7901
7902static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head)
7903{
7904        ushort q_addr;
7905        uchar next_qp;
7906        uchar q_status;
7907
7908        q_addr = ASC_QNO_TO_QADDR(free_q_head);
7909        q_status = (uchar)AscReadLramByte(iop_base,
7910                                          (ushort)(q_addr +
7911                                                   ASC_SCSIQ_B_STATUS));
7912        next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD));
7913        if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END))
7914                return next_qp;
7915        return ASC_QLINK_END;
7916}
7917
7918static uchar
7919AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q)
7920{
7921        uchar i;
7922
7923        for (i = 0; i < n_free_q; i++) {
7924                free_q_head = AscAllocFreeQueue(iop_base, free_q_head);
7925                if (free_q_head == ASC_QLINK_END)
7926                        break;
7927        }
7928        return free_q_head;
7929}
7930
7931/*
7932 * void
7933 * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
7934 *
7935 * Calling/Exit State:
7936 *    none
7937 *
7938 * Description:
7939 *     Output an ASC_SCSI_Q structure to the chip
7940 */
7941static void
7942DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
7943{
7944        int i;
7945
7946        ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words);
7947        AscSetChipLramAddr(iop_base, s_addr);
7948        for (i = 0; i < 2 * words; i += 2) {
7949                if (i == 4 || i == 20) {
7950                        continue;
7951                }
7952                outpw(iop_base + IOP_RAM_DATA,
7953                      ((ushort)outbuf[i + 1] << 8) | outbuf[i]);
7954        }
7955}
7956
7957static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
7958{
7959        ushort q_addr;
7960        uchar tid_no;
7961        uchar sdtr_data;
7962        uchar syn_period_ix;
7963        uchar syn_offset;
7964        PortAddr iop_base;
7965
7966        iop_base = asc_dvc->iop_base;
7967        if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) &&
7968            ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) {
7969                tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix);
7970                sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
7971                syn_period_ix =
7972                    (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1);
7973                syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET;
7974                AscMsgOutSDTR(asc_dvc,
7975                              asc_dvc->sdtr_period_tbl[syn_period_ix],
7976                              syn_offset);
7977                scsiq->q1.cntl |= QC_MSG_OUT;
7978        }
7979        q_addr = ASC_QNO_TO_QADDR(q_no);
7980        if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) {
7981                scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
7982        }
7983        scsiq->q1.status = QS_FREE;
7984        AscMemWordCopyPtrToLram(iop_base,
7985                                q_addr + ASC_SCSIQ_CDB_BEG,
7986                                (uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1);
7987
7988        DvcPutScsiQ(iop_base,
7989                    q_addr + ASC_SCSIQ_CPY_BEG,
7990                    (uchar *)&scsiq->q1.cntl,
7991                    ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1);
7992        AscWriteLramWord(iop_base,
7993                         (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS),
7994                         (ushort)(((ushort)scsiq->q1.
7995                                   q_no << 8) | (ushort)QS_READY));
7996        return 1;
7997}
7998
7999static int
8000AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
8001{
8002        int sta;
8003        int i;
8004        ASC_SG_HEAD *sg_head;
8005        ASC_SG_LIST_Q scsi_sg_q;
8006        __le32 saved_data_addr;
8007        __le32 saved_data_cnt;
8008        PortAddr iop_base;
8009        ushort sg_list_dwords;
8010        ushort sg_index;
8011        ushort sg_entry_cnt;
8012        ushort q_addr;
8013        uchar next_qp;
8014
8015        iop_base = asc_dvc->iop_base;
8016        sg_head = scsiq->sg_head;
8017        saved_data_addr = scsiq->q1.data_addr;
8018        saved_data_cnt = scsiq->q1.data_cnt;
8019        scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr);
8020        scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes);
8021        /*
8022         * Set sg_entry_cnt to be the number of SG elements that
8023         * will fit in the allocated SG queues. It is minus 1, because
8024         * the first SG element is handled above.
8025         */
8026        sg_entry_cnt = sg_head->entry_cnt - 1;
8027
8028        if (sg_entry_cnt != 0) {
8029                scsiq->q1.cntl |= QC_SG_HEAD;
8030                q_addr = ASC_QNO_TO_QADDR(q_no);
8031                sg_index = 1;
8032                scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
8033                scsi_sg_q.sg_head_qp = q_no;
8034                scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
8035                for (i = 0; i < sg_head->queue_cnt; i++) {
8036                        scsi_sg_q.seq_no = i + 1;
8037                        if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
8038                                sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
8039                                sg_entry_cnt -= ASC_SG_LIST_PER_Q;
8040                                if (i == 0) {
8041                                        scsi_sg_q.sg_list_cnt =
8042                                            ASC_SG_LIST_PER_Q;
8043                                        scsi_sg_q.sg_cur_list_cnt =
8044                                            ASC_SG_LIST_PER_Q;
8045                                } else {
8046                                        scsi_sg_q.sg_list_cnt =
8047                                            ASC_SG_LIST_PER_Q - 1;
8048                                        scsi_sg_q.sg_cur_list_cnt =
8049                                            ASC_SG_LIST_PER_Q - 1;
8050                                }
8051                        } else {
8052                                scsi_sg_q.cntl |= QCSG_SG_XFER_END;
8053                                sg_list_dwords = sg_entry_cnt << 1;
8054                                if (i == 0) {
8055                                        scsi_sg_q.sg_list_cnt = sg_entry_cnt;
8056                                        scsi_sg_q.sg_cur_list_cnt =
8057                                            sg_entry_cnt;
8058                                } else {
8059                                        scsi_sg_q.sg_list_cnt =
8060                                            sg_entry_cnt - 1;
8061                                        scsi_sg_q.sg_cur_list_cnt =
8062                                            sg_entry_cnt - 1;
8063                                }
8064                                sg_entry_cnt = 0;
8065                        }
8066                        next_qp = AscReadLramByte(iop_base,
8067                                                  (ushort)(q_addr +
8068                                                           ASC_SCSIQ_B_FWD));
8069                        scsi_sg_q.q_no = next_qp;
8070                        q_addr = ASC_QNO_TO_QADDR(next_qp);
8071                        AscMemWordCopyPtrToLram(iop_base,
8072                                                q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
8073                                                (uchar *)&scsi_sg_q,
8074                                                sizeof(ASC_SG_LIST_Q) >> 1);
8075                        AscMemDWordCopyPtrToLram(iop_base,
8076                                                 q_addr + ASC_SGQ_LIST_BEG,
8077                                                 (uchar *)&sg_head->
8078                                                 sg_list[sg_index],
8079                                                 sg_list_dwords);
8080                        sg_index += ASC_SG_LIST_PER_Q;
8081                        scsiq->next_sg_index = sg_index;
8082                }
8083        } else {
8084                scsiq->q1.cntl &= ~QC_SG_HEAD;
8085        }
8086        sta = AscPutReadyQueue(asc_dvc, scsiq, q_no);
8087        scsiq->q1.data_addr = saved_data_addr;
8088        scsiq->q1.data_cnt = saved_data_cnt;
8089        return (sta);
8090}
8091
8092static int
8093AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required)
8094{
8095        PortAddr iop_base;
8096        uchar free_q_head;
8097        uchar next_qp;
8098        uchar tid_no;
8099        uchar target_ix;
8100        int sta;
8101
8102        iop_base = asc_dvc->iop_base;
8103        target_ix = scsiq->q2.target_ix;
8104        tid_no = ASC_TIX_TO_TID(target_ix);
8105        sta = 0;
8106        free_q_head = (uchar)AscGetVarFreeQHead(iop_base);
8107        if (n_q_required > 1) {
8108                next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head,
8109                                                    (uchar)n_q_required);
8110                if (next_qp != ASC_QLINK_END) {
8111                        asc_dvc->last_q_shortage = 0;
8112                        scsiq->sg_head->queue_cnt = n_q_required - 1;
8113                        scsiq->q1.q_no = free_q_head;
8114                        sta = AscPutReadySgListQueue(asc_dvc, scsiq,
8115                                                     free_q_head);
8116                }
8117        } else if (n_q_required == 1) {
8118                next_qp = AscAllocFreeQueue(iop_base, free_q_head);
8119                if (next_qp != ASC_QLINK_END) {
8120                        scsiq->q1.q_no = free_q_head;
8121                        sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head);
8122                }
8123        }
8124        if (sta == 1) {
8125                AscPutVarFreeQHead(iop_base, next_qp);
8126                asc_dvc->cur_total_qng += n_q_required;
8127                asc_dvc->cur_dvc_qng[tid_no]++;
8128        }
8129        return sta;
8130}
8131
8132#define ASC_SYN_OFFSET_ONE_DISABLE_LIST  16
8133static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = {
8134        INQUIRY,
8135        REQUEST_SENSE,
8136        READ_CAPACITY,
8137        READ_TOC,
8138        MODE_SELECT,
8139        MODE_SENSE,
8140        MODE_SELECT_10,
8141        MODE_SENSE_10,
8142        0xFF,
8143        0xFF,
8144        0xFF,
8145        0xFF,
8146        0xFF,
8147        0xFF,
8148        0xFF,
8149        0xFF
8150};
8151
8152static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq)
8153{
8154        PortAddr iop_base;
8155        int sta;
8156        int n_q_required;
8157        bool disable_syn_offset_one_fix;
8158        int i;
8159        u32 addr;
8160        ushort sg_entry_cnt = 0;
8161        ushort sg_entry_cnt_minus_one = 0;
8162        uchar target_ix;
8163        uchar tid_no;
8164        uchar sdtr_data;
8165        uchar extra_bytes;
8166        uchar scsi_cmd;
8167        uchar disable_cmd;
8168        ASC_SG_HEAD *sg_head;
8169        unsigned long data_cnt;
8170
8171        iop_base = asc_dvc->iop_base;
8172        sg_head = scsiq->sg_head;
8173        if (asc_dvc->err_code != 0)
8174                return ASC_ERROR;
8175        scsiq->q1.q_no = 0;
8176        if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) {
8177                scsiq->q1.extra_bytes = 0;
8178        }
8179        sta = 0;
8180        target_ix = scsiq->q2.target_ix;
8181        tid_no = ASC_TIX_TO_TID(target_ix);
8182        n_q_required = 1;
8183        if (scsiq->cdbptr[0] == REQUEST_SENSE) {
8184                if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) {
8185                        asc_dvc->sdtr_done &= ~scsiq->q1.target_id;
8186                        sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
8187                        AscMsgOutSDTR(asc_dvc,
8188                                      asc_dvc->
8189                                      sdtr_period_tbl[(sdtr_data >> 4) &
8190                                                      (uchar)(asc_dvc->
8191                                                              max_sdtr_index -
8192                                                              1)],
8193                                      (uchar)(sdtr_data & (uchar)
8194                                              ASC_SYN_MAX_OFFSET));
8195                        scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
8196                }
8197        }
8198        if (asc_dvc->in_critical_cnt != 0) {
8199                AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY);
8200                return ASC_ERROR;
8201        }
8202        asc_dvc->in_critical_cnt++;
8203        if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8204                if ((sg_entry_cnt = sg_head->entry_cnt) == 0) {
8205                        asc_dvc->in_critical_cnt--;
8206                        return ASC_ERROR;
8207                }
8208                if (sg_entry_cnt > ASC_MAX_SG_LIST) {
8209                        asc_dvc->in_critical_cnt--;
8210                        return ASC_ERROR;
8211                }
8212                if (sg_entry_cnt == 1) {
8213                        scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr);
8214                        scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes);
8215                        scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE);
8216                }
8217                sg_entry_cnt_minus_one = sg_entry_cnt - 1;
8218        }
8219        scsi_cmd = scsiq->cdbptr[0];
8220        disable_syn_offset_one_fix = false;
8221        if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) &&
8222            !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) {
8223                if (scsiq->q1.cntl & QC_SG_HEAD) {
8224                        data_cnt = 0;
8225                        for (i = 0; i < sg_entry_cnt; i++) {
8226                                data_cnt += le32_to_cpu(sg_head->sg_list[i].
8227                                                        bytes);
8228                        }
8229                } else {
8230                        data_cnt = le32_to_cpu(scsiq->q1.data_cnt);
8231                }
8232                if (data_cnt != 0UL) {
8233                        if (data_cnt < 512UL) {
8234                                disable_syn_offset_one_fix = true;
8235                        } else {
8236                                for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST;
8237                                     i++) {
8238                                        disable_cmd =
8239                                            _syn_offset_one_disable_cmd[i];
8240                                        if (disable_cmd == 0xFF) {
8241                                                break;
8242                                        }
8243                                        if (scsi_cmd == disable_cmd) {
8244                                                disable_syn_offset_one_fix =
8245                                                    true;
8246                                                break;
8247                                        }
8248                                }
8249                        }
8250                }
8251        }
8252        if (disable_syn_offset_one_fix) {
8253                scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
8254                scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX |
8255                                       ASC_TAG_FLAG_DISABLE_DISCONNECT);
8256        } else {
8257                scsiq->q2.tag_code &= 0x27;
8258        }
8259        if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8260                if (asc_dvc->bug_fix_cntl) {
8261                        if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8262                                if ((scsi_cmd == READ_6) ||
8263                                    (scsi_cmd == READ_10)) {
8264                                        addr = le32_to_cpu(sg_head->
8265                                                                   sg_list
8266                                                                   [sg_entry_cnt_minus_one].
8267                                                                   addr) +
8268                                                le32_to_cpu(sg_head->
8269                                                                  sg_list
8270                                                                  [sg_entry_cnt_minus_one].
8271                                                                  bytes);
8272                                        extra_bytes =
8273                                            (uchar)((ushort)addr & 0x0003);
8274                                        if ((extra_bytes != 0)
8275                                            &&
8276                                            ((scsiq->q2.
8277                                              tag_code &
8278                                              ASC_TAG_FLAG_EXTRA_BYTES)
8279                                             == 0)) {
8280                                                scsiq->q2.tag_code |=
8281                                                    ASC_TAG_FLAG_EXTRA_BYTES;
8282                                                scsiq->q1.extra_bytes =
8283                                                    extra_bytes;
8284                                                data_cnt =
8285                                                    le32_to_cpu(sg_head->
8286                                                                sg_list
8287                                                                [sg_entry_cnt_minus_one].
8288                                                                bytes);
8289                                                data_cnt -= extra_bytes;
8290                                                sg_head->
8291                                                    sg_list
8292                                                    [sg_entry_cnt_minus_one].
8293                                                    bytes =
8294                                                    cpu_to_le32(data_cnt);
8295                                        }
8296                                }
8297                        }
8298                }
8299                sg_head->entry_to_copy = sg_head->entry_cnt;
8300                n_q_required = AscSgListToQueue(sg_entry_cnt);
8301                if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >=
8302                     (uint) n_q_required)
8303                    || ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8304                        if ((sta =
8305                             AscSendScsiQueue(asc_dvc, scsiq,
8306                                              n_q_required)) == 1) {
8307                                asc_dvc->in_critical_cnt--;
8308                                return (sta);
8309                        }
8310                }
8311        } else {
8312                if (asc_dvc->bug_fix_cntl) {
8313                        if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8314                                if ((scsi_cmd == READ_6) ||
8315                                    (scsi_cmd == READ_10)) {
8316                                        addr =
8317                                            le32_to_cpu(scsiq->q1.data_addr) +
8318                                            le32_to_cpu(scsiq->q1.data_cnt);
8319                                        extra_bytes =
8320                                            (uchar)((ushort)addr & 0x0003);
8321                                        if ((extra_bytes != 0)
8322                                            &&
8323                                            ((scsiq->q2.
8324                                              tag_code &
8325                                              ASC_TAG_FLAG_EXTRA_BYTES)
8326                                             == 0)) {
8327                                                data_cnt =
8328                                                    le32_to_cpu(scsiq->q1.
8329                                                                data_cnt);
8330                                                if (((ushort)data_cnt & 0x01FF)
8331                                                    == 0) {
8332                                                        scsiq->q2.tag_code |=
8333                                                            ASC_TAG_FLAG_EXTRA_BYTES;
8334                                                        data_cnt -= extra_bytes;
8335                                                        scsiq->q1.data_cnt =
8336                                                            cpu_to_le32
8337                                                            (data_cnt);
8338                                                        scsiq->q1.extra_bytes =
8339                                                            extra_bytes;
8340                                                }
8341                                        }
8342                                }
8343                        }
8344                }
8345                n_q_required = 1;
8346                if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) ||
8347                    ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8348                        if ((sta = AscSendScsiQueue(asc_dvc, scsiq,
8349                                                    n_q_required)) == 1) {
8350                                asc_dvc->in_critical_cnt--;
8351                                return (sta);
8352                        }
8353                }
8354        }
8355        asc_dvc->in_critical_cnt--;
8356        return (sta);
8357}
8358
8359/*
8360 * AdvExeScsiQueue() - Send a request to the RISC microcode program.
8361 *
8362 *   Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
8363 *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
8364 *   RISC to notify it a new command is ready to be executed.
8365 *
8366 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
8367 * set to SCSI_MAX_RETRY.
8368 *
8369 * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the microcode
8370 * for DMA addresses or math operations are byte swapped to little-endian
8371 * order.
8372 *
8373 * Return:
8374 *      ADV_SUCCESS(1) - The request was successfully queued.
8375 *      ADV_BUSY(0) -    Resource unavailable; Retry again after pending
8376 *                       request completes.
8377 *      ADV_ERROR(-1) -  Invalid ADV_SCSI_REQ_Q request structure
8378 *                       host IC error.
8379 */
8380static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, adv_req_t *reqp)
8381{
8382        AdvPortAddr iop_base;
8383        ADV_CARR_T *new_carrp;
8384        ADV_SCSI_REQ_Q *scsiq = &reqp->scsi_req_q;
8385
8386        /*
8387         * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
8388         */
8389        if (scsiq->target_id > ADV_MAX_TID) {
8390                scsiq->host_status = QHSTA_M_INVALID_DEVICE;
8391                scsiq->done_status = QD_WITH_ERROR;
8392                return ADV_ERROR;
8393        }
8394
8395        iop_base = asc_dvc->iop_base;
8396
8397        /*
8398         * Allocate a carrier ensuring at least one carrier always
8399         * remains on the freelist and initialize fields.
8400         */
8401        new_carrp = adv_get_next_carrier(asc_dvc);
8402        if (!new_carrp) {
8403                ASC_DBG(1, "No free carriers\n");
8404                return ADV_BUSY;
8405        }
8406
8407        asc_dvc->carr_pending_cnt++;
8408
8409        /* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
8410        scsiq->scsiq_ptr = cpu_to_le32(scsiq->srb_tag);
8411        scsiq->scsiq_rptr = cpu_to_le32(reqp->req_addr);
8412
8413        scsiq->carr_va = asc_dvc->icq_sp->carr_va;
8414        scsiq->carr_pa = asc_dvc->icq_sp->carr_pa;
8415
8416        /*
8417         * Use the current stopper to send the ADV_SCSI_REQ_Q command to
8418         * the microcode. The newly allocated stopper will become the new
8419         * stopper.
8420         */
8421        asc_dvc->icq_sp->areq_vpa = scsiq->scsiq_rptr;
8422
8423        /*
8424         * Set the 'next_vpa' pointer for the old stopper to be the
8425         * physical address of the new stopper. The RISC can only
8426         * follow physical addresses.
8427         */
8428        asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa;
8429
8430        /*
8431         * Set the host adapter stopper pointer to point to the new carrier.
8432         */
8433        asc_dvc->icq_sp = new_carrp;
8434
8435        if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
8436            asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
8437                /*
8438                 * Tickle the RISC to tell it to read its Command Queue Head pointer.
8439                 */
8440                AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A);
8441                if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
8442                        /*
8443                         * Clear the tickle value. In the ASC-3550 the RISC flag
8444                         * command 'clr_tickle_a' does not work unless the host
8445                         * value is cleared.
8446                         */
8447                        AdvWriteByteRegister(iop_base, IOPB_TICKLE,
8448                                             ADV_TICKLE_NOP);
8449                }
8450        } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
8451                /*
8452                 * Notify the RISC a carrier is ready by writing the physical
8453                 * address of the new carrier stopper to the COMMA register.
8454                 */
8455                AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
8456                                      le32_to_cpu(new_carrp->carr_pa));
8457        }
8458
8459        return ADV_SUCCESS;
8460}
8461
8462/*
8463 * Execute a single 'struct scsi_cmnd'.
8464 */
8465static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp)
8466{
8467        int ret, err_code;
8468        struct asc_board *boardp = shost_priv(scp->device->host);
8469
8470        ASC_DBG(1, "scp 0x%p\n", scp);
8471
8472        if (ASC_NARROW_BOARD(boardp)) {
8473                ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
8474                struct asc_scsi_q asc_scsi_q;
8475
8476                ret = asc_build_req(boardp, scp, &asc_scsi_q);
8477                if (ret != ASC_NOERROR) {
8478                        ASC_STATS(scp->device->host, build_error);
8479                        return ret;
8480                }
8481
8482                ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q);
8483                kfree(asc_scsi_q.sg_head);
8484                err_code = asc_dvc->err_code;
8485        } else {
8486                ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
8487                adv_req_t *adv_reqp;
8488
8489                switch (adv_build_req(boardp, scp, &adv_reqp)) {
8490                case ASC_NOERROR:
8491                        ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
8492                        break;
8493                case ASC_BUSY:
8494                        ASC_DBG(1, "adv_build_req ASC_BUSY\n");
8495                        /*
8496                         * The asc_stats fields 'adv_build_noreq' and
8497                         * 'adv_build_nosg' count wide board busy conditions.
8498                         * They are updated in adv_build_req and
8499                         * adv_get_sglist, respectively.
8500                         */
8501                        return ASC_BUSY;
8502                case ASC_ERROR:
8503                default:
8504                        ASC_DBG(1, "adv_build_req ASC_ERROR\n");
8505                        ASC_STATS(scp->device->host, build_error);
8506                        return ASC_ERROR;
8507                }
8508
8509                ret = AdvExeScsiQueue(adv_dvc, adv_reqp);
8510                err_code = adv_dvc->err_code;
8511        }
8512
8513        switch (ret) {
8514        case ASC_NOERROR:
8515                ASC_STATS(scp->device->host, exe_noerror);
8516                /*
8517                 * Increment monotonically increasing per device
8518                 * successful request counter. Wrapping doesn't matter.
8519                 */
8520                boardp->reqcnt[scp->device->id]++;
8521                ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
8522                break;
8523        case ASC_BUSY:
8524                ASC_DBG(1, "ExeScsiQueue() ASC_BUSY\n");
8525                ASC_STATS(scp->device->host, exe_busy);
8526                break;
8527        case ASC_ERROR:
8528                scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, "
8529                        "err_code 0x%x\n", err_code);
8530                ASC_STATS(scp->device->host, exe_error);
8531                scp->result = HOST_BYTE(DID_ERROR);
8532                break;
8533        default:
8534                scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, "
8535                        "err_code 0x%x\n", err_code);
8536                ASC_STATS(scp->device->host, exe_unknown);
8537                scp->result = HOST_BYTE(DID_ERROR);
8538                break;
8539        }
8540
8541        ASC_DBG(1, "end\n");
8542        return ret;
8543}
8544
8545/*
8546 * advansys_queuecommand() - interrupt-driven I/O entrypoint.
8547 *
8548 * This function always returns 0. Command return status is saved
8549 * in the 'scp' result field.
8550 */
8551static int
8552advansys_queuecommand_lck(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *))
8553{
8554        struct Scsi_Host *shost = scp->device->host;
8555        int asc_res, result = 0;
8556
8557        ASC_STATS(shost, queuecommand);
8558        scp->scsi_done = done;
8559
8560        asc_res = asc_execute_scsi_cmnd(scp);
8561
8562        switch (asc_res) {
8563        case ASC_NOERROR:
8564                break;
8565        case ASC_BUSY:
8566                result = SCSI_MLQUEUE_HOST_BUSY;
8567                break;
8568        case ASC_ERROR:
8569        default:
8570                asc_scsi_done(scp);
8571                break;
8572        }
8573
8574        return result;
8575}
8576
8577static DEF_SCSI_QCMD(advansys_queuecommand)
8578
8579static ushort AscGetEisaChipCfg(PortAddr iop_base)
8580{
8581        PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
8582            (PortAddr) (ASC_EISA_CFG_IOP_MASK);
8583        return inpw(eisa_cfg_iop);
8584}
8585
8586/*
8587 * Return the BIOS address of the adapter at the specified
8588 * I/O port and with the specified bus type.
8589 */
8590static unsigned short AscGetChipBiosAddress(PortAddr iop_base,
8591                                            unsigned short bus_type)
8592{
8593        unsigned short cfg_lsw;
8594        unsigned short bios_addr;
8595
8596        /*
8597         * The PCI BIOS is re-located by the motherboard BIOS. Because
8598         * of this the driver can not determine where a PCI BIOS is
8599         * loaded and executes.
8600         */
8601        if (bus_type & ASC_IS_PCI)
8602                return 0;
8603
8604        if ((bus_type & ASC_IS_EISA) != 0) {
8605                cfg_lsw = AscGetEisaChipCfg(iop_base);
8606                cfg_lsw &= 0x000F;
8607                bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE;
8608                return bios_addr;
8609        }
8610
8611        cfg_lsw = AscGetChipCfgLsw(iop_base);
8612
8613        /*
8614         *  ISA PnP uses the top bit as the 32K BIOS flag
8615         */
8616        if (bus_type == ASC_IS_ISAPNP)
8617                cfg_lsw &= 0x7FFF;
8618        bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE;
8619        return bios_addr;
8620}
8621
8622static uchar AscSetChipScsiID(PortAddr iop_base, uchar new_host_id)
8623{
8624        ushort cfg_lsw;
8625
8626        if (AscGetChipScsiID(iop_base) == new_host_id) {
8627                return (new_host_id);
8628        }
8629        cfg_lsw = AscGetChipCfgLsw(iop_base);
8630        cfg_lsw &= 0xF8FF;
8631        cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8);
8632        AscSetChipCfgLsw(iop_base, cfg_lsw);
8633        return (AscGetChipScsiID(iop_base));
8634}
8635
8636static unsigned char AscGetChipScsiCtrl(PortAddr iop_base)
8637{
8638        unsigned char sc;
8639
8640        AscSetBank(iop_base, 1);
8641        sc = inp(iop_base + IOP_REG_SC);
8642        AscSetBank(iop_base, 0);
8643        return sc;
8644}
8645
8646static unsigned char AscGetChipVersion(PortAddr iop_base,
8647                                       unsigned short bus_type)
8648{
8649        if (bus_type & ASC_IS_EISA) {
8650                PortAddr eisa_iop;
8651                unsigned char revision;
8652                eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
8653                    (PortAddr) ASC_EISA_REV_IOP_MASK;
8654                revision = inp(eisa_iop);
8655                return ASC_CHIP_MIN_VER_EISA - 1 + revision;
8656        }
8657        return AscGetChipVerNo(iop_base);
8658}
8659
8660#ifdef CONFIG_ISA
8661static void AscEnableIsaDma(uchar dma_channel)
8662{
8663        if (dma_channel < 4) {
8664                outp(0x000B, (ushort)(0xC0 | dma_channel));
8665                outp(0x000A, dma_channel);
8666        } else if (dma_channel < 8) {
8667                outp(0x00D6, (ushort)(0xC0 | (dma_channel - 4)));
8668                outp(0x00D4, (ushort)(dma_channel - 4));
8669        }
8670}
8671#endif /* CONFIG_ISA */
8672
8673static int AscStopQueueExe(PortAddr iop_base)
8674{
8675        int count = 0;
8676
8677        if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) {
8678                AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
8679                                 ASC_STOP_REQ_RISC_STOP);
8680                do {
8681                        if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) &
8682                            ASC_STOP_ACK_RISC_STOP) {
8683                                return (1);
8684                        }
8685                        mdelay(100);
8686                } while (count++ < 20);
8687        }
8688        return (0);
8689}
8690
8691static unsigned int AscGetMaxDmaCount(ushort bus_type)
8692{
8693        if (bus_type & ASC_IS_ISA)
8694                return ASC_MAX_ISA_DMA_COUNT;
8695        else if (bus_type & (ASC_IS_EISA | ASC_IS_VL))
8696                return ASC_MAX_VL_DMA_COUNT;
8697        return ASC_MAX_PCI_DMA_COUNT;
8698}
8699
8700#ifdef CONFIG_ISA
8701static ushort AscGetIsaDmaChannel(PortAddr iop_base)
8702{
8703        ushort channel;
8704
8705        channel = AscGetChipCfgLsw(iop_base) & 0x0003;
8706        if (channel == 0x03)
8707                return (0);
8708        else if (channel == 0x00)
8709                return (7);
8710        return (channel + 4);
8711}
8712
8713static ushort AscSetIsaDmaChannel(PortAddr iop_base, ushort dma_channel)
8714{
8715        ushort cfg_lsw;
8716        uchar value;
8717
8718        if ((dma_channel >= 5) && (dma_channel <= 7)) {
8719                if (dma_channel == 7)
8720                        value = 0x00;
8721                else
8722                        value = dma_channel - 4;
8723                cfg_lsw = AscGetChipCfgLsw(iop_base) & 0xFFFC;
8724                cfg_lsw |= value;
8725                AscSetChipCfgLsw(iop_base, cfg_lsw);
8726                return (AscGetIsaDmaChannel(iop_base));
8727        }
8728        return 0;
8729}
8730
8731static uchar AscGetIsaDmaSpeed(PortAddr iop_base)
8732{
8733        uchar speed_value;
8734
8735        AscSetBank(iop_base, 1);
8736        speed_value = AscReadChipDmaSpeed(iop_base);
8737        speed_value &= 0x07;
8738        AscSetBank(iop_base, 0);
8739        return speed_value;
8740}
8741
8742static uchar AscSetIsaDmaSpeed(PortAddr iop_base, uchar speed_value)
8743{
8744        speed_value &= 0x07;
8745        AscSetBank(iop_base, 1);
8746        AscWriteChipDmaSpeed(iop_base, speed_value);
8747        AscSetBank(iop_base, 0);
8748        return AscGetIsaDmaSpeed(iop_base);
8749}
8750#endif /* CONFIG_ISA */
8751
8752static void AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc)
8753{
8754        int i;
8755        PortAddr iop_base;
8756        uchar chip_version;
8757
8758        iop_base = asc_dvc->iop_base;
8759        asc_dvc->err_code = 0;
8760        if ((asc_dvc->bus_type &
8761             (ASC_IS_ISA | ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) {
8762                asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE;
8763        }
8764        AscSetChipControl(iop_base, CC_HALT);
8765        AscSetChipStatus(iop_base, 0);
8766        asc_dvc->bug_fix_cntl = 0;
8767        asc_dvc->pci_fix_asyn_xfer = 0;
8768        asc_dvc->pci_fix_asyn_xfer_always = 0;
8769        /* asc_dvc->init_state initialized in AscInitGetConfig(). */
8770        asc_dvc->sdtr_done = 0;
8771        asc_dvc->cur_total_qng = 0;
8772        asc_dvc->is_in_int = false;
8773        asc_dvc->in_critical_cnt = 0;
8774        asc_dvc->last_q_shortage = 0;
8775        asc_dvc->use_tagged_qng = 0;
8776        asc_dvc->no_scam = 0;
8777        asc_dvc->unit_not_ready = 0;
8778        asc_dvc->queue_full_or_busy = 0;
8779        asc_dvc->redo_scam = 0;
8780        asc_dvc->res2 = 0;
8781        asc_dvc->min_sdtr_index = 0;
8782        asc_dvc->cfg->can_tagged_qng = 0;
8783        asc_dvc->cfg->cmd_qng_enabled = 0;
8784        asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL;
8785        asc_dvc->init_sdtr = 0;
8786        asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG;
8787        asc_dvc->scsi_reset_wait = 3;
8788        asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET;
8789        asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type);
8790        asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET;
8791        asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET;
8792        asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID;
8793        chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type);
8794        asc_dvc->cfg->chip_version = chip_version;
8795        asc_dvc->sdtr_period_tbl = asc_syn_xfer_period;
8796        asc_dvc->max_sdtr_index = 7;
8797        if ((asc_dvc->bus_type & ASC_IS_PCI) &&
8798            (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) {
8799                asc_dvc->bus_type = ASC_IS_PCI_ULTRA;
8800                asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period;
8801                asc_dvc->max_sdtr_index = 15;
8802                if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) {
8803                        AscSetExtraControl(iop_base,
8804                                           (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
8805                } else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) {
8806                        AscSetExtraControl(iop_base,
8807                                           (SEC_ACTIVE_NEGATE |
8808                                            SEC_ENABLE_FILTER));
8809                }
8810        }
8811        if (asc_dvc->bus_type == ASC_IS_PCI) {
8812                AscSetExtraControl(iop_base,
8813                                   (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
8814        }
8815
8816        asc_dvc->cfg->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED;
8817#ifdef CONFIG_ISA
8818        if ((asc_dvc->bus_type & ASC_IS_ISA) != 0) {
8819                if (chip_version >= ASC_CHIP_MIN_VER_ISA_PNP) {
8820                        AscSetChipIFC(iop_base, IFC_INIT_DEFAULT);
8821                        asc_dvc->bus_type = ASC_IS_ISAPNP;
8822                }
8823                asc_dvc->cfg->isa_dma_channel =
8824                    (uchar)AscGetIsaDmaChannel(iop_base);
8825        }
8826#endif /* CONFIG_ISA */
8827        for (i = 0; i <= ASC_MAX_TID; i++) {
8828                asc_dvc->cur_dvc_qng[i] = 0;
8829                asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG;
8830                asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L;
8831                asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L;
8832                asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG;
8833        }
8834}
8835
8836static int AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg)
8837{
8838        int retry;
8839
8840        for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) {
8841                unsigned char read_back;
8842                AscSetChipEEPCmd(iop_base, cmd_reg);
8843                mdelay(1);
8844                read_back = AscGetChipEEPCmd(iop_base);
8845                if (read_back == cmd_reg)
8846                        return 1;
8847        }
8848        return 0;
8849}
8850
8851static void AscWaitEEPRead(void)
8852{
8853        mdelay(1);
8854}
8855
8856static ushort AscReadEEPWord(PortAddr iop_base, uchar addr)
8857{
8858        ushort read_wval;
8859        uchar cmd_reg;
8860
8861        AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
8862        AscWaitEEPRead();
8863        cmd_reg = addr | ASC_EEP_CMD_READ;
8864        AscWriteEEPCmdReg(iop_base, cmd_reg);
8865        AscWaitEEPRead();
8866        read_wval = AscGetChipEEPData(iop_base);
8867        AscWaitEEPRead();
8868        return read_wval;
8869}
8870
8871static ushort AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
8872                              ushort bus_type)
8873{
8874        ushort wval;
8875        ushort sum;
8876        ushort *wbuf;
8877        int cfg_beg;
8878        int cfg_end;
8879        int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
8880        int s_addr;
8881
8882        wbuf = (ushort *)cfg_buf;
8883        sum = 0;
8884        /* Read two config words; Byte-swapping done by AscReadEEPWord(). */
8885        for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
8886                *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
8887                sum += *wbuf;
8888        }
8889        if (bus_type & ASC_IS_VL) {
8890                cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
8891                cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
8892        } else {
8893                cfg_beg = ASC_EEP_DVC_CFG_BEG;
8894                cfg_end = ASC_EEP_MAX_DVC_ADDR;
8895        }
8896        for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
8897                wval = AscReadEEPWord(iop_base, (uchar)s_addr);
8898                if (s_addr <= uchar_end_in_config) {
8899                        /*
8900                         * Swap all char fields - must unswap bytes already swapped
8901                         * by AscReadEEPWord().
8902                         */
8903                        *wbuf = le16_to_cpu(wval);
8904                } else {
8905                        /* Don't swap word field at the end - cntl field. */
8906                        *wbuf = wval;
8907                }
8908                sum += wval;    /* Checksum treats all EEPROM data as words. */
8909        }
8910        /*
8911         * Read the checksum word which will be compared against 'sum'
8912         * by the caller. Word field already swapped.
8913         */
8914        *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
8915        return sum;
8916}
8917
8918static int AscTestExternalLram(ASC_DVC_VAR *asc_dvc)
8919{
8920        PortAddr iop_base;
8921        ushort q_addr;
8922        ushort saved_word;
8923        int sta;
8924
8925        iop_base = asc_dvc->iop_base;
8926        sta = 0;
8927        q_addr = ASC_QNO_TO_QADDR(241);
8928        saved_word = AscReadLramWord(iop_base, q_addr);
8929        AscSetChipLramAddr(iop_base, q_addr);
8930        AscSetChipLramData(iop_base, 0x55AA);
8931        mdelay(10);
8932        AscSetChipLramAddr(iop_base, q_addr);
8933        if (AscGetChipLramData(iop_base) == 0x55AA) {
8934                sta = 1;
8935                AscWriteLramWord(iop_base, q_addr, saved_word);
8936        }
8937        return (sta);
8938}
8939
8940static void AscWaitEEPWrite(void)
8941{
8942        mdelay(20);
8943}
8944
8945static int AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg)
8946{
8947        ushort read_back;
8948        int retry;
8949
8950        retry = 0;
8951        while (true) {
8952                AscSetChipEEPData(iop_base, data_reg);
8953                mdelay(1);
8954                read_back = AscGetChipEEPData(iop_base);
8955                if (read_back == data_reg) {
8956                        return (1);
8957                }
8958                if (retry++ > ASC_EEP_MAX_RETRY) {
8959                        return (0);
8960                }
8961        }
8962}
8963
8964static ushort AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val)
8965{
8966        ushort read_wval;
8967
8968        read_wval = AscReadEEPWord(iop_base, addr);
8969        if (read_wval != word_val) {
8970                AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE);
8971                AscWaitEEPRead();
8972                AscWriteEEPDataReg(iop_base, word_val);
8973                AscWaitEEPRead();
8974                AscWriteEEPCmdReg(iop_base,
8975                                  (uchar)((uchar)ASC_EEP_CMD_WRITE | addr));
8976                AscWaitEEPWrite();
8977                AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
8978                AscWaitEEPRead();
8979                return (AscReadEEPWord(iop_base, addr));
8980        }
8981        return (read_wval);
8982}
8983
8984static int AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
8985                               ushort bus_type)
8986{
8987        int n_error;
8988        ushort *wbuf;
8989        ushort word;
8990        ushort sum;
8991        int s_addr;
8992        int cfg_beg;
8993        int cfg_end;
8994        int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
8995
8996        wbuf = (ushort *)cfg_buf;
8997        n_error = 0;
8998        sum = 0;
8999        /* Write two config words; AscWriteEEPWord() will swap bytes. */
9000        for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9001                sum += *wbuf;
9002                if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9003                        n_error++;
9004                }
9005        }
9006        if (bus_type & ASC_IS_VL) {
9007                cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9008                cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9009        } else {
9010                cfg_beg = ASC_EEP_DVC_CFG_BEG;
9011                cfg_end = ASC_EEP_MAX_DVC_ADDR;
9012        }
9013        for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9014                if (s_addr <= uchar_end_in_config) {
9015                        /*
9016                         * This is a char field. Swap char fields before they are
9017                         * swapped again by AscWriteEEPWord().
9018                         */
9019                        word = cpu_to_le16(*wbuf);
9020                        if (word !=
9021                            AscWriteEEPWord(iop_base, (uchar)s_addr, word)) {
9022                                n_error++;
9023                        }
9024                } else {
9025                        /* Don't swap word field at the end - cntl field. */
9026                        if (*wbuf !=
9027                            AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9028                                n_error++;
9029                        }
9030                }
9031                sum += *wbuf;   /* Checksum calculated from word values. */
9032        }
9033        /* Write checksum word. It will be swapped by AscWriteEEPWord(). */
9034        *wbuf = sum;
9035        if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) {
9036                n_error++;
9037        }
9038
9039        /* Read EEPROM back again. */
9040        wbuf = (ushort *)cfg_buf;
9041        /*
9042         * Read two config words; Byte-swapping done by AscReadEEPWord().
9043         */
9044        for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9045                if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) {
9046                        n_error++;
9047                }
9048        }
9049        if (bus_type & ASC_IS_VL) {
9050                cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9051                cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9052        } else {
9053                cfg_beg = ASC_EEP_DVC_CFG_BEG;
9054                cfg_end = ASC_EEP_MAX_DVC_ADDR;
9055        }
9056        for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9057                if (s_addr <= uchar_end_in_config) {
9058                        /*
9059                         * Swap all char fields. Must unswap bytes already swapped
9060                         * by AscReadEEPWord().
9061                         */
9062                        word =
9063                            le16_to_cpu(AscReadEEPWord
9064                                        (iop_base, (uchar)s_addr));
9065                } else {
9066                        /* Don't swap word field at the end - cntl field. */
9067                        word = AscReadEEPWord(iop_base, (uchar)s_addr);
9068                }
9069                if (*wbuf != word) {
9070                        n_error++;
9071                }
9072        }
9073        /* Read checksum; Byte swapping not needed. */
9074        if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) {
9075                n_error++;
9076        }
9077        return n_error;
9078}
9079
9080static int AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
9081                           ushort bus_type)
9082{
9083        int retry;
9084        int n_error;
9085
9086        retry = 0;
9087        while (true) {
9088                if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf,
9089                                                   bus_type)) == 0) {
9090                        break;
9091                }
9092                if (++retry > ASC_EEP_MAX_RETRY) {
9093                        break;
9094                }
9095        }
9096        return n_error;
9097}
9098
9099static int AscInitFromEEP(ASC_DVC_VAR *asc_dvc)
9100{
9101        ASCEEP_CONFIG eep_config_buf;
9102        ASCEEP_CONFIG *eep_config;
9103        PortAddr iop_base;
9104        ushort chksum;
9105        ushort warn_code;
9106        ushort cfg_msw, cfg_lsw;
9107        int i;
9108        int write_eep = 0;
9109
9110        iop_base = asc_dvc->iop_base;
9111        warn_code = 0;
9112        AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE);
9113        AscStopQueueExe(iop_base);
9114        if ((AscStopChip(iop_base)) ||
9115            (AscGetChipScsiCtrl(iop_base) != 0)) {
9116                asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE;
9117                AscResetChipAndScsiBus(asc_dvc);
9118                mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
9119        }
9120        if (!AscIsChipHalted(iop_base)) {
9121                asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
9122                return (warn_code);
9123        }
9124        AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
9125        if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
9126                asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
9127                return (warn_code);
9128        }
9129        eep_config = (ASCEEP_CONFIG *)&eep_config_buf;
9130        cfg_msw = AscGetChipCfgMsw(iop_base);
9131        cfg_lsw = AscGetChipCfgLsw(iop_base);
9132        if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9133                cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9134                warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9135                AscSetChipCfgMsw(iop_base, cfg_msw);
9136        }
9137        chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type);
9138        ASC_DBG(1, "chksum 0x%x\n", chksum);
9139        if (chksum == 0) {
9140                chksum = 0xaa55;
9141        }
9142        if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9143                warn_code |= ASC_WARN_AUTO_CONFIG;
9144                if (asc_dvc->cfg->chip_version == 3) {
9145                        if (eep_config->cfg_lsw != cfg_lsw) {
9146                                warn_code |= ASC_WARN_EEPROM_RECOVER;
9147                                eep_config->cfg_lsw =
9148                                    AscGetChipCfgLsw(iop_base);
9149                        }
9150                        if (eep_config->cfg_msw != cfg_msw) {
9151                                warn_code |= ASC_WARN_EEPROM_RECOVER;
9152                                eep_config->cfg_msw =
9153                                    AscGetChipCfgMsw(iop_base);
9154                        }
9155                }
9156        }
9157        eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9158        eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON;
9159        ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum);
9160        if (chksum != eep_config->chksum) {
9161                if (AscGetChipVersion(iop_base, asc_dvc->bus_type) ==
9162                    ASC_CHIP_VER_PCI_ULTRA_3050) {
9163                        ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
9164                        eep_config->init_sdtr = 0xFF;
9165                        eep_config->disc_enable = 0xFF;
9166                        eep_config->start_motor = 0xFF;
9167                        eep_config->use_cmd_qng = 0;
9168                        eep_config->max_total_qng = 0xF0;
9169                        eep_config->max_tag_qng = 0x20;
9170                        eep_config->cntl = 0xBFFF;
9171                        ASC_EEP_SET_CHIP_ID(eep_config, 7);
9172                        eep_config->no_scam = 0;
9173                        eep_config->adapter_info[0] = 0;
9174                        eep_config->adapter_info[1] = 0;
9175                        eep_config->adapter_info[2] = 0;
9176                        eep_config->adapter_info[3] = 0;
9177                        eep_config->adapter_info[4] = 0;
9178                        /* Indicate EEPROM-less board. */
9179                        eep_config->adapter_info[5] = 0xBB;
9180                } else {
9181                        ASC_PRINT
9182                            ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
9183                        write_eep = 1;
9184                        warn_code |= ASC_WARN_EEPROM_CHKSUM;
9185                }
9186        }
9187        asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr;
9188        asc_dvc->cfg->disc_enable = eep_config->disc_enable;
9189        asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng;
9190        asc_dvc->cfg->isa_dma_speed = ASC_EEP_GET_DMA_SPD(eep_config);
9191        asc_dvc->start_motor = eep_config->start_motor;
9192        asc_dvc->dvc_cntl = eep_config->cntl;
9193        asc_dvc->no_scam = eep_config->no_scam;
9194        asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0];
9195        asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1];
9196        asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2];
9197        asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3];
9198        asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4];
9199        asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5];
9200        if (!AscTestExternalLram(asc_dvc)) {
9201                if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) ==
9202                     ASC_IS_PCI_ULTRA)) {
9203                        eep_config->max_total_qng =
9204                            ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
9205                        eep_config->max_tag_qng =
9206                            ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG;
9207                } else {
9208                        eep_config->cfg_msw |= 0x0800;
9209                        cfg_msw |= 0x0800;
9210                        AscSetChipCfgMsw(iop_base, cfg_msw);
9211                        eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG;
9212                        eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG;
9213                }
9214        } else {
9215        }
9216        if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) {
9217                eep_config->max_total_qng = ASC_MIN_TOTAL_QNG;
9218        }
9219        if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) {
9220                eep_config->max_total_qng = ASC_MAX_TOTAL_QNG;
9221        }
9222        if (eep_config->max_tag_qng > eep_config->max_total_qng) {
9223                eep_config->max_tag_qng = eep_config->max_total_qng;
9224        }
9225        if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) {
9226                eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC;
9227        }
9228        asc_dvc->max_total_qng = eep_config->max_total_qng;
9229        if ((eep_config->use_cmd_qng & eep_config->disc_enable) !=
9230            eep_config->use_cmd_qng) {
9231                eep_config->disc_enable = eep_config->use_cmd_qng;
9232                warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9233        }
9234        ASC_EEP_SET_CHIP_ID(eep_config,
9235                            ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID);
9236        asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config);
9237        if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) &&
9238            !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) {
9239                asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX;
9240        }
9241
9242        for (i = 0; i <= ASC_MAX_TID; i++) {
9243                asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i];
9244                asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng;
9245                asc_dvc->cfg->sdtr_period_offset[i] =
9246                    (uchar)(ASC_DEF_SDTR_OFFSET |
9247                            (asc_dvc->min_sdtr_index << 4));
9248        }
9249        eep_config->cfg_msw = AscGetChipCfgMsw(iop_base);
9250        if (write_eep) {
9251                if ((i = AscSetEEPConfig(iop_base, eep_config,
9252                                     asc_dvc->bus_type)) != 0) {
9253                        ASC_PRINT1
9254                            ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
9255                             i);
9256                } else {
9257                        ASC_PRINT
9258                            ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
9259                }
9260        }
9261        return (warn_code);
9262}
9263
9264static int AscInitGetConfig(struct Scsi_Host *shost)
9265{
9266        struct asc_board *board = shost_priv(shost);
9267        ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9268        unsigned short warn_code = 0;
9269
9270        asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG;
9271        if (asc_dvc->err_code != 0)
9272                return asc_dvc->err_code;
9273
9274        if (AscFindSignature(asc_dvc->iop_base)) {
9275                AscInitAscDvcVar(asc_dvc);
9276                warn_code = AscInitFromEEP(asc_dvc);
9277                asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG;
9278                if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT)
9279                        asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT;
9280        } else {
9281                asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9282        }
9283
9284        switch (warn_code) {
9285        case 0: /* No error */
9286                break;
9287        case ASC_WARN_IO_PORT_ROTATE:
9288                shost_printk(KERN_WARNING, shost, "I/O port address "
9289                                "modified\n");
9290                break;
9291        case ASC_WARN_AUTO_CONFIG:
9292                shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9293                                "enabled\n");
9294                break;
9295        case ASC_WARN_EEPROM_CHKSUM:
9296                shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9297                break;
9298        case ASC_WARN_IRQ_MODIFIED:
9299                shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9300                break;
9301        case ASC_WARN_CMD_QNG_CONFLICT:
9302                shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o "
9303                                "disconnects\n");
9304                break;
9305        default:
9306                shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9307                                warn_code);
9308                break;
9309        }
9310
9311        if (asc_dvc->err_code != 0)
9312                shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9313                        "0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9314
9315        return asc_dvc->err_code;
9316}
9317
9318static int AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
9319{
9320        struct asc_board *board = shost_priv(shost);
9321        ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9322        PortAddr iop_base = asc_dvc->iop_base;
9323        unsigned short cfg_msw;
9324        unsigned short warn_code = 0;
9325
9326        asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG;
9327        if (asc_dvc->err_code != 0)
9328                return asc_dvc->err_code;
9329        if (!AscFindSignature(asc_dvc->iop_base)) {
9330                asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9331                return asc_dvc->err_code;
9332        }
9333
9334        cfg_msw = AscGetChipCfgMsw(iop_base);
9335        if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9336                cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9337                warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9338                AscSetChipCfgMsw(iop_base, cfg_msw);
9339        }
9340        if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) !=
9341            asc_dvc->cfg->cmd_qng_enabled) {
9342                asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled;
9343                warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9344        }
9345        if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9346                warn_code |= ASC_WARN_AUTO_CONFIG;
9347        }
9348#ifdef CONFIG_PCI
9349        if (asc_dvc->bus_type & ASC_IS_PCI) {
9350                cfg_msw &= 0xFFC0;
9351                AscSetChipCfgMsw(iop_base, cfg_msw);
9352                if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) {
9353                } else {
9354                        if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
9355                            (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
9356                                asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB;
9357                                asc_dvc->bug_fix_cntl |=
9358                                    ASC_BUG_FIX_ASYN_USE_SYN;
9359                        }
9360                }
9361        } else
9362#endif /* CONFIG_PCI */
9363        if (asc_dvc->bus_type == ASC_IS_ISAPNP) {
9364                if (AscGetChipVersion(iop_base, asc_dvc->bus_type)
9365                    == ASC_CHIP_VER_ASYN_BUG) {
9366                        asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN;
9367                }
9368        }
9369        if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) !=
9370            asc_dvc->cfg->chip_scsi_id) {
9371                asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID;
9372        }
9373#ifdef CONFIG_ISA
9374        if (asc_dvc->bus_type & ASC_IS_ISA) {
9375                AscSetIsaDmaChannel(iop_base, asc_dvc->cfg->isa_dma_channel);
9376                AscSetIsaDmaSpeed(iop_base, asc_dvc->cfg->isa_dma_speed);
9377        }
9378#endif /* CONFIG_ISA */
9379
9380        asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG;
9381
9382        switch (warn_code) {
9383        case 0: /* No error. */
9384                break;
9385        case ASC_WARN_IO_PORT_ROTATE:
9386                shost_printk(KERN_WARNING, shost, "I/O port address "
9387                                "modified\n");
9388                break;
9389        case ASC_WARN_AUTO_CONFIG:
9390                shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9391                                "enabled\n");
9392                break;
9393        case ASC_WARN_EEPROM_CHKSUM:
9394                shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9395                break;
9396        case ASC_WARN_IRQ_MODIFIED:
9397                shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9398                break;
9399        case ASC_WARN_CMD_QNG_CONFLICT:
9400                shost_printk(KERN_WARNING, shost, "tag queuing w/o "
9401                                "disconnects\n");
9402                break;
9403        default:
9404                shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9405                                warn_code);
9406                break;
9407        }
9408
9409        if (asc_dvc->err_code != 0)
9410                shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9411                        "0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9412
9413        return asc_dvc->err_code;
9414}
9415
9416/*
9417 * EEPROM Configuration.
9418 *
9419 * All drivers should use this structure to set the default EEPROM
9420 * configuration. The BIOS now uses this structure when it is built.
9421 * Additional structure information can be found in a_condor.h where
9422 * the structure is defined.
9423 *
9424 * The *_Field_IsChar structs are needed to correct for endianness.
9425 * These values are read from the board 16 bits at a time directly
9426 * into the structs. Because some fields are char, the values will be
9427 * in the wrong order. The *_Field_IsChar tells when to flip the
9428 * bytes. Data read and written to PCI memory is automatically swapped
9429 * on big-endian platforms so char fields read as words are actually being
9430 * unswapped on big-endian platforms.
9431 */
9432#ifdef CONFIG_PCI
9433static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config = {
9434        ADV_EEPROM_BIOS_ENABLE, /* cfg_lsw */
9435        0x0000,                 /* cfg_msw */
9436        0xFFFF,                 /* disc_enable */
9437        0xFFFF,                 /* wdtr_able */
9438        0xFFFF,                 /* sdtr_able */
9439        0xFFFF,                 /* start_motor */
9440        0xFFFF,                 /* tagqng_able */
9441        0xFFFF,                 /* bios_scan */
9442        0,                      /* scam_tolerant */
9443        7,                      /* adapter_scsi_id */
9444        0,                      /* bios_boot_delay */
9445        3,                      /* scsi_reset_delay */
9446        0,                      /* bios_id_lun */
9447        0,                      /* termination */
9448        0,                      /* reserved1 */
9449        0xFFE7,                 /* bios_ctrl */
9450        0xFFFF,                 /* ultra_able */
9451        0,                      /* reserved2 */
9452        ASC_DEF_MAX_HOST_QNG,   /* max_host_qng */
9453        ASC_DEF_MAX_DVC_QNG,    /* max_dvc_qng */
9454        0,                      /* dvc_cntl */
9455        0,                      /* bug_fix */
9456        0,                      /* serial_number_word1 */
9457        0,                      /* serial_number_word2 */
9458        0,                      /* serial_number_word3 */
9459        0,                      /* check_sum */
9460        {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9461        ,                       /* oem_name[16] */
9462        0,                      /* dvc_err_code */
9463        0,                      /* adv_err_code */
9464        0,                      /* adv_err_addr */
9465        0,                      /* saved_dvc_err_code */
9466        0,                      /* saved_adv_err_code */
9467        0,                      /* saved_adv_err_addr */
9468        0                       /* num_of_err */
9469};
9470
9471static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar = {
9472        0,                      /* cfg_lsw */
9473        0,                      /* cfg_msw */
9474        0,                      /* -disc_enable */
9475        0,                      /* wdtr_able */
9476        0,                      /* sdtr_able */
9477        0,                      /* start_motor */
9478        0,                      /* tagqng_able */
9479        0,                      /* bios_scan */
9480        0,                      /* scam_tolerant */
9481        1,                      /* adapter_scsi_id */
9482        1,                      /* bios_boot_delay */
9483        1,                      /* scsi_reset_delay */
9484        1,                      /* bios_id_lun */
9485        1,                      /* termination */
9486        1,                      /* reserved1 */
9487        0,                      /* bios_ctrl */
9488        0,                      /* ultra_able */
9489        0,                      /* reserved2 */
9490        1,                      /* max_host_qng */
9491        1,                      /* max_dvc_qng */
9492        0,                      /* dvc_cntl */
9493        0,                      /* bug_fix */
9494        0,                      /* serial_number_word1 */
9495        0,                      /* serial_number_word2 */
9496        0,                      /* serial_number_word3 */
9497        0,                      /* check_sum */
9498        {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9499        ,                       /* oem_name[16] */
9500        0,                      /* dvc_err_code */
9501        0,                      /* adv_err_code */
9502        0,                      /* adv_err_addr */
9503        0,                      /* saved_dvc_err_code */
9504        0,                      /* saved_adv_err_code */
9505        0,                      /* saved_adv_err_addr */
9506        0                       /* num_of_err */
9507};
9508
9509static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config = {
9510        ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
9511        0x0000,                 /* 01 cfg_msw */
9512        0xFFFF,                 /* 02 disc_enable */
9513        0xFFFF,                 /* 03 wdtr_able */
9514        0x4444,                 /* 04 sdtr_speed1 */
9515        0xFFFF,                 /* 05 start_motor */
9516        0xFFFF,                 /* 06 tagqng_able */
9517        0xFFFF,                 /* 07 bios_scan */
9518        0,                      /* 08 scam_tolerant */
9519        7,                      /* 09 adapter_scsi_id */
9520        0,                      /*    bios_boot_delay */
9521        3,                      /* 10 scsi_reset_delay */
9522        0,                      /*    bios_id_lun */
9523        0,                      /* 11 termination_se */
9524        0,                      /*    termination_lvd */
9525        0xFFE7,                 /* 12 bios_ctrl */
9526        0x4444,                 /* 13 sdtr_speed2 */
9527        0x4444,                 /* 14 sdtr_speed3 */
9528        ASC_DEF_MAX_HOST_QNG,   /* 15 max_host_qng */
9529        ASC_DEF_MAX_DVC_QNG,    /*    max_dvc_qng */
9530        0,                      /* 16 dvc_cntl */
9531        0x4444,                 /* 17 sdtr_speed4 */
9532        0,                      /* 18 serial_number_word1 */
9533        0,                      /* 19 serial_number_word2 */
9534        0,                      /* 20 serial_number_word3 */
9535        0,                      /* 21 check_sum */
9536        {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9537        ,                       /* 22-29 oem_name[16] */
9538        0,                      /* 30 dvc_err_code */
9539        0,                      /* 31 adv_err_code */
9540        0,                      /* 32 adv_err_addr */
9541        0,                      /* 33 saved_dvc_err_code */
9542        0,                      /* 34 saved_adv_err_code */
9543        0,                      /* 35 saved_adv_err_addr */
9544        0,                      /* 36 reserved */
9545        0,                      /* 37 reserved */
9546        0,                      /* 38 reserved */
9547        0,                      /* 39 reserved */
9548        0,                      /* 40 reserved */
9549        0,                      /* 41 reserved */
9550        0,                      /* 42 reserved */
9551        0,                      /* 43 reserved */
9552        0,                      /* 44 reserved */
9553        0,                      /* 45 reserved */
9554        0,                      /* 46 reserved */
9555        0,                      /* 47 reserved */
9556        0,                      /* 48 reserved */
9557        0,                      /* 49 reserved */
9558        0,                      /* 50 reserved */
9559        0,                      /* 51 reserved */
9560        0,                      /* 52 reserved */
9561        0,                      /* 53 reserved */
9562        0,                      /* 54 reserved */
9563        0,                      /* 55 reserved */
9564        0,                      /* 56 cisptr_lsw */
9565        0,                      /* 57 cisprt_msw */
9566        PCI_VENDOR_ID_ASP,      /* 58 subsysvid */
9567        PCI_DEVICE_ID_38C0800_REV1,     /* 59 subsysid */
9568        0,                      /* 60 reserved */
9569        0,                      /* 61 reserved */
9570        0,                      /* 62 reserved */
9571        0                       /* 63 reserved */
9572};
9573
9574static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar = {
9575        0,                      /* 00 cfg_lsw */
9576        0,                      /* 01 cfg_msw */
9577        0,                      /* 02 disc_enable */
9578        0,                      /* 03 wdtr_able */
9579        0,                      /* 04 sdtr_speed1 */
9580        0,                      /* 05 start_motor */
9581        0,                      /* 06 tagqng_able */
9582        0,                      /* 07 bios_scan */
9583        0,                      /* 08 scam_tolerant */
9584        1,                      /* 09 adapter_scsi_id */
9585        1,                      /*    bios_boot_delay */
9586        1,                      /* 10 scsi_reset_delay */
9587        1,                      /*    bios_id_lun */
9588        1,                      /* 11 termination_se */
9589        1,                      /*    termination_lvd */
9590        0,                      /* 12 bios_ctrl */
9591        0,                      /* 13 sdtr_speed2 */
9592        0,                      /* 14 sdtr_speed3 */
9593        1,                      /* 15 max_host_qng */
9594        1,                      /*    max_dvc_qng */
9595        0,                      /* 16 dvc_cntl */
9596        0,                      /* 17 sdtr_speed4 */
9597        0,                      /* 18 serial_number_word1 */
9598        0,                      /* 19 serial_number_word2 */
9599        0,                      /* 20 serial_number_word3 */
9600        0,                      /* 21 check_sum */
9601        {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9602        ,                       /* 22-29 oem_name[16] */
9603        0,                      /* 30 dvc_err_code */
9604        0,                      /* 31 adv_err_code */
9605        0,                      /* 32 adv_err_addr */
9606        0,                      /* 33 saved_dvc_err_code */
9607        0,                      /* 34 saved_adv_err_code */
9608        0,                      /* 35 saved_adv_err_addr */
9609        0,                      /* 36 reserved */
9610        0,                      /* 37 reserved */
9611        0,                      /* 38 reserved */
9612        0,                      /* 39 reserved */
9613        0,                      /* 40 reserved */
9614        0,                      /* 41 reserved */
9615        0,                      /* 42 reserved */
9616        0,                      /* 43 reserved */
9617        0,                      /* 44 reserved */
9618        0,                      /* 45 reserved */
9619        0,                      /* 46 reserved */
9620        0,                      /* 47 reserved */
9621        0,                      /* 48 reserved */
9622        0,                      /* 49 reserved */
9623        0,                      /* 50 reserved */
9624        0,                      /* 51 reserved */
9625        0,                      /* 52 reserved */
9626        0,                      /* 53 reserved */
9627        0,                      /* 54 reserved */
9628        0,                      /* 55 reserved */
9629        0,                      /* 56 cisptr_lsw */
9630        0,                      /* 57 cisprt_msw */
9631        0,                      /* 58 subsysvid */
9632        0,                      /* 59 subsysid */
9633        0,                      /* 60 reserved */
9634        0,                      /* 61 reserved */
9635        0,                      /* 62 reserved */
9636        0                       /* 63 reserved */
9637};
9638
9639static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config = {
9640        ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
9641        0x0000,                 /* 01 cfg_msw */
9642        0xFFFF,                 /* 02 disc_enable */
9643        0xFFFF,                 /* 03 wdtr_able */
9644        0x5555,                 /* 04 sdtr_speed1 */
9645        0xFFFF,                 /* 05 start_motor */
9646        0xFFFF,                 /* 06 tagqng_able */
9647        0xFFFF,                 /* 07 bios_scan */
9648        0,                      /* 08 scam_tolerant */
9649        7,                      /* 09 adapter_scsi_id */
9650        0,                      /*    bios_boot_delay */
9651        3,                      /* 10 scsi_reset_delay */
9652        0,                      /*    bios_id_lun */
9653        0,                      /* 11 termination_se */
9654        0,                      /*    termination_lvd */
9655        0xFFE7,                 /* 12 bios_ctrl */
9656        0x5555,                 /* 13 sdtr_speed2 */
9657        0x5555,                 /* 14 sdtr_speed3 */
9658        ASC_DEF_MAX_HOST_QNG,   /* 15 max_host_qng */
9659        ASC_DEF_MAX_DVC_QNG,    /*    max_dvc_qng */
9660        0,                      /* 16 dvc_cntl */
9661        0x5555,                 /* 17 sdtr_speed4 */
9662        0,                      /* 18 serial_number_word1 */
9663        0,                      /* 19 serial_number_word2 */
9664        0,                      /* 20 serial_number_word3 */
9665        0,                      /* 21 check_sum */
9666        {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9667        ,                       /* 22-29 oem_name[16] */
9668        0,                      /* 30 dvc_err_code */
9669        0,                      /* 31 adv_err_code */
9670        0,                      /* 32 adv_err_addr */
9671        0,                      /* 33 saved_dvc_err_code */
9672        0,                      /* 34 saved_adv_err_code */
9673        0,                      /* 35 saved_adv_err_addr */
9674        0,                      /* 36 reserved */
9675        0,                      /* 37 reserved */
9676        0,                      /* 38 reserved */
9677        0,                      /* 39 reserved */
9678        0,                      /* 40 reserved */
9679        0,                      /* 41 reserved */
9680        0,                      /* 42 reserved */
9681        0,                      /* 43 reserved */
9682        0,                      /* 44 reserved */
9683        0,                      /* 45 reserved */
9684        0,                      /* 46 reserved */
9685        0,                      /* 47 reserved */
9686        0,                      /* 48 reserved */
9687        0,                      /* 49 reserved */
9688        0,                      /* 50 reserved */
9689        0,                      /* 51 reserved */
9690        0,                      /* 52 reserved */
9691        0,                      /* 53 reserved */
9692        0,                      /* 54 reserved */
9693        0,                      /* 55 reserved */
9694        0,                      /* 56 cisptr_lsw */
9695        0,                      /* 57 cisprt_msw */
9696        PCI_VENDOR_ID_ASP,      /* 58 subsysvid */
9697        PCI_DEVICE_ID_38C1600_REV1,     /* 59 subsysid */
9698        0,                      /* 60 reserved */
9699        0,                      /* 61 reserved */
9700        0,                      /* 62 reserved */
9701        0                       /* 63 reserved */
9702};
9703
9704static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar = {
9705        0,                      /* 00 cfg_lsw */
9706        0,                      /* 01 cfg_msw */
9707        0,                      /* 02 disc_enable */
9708        0,                      /* 03 wdtr_able */
9709        0,                      /* 04 sdtr_speed1 */
9710        0,                      /* 05 start_motor */
9711        0,                      /* 06 tagqng_able */
9712        0,                      /* 07 bios_scan */
9713        0,                      /* 08 scam_tolerant */
9714        1,                      /* 09 adapter_scsi_id */
9715        1,                      /*    bios_boot_delay */
9716        1,                      /* 10 scsi_reset_delay */
9717        1,                      /*    bios_id_lun */
9718        1,                      /* 11 termination_se */
9719        1,                      /*    termination_lvd */
9720        0,                      /* 12 bios_ctrl */
9721        0,                      /* 13 sdtr_speed2 */
9722        0,                      /* 14 sdtr_speed3 */
9723        1,                      /* 15 max_host_qng */
9724        1,                      /*    max_dvc_qng */
9725        0,                      /* 16 dvc_cntl */
9726        0,                      /* 17 sdtr_speed4 */
9727        0,                      /* 18 serial_number_word1 */
9728        0,                      /* 19 serial_number_word2 */
9729        0,                      /* 20 serial_number_word3 */
9730        0,                      /* 21 check_sum */
9731        {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9732        ,                       /* 22-29 oem_name[16] */
9733        0,                      /* 30 dvc_err_code */
9734        0,                      /* 31 adv_err_code */
9735        0,                      /* 32 adv_err_addr */
9736        0,                      /* 33 saved_dvc_err_code */
9737        0,                      /* 34 saved_adv_err_code */
9738        0,                      /* 35 saved_adv_err_addr */
9739        0,                      /* 36 reserved */
9740        0,                      /* 37 reserved */
9741        0,                      /* 38 reserved */
9742        0,                      /* 39 reserved */
9743        0,                      /* 40 reserved */
9744        0,                      /* 41 reserved */
9745        0,                      /* 42 reserved */
9746        0,                      /* 43 reserved */
9747        0,                      /* 44 reserved */
9748        0,                      /* 45 reserved */
9749        0,                      /* 46 reserved */
9750        0,                      /* 47 reserved */
9751        0,                      /* 48 reserved */
9752        0,                      /* 49 reserved */
9753        0,                      /* 50 reserved */
9754        0,                      /* 51 reserved */
9755        0,                      /* 52 reserved */
9756        0,                      /* 53 reserved */
9757        0,                      /* 54 reserved */
9758        0,                      /* 55 reserved */
9759        0,                      /* 56 cisptr_lsw */
9760        0,                      /* 57 cisprt_msw */
9761        0,                      /* 58 subsysvid */
9762        0,                      /* 59 subsysid */
9763        0,                      /* 60 reserved */
9764        0,                      /* 61 reserved */
9765        0,                      /* 62 reserved */
9766        0                       /* 63 reserved */
9767};
9768
9769/*
9770 * Wait for EEPROM command to complete
9771 */
9772static void AdvWaitEEPCmd(AdvPortAddr iop_base)
9773{
9774        int eep_delay_ms;
9775
9776        for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) {
9777                if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) &
9778                    ASC_EEP_CMD_DONE) {
9779                        break;
9780                }
9781                mdelay(1);
9782        }
9783        if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) ==
9784            0)
9785                BUG();
9786}
9787
9788/*
9789 * Read the EEPROM from specified location
9790 */
9791static ushort AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr)
9792{
9793        AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9794                             ASC_EEP_CMD_READ | eep_word_addr);
9795        AdvWaitEEPCmd(iop_base);
9796        return AdvReadWordRegister(iop_base, IOPW_EE_DATA);
9797}
9798
9799/*
9800 * Write the EEPROM from 'cfg_buf'.
9801 */
9802static void AdvSet3550EEPConfig(AdvPortAddr iop_base,
9803                                ADVEEP_3550_CONFIG *cfg_buf)
9804{
9805        ushort *wbuf;
9806        ushort addr, chksum;
9807        ushort *charfields;
9808
9809        wbuf = (ushort *)cfg_buf;
9810        charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
9811        chksum = 0;
9812
9813        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9814        AdvWaitEEPCmd(iop_base);
9815
9816        /*
9817         * Write EEPROM from word 0 to word 20.
9818         */
9819        for (addr = ADV_EEP_DVC_CFG_BEGIN;
9820             addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9821                ushort word;
9822
9823                if (*charfields++) {
9824                        word = cpu_to_le16(*wbuf);
9825                } else {
9826                        word = *wbuf;
9827                }
9828                chksum += *wbuf;        /* Checksum is calculated from word values. */
9829                AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9830                AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9831                                     ASC_EEP_CMD_WRITE | addr);
9832                AdvWaitEEPCmd(iop_base);
9833                mdelay(ADV_EEP_DELAY_MS);
9834        }
9835
9836        /*
9837         * Write EEPROM checksum at word 21.
9838         */
9839        AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9840        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9841        AdvWaitEEPCmd(iop_base);
9842        wbuf++;
9843        charfields++;
9844
9845        /*
9846         * Write EEPROM OEM name at words 22 to 29.
9847         */
9848        for (addr = ADV_EEP_DVC_CTL_BEGIN;
9849             addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9850                ushort word;
9851
9852                if (*charfields++) {
9853                        word = cpu_to_le16(*wbuf);
9854                } else {
9855                        word = *wbuf;
9856                }
9857                AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9858                AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9859                                     ASC_EEP_CMD_WRITE | addr);
9860                AdvWaitEEPCmd(iop_base);
9861        }
9862        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9863        AdvWaitEEPCmd(iop_base);
9864}
9865
9866/*
9867 * Write the EEPROM from 'cfg_buf'.
9868 */
9869static void AdvSet38C0800EEPConfig(AdvPortAddr iop_base,
9870                                   ADVEEP_38C0800_CONFIG *cfg_buf)
9871{
9872        ushort *wbuf;
9873        ushort *charfields;
9874        ushort addr, chksum;
9875
9876        wbuf = (ushort *)cfg_buf;
9877        charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
9878        chksum = 0;
9879
9880        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9881        AdvWaitEEPCmd(iop_base);
9882
9883        /*
9884         * Write EEPROM from word 0 to word 20.
9885         */
9886        for (addr = ADV_EEP_DVC_CFG_BEGIN;
9887             addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9888                ushort word;
9889
9890                if (*charfields++) {
9891                        word = cpu_to_le16(*wbuf);
9892                } else {
9893                        word = *wbuf;
9894                }
9895                chksum += *wbuf;        /* Checksum is calculated from word values. */
9896                AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9897                AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9898                                     ASC_EEP_CMD_WRITE | addr);
9899                AdvWaitEEPCmd(iop_base);
9900                mdelay(ADV_EEP_DELAY_MS);
9901        }
9902
9903        /*
9904         * Write EEPROM checksum at word 21.
9905         */
9906        AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9907        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9908        AdvWaitEEPCmd(iop_base);
9909        wbuf++;
9910        charfields++;
9911
9912        /*
9913         * Write EEPROM OEM name at words 22 to 29.
9914         */
9915        for (addr = ADV_EEP_DVC_CTL_BEGIN;
9916             addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9917                ushort word;
9918
9919                if (*charfields++) {
9920                        word = cpu_to_le16(*wbuf);
9921                } else {
9922                        word = *wbuf;
9923                }
9924                AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9925                AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9926                                     ASC_EEP_CMD_WRITE | addr);
9927                AdvWaitEEPCmd(iop_base);
9928        }
9929        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9930        AdvWaitEEPCmd(iop_base);
9931}
9932
9933/*
9934 * Write the EEPROM from 'cfg_buf'.
9935 */
9936static void AdvSet38C1600EEPConfig(AdvPortAddr iop_base,
9937                                   ADVEEP_38C1600_CONFIG *cfg_buf)
9938{
9939        ushort *wbuf;
9940        ushort *charfields;
9941        ushort addr, chksum;
9942
9943        wbuf = (ushort *)cfg_buf;
9944        charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
9945        chksum = 0;
9946
9947        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9948        AdvWaitEEPCmd(iop_base);
9949
9950        /*
9951         * Write EEPROM from word 0 to word 20.
9952         */
9953        for (addr = ADV_EEP_DVC_CFG_BEGIN;
9954             addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9955                ushort word;
9956
9957                if (*charfields++) {
9958                        word = cpu_to_le16(*wbuf);
9959                } else {
9960                        word = *wbuf;
9961                }
9962                chksum += *wbuf;        /* Checksum is calculated from word values. */
9963                AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9964                AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9965                                     ASC_EEP_CMD_WRITE | addr);
9966                AdvWaitEEPCmd(iop_base);
9967                mdelay(ADV_EEP_DELAY_MS);
9968        }
9969
9970        /*
9971         * Write EEPROM checksum at word 21.
9972         */
9973        AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9974        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9975        AdvWaitEEPCmd(iop_base);
9976        wbuf++;
9977        charfields++;
9978
9979        /*
9980         * Write EEPROM OEM name at words 22 to 29.
9981         */
9982        for (addr = ADV_EEP_DVC_CTL_BEGIN;
9983             addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9984                ushort word;
9985
9986                if (*charfields++) {
9987                        word = cpu_to_le16(*wbuf);
9988                } else {
9989                        word = *wbuf;
9990                }
9991                AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9992                AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9993                                     ASC_EEP_CMD_WRITE | addr);
9994                AdvWaitEEPCmd(iop_base);
9995        }
9996        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9997        AdvWaitEEPCmd(iop_base);
9998}
9999
10000/*
10001 * Read EEPROM configuration into the specified buffer.
10002 *
10003 * Return a checksum based on the EEPROM configuration read.
10004 */
10005static ushort AdvGet3550EEPConfig(AdvPortAddr iop_base,
10006                                  ADVEEP_3550_CONFIG *cfg_buf)
10007{
10008        ushort wval, chksum;
10009        ushort *wbuf;
10010        int eep_addr;
10011        ushort *charfields;
10012
10013        charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10014        wbuf = (ushort *)cfg_buf;
10015        chksum = 0;
10016
10017        for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10018             eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10019                wval = AdvReadEEPWord(iop_base, eep_addr);
10020                chksum += wval; /* Checksum is calculated from word values. */
10021                if (*charfields++) {
10022                        *wbuf = le16_to_cpu(wval);
10023                } else {
10024                        *wbuf = wval;
10025                }
10026        }
10027        /* Read checksum word. */
10028        *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10029        wbuf++;
10030        charfields++;
10031
10032        /* Read rest of EEPROM not covered by the checksum. */
10033        for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10034             eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10035                *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10036                if (*charfields++) {
10037                        *wbuf = le16_to_cpu(*wbuf);
10038                }
10039        }
10040        return chksum;
10041}
10042
10043/*
10044 * Read EEPROM configuration into the specified buffer.
10045 *
10046 * Return a checksum based on the EEPROM configuration read.
10047 */
10048static ushort AdvGet38C0800EEPConfig(AdvPortAddr iop_base,
10049                                     ADVEEP_38C0800_CONFIG *cfg_buf)
10050{
10051        ushort wval, chksum;
10052        ushort *wbuf;
10053        int eep_addr;
10054        ushort *charfields;
10055
10056        charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
10057        wbuf = (ushort *)cfg_buf;
10058        chksum = 0;
10059
10060        for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10061             eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10062                wval = AdvReadEEPWord(iop_base, eep_addr);
10063                chksum += wval; /* Checksum is calculated from word values. */
10064                if (*charfields++) {
10065                        *wbuf = le16_to_cpu(wval);
10066                } else {
10067                        *wbuf = wval;
10068                }
10069        }
10070        /* Read checksum word. */
10071        *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10072        wbuf++;
10073        charfields++;
10074
10075        /* Read rest of EEPROM not covered by the checksum. */
10076        for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10077             eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10078                *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10079                if (*charfields++) {
10080                        *wbuf = le16_to_cpu(*wbuf);
10081                }
10082        }
10083        return chksum;
10084}
10085
10086/*
10087 * Read EEPROM configuration into the specified buffer.
10088 *
10089 * Return a checksum based on the EEPROM configuration read.
10090 */
10091static ushort AdvGet38C1600EEPConfig(AdvPortAddr iop_base,
10092                                     ADVEEP_38C1600_CONFIG *cfg_buf)
10093{
10094        ushort wval, chksum;
10095        ushort *wbuf;
10096        int eep_addr;
10097        ushort *charfields;
10098
10099        charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
10100        wbuf = (ushort *)cfg_buf;
10101        chksum = 0;
10102
10103        for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10104             eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10105                wval = AdvReadEEPWord(iop_base, eep_addr);
10106                chksum += wval; /* Checksum is calculated from word values. */
10107                if (*charfields++) {
10108                        *wbuf = le16_to_cpu(wval);
10109                } else {
10110                        *wbuf = wval;
10111                }
10112        }
10113        /* Read checksum word. */
10114        *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10115        wbuf++;
10116        charfields++;
10117
10118        /* Read rest of EEPROM not covered by the checksum. */
10119        for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10120             eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10121                *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10122                if (*charfields++) {
10123                        *wbuf = le16_to_cpu(*wbuf);
10124                }
10125        }
10126        return chksum;
10127}
10128
10129/*
10130 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10131 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10132 * all of this is done.
10133 *
10134 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10135 *
10136 * For a non-fatal error return a warning code. If there are no warnings
10137 * then 0 is returned.
10138 *
10139 * Note: Chip is stopped on entry.
10140 */
10141static int AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc)
10142{
10143        AdvPortAddr iop_base;
10144        ushort warn_code;
10145        ADVEEP_3550_CONFIG eep_config;
10146
10147        iop_base = asc_dvc->iop_base;
10148
10149        warn_code = 0;
10150
10151        /*
10152         * Read the board's EEPROM configuration.
10153         *
10154         * Set default values if a bad checksum is found.
10155         */
10156        if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) {
10157                warn_code |= ASC_WARN_EEPROM_CHKSUM;
10158
10159                /*
10160                 * Set EEPROM default values.
10161                 */
10162                memcpy(&eep_config, &Default_3550_EEPROM_Config,
10163                        sizeof(ADVEEP_3550_CONFIG));
10164
10165                /*
10166                 * Assume the 6 byte board serial number that was read from
10167                 * EEPROM is correct even if the EEPROM checksum failed.
10168                 */
10169                eep_config.serial_number_word3 =
10170                    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10171
10172                eep_config.serial_number_word2 =
10173                    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10174
10175                eep_config.serial_number_word1 =
10176                    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10177
10178                AdvSet3550EEPConfig(iop_base, &eep_config);
10179        }
10180        /*
10181         * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10182         * EEPROM configuration that was read.
10183         *
10184         * This is the mapping of EEPROM fields to Adv Library fields.
10185         */
10186        asc_dvc->wdtr_able = eep_config.wdtr_able;
10187        asc_dvc->sdtr_able = eep_config.sdtr_able;
10188        asc_dvc->ultra_able = eep_config.ultra_able;
10189        asc_dvc->tagqng_able = eep_config.tagqng_able;
10190        asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10191        asc_dvc->max_host_qng = eep_config.max_host_qng;
10192        asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10193        asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10194        asc_dvc->start_motor = eep_config.start_motor;
10195        asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10196        asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10197        asc_dvc->no_scam = eep_config.scam_tolerant;
10198        asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10199        asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10200        asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10201
10202        /*
10203         * Set the host maximum queuing (max. 253, min. 16) and the per device
10204         * maximum queuing (max. 63, min. 4).
10205         */
10206        if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10207                eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10208        } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10209                /* If the value is zero, assume it is uninitialized. */
10210                if (eep_config.max_host_qng == 0) {
10211                        eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10212                } else {
10213                        eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10214                }
10215        }
10216
10217        if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10218                eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10219        } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10220                /* If the value is zero, assume it is uninitialized. */
10221                if (eep_config.max_dvc_qng == 0) {
10222                        eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10223                } else {
10224                        eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10225                }
10226        }
10227
10228        /*
10229         * If 'max_dvc_qng' is greater than 'max_host_qng', then
10230         * set 'max_dvc_qng' to 'max_host_qng'.
10231         */
10232        if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10233                eep_config.max_dvc_qng = eep_config.max_host_qng;
10234        }
10235
10236        /*
10237         * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10238         * values based on possibly adjusted EEPROM values.
10239         */
10240        asc_dvc->max_host_qng = eep_config.max_host_qng;
10241        asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10242
10243        /*
10244         * If the EEPROM 'termination' field is set to automatic (0), then set
10245         * the ADV_DVC_CFG 'termination' field to automatic also.
10246         *
10247         * If the termination is specified with a non-zero 'termination'
10248         * value check that a legal value is set and set the ADV_DVC_CFG
10249         * 'termination' field appropriately.
10250         */
10251        if (eep_config.termination == 0) {
10252                asc_dvc->cfg->termination = 0;  /* auto termination */
10253        } else {
10254                /* Enable manual control with low off / high off. */
10255                if (eep_config.termination == 1) {
10256                        asc_dvc->cfg->termination = TERM_CTL_SEL;
10257
10258                        /* Enable manual control with low off / high on. */
10259                } else if (eep_config.termination == 2) {
10260                        asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H;
10261
10262                        /* Enable manual control with low on / high on. */
10263                } else if (eep_config.termination == 3) {
10264                        asc_dvc->cfg->termination =
10265                            TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L;
10266                } else {
10267                        /*
10268                         * The EEPROM 'termination' field contains a bad value. Use
10269                         * automatic termination instead.
10270                         */
10271                        asc_dvc->cfg->termination = 0;
10272                        warn_code |= ASC_WARN_EEPROM_TERMINATION;
10273                }
10274        }
10275
10276        return warn_code;
10277}
10278
10279/*
10280 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10281 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10282 * all of this is done.
10283 *
10284 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10285 *
10286 * For a non-fatal error return a warning code. If there are no warnings
10287 * then 0 is returned.
10288 *
10289 * Note: Chip is stopped on entry.
10290 */
10291static int AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc)
10292{
10293        AdvPortAddr iop_base;
10294        ushort warn_code;
10295        ADVEEP_38C0800_CONFIG eep_config;
10296        uchar tid, termination;
10297        ushort sdtr_speed = 0;
10298
10299        iop_base = asc_dvc->iop_base;
10300
10301        warn_code = 0;
10302
10303        /*
10304         * Read the board's EEPROM configuration.
10305         *
10306         * Set default values if a bad checksum is found.
10307         */
10308        if (AdvGet38C0800EEPConfig(iop_base, &eep_config) !=
10309            eep_config.check_sum) {
10310                warn_code |= ASC_WARN_EEPROM_CHKSUM;
10311
10312                /*
10313                 * Set EEPROM default values.
10314                 */
10315                memcpy(&eep_config, &Default_38C0800_EEPROM_Config,
10316                        sizeof(ADVEEP_38C0800_CONFIG));
10317
10318                /*
10319                 * Assume the 6 byte board serial number that was read from
10320                 * EEPROM is correct even if the EEPROM checksum failed.
10321                 */
10322                eep_config.serial_number_word3 =
10323                    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10324
10325                eep_config.serial_number_word2 =
10326                    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10327
10328                eep_config.serial_number_word1 =
10329                    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10330
10331                AdvSet38C0800EEPConfig(iop_base, &eep_config);
10332        }
10333        /*
10334         * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
10335         * EEPROM configuration that was read.
10336         *
10337         * This is the mapping of EEPROM fields to Adv Library fields.
10338         */
10339        asc_dvc->wdtr_able = eep_config.wdtr_able;
10340        asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
10341        asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
10342        asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
10343        asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
10344        asc_dvc->tagqng_able = eep_config.tagqng_able;
10345        asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10346        asc_dvc->max_host_qng = eep_config.max_host_qng;
10347        asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10348        asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10349        asc_dvc->start_motor = eep_config.start_motor;
10350        asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10351        asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10352        asc_dvc->no_scam = eep_config.scam_tolerant;
10353        asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10354        asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10355        asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10356
10357        /*
10358         * For every Target ID if any of its 'sdtr_speed[1234]' bits
10359         * are set, then set an 'sdtr_able' bit for it.
10360         */
10361        asc_dvc->sdtr_able = 0;
10362        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
10363                if (tid == 0) {
10364                        sdtr_speed = asc_dvc->sdtr_speed1;
10365                } else if (tid == 4) {
10366                        sdtr_speed = asc_dvc->sdtr_speed2;
10367                } else if (tid == 8) {
10368                        sdtr_speed = asc_dvc->sdtr_speed3;
10369                } else if (tid == 12) {
10370                        sdtr_speed = asc_dvc->sdtr_speed4;
10371                }
10372                if (sdtr_speed & ADV_MAX_TID) {
10373                        asc_dvc->sdtr_able |= (1 << tid);
10374                }
10375                sdtr_speed >>= 4;
10376        }
10377
10378        /*
10379         * Set the host maximum queuing (max. 253, min. 16) and the per device
10380         * maximum queuing (max. 63, min. 4).
10381         */
10382        if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10383                eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10384        } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10385                /* If the value is zero, assume it is uninitialized. */
10386                if (eep_config.max_host_qng == 0) {
10387                        eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10388                } else {
10389                        eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10390                }
10391        }
10392
10393        if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10394                eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10395        } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10396                /* If the value is zero, assume it is uninitialized. */
10397                if (eep_config.max_dvc_qng == 0) {
10398                        eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10399                } else {
10400                        eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10401                }
10402        }
10403
10404        /*
10405         * If 'max_dvc_qng' is greater than 'max_host_qng', then
10406         * set 'max_dvc_qng' to 'max_host_qng'.
10407         */
10408        if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10409                eep_config.max_dvc_qng = eep_config.max_host_qng;
10410        }
10411
10412        /*
10413         * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10414         * values based on possibly adjusted EEPROM values.
10415         */
10416        asc_dvc->max_host_qng = eep_config.max_host_qng;
10417        asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10418
10419        /*
10420         * If the EEPROM 'termination' field is set to automatic (0), then set
10421         * the ADV_DVC_CFG 'termination' field to automatic also.
10422         *
10423         * If the termination is specified with a non-zero 'termination'
10424         * value check that a legal value is set and set the ADV_DVC_CFG
10425         * 'termination' field appropriately.
10426         */
10427        if (eep_config.termination_se == 0) {
10428                termination = 0;        /* auto termination for SE */
10429        } else {
10430                /* Enable manual control with low off / high off. */
10431                if (eep_config.termination_se == 1) {
10432                        termination = 0;
10433
10434                        /* Enable manual control with low off / high on. */
10435                } else if (eep_config.termination_se == 2) {
10436                        termination = TERM_SE_HI;
10437
10438                        /* Enable manual control with low on / high on. */
10439                } else if (eep_config.termination_se == 3) {
10440                        termination = TERM_SE;
10441                } else {
10442                        /*
10443                         * The EEPROM 'termination_se' field contains a bad value.
10444                         * Use automatic termination instead.
10445                         */
10446                        termination = 0;
10447                        warn_code |= ASC_WARN_EEPROM_TERMINATION;
10448                }
10449        }
10450
10451        if (eep_config.termination_lvd == 0) {
10452                asc_dvc->cfg->termination = termination;        /* auto termination for LVD */
10453        } else {
10454                /* Enable manual control with low off / high off. */
10455                if (eep_config.termination_lvd == 1) {
10456                        asc_dvc->cfg->termination = termination;
10457
10458                        /* Enable manual control with low off / high on. */
10459                } else if (eep_config.termination_lvd == 2) {
10460                        asc_dvc->cfg->termination = termination | TERM_LVD_HI;
10461
10462                        /* Enable manual control with low on / high on. */
10463                } else if (eep_config.termination_lvd == 3) {
10464                        asc_dvc->cfg->termination = termination | TERM_LVD;
10465                } else {
10466                        /*
10467                         * The EEPROM 'termination_lvd' field contains a bad value.
10468                         * Use automatic termination instead.
10469                         */
10470                        asc_dvc->cfg->termination = termination;
10471                        warn_code |= ASC_WARN_EEPROM_TERMINATION;
10472                }
10473        }
10474
10475        return warn_code;
10476}
10477
10478/*
10479 * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
10480 * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
10481 * all of this is done.
10482 *
10483 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
10484 *
10485 * For a non-fatal error return a warning code. If there are no warnings
10486 * then 0 is returned.
10487 *
10488 * Note: Chip is stopped on entry.
10489 */
10490static int AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc)
10491{
10492        AdvPortAddr iop_base;
10493        ushort warn_code;
10494        ADVEEP_38C1600_CONFIG eep_config;
10495        uchar tid, termination;
10496        ushort sdtr_speed = 0;
10497
10498        iop_base = asc_dvc->iop_base;
10499
10500        warn_code = 0;
10501
10502        /*
10503         * Read the board's EEPROM configuration.
10504         *
10505         * Set default values if a bad checksum is found.
10506         */
10507        if (AdvGet38C1600EEPConfig(iop_base, &eep_config) !=
10508            eep_config.check_sum) {
10509                struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
10510                warn_code |= ASC_WARN_EEPROM_CHKSUM;
10511
10512                /*
10513                 * Set EEPROM default values.
10514                 */
10515                memcpy(&eep_config, &Default_38C1600_EEPROM_Config,
10516                        sizeof(ADVEEP_38C1600_CONFIG));
10517
10518                if (PCI_FUNC(pdev->devfn) != 0) {
10519                        u8 ints;
10520                        /*
10521                         * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
10522                         * and old Mac system booting problem. The Expansion
10523                         * ROM must be disabled in Function 1 for these systems
10524                         */
10525                        eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE;
10526                        /*
10527                         * Clear the INTAB (bit 11) if the GPIO 0 input
10528                         * indicates the Function 1 interrupt line is wired
10529                         * to INTB.
10530                         *
10531                         * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
10532                         *   1 - Function 1 interrupt line wired to INT A.
10533                         *   0 - Function 1 interrupt line wired to INT B.
10534                         *
10535                         * Note: Function 0 is always wired to INTA.
10536                         * Put all 5 GPIO bits in input mode and then read
10537                         * their input values.
10538                         */
10539                        AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0);
10540                        ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA);
10541                        if ((ints & 0x01) == 0)
10542                                eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB;
10543                }
10544
10545                /*
10546                 * Assume the 6 byte board serial number that was read from
10547                 * EEPROM is correct even if the EEPROM checksum failed.
10548                 */
10549                eep_config.serial_number_word3 =
10550                        AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10551                eep_config.serial_number_word2 =
10552                        AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10553                eep_config.serial_number_word1 =
10554                        AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10555
10556                AdvSet38C1600EEPConfig(iop_base, &eep_config);
10557        }
10558
10559        /*
10560         * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10561         * EEPROM configuration that was read.
10562         *
10563         * This is the mapping of EEPROM fields to Adv Library fields.
10564         */
10565        asc_dvc->wdtr_able = eep_config.wdtr_able;
10566        asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
10567        asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
10568        asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
10569        asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
10570        asc_dvc->ppr_able = 0;
10571        asc_dvc->tagqng_able = eep_config.tagqng_able;
10572        asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10573        asc_dvc->max_host_qng = eep_config.max_host_qng;
10574        asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10575        asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID);
10576        asc_dvc->start_motor = eep_config.start_motor;
10577        asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10578        asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10579        asc_dvc->no_scam = eep_config.scam_tolerant;
10580
10581        /*
10582         * For every Target ID if any of its 'sdtr_speed[1234]' bits
10583         * are set, then set an 'sdtr_able' bit for it.
10584         */
10585        asc_dvc->sdtr_able = 0;
10586        for (tid = 0; tid <= ASC_MAX_TID; tid++) {
10587                if (tid == 0) {
10588                        sdtr_speed = asc_dvc->sdtr_speed1;
10589                } else if (tid == 4) {
10590                        sdtr_speed = asc_dvc->sdtr_speed2;
10591                } else if (tid == 8) {
10592                        sdtr_speed = asc_dvc->sdtr_speed3;
10593                } else if (tid == 12) {
10594                        sdtr_speed = asc_dvc->sdtr_speed4;
10595                }
10596                if (sdtr_speed & ASC_MAX_TID) {
10597                        asc_dvc->sdtr_able |= (1 << tid);
10598                }
10599                sdtr_speed >>= 4;
10600        }
10601
10602        /*
10603         * Set the host maximum queuing (max. 253, min. 16) and the per device
10604         * maximum queuing (max. 63, min. 4).
10605         */
10606        if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10607                eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10608        } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10609                /* If the value is zero, assume it is uninitialized. */
10610                if (eep_config.max_host_qng == 0) {
10611                        eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10612                } else {
10613                        eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10614                }
10615        }
10616
10617        if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10618                eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10619        } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10620                /* If the value is zero, assume it is uninitialized. */
10621                if (eep_config.max_dvc_qng == 0) {
10622                        eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10623                } else {
10624                        eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10625                }
10626        }
10627
10628        /*
10629         * If 'max_dvc_qng' is greater than 'max_host_qng', then
10630         * set 'max_dvc_qng' to 'max_host_qng'.
10631         */
10632        if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10633                eep_config.max_dvc_qng = eep_config.max_host_qng;
10634        }
10635
10636        /*
10637         * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
10638         * values based on possibly adjusted EEPROM values.
10639         */
10640        asc_dvc->max_host_qng = eep_config.max_host_qng;
10641        asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10642
10643        /*
10644         * If the EEPROM 'termination' field is set to automatic (0), then set
10645         * the ASC_DVC_CFG 'termination' field to automatic also.
10646         *
10647         * If the termination is specified with a non-zero 'termination'
10648         * value check that a legal value is set and set the ASC_DVC_CFG
10649         * 'termination' field appropriately.
10650         */
10651        if (eep_config.termination_se == 0) {
10652                termination = 0;        /* auto termination for SE */
10653        } else {
10654                /* Enable manual control with low off / high off. */
10655                if (eep_config.termination_se == 1) {
10656                        termination = 0;
10657
10658                        /* Enable manual control with low off / high on. */
10659                } else if (eep_config.termination_se == 2) {
10660                        termination = TERM_SE_HI;
10661
10662                        /* Enable manual control with low on / high on. */
10663                } else if (eep_config.termination_se == 3) {
10664                        termination = TERM_SE;
10665                } else {
10666                        /*
10667                         * The EEPROM 'termination_se' field contains a bad value.
10668                         * Use automatic termination instead.
10669                         */
10670                        termination = 0;
10671                        warn_code |= ASC_WARN_EEPROM_TERMINATION;
10672                }
10673        }
10674
10675        if (eep_config.termination_lvd == 0) {
10676                asc_dvc->cfg->termination = termination;        /* auto termination for LVD */
10677        } else {
10678                /* Enable manual control with low off / high off. */
10679                if (eep_config.termination_lvd == 1) {
10680                        asc_dvc->cfg->termination = termination;
10681
10682                        /* Enable manual control with low off / high on. */
10683                } else if (eep_config.termination_lvd == 2) {
10684                        asc_dvc->cfg->termination = termination | TERM_LVD_HI;
10685
10686                        /* Enable manual control with low on / high on. */
10687                } else if (eep_config.termination_lvd == 3) {
10688                        asc_dvc->cfg->termination = termination | TERM_LVD;
10689                } else {
10690                        /*
10691                         * The EEPROM 'termination_lvd' field contains a bad value.
10692                         * Use automatic termination instead.
10693                         */
10694                        asc_dvc->cfg->termination = termination;
10695                        warn_code |= ASC_WARN_EEPROM_TERMINATION;
10696                }
10697        }
10698
10699        return warn_code;
10700}
10701
10702/*
10703 * Initialize the ADV_DVC_VAR structure.
10704 *
10705 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10706 *
10707 * For a non-fatal error return a warning code. If there are no warnings
10708 * then 0 is returned.
10709 */
10710static int AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
10711{
10712        struct asc_board *board = shost_priv(shost);
10713        ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var;
10714        unsigned short warn_code = 0;
10715        AdvPortAddr iop_base = asc_dvc->iop_base;
10716        u16 cmd;
10717        int status;
10718
10719        asc_dvc->err_code = 0;
10720
10721        /*
10722         * Save the state of the PCI Configuration Command Register
10723         * "Parity Error Response Control" Bit. If the bit is clear (0),
10724         * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
10725         * DMA parity errors.
10726         */
10727        asc_dvc->cfg->control_flag = 0;
10728        pci_read_config_word(pdev, PCI_COMMAND, &cmd);
10729        if ((cmd & PCI_COMMAND_PARITY) == 0)
10730                asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR;
10731
10732        asc_dvc->cfg->chip_version =
10733            AdvGetChipVersion(iop_base, asc_dvc->bus_type);
10734
10735        ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
10736                 (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1),
10737                 (ushort)ADV_CHIP_ID_BYTE);
10738
10739        ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
10740                 (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0),
10741                 (ushort)ADV_CHIP_ID_WORD);
10742
10743        /*
10744         * Reset the chip to start and allow register writes.
10745         */
10746        if (AdvFindSignature(iop_base) == 0) {
10747                asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
10748                return ADV_ERROR;
10749        } else {
10750                /*
10751                 * The caller must set 'chip_type' to a valid setting.
10752                 */
10753                if (asc_dvc->chip_type != ADV_CHIP_ASC3550 &&
10754                    asc_dvc->chip_type != ADV_CHIP_ASC38C0800 &&
10755                    asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
10756                        asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE;
10757                        return ADV_ERROR;
10758                }
10759
10760                /*
10761                 * Reset Chip.
10762                 */
10763                AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
10764                                     ADV_CTRL_REG_CMD_RESET);
10765                mdelay(100);
10766                AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
10767                                     ADV_CTRL_REG_CMD_WR_IO_REG);
10768
10769                if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
10770                        status = AdvInitFrom38C1600EEP(asc_dvc);
10771                } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
10772                        status = AdvInitFrom38C0800EEP(asc_dvc);
10773                } else {
10774                        status = AdvInitFrom3550EEP(asc_dvc);
10775                }
10776                warn_code |= status;
10777        }
10778
10779        if (warn_code != 0)
10780                shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code);
10781
10782        if (asc_dvc->err_code)
10783                shost_printk(KERN_ERR, shost, "error code 0x%x\n",
10784                                asc_dvc->err_code);
10785
10786        return asc_dvc->err_code;
10787}
10788#endif
10789
10790static struct scsi_host_template advansys_template = {
10791        .proc_name = DRV_NAME,
10792#ifdef CONFIG_PROC_FS
10793        .show_info = advansys_show_info,
10794#endif
10795        .name = DRV_NAME,
10796        .info = advansys_info,
10797        .queuecommand = advansys_queuecommand,
10798        .eh_host_reset_handler = advansys_reset,
10799        .bios_param = advansys_biosparam,
10800        .slave_configure = advansys_slave_configure,
10801        /*
10802         * Because the driver may control an ISA adapter 'unchecked_isa_dma'
10803         * must be set. The flag will be cleared in advansys_board_found
10804         * for non-ISA adapters.
10805         */
10806        .unchecked_isa_dma = true,
10807};
10808
10809static int advansys_wide_init_chip(struct Scsi_Host *shost)
10810{
10811        struct asc_board *board = shost_priv(shost);
10812        struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
10813        size_t sgblk_pool_size;
10814        int warn_code, err_code;
10815
10816        /*
10817         * Allocate buffer carrier structures. The total size
10818         * is about 8 KB, so allocate all at once.
10819         */
10820        adv_dvc->carrier = dma_alloc_coherent(board->dev,
10821                ADV_CARRIER_BUFSIZE, &adv_dvc->carrier_addr, GFP_KERNEL);
10822        ASC_DBG(1, "carrier 0x%p\n", adv_dvc->carrier);
10823
10824        if (!adv_dvc->carrier)
10825                goto kmalloc_failed;
10826
10827        /*
10828         * Allocate up to 'max_host_qng' request structures for the Wide
10829         * board. The total size is about 16 KB, so allocate all at once.
10830         * If the allocation fails decrement and try again.
10831         */
10832        board->adv_reqp_size = adv_dvc->max_host_qng * sizeof(adv_req_t);
10833        if (board->adv_reqp_size & 0x1f) {
10834                ASC_DBG(1, "unaligned reqp %lu bytes\n", sizeof(adv_req_t));
10835                board->adv_reqp_size = ADV_32BALIGN(board->adv_reqp_size);
10836        }
10837        board->adv_reqp = dma_alloc_coherent(board->dev, board->adv_reqp_size,
10838                &board->adv_reqp_addr, GFP_KERNEL);
10839
10840        if (!board->adv_reqp)
10841                goto kmalloc_failed;
10842
10843        ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", board->adv_reqp,
10844                adv_dvc->max_host_qng, board->adv_reqp_size);
10845
10846        /*
10847         * Allocate up to ADV_TOT_SG_BLOCK request structures for
10848         * the Wide board. Each structure is about 136 bytes.
10849         */
10850        sgblk_pool_size = sizeof(adv_sgblk_t) * ADV_TOT_SG_BLOCK;
10851        board->adv_sgblk_pool = dma_pool_create("adv_sgblk", board->dev,
10852                                                sgblk_pool_size, 32, 0);
10853
10854        ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", ADV_TOT_SG_BLOCK,
10855                sizeof(adv_sgblk_t), sgblk_pool_size);
10856
10857        if (!board->adv_sgblk_pool)
10858                goto kmalloc_failed;
10859
10860        if (adv_dvc->chip_type == ADV_CHIP_ASC3550) {
10861                ASC_DBG(2, "AdvInitAsc3550Driver()\n");
10862                warn_code = AdvInitAsc3550Driver(adv_dvc);
10863        } else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) {
10864                ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
10865                warn_code = AdvInitAsc38C0800Driver(adv_dvc);
10866        } else {
10867                ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
10868                warn_code = AdvInitAsc38C1600Driver(adv_dvc);
10869        }
10870        err_code = adv_dvc->err_code;
10871
10872        if (warn_code || err_code) {
10873                shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error "
10874                        "0x%x\n", warn_code, err_code);
10875        }
10876
10877        goto exit;
10878
10879 kmalloc_failed:
10880        shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n");
10881        err_code = ADV_ERROR;
10882 exit:
10883        return err_code;
10884}
10885
10886static void advansys_wide_free_mem(struct asc_board *board)
10887{
10888        struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
10889
10890        if (adv_dvc->carrier) {
10891                dma_free_coherent(board->dev, ADV_CARRIER_BUFSIZE,
10892                                  adv_dvc->carrier, adv_dvc->carrier_addr);
10893                adv_dvc->carrier = NULL;
10894        }
10895        if (board->adv_reqp) {
10896                dma_free_coherent(board->dev, board->adv_reqp_size,
10897                                  board->adv_reqp, board->adv_reqp_addr);
10898                board->adv_reqp = NULL;
10899        }
10900        if (board->adv_sgblk_pool) {
10901                dma_pool_destroy(board->adv_sgblk_pool);
10902                board->adv_sgblk_pool = NULL;
10903        }
10904}
10905
10906static int advansys_board_found(struct Scsi_Host *shost, unsigned int iop,
10907                                int bus_type)
10908{
10909        struct pci_dev *pdev;
10910        struct asc_board *boardp = shost_priv(shost);
10911        ASC_DVC_VAR *asc_dvc_varp = NULL;
10912        ADV_DVC_VAR *adv_dvc_varp = NULL;
10913        int share_irq, warn_code, ret;
10914
10915        pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL;
10916
10917        if (ASC_NARROW_BOARD(boardp)) {
10918                ASC_DBG(1, "narrow board\n");
10919                asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
10920                asc_dvc_varp->bus_type = bus_type;
10921                asc_dvc_varp->drv_ptr = boardp;
10922                asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg;
10923                asc_dvc_varp->iop_base = iop;
10924        } else {
10925#ifdef CONFIG_PCI
10926                adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
10927                adv_dvc_varp->drv_ptr = boardp;
10928                adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg;
10929                if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) {
10930                        ASC_DBG(1, "wide board ASC-3550\n");
10931                        adv_dvc_varp->chip_type = ADV_CHIP_ASC3550;
10932                } else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) {
10933                        ASC_DBG(1, "wide board ASC-38C0800\n");
10934                        adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800;
10935                } else {
10936                        ASC_DBG(1, "wide board ASC-38C1600\n");
10937                        adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600;
10938                }
10939
10940                boardp->asc_n_io_port = pci_resource_len(pdev, 1);
10941                boardp->ioremap_addr = pci_ioremap_bar(pdev, 1);
10942                if (!boardp->ioremap_addr) {
10943                        shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) "
10944                                        "returned NULL\n",
10945                                        (long)pci_resource_start(pdev, 1),
10946                                        boardp->asc_n_io_port);
10947                        ret = -ENODEV;
10948                        goto err_shost;
10949                }
10950                adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr;
10951                ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base);
10952
10953                /*
10954                 * Even though it isn't used to access wide boards, other
10955                 * than for the debug line below, save I/O Port address so
10956                 * that it can be reported.
10957                 */
10958                boardp->ioport = iop;
10959
10960                ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
10961                                (ushort)inp(iop + 1), (ushort)inpw(iop));
10962#endif /* CONFIG_PCI */
10963        }
10964
10965        if (ASC_NARROW_BOARD(boardp)) {
10966                /*
10967                 * Set the board bus type and PCI IRQ before
10968                 * calling AscInitGetConfig().
10969                 */
10970                switch (asc_dvc_varp->bus_type) {
10971#ifdef CONFIG_ISA
10972                case ASC_IS_ISA:
10973                        shost->unchecked_isa_dma = true;
10974                        share_irq = 0;
10975                        break;
10976                case ASC_IS_VL:
10977                        shost->unchecked_isa_dma = false;
10978                        share_irq = 0;
10979                        break;
10980                case ASC_IS_EISA:
10981                        shost->unchecked_isa_dma = false;
10982                        share_irq = IRQF_SHARED;
10983                        break;
10984#endif /* CONFIG_ISA */
10985#ifdef CONFIG_PCI
10986                case ASC_IS_PCI:
10987                        shost->unchecked_isa_dma = false;
10988                        share_irq = IRQF_SHARED;
10989                        break;
10990#endif /* CONFIG_PCI */
10991                default:
10992                        shost_printk(KERN_ERR, shost, "unknown adapter type: "
10993                                        "%d\n", asc_dvc_varp->bus_type);
10994                        shost->unchecked_isa_dma = false;
10995                        share_irq = 0;
10996                        break;
10997                }
10998
10999                /*
11000                 * NOTE: AscInitGetConfig() may change the board's
11001                 * bus_type value. The bus_type value should no
11002                 * longer be used. If the bus_type field must be
11003                 * referenced only use the bit-wise AND operator "&".
11004                 */
11005                ASC_DBG(2, "AscInitGetConfig()\n");
11006                ret = AscInitGetConfig(shost) ? -ENODEV : 0;
11007        } else {
11008#ifdef CONFIG_PCI
11009                /*
11010                 * For Wide boards set PCI information before calling
11011                 * AdvInitGetConfig().
11012                 */
11013                shost->unchecked_isa_dma = false;
11014                share_irq = IRQF_SHARED;
11015                ASC_DBG(2, "AdvInitGetConfig()\n");
11016
11017                ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0;
11018#else
11019                share_irq = 0;
11020                ret = -ENODEV;
11021#endif /* CONFIG_PCI */
11022        }
11023
11024        if (ret)
11025                goto err_unmap;
11026
11027        /*
11028         * Save the EEPROM configuration so that it can be displayed
11029         * from /proc/scsi/advansys/[0...].
11030         */
11031        if (ASC_NARROW_BOARD(boardp)) {
11032
11033                ASCEEP_CONFIG *ep;
11034
11035                /*
11036                 * Set the adapter's target id bit in the 'init_tidmask' field.
11037                 */
11038                boardp->init_tidmask |=
11039                    ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id);
11040
11041                /*
11042                 * Save EEPROM settings for the board.
11043                 */
11044                ep = &boardp->eep_config.asc_eep;
11045
11046                ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable;
11047                ep->disc_enable = asc_dvc_varp->cfg->disc_enable;
11048                ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled;
11049                ASC_EEP_SET_DMA_SPD(ep, asc_dvc_varp->cfg->isa_dma_speed);
11050                ep->start_motor = asc_dvc_varp->start_motor;
11051                ep->cntl = asc_dvc_varp->dvc_cntl;
11052                ep->no_scam = asc_dvc_varp->no_scam;
11053                ep->max_total_qng = asc_dvc_varp->max_total_qng;
11054                ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id);
11055                /* 'max_tag_qng' is set to the same value for every device. */
11056                ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0];
11057                ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0];
11058                ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1];
11059                ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2];
11060                ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3];
11061                ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4];
11062                ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5];
11063
11064                /*
11065                 * Modify board configuration.
11066                 */
11067                ASC_DBG(2, "AscInitSetConfig()\n");
11068                ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0;
11069                if (ret)
11070                        goto err_unmap;
11071        } else {
11072                ADVEEP_3550_CONFIG *ep_3550;
11073                ADVEEP_38C0800_CONFIG *ep_38C0800;
11074                ADVEEP_38C1600_CONFIG *ep_38C1600;
11075
11076                /*
11077                 * Save Wide EEP Configuration Information.
11078                 */
11079                if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
11080                        ep_3550 = &boardp->eep_config.adv_3550_eep;
11081
11082                        ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id;
11083                        ep_3550->max_host_qng = adv_dvc_varp->max_host_qng;
11084                        ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11085                        ep_3550->termination = adv_dvc_varp->cfg->termination;
11086                        ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable;
11087                        ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl;
11088                        ep_3550->wdtr_able = adv_dvc_varp->wdtr_able;
11089                        ep_3550->sdtr_able = adv_dvc_varp->sdtr_able;
11090                        ep_3550->ultra_able = adv_dvc_varp->ultra_able;
11091                        ep_3550->tagqng_able = adv_dvc_varp->tagqng_able;
11092                        ep_3550->start_motor = adv_dvc_varp->start_motor;
11093                        ep_3550->scsi_reset_delay =
11094                            adv_dvc_varp->scsi_reset_wait;
11095                        ep_3550->serial_number_word1 =
11096                            adv_dvc_varp->cfg->serial1;
11097                        ep_3550->serial_number_word2 =
11098                            adv_dvc_varp->cfg->serial2;
11099                        ep_3550->serial_number_word3 =
11100                            adv_dvc_varp->cfg->serial3;
11101                } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
11102                        ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
11103
11104                        ep_38C0800->adapter_scsi_id =
11105                            adv_dvc_varp->chip_scsi_id;
11106                        ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng;
11107                        ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11108                        ep_38C0800->termination_lvd =
11109                            adv_dvc_varp->cfg->termination;
11110                        ep_38C0800->disc_enable =
11111                            adv_dvc_varp->cfg->disc_enable;
11112                        ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl;
11113                        ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able;
11114                        ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
11115                        ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
11116                        ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
11117                        ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
11118                        ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
11119                        ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
11120                        ep_38C0800->start_motor = adv_dvc_varp->start_motor;
11121                        ep_38C0800->scsi_reset_delay =
11122                            adv_dvc_varp->scsi_reset_wait;
11123                        ep_38C0800->serial_number_word1 =
11124                            adv_dvc_varp->cfg->serial1;
11125                        ep_38C0800->serial_number_word2 =
11126                            adv_dvc_varp->cfg->serial2;
11127                        ep_38C0800->serial_number_word3 =
11128                            adv_dvc_varp->cfg->serial3;
11129                } else {
11130                        ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
11131
11132                        ep_38C1600->adapter_scsi_id =
11133                            adv_dvc_varp->chip_scsi_id;
11134                        ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng;
11135                        ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11136                        ep_38C1600->termination_lvd =
11137                            adv_dvc_varp->cfg->termination;
11138                        ep_38C1600->disc_enable =
11139                            adv_dvc_varp->cfg->disc_enable;
11140                        ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl;
11141                        ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able;
11142                        ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
11143                        ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
11144                        ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
11145                        ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
11146                        ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
11147                        ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
11148                        ep_38C1600->start_motor = adv_dvc_varp->start_motor;
11149                        ep_38C1600->scsi_reset_delay =
11150                            adv_dvc_varp->scsi_reset_wait;
11151                        ep_38C1600->serial_number_word1 =
11152                            adv_dvc_varp->cfg->serial1;
11153                        ep_38C1600->serial_number_word2 =
11154                            adv_dvc_varp->cfg->serial2;
11155                        ep_38C1600->serial_number_word3 =
11156                            adv_dvc_varp->cfg->serial3;
11157                }
11158
11159                /*
11160                 * Set the adapter's target id bit in the 'init_tidmask' field.
11161                 */
11162                boardp->init_tidmask |=
11163                    ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id);
11164        }
11165
11166        /*
11167         * Channels are numbered beginning with 0. For AdvanSys one host
11168         * structure supports one channel. Multi-channel boards have a
11169         * separate host structure for each channel.
11170         */
11171        shost->max_channel = 0;
11172        if (ASC_NARROW_BOARD(boardp)) {
11173                shost->max_id = ASC_MAX_TID + 1;
11174                shost->max_lun = ASC_MAX_LUN + 1;
11175                shost->max_cmd_len = ASC_MAX_CDB_LEN;
11176
11177                shost->io_port = asc_dvc_varp->iop_base;
11178                boardp->asc_n_io_port = ASC_IOADR_GAP;
11179                shost->this_id = asc_dvc_varp->cfg->chip_scsi_id;
11180
11181                /* Set maximum number of queues the adapter can handle. */
11182                shost->can_queue = asc_dvc_varp->max_total_qng;
11183        } else {
11184                shost->max_id = ADV_MAX_TID + 1;
11185                shost->max_lun = ADV_MAX_LUN + 1;
11186                shost->max_cmd_len = ADV_MAX_CDB_LEN;
11187
11188                /*
11189                 * Save the I/O Port address and length even though
11190                 * I/O ports are not used to access Wide boards.
11191                 * Instead the Wide boards are accessed with
11192                 * PCI Memory Mapped I/O.
11193                 */
11194                shost->io_port = iop;
11195
11196                shost->this_id = adv_dvc_varp->chip_scsi_id;
11197
11198                /* Set maximum number of queues the adapter can handle. */
11199                shost->can_queue = adv_dvc_varp->max_host_qng;
11200        }
11201
11202        /*
11203         * Set the maximum number of scatter-gather elements the
11204         * adapter can handle.
11205         */
11206        if (ASC_NARROW_BOARD(boardp)) {
11207                /*
11208                 * Allow two commands with 'sg_tablesize' scatter-gather
11209                 * elements to be executed simultaneously. This value is
11210                 * the theoretical hardware limit. It may be decreased
11211                 * below.
11212                 */
11213                shost->sg_tablesize =
11214                    (((asc_dvc_varp->max_total_qng - 2) / 2) *
11215                     ASC_SG_LIST_PER_Q) + 1;
11216        } else {
11217                shost->sg_tablesize = ADV_MAX_SG_LIST;
11218        }
11219
11220        /*
11221         * The value of 'sg_tablesize' can not exceed the SCSI
11222         * mid-level driver definition of SG_ALL. SG_ALL also
11223         * must not be exceeded, because it is used to define the
11224         * size of the scatter-gather table in 'struct asc_sg_head'.
11225         */
11226        if (shost->sg_tablesize > SG_ALL) {
11227                shost->sg_tablesize = SG_ALL;
11228        }
11229
11230        ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize);
11231
11232        /* BIOS start address. */
11233        if (ASC_NARROW_BOARD(boardp)) {
11234                shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base,
11235                                                    asc_dvc_varp->bus_type);
11236        } else {
11237                /*
11238                 * Fill-in BIOS board variables. The Wide BIOS saves
11239                 * information in LRAM that is used by the driver.
11240                 */
11241                AdvReadWordLram(adv_dvc_varp->iop_base,
11242                                BIOS_SIGNATURE, boardp->bios_signature);
11243                AdvReadWordLram(adv_dvc_varp->iop_base,
11244                                BIOS_VERSION, boardp->bios_version);
11245                AdvReadWordLram(adv_dvc_varp->iop_base,
11246                                BIOS_CODESEG, boardp->bios_codeseg);
11247                AdvReadWordLram(adv_dvc_varp->iop_base,
11248                                BIOS_CODELEN, boardp->bios_codelen);
11249
11250                ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
11251                         boardp->bios_signature, boardp->bios_version);
11252
11253                ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
11254                         boardp->bios_codeseg, boardp->bios_codelen);
11255
11256                /*
11257                 * If the BIOS saved a valid signature, then fill in
11258                 * the BIOS code segment base address.
11259                 */
11260                if (boardp->bios_signature == 0x55AA) {
11261                        /*
11262                         * Convert x86 realmode code segment to a linear
11263                         * address by shifting left 4.
11264                         */
11265                        shost->base = ((ulong)boardp->bios_codeseg << 4);
11266                } else {
11267                        shost->base = 0;
11268                }
11269        }
11270
11271        /*
11272         * Register Board Resources - I/O Port, DMA, IRQ
11273         */
11274
11275        /* Register DMA Channel for Narrow boards. */
11276        shost->dma_channel = NO_ISA_DMA;        /* Default to no ISA DMA. */
11277#ifdef CONFIG_ISA
11278        if (ASC_NARROW_BOARD(boardp)) {
11279                /* Register DMA channel for ISA bus. */
11280                if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
11281                        shost->dma_channel = asc_dvc_varp->cfg->isa_dma_channel;
11282                        ret = request_dma(shost->dma_channel, DRV_NAME);
11283                        if (ret) {
11284                                shost_printk(KERN_ERR, shost, "request_dma() "
11285                                                "%d failed %d\n",
11286                                                shost->dma_channel, ret);
11287                                goto err_unmap;
11288                        }
11289                        AscEnableIsaDma(shost->dma_channel);
11290                }
11291        }
11292#endif /* CONFIG_ISA */
11293
11294        /* Register IRQ Number. */
11295        ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost);
11296
11297        ret = request_irq(boardp->irq, advansys_interrupt, share_irq,
11298                          DRV_NAME, shost);
11299
11300        if (ret) {
11301                if (ret == -EBUSY) {
11302                        shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11303                                        "already in use\n", boardp->irq);
11304                } else if (ret == -EINVAL) {
11305                        shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11306                                        "not valid\n", boardp->irq);
11307                } else {
11308                        shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11309                                        "failed with %d\n", boardp->irq, ret);
11310                }
11311                goto err_free_dma;
11312        }
11313
11314        /*
11315         * Initialize board RISC chip and enable interrupts.
11316         */
11317        if (ASC_NARROW_BOARD(boardp)) {
11318                ASC_DBG(2, "AscInitAsc1000Driver()\n");
11319
11320                asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL);
11321                if (!asc_dvc_varp->overrun_buf) {
11322                        ret = -ENOMEM;
11323                        goto err_free_irq;
11324                }
11325                warn_code = AscInitAsc1000Driver(asc_dvc_varp);
11326
11327                if (warn_code || asc_dvc_varp->err_code) {
11328                        shost_printk(KERN_ERR, shost, "error: init_state 0x%x, "
11329                                        "warn 0x%x, error 0x%x\n",
11330                                        asc_dvc_varp->init_state, warn_code,
11331                                        asc_dvc_varp->err_code);
11332                        if (!asc_dvc_varp->overrun_dma) {
11333                                ret = -ENODEV;
11334                                goto err_free_mem;
11335                        }
11336                }
11337        } else {
11338                if (advansys_wide_init_chip(shost)) {
11339                        ret = -ENODEV;
11340                        goto err_free_mem;
11341                }
11342        }
11343
11344        ASC_DBG_PRT_SCSI_HOST(2, shost);
11345
11346        ret = scsi_add_host(shost, boardp->dev);
11347        if (ret)
11348                goto err_free_mem;
11349
11350        scsi_scan_host(shost);
11351        return 0;
11352
11353 err_free_mem:
11354        if (ASC_NARROW_BOARD(boardp)) {
11355                if (asc_dvc_varp->overrun_dma)
11356                        dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma,
11357                                         ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11358                kfree(asc_dvc_varp->overrun_buf);
11359        } else
11360                advansys_wide_free_mem(boardp);
11361 err_free_irq:
11362        free_irq(boardp->irq, shost);
11363 err_free_dma:
11364#ifdef CONFIG_ISA
11365        if (shost->dma_channel != NO_ISA_DMA)
11366                free_dma(shost->dma_channel);
11367#endif
11368 err_unmap:
11369        if (boardp->ioremap_addr)
11370                iounmap(boardp->ioremap_addr);
11371#ifdef CONFIG_PCI
11372 err_shost:
11373#endif
11374        return ret;
11375}
11376
11377/*
11378 * advansys_release()
11379 *
11380 * Release resources allocated for a single AdvanSys adapter.
11381 */
11382static int advansys_release(struct Scsi_Host *shost)
11383{
11384        struct asc_board *board = shost_priv(shost);
11385        ASC_DBG(1, "begin\n");
11386        scsi_remove_host(shost);
11387        free_irq(board->irq, shost);
11388#ifdef CONFIG_ISA
11389        if (shost->dma_channel != NO_ISA_DMA) {
11390                ASC_DBG(1, "free_dma()\n");
11391                free_dma(shost->dma_channel);
11392        }
11393#endif
11394        if (ASC_NARROW_BOARD(board)) {
11395                dma_unmap_single(board->dev,
11396                                        board->dvc_var.asc_dvc_var.overrun_dma,
11397                                        ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11398                kfree(board->dvc_var.asc_dvc_var.overrun_buf);
11399        } else {
11400                iounmap(board->ioremap_addr);
11401                advansys_wide_free_mem(board);
11402        }
11403        scsi_host_put(shost);
11404        ASC_DBG(1, "end\n");
11405        return 0;
11406}
11407
11408#define ASC_IOADR_TABLE_MAX_IX  11
11409
11410static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = {
11411        0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
11412        0x0210, 0x0230, 0x0250, 0x0330
11413};
11414
11415/*
11416 * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw.  It decodes as:
11417 * 00: 10
11418 * 01: 11
11419 * 10: 12
11420 * 11: 15
11421 */
11422static unsigned int advansys_isa_irq_no(PortAddr iop_base)
11423{
11424        unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11425        unsigned int chip_irq = ((cfg_lsw >> 2) & 0x03) + 10;
11426        if (chip_irq == 13)
11427                chip_irq = 15;
11428        return chip_irq;
11429}
11430
11431static int advansys_isa_probe(struct device *dev, unsigned int id)
11432{
11433        int err = -ENODEV;
11434        PortAddr iop_base = _asc_def_iop_base[id];
11435        struct Scsi_Host *shost;
11436        struct asc_board *board;
11437
11438        if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
11439                ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
11440                return -ENODEV;
11441        }
11442        ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
11443        if (!AscFindSignature(iop_base))
11444                goto release_region;
11445        if (!(AscGetChipVersion(iop_base, ASC_IS_ISA) & ASC_CHIP_VER_ISA_BIT))
11446                goto release_region;
11447
11448        err = -ENOMEM;
11449        shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11450        if (!shost)
11451                goto release_region;
11452
11453        board = shost_priv(shost);
11454        board->irq = advansys_isa_irq_no(iop_base);
11455        board->dev = dev;
11456        board->shost = shost;
11457
11458        err = advansys_board_found(shost, iop_base, ASC_IS_ISA);
11459        if (err)
11460                goto free_host;
11461
11462        dev_set_drvdata(dev, shost);
11463        return 0;
11464
11465 free_host:
11466        scsi_host_put(shost);
11467 release_region:
11468        release_region(iop_base, ASC_IOADR_GAP);
11469        return err;
11470}
11471
11472static int advansys_isa_remove(struct device *dev, unsigned int id)
11473{
11474        int ioport = _asc_def_iop_base[id];
11475        advansys_release(dev_get_drvdata(dev));
11476        release_region(ioport, ASC_IOADR_GAP);
11477        return 0;
11478}
11479
11480static struct isa_driver advansys_isa_driver = {
11481        .probe          = advansys_isa_probe,
11482        .remove         = advansys_isa_remove,
11483        .driver = {
11484                .owner  = THIS_MODULE,
11485                .name   = DRV_NAME,
11486        },
11487};
11488
11489/*
11490 * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw.  It decodes as:
11491 * 000: invalid
11492 * 001: 10
11493 * 010: 11
11494 * 011: 12
11495 * 100: invalid
11496 * 101: 14
11497 * 110: 15
11498 * 111: invalid
11499 */
11500static unsigned int advansys_vlb_irq_no(PortAddr iop_base)
11501{
11502        unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11503        unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9;
11504        if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15))
11505                return 0;
11506        return chip_irq;
11507}
11508
11509static int advansys_vlb_probe(struct device *dev, unsigned int id)
11510{
11511        int err = -ENODEV;
11512        PortAddr iop_base = _asc_def_iop_base[id];
11513        struct Scsi_Host *shost;
11514        struct asc_board *board;
11515
11516        if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
11517                ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
11518                return -ENODEV;
11519        }
11520        ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
11521        if (!AscFindSignature(iop_base))
11522                goto release_region;
11523        /*
11524         * I don't think this condition can actually happen, but the old
11525         * driver did it, and the chances of finding a VLB setup in 2007
11526         * to do testing with is slight to none.
11527         */
11528        if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL)
11529                goto release_region;
11530
11531        err = -ENOMEM;
11532        shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11533        if (!shost)
11534                goto release_region;
11535
11536        board = shost_priv(shost);
11537        board->irq = advansys_vlb_irq_no(iop_base);
11538        board->dev = dev;
11539        board->shost = shost;
11540
11541        err = advansys_board_found(shost, iop_base, ASC_IS_VL);
11542        if (err)
11543                goto free_host;
11544
11545        dev_set_drvdata(dev, shost);
11546        return 0;
11547
11548 free_host:
11549        scsi_host_put(shost);
11550 release_region:
11551        release_region(iop_base, ASC_IOADR_GAP);
11552        return -ENODEV;
11553}
11554
11555static struct isa_driver advansys_vlb_driver = {
11556        .probe          = advansys_vlb_probe,
11557        .remove         = advansys_isa_remove,
11558        .driver = {
11559                .owner  = THIS_MODULE,
11560                .name   = "advansys_vlb",
11561        },
11562};
11563
11564static struct eisa_device_id advansys_eisa_table[] = {
11565        { "ABP7401" },
11566        { "ABP7501" },
11567        { "" }
11568};
11569
11570MODULE_DEVICE_TABLE(eisa, advansys_eisa_table);
11571
11572/*
11573 * EISA is a little more tricky than PCI; each EISA device may have two
11574 * channels, and this driver is written to make each channel its own Scsi_Host
11575 */
11576struct eisa_scsi_data {
11577        struct Scsi_Host *host[2];
11578};
11579
11580/*
11581 * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw.  It decodes as:
11582 * 000: 10
11583 * 001: 11
11584 * 010: 12
11585 * 011: invalid
11586 * 100: 14
11587 * 101: 15
11588 * 110: invalid
11589 * 111: invalid
11590 */
11591static unsigned int advansys_eisa_irq_no(struct eisa_device *edev)
11592{
11593        unsigned short cfg_lsw = inw(edev->base_addr + 0xc86);
11594        unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10;
11595        if ((chip_irq == 13) || (chip_irq > 15))
11596                return 0;
11597        return chip_irq;
11598}
11599
11600static int advansys_eisa_probe(struct device *dev)
11601{
11602        int i, ioport, irq = 0;
11603        int err;
11604        struct eisa_device *edev = to_eisa_device(dev);
11605        struct eisa_scsi_data *data;
11606
11607        err = -ENOMEM;
11608        data = kzalloc(sizeof(*data), GFP_KERNEL);
11609        if (!data)
11610                goto fail;
11611        ioport = edev->base_addr + 0xc30;
11612
11613        err = -ENODEV;
11614        for (i = 0; i < 2; i++, ioport += 0x20) {
11615                struct asc_board *board;
11616                struct Scsi_Host *shost;
11617                if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) {
11618                        printk(KERN_WARNING "Region %x-%x busy\n", ioport,
11619                               ioport + ASC_IOADR_GAP - 1);
11620                        continue;
11621                }
11622                if (!AscFindSignature(ioport)) {
11623                        release_region(ioport, ASC_IOADR_GAP);
11624                        continue;
11625                }
11626
11627                /*
11628                 * I don't know why we need to do this for EISA chips, but
11629                 * not for any others.  It looks to be equivalent to
11630                 * AscGetChipCfgMsw, but I may have overlooked something,
11631                 * so I'm not converting it until I get an EISA board to
11632                 * test with.
11633                 */
11634                inw(ioport + 4);
11635
11636                if (!irq)
11637                        irq = advansys_eisa_irq_no(edev);
11638
11639                err = -ENOMEM;
11640                shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11641                if (!shost)
11642                        goto release_region;
11643
11644                board = shost_priv(shost);
11645                board->irq = irq;
11646                board->dev = dev;
11647                board->shost = shost;
11648
11649                err = advansys_board_found(shost, ioport, ASC_IS_EISA);
11650                if (!err) {
11651                        data->host[i] = shost;
11652                        continue;
11653                }
11654
11655                scsi_host_put(shost);
11656 release_region:
11657                release_region(ioport, ASC_IOADR_GAP);
11658                break;
11659        }
11660
11661        if (err)
11662                goto free_data;
11663        dev_set_drvdata(dev, data);
11664        return 0;
11665
11666 free_data:
11667        kfree(data->host[0]);
11668        kfree(data->host[1]);
11669        kfree(data);
11670 fail:
11671        return err;
11672}
11673
11674static int advansys_eisa_remove(struct device *dev)
11675{
11676        int i;
11677        struct eisa_scsi_data *data = dev_get_drvdata(dev);
11678
11679        for (i = 0; i < 2; i++) {
11680                int ioport;
11681                struct Scsi_Host *shost = data->host[i];
11682                if (!shost)
11683                        continue;
11684                ioport = shost->io_port;
11685                advansys_release(shost);
11686                release_region(ioport, ASC_IOADR_GAP);
11687        }
11688
11689        kfree(data);
11690        return 0;
11691}
11692
11693static struct eisa_driver advansys_eisa_driver = {
11694        .id_table =             advansys_eisa_table,
11695        .driver = {
11696                .name =         DRV_NAME,
11697                .probe =        advansys_eisa_probe,
11698                .remove =       advansys_eisa_remove,
11699        }
11700};
11701
11702/* PCI Devices supported by this driver */
11703static struct pci_device_id advansys_pci_tbl[] = {
11704        {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A,
11705         PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11706        {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940,
11707         PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11708        {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U,
11709         PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11710        {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW,
11711         PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11712        {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1,
11713         PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11714        {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1,
11715         PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11716        {}
11717};
11718
11719MODULE_DEVICE_TABLE(pci, advansys_pci_tbl);
11720
11721static void advansys_set_latency(struct pci_dev *pdev)
11722{
11723        if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
11724            (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
11725                pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0);
11726        } else {
11727                u8 latency;
11728                pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency);
11729                if (latency < 0x20)
11730                        pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20);
11731        }
11732}
11733
11734static int advansys_pci_probe(struct pci_dev *pdev,
11735                              const struct pci_device_id *ent)
11736{
11737        int err, ioport;
11738        struct Scsi_Host *shost;
11739        struct asc_board *board;
11740
11741        err = pci_enable_device(pdev);
11742        if (err)
11743                goto fail;
11744        err = pci_request_regions(pdev, DRV_NAME);
11745        if (err)
11746                goto disable_device;
11747        pci_set_master(pdev);
11748        advansys_set_latency(pdev);
11749
11750        err = -ENODEV;
11751        if (pci_resource_len(pdev, 0) == 0)
11752                goto release_region;
11753
11754        ioport = pci_resource_start(pdev, 0);
11755
11756        err = -ENOMEM;
11757        shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11758        if (!shost)
11759                goto release_region;
11760
11761        board = shost_priv(shost);
11762        board->irq = pdev->irq;
11763        board->dev = &pdev->dev;
11764        board->shost = shost;
11765
11766        if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW ||
11767            pdev->device == PCI_DEVICE_ID_38C0800_REV1 ||
11768            pdev->device == PCI_DEVICE_ID_38C1600_REV1) {
11769                board->flags |= ASC_IS_WIDE_BOARD;
11770        }
11771
11772        err = advansys_board_found(shost, ioport, ASC_IS_PCI);
11773        if (err)
11774                goto free_host;
11775
11776        pci_set_drvdata(pdev, shost);
11777        return 0;
11778
11779 free_host:
11780        scsi_host_put(shost);
11781 release_region:
11782        pci_release_regions(pdev);
11783 disable_device:
11784        pci_disable_device(pdev);
11785 fail:
11786        return err;
11787}
11788
11789static void advansys_pci_remove(struct pci_dev *pdev)
11790{
11791        advansys_release(pci_get_drvdata(pdev));
11792        pci_release_regions(pdev);
11793        pci_disable_device(pdev);
11794}
11795
11796static struct pci_driver advansys_pci_driver = {
11797        .name =         DRV_NAME,
11798        .id_table =     advansys_pci_tbl,
11799        .probe =        advansys_pci_probe,
11800        .remove =       advansys_pci_remove,
11801};
11802
11803static int __init advansys_init(void)
11804{
11805        int error;
11806
11807        error = isa_register_driver(&advansys_isa_driver,
11808                                    ASC_IOADR_TABLE_MAX_IX);
11809        if (error)
11810                goto fail;
11811
11812        error = isa_register_driver(&advansys_vlb_driver,
11813                                    ASC_IOADR_TABLE_MAX_IX);
11814        if (error)
11815                goto unregister_isa;
11816
11817        error = eisa_driver_register(&advansys_eisa_driver);
11818        if (error)
11819                goto unregister_vlb;
11820
11821        error = pci_register_driver(&advansys_pci_driver);
11822        if (error)
11823                goto unregister_eisa;
11824
11825        return 0;
11826
11827 unregister_eisa:
11828        eisa_driver_unregister(&advansys_eisa_driver);
11829 unregister_vlb:
11830        isa_unregister_driver(&advansys_vlb_driver);
11831 unregister_isa:
11832        isa_unregister_driver(&advansys_isa_driver);
11833 fail:
11834        return error;
11835}
11836
11837static void __exit advansys_exit(void)
11838{
11839        pci_unregister_driver(&advansys_pci_driver);
11840        eisa_driver_unregister(&advansys_eisa_driver);
11841        isa_unregister_driver(&advansys_vlb_driver);
11842        isa_unregister_driver(&advansys_isa_driver);
11843}
11844
11845module_init(advansys_init);
11846module_exit(advansys_exit);
11847
11848MODULE_LICENSE("GPL");
11849MODULE_FIRMWARE("advansys/mcode.bin");
11850MODULE_FIRMWARE("advansys/3550.bin");
11851MODULE_FIRMWARE("advansys/38C0800.bin");
11852MODULE_FIRMWARE("advansys/38C1600.bin");
11853