linux/drivers/spi/spi-pl022.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
   4 *
   5 * Copyright (C) 2008-2012 ST-Ericsson AB
   6 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
   7 *
   8 * Author: Linus Walleij <linus.walleij@stericsson.com>
   9 *
  10 * Initial version inspired by:
  11 *      linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
  12 * Initial adoption to PL022 by:
  13 *      Sachin Verma <sachin.verma@st.com>
  14 */
  15
  16#include <linux/init.h>
  17#include <linux/module.h>
  18#include <linux/device.h>
  19#include <linux/ioport.h>
  20#include <linux/errno.h>
  21#include <linux/interrupt.h>
  22#include <linux/spi/spi.h>
  23#include <linux/delay.h>
  24#include <linux/clk.h>
  25#include <linux/err.h>
  26#include <linux/amba/bus.h>
  27#include <linux/amba/pl022.h>
  28#include <linux/io.h>
  29#include <linux/slab.h>
  30#include <linux/dmaengine.h>
  31#include <linux/dma-mapping.h>
  32#include <linux/scatterlist.h>
  33#include <linux/pm_runtime.h>
  34#include <linux/gpio.h>
  35#include <linux/of_gpio.h>
  36#include <linux/pinctrl/consumer.h>
  37
  38/*
  39 * This macro is used to define some register default values.
  40 * reg is masked with mask, the OR:ed with an (again masked)
  41 * val shifted sb steps to the left.
  42 */
  43#define SSP_WRITE_BITS(reg, val, mask, sb) \
  44 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
  45
  46/*
  47 * This macro is also used to define some default values.
  48 * It will just shift val by sb steps to the left and mask
  49 * the result with mask.
  50 */
  51#define GEN_MASK_BITS(val, mask, sb) \
  52 (((val)<<(sb)) & (mask))
  53
  54#define DRIVE_TX                0
  55#define DO_NOT_DRIVE_TX         1
  56
  57#define DO_NOT_QUEUE_DMA        0
  58#define QUEUE_DMA               1
  59
  60#define RX_TRANSFER             1
  61#define TX_TRANSFER             2
  62
  63/*
  64 * Macros to access SSP Registers with their offsets
  65 */
  66#define SSP_CR0(r)      (r + 0x000)
  67#define SSP_CR1(r)      (r + 0x004)
  68#define SSP_DR(r)       (r + 0x008)
  69#define SSP_SR(r)       (r + 0x00C)
  70#define SSP_CPSR(r)     (r + 0x010)
  71#define SSP_IMSC(r)     (r + 0x014)
  72#define SSP_RIS(r)      (r + 0x018)
  73#define SSP_MIS(r)      (r + 0x01C)
  74#define SSP_ICR(r)      (r + 0x020)
  75#define SSP_DMACR(r)    (r + 0x024)
  76#define SSP_CSR(r)      (r + 0x030) /* vendor extension */
  77#define SSP_ITCR(r)     (r + 0x080)
  78#define SSP_ITIP(r)     (r + 0x084)
  79#define SSP_ITOP(r)     (r + 0x088)
  80#define SSP_TDR(r)      (r + 0x08C)
  81
  82#define SSP_PID0(r)     (r + 0xFE0)
  83#define SSP_PID1(r)     (r + 0xFE4)
  84#define SSP_PID2(r)     (r + 0xFE8)
  85#define SSP_PID3(r)     (r + 0xFEC)
  86
  87#define SSP_CID0(r)     (r + 0xFF0)
  88#define SSP_CID1(r)     (r + 0xFF4)
  89#define SSP_CID2(r)     (r + 0xFF8)
  90#define SSP_CID3(r)     (r + 0xFFC)
  91
  92/*
  93 * SSP Control Register 0  - SSP_CR0
  94 */
  95#define SSP_CR0_MASK_DSS        (0x0FUL << 0)
  96#define SSP_CR0_MASK_FRF        (0x3UL << 4)
  97#define SSP_CR0_MASK_SPO        (0x1UL << 6)
  98#define SSP_CR0_MASK_SPH        (0x1UL << 7)
  99#define SSP_CR0_MASK_SCR        (0xFFUL << 8)
 100
 101/*
 102 * The ST version of this block moves som bits
 103 * in SSP_CR0 and extends it to 32 bits
 104 */
 105#define SSP_CR0_MASK_DSS_ST     (0x1FUL << 0)
 106#define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
 107#define SSP_CR0_MASK_CSS_ST     (0x1FUL << 16)
 108#define SSP_CR0_MASK_FRF_ST     (0x3UL << 21)
 109
 110/*
 111 * SSP Control Register 0  - SSP_CR1
 112 */
 113#define SSP_CR1_MASK_LBM        (0x1UL << 0)
 114#define SSP_CR1_MASK_SSE        (0x1UL << 1)
 115#define SSP_CR1_MASK_MS         (0x1UL << 2)
 116#define SSP_CR1_MASK_SOD        (0x1UL << 3)
 117
 118/*
 119 * The ST version of this block adds some bits
 120 * in SSP_CR1
 121 */
 122#define SSP_CR1_MASK_RENDN_ST   (0x1UL << 4)
 123#define SSP_CR1_MASK_TENDN_ST   (0x1UL << 5)
 124#define SSP_CR1_MASK_MWAIT_ST   (0x1UL << 6)
 125#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
 126#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
 127/* This one is only in the PL023 variant */
 128#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
 129
 130/*
 131 * SSP Status Register - SSP_SR
 132 */
 133#define SSP_SR_MASK_TFE         (0x1UL << 0) /* Transmit FIFO empty */
 134#define SSP_SR_MASK_TNF         (0x1UL << 1) /* Transmit FIFO not full */
 135#define SSP_SR_MASK_RNE         (0x1UL << 2) /* Receive FIFO not empty */
 136#define SSP_SR_MASK_RFF         (0x1UL << 3) /* Receive FIFO full */
 137#define SSP_SR_MASK_BSY         (0x1UL << 4) /* Busy Flag */
 138
 139/*
 140 * SSP Clock Prescale Register  - SSP_CPSR
 141 */
 142#define SSP_CPSR_MASK_CPSDVSR   (0xFFUL << 0)
 143
 144/*
 145 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
 146 */
 147#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
 148#define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
 149#define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
 150#define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
 151
 152/*
 153 * SSP Raw Interrupt Status Register - SSP_RIS
 154 */
 155/* Receive Overrun Raw Interrupt status */
 156#define SSP_RIS_MASK_RORRIS             (0x1UL << 0)
 157/* Receive Timeout Raw Interrupt status */
 158#define SSP_RIS_MASK_RTRIS              (0x1UL << 1)
 159/* Receive FIFO Raw Interrupt status */
 160#define SSP_RIS_MASK_RXRIS              (0x1UL << 2)
 161/* Transmit FIFO Raw Interrupt status */
 162#define SSP_RIS_MASK_TXRIS              (0x1UL << 3)
 163
 164/*
 165 * SSP Masked Interrupt Status Register - SSP_MIS
 166 */
 167/* Receive Overrun Masked Interrupt status */
 168#define SSP_MIS_MASK_RORMIS             (0x1UL << 0)
 169/* Receive Timeout Masked Interrupt status */
 170#define SSP_MIS_MASK_RTMIS              (0x1UL << 1)
 171/* Receive FIFO Masked Interrupt status */
 172#define SSP_MIS_MASK_RXMIS              (0x1UL << 2)
 173/* Transmit FIFO Masked Interrupt status */
 174#define SSP_MIS_MASK_TXMIS              (0x1UL << 3)
 175
 176/*
 177 * SSP Interrupt Clear Register - SSP_ICR
 178 */
 179/* Receive Overrun Raw Clear Interrupt bit */
 180#define SSP_ICR_MASK_RORIC              (0x1UL << 0)
 181/* Receive Timeout Clear Interrupt bit */
 182#define SSP_ICR_MASK_RTIC               (0x1UL << 1)
 183
 184/*
 185 * SSP DMA Control Register - SSP_DMACR
 186 */
 187/* Receive DMA Enable bit */
 188#define SSP_DMACR_MASK_RXDMAE           (0x1UL << 0)
 189/* Transmit DMA Enable bit */
 190#define SSP_DMACR_MASK_TXDMAE           (0x1UL << 1)
 191
 192/*
 193 * SSP Chip Select Control Register - SSP_CSR
 194 * (vendor extension)
 195 */
 196#define SSP_CSR_CSVALUE_MASK            (0x1FUL << 0)
 197
 198/*
 199 * SSP Integration Test control Register - SSP_ITCR
 200 */
 201#define SSP_ITCR_MASK_ITEN              (0x1UL << 0)
 202#define SSP_ITCR_MASK_TESTFIFO          (0x1UL << 1)
 203
 204/*
 205 * SSP Integration Test Input Register - SSP_ITIP
 206 */
 207#define ITIP_MASK_SSPRXD                 (0x1UL << 0)
 208#define ITIP_MASK_SSPFSSIN               (0x1UL << 1)
 209#define ITIP_MASK_SSPCLKIN               (0x1UL << 2)
 210#define ITIP_MASK_RXDMAC                 (0x1UL << 3)
 211#define ITIP_MASK_TXDMAC                 (0x1UL << 4)
 212#define ITIP_MASK_SSPTXDIN               (0x1UL << 5)
 213
 214/*
 215 * SSP Integration Test output Register - SSP_ITOP
 216 */
 217#define ITOP_MASK_SSPTXD                 (0x1UL << 0)
 218#define ITOP_MASK_SSPFSSOUT              (0x1UL << 1)
 219#define ITOP_MASK_SSPCLKOUT              (0x1UL << 2)
 220#define ITOP_MASK_SSPOEn                 (0x1UL << 3)
 221#define ITOP_MASK_SSPCTLOEn              (0x1UL << 4)
 222#define ITOP_MASK_RORINTR                (0x1UL << 5)
 223#define ITOP_MASK_RTINTR                 (0x1UL << 6)
 224#define ITOP_MASK_RXINTR                 (0x1UL << 7)
 225#define ITOP_MASK_TXINTR                 (0x1UL << 8)
 226#define ITOP_MASK_INTR                   (0x1UL << 9)
 227#define ITOP_MASK_RXDMABREQ              (0x1UL << 10)
 228#define ITOP_MASK_RXDMASREQ              (0x1UL << 11)
 229#define ITOP_MASK_TXDMABREQ              (0x1UL << 12)
 230#define ITOP_MASK_TXDMASREQ              (0x1UL << 13)
 231
 232/*
 233 * SSP Test Data Register - SSP_TDR
 234 */
 235#define TDR_MASK_TESTDATA               (0xFFFFFFFF)
 236
 237/*
 238 * Message State
 239 * we use the spi_message.state (void *) pointer to
 240 * hold a single state value, that's why all this
 241 * (void *) casting is done here.
 242 */
 243#define STATE_START                     ((void *) 0)
 244#define STATE_RUNNING                   ((void *) 1)
 245#define STATE_DONE                      ((void *) 2)
 246#define STATE_ERROR                     ((void *) -1)
 247#define STATE_TIMEOUT                   ((void *) -2)
 248
 249/*
 250 * SSP State - Whether Enabled or Disabled
 251 */
 252#define SSP_DISABLED                    (0)
 253#define SSP_ENABLED                     (1)
 254
 255/*
 256 * SSP DMA State - Whether DMA Enabled or Disabled
 257 */
 258#define SSP_DMA_DISABLED                (0)
 259#define SSP_DMA_ENABLED                 (1)
 260
 261/*
 262 * SSP Clock Defaults
 263 */
 264#define SSP_DEFAULT_CLKRATE 0x2
 265#define SSP_DEFAULT_PRESCALE 0x40
 266
 267/*
 268 * SSP Clock Parameter ranges
 269 */
 270#define CPSDVR_MIN 0x02
 271#define CPSDVR_MAX 0xFE
 272#define SCR_MIN 0x00
 273#define SCR_MAX 0xFF
 274
 275/*
 276 * SSP Interrupt related Macros
 277 */
 278#define DEFAULT_SSP_REG_IMSC  0x0UL
 279#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
 280#define ENABLE_ALL_INTERRUPTS ( \
 281        SSP_IMSC_MASK_RORIM | \
 282        SSP_IMSC_MASK_RTIM | \
 283        SSP_IMSC_MASK_RXIM | \
 284        SSP_IMSC_MASK_TXIM \
 285)
 286
 287#define CLEAR_ALL_INTERRUPTS  0x3
 288
 289#define SPI_POLLING_TIMEOUT 1000
 290
 291/*
 292 * The type of reading going on on this chip
 293 */
 294enum ssp_reading {
 295        READING_NULL,
 296        READING_U8,
 297        READING_U16,
 298        READING_U32
 299};
 300
 301/*
 302 * The type of writing going on on this chip
 303 */
 304enum ssp_writing {
 305        WRITING_NULL,
 306        WRITING_U8,
 307        WRITING_U16,
 308        WRITING_U32
 309};
 310
 311/**
 312 * struct vendor_data - vendor-specific config parameters
 313 * for PL022 derivates
 314 * @fifodepth: depth of FIFOs (both)
 315 * @max_bpw: maximum number of bits per word
 316 * @unidir: supports unidirection transfers
 317 * @extended_cr: 32 bit wide control register 0 with extra
 318 * features and extra features in CR1 as found in the ST variants
 319 * @pl023: supports a subset of the ST extensions called "PL023"
 320 * @loopback: supports loopback mode
 321 * @internal_cs_ctrl: supports chip select control register
 322 */
 323struct vendor_data {
 324        int fifodepth;
 325        int max_bpw;
 326        bool unidir;
 327        bool extended_cr;
 328        bool pl023;
 329        bool loopback;
 330        bool internal_cs_ctrl;
 331};
 332
 333/**
 334 * struct pl022 - This is the private SSP driver data structure
 335 * @adev: AMBA device model hookup
 336 * @vendor: vendor data for the IP block
 337 * @phybase: the physical memory where the SSP device resides
 338 * @virtbase: the virtual memory where the SSP is mapped
 339 * @clk: outgoing clock "SPICLK" for the SPI bus
 340 * @master: SPI framework hookup
 341 * @master_info: controller-specific data from machine setup
 342 * @pump_transfers: Tasklet used in Interrupt Transfer mode
 343 * @cur_msg: Pointer to current spi_message being processed
 344 * @cur_transfer: Pointer to current spi_transfer
 345 * @cur_chip: pointer to current clients chip(assigned from controller_state)
 346 * @next_msg_cs_active: the next message in the queue has been examined
 347 *  and it was found that it uses the same chip select as the previous
 348 *  message, so we left it active after the previous transfer, and it's
 349 *  active already.
 350 * @tx: current position in TX buffer to be read
 351 * @tx_end: end position in TX buffer to be read
 352 * @rx: current position in RX buffer to be written
 353 * @rx_end: end position in RX buffer to be written
 354 * @read: the type of read currently going on
 355 * @write: the type of write currently going on
 356 * @exp_fifo_level: expected FIFO level
 357 * @rx_lev_trig: receive FIFO watermark level which triggers IRQ
 358 * @tx_lev_trig: transmit FIFO watermark level which triggers IRQ
 359 * @dma_rx_channel: optional channel for RX DMA
 360 * @dma_tx_channel: optional channel for TX DMA
 361 * @sgt_rx: scattertable for the RX transfer
 362 * @sgt_tx: scattertable for the TX transfer
 363 * @dummypage: a dummy page used for driving data on the bus with DMA
 364 * @dma_running: indicates whether DMA is in operation
 365 * @cur_cs: current chip select (gpio)
 366 * @chipselects: list of chipselects (gpios)
 367 */
 368struct pl022 {
 369        struct amba_device              *adev;
 370        struct vendor_data              *vendor;
 371        resource_size_t                 phybase;
 372        void __iomem                    *virtbase;
 373        struct clk                      *clk;
 374        struct spi_master               *master;
 375        struct pl022_ssp_controller     *master_info;
 376        /* Message per-transfer pump */
 377        struct tasklet_struct           pump_transfers;
 378        struct spi_message              *cur_msg;
 379        struct spi_transfer             *cur_transfer;
 380        struct chip_data                *cur_chip;
 381        bool                            next_msg_cs_active;
 382        void                            *tx;
 383        void                            *tx_end;
 384        void                            *rx;
 385        void                            *rx_end;
 386        enum ssp_reading                read;
 387        enum ssp_writing                write;
 388        u32                             exp_fifo_level;
 389        enum ssp_rx_level_trig          rx_lev_trig;
 390        enum ssp_tx_level_trig          tx_lev_trig;
 391        /* DMA settings */
 392#ifdef CONFIG_DMA_ENGINE
 393        struct dma_chan                 *dma_rx_channel;
 394        struct dma_chan                 *dma_tx_channel;
 395        struct sg_table                 sgt_rx;
 396        struct sg_table                 sgt_tx;
 397        char                            *dummypage;
 398        bool                            dma_running;
 399#endif
 400        int cur_cs;
 401        int *chipselects;
 402};
 403
 404/**
 405 * struct chip_data - To maintain runtime state of SSP for each client chip
 406 * @cr0: Value of control register CR0 of SSP - on later ST variants this
 407 *       register is 32 bits wide rather than just 16
 408 * @cr1: Value of control register CR1 of SSP
 409 * @dmacr: Value of DMA control Register of SSP
 410 * @cpsr: Value of Clock prescale register
 411 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
 412 * @enable_dma: Whether to enable DMA or not
 413 * @read: function ptr to be used to read when doing xfer for this chip
 414 * @write: function ptr to be used to write when doing xfer for this chip
 415 * @cs_control: chip select callback provided by chip
 416 * @xfer_type: polling/interrupt/DMA
 417 *
 418 * Runtime state of the SSP controller, maintained per chip,
 419 * This would be set according to the current message that would be served
 420 */
 421struct chip_data {
 422        u32 cr0;
 423        u16 cr1;
 424        u16 dmacr;
 425        u16 cpsr;
 426        u8 n_bytes;
 427        bool enable_dma;
 428        enum ssp_reading read;
 429        enum ssp_writing write;
 430        void (*cs_control) (u32 command);
 431        int xfer_type;
 432};
 433
 434/**
 435 * null_cs_control - Dummy chip select function
 436 * @command: select/delect the chip
 437 *
 438 * If no chip select function is provided by client this is used as dummy
 439 * chip select
 440 */
 441static void null_cs_control(u32 command)
 442{
 443        pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
 444}
 445
 446/**
 447 * internal_cs_control - Control chip select signals via SSP_CSR.
 448 * @pl022: SSP driver private data structure
 449 * @command: select/delect the chip
 450 *
 451 * Used on controller with internal chip select control via SSP_CSR register
 452 * (vendor extension). Each of the 5 LSB in the register controls one chip
 453 * select signal.
 454 */
 455static void internal_cs_control(struct pl022 *pl022, u32 command)
 456{
 457        u32 tmp;
 458
 459        tmp = readw(SSP_CSR(pl022->virtbase));
 460        if (command == SSP_CHIP_SELECT)
 461                tmp &= ~BIT(pl022->cur_cs);
 462        else
 463                tmp |= BIT(pl022->cur_cs);
 464        writew(tmp, SSP_CSR(pl022->virtbase));
 465}
 466
 467static void pl022_cs_control(struct pl022 *pl022, u32 command)
 468{
 469        if (pl022->vendor->internal_cs_ctrl)
 470                internal_cs_control(pl022, command);
 471        else if (gpio_is_valid(pl022->cur_cs))
 472                gpio_set_value(pl022->cur_cs, command);
 473        else
 474                pl022->cur_chip->cs_control(command);
 475}
 476
 477/**
 478 * giveback - current spi_message is over, schedule next message and call
 479 * callback of this message. Assumes that caller already
 480 * set message->status; dma and pio irqs are blocked
 481 * @pl022: SSP driver private data structure
 482 */
 483static void giveback(struct pl022 *pl022)
 484{
 485        struct spi_transfer *last_transfer;
 486        pl022->next_msg_cs_active = false;
 487
 488        last_transfer = list_last_entry(&pl022->cur_msg->transfers,
 489                                        struct spi_transfer, transfer_list);
 490
 491        /* Delay if requested before any change in chip select */
 492        /*
 493         * FIXME: This runs in interrupt context.
 494         * Is this really smart?
 495         */
 496        spi_transfer_delay_exec(last_transfer);
 497
 498        if (!last_transfer->cs_change) {
 499                struct spi_message *next_msg;
 500
 501                /*
 502                 * cs_change was not set. We can keep the chip select
 503                 * enabled if there is message in the queue and it is
 504                 * for the same spi device.
 505                 *
 506                 * We cannot postpone this until pump_messages, because
 507                 * after calling msg->complete (below) the driver that
 508                 * sent the current message could be unloaded, which
 509                 * could invalidate the cs_control() callback...
 510                 */
 511                /* get a pointer to the next message, if any */
 512                next_msg = spi_get_next_queued_message(pl022->master);
 513
 514                /*
 515                 * see if the next and current messages point
 516                 * to the same spi device.
 517                 */
 518                if (next_msg && next_msg->spi != pl022->cur_msg->spi)
 519                        next_msg = NULL;
 520                if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
 521                        pl022_cs_control(pl022, SSP_CHIP_DESELECT);
 522                else
 523                        pl022->next_msg_cs_active = true;
 524
 525        }
 526
 527        pl022->cur_msg = NULL;
 528        pl022->cur_transfer = NULL;
 529        pl022->cur_chip = NULL;
 530
 531        /* disable the SPI/SSP operation */
 532        writew((readw(SSP_CR1(pl022->virtbase)) &
 533                (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
 534
 535        spi_finalize_current_message(pl022->master);
 536}
 537
 538/**
 539 * flush - flush the FIFO to reach a clean state
 540 * @pl022: SSP driver private data structure
 541 */
 542static int flush(struct pl022 *pl022)
 543{
 544        unsigned long limit = loops_per_jiffy << 1;
 545
 546        dev_dbg(&pl022->adev->dev, "flush\n");
 547        do {
 548                while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 549                        readw(SSP_DR(pl022->virtbase));
 550        } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
 551
 552        pl022->exp_fifo_level = 0;
 553
 554        return limit;
 555}
 556
 557/**
 558 * restore_state - Load configuration of current chip
 559 * @pl022: SSP driver private data structure
 560 */
 561static void restore_state(struct pl022 *pl022)
 562{
 563        struct chip_data *chip = pl022->cur_chip;
 564
 565        if (pl022->vendor->extended_cr)
 566                writel(chip->cr0, SSP_CR0(pl022->virtbase));
 567        else
 568                writew(chip->cr0, SSP_CR0(pl022->virtbase));
 569        writew(chip->cr1, SSP_CR1(pl022->virtbase));
 570        writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
 571        writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
 572        writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
 573        writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 574}
 575
 576/*
 577 * Default SSP Register Values
 578 */
 579#define DEFAULT_SSP_REG_CR0 ( \
 580        GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)    | \
 581        GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
 582        GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 583        GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 584        GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
 585)
 586
 587/* ST versions have slightly different bit layout */
 588#define DEFAULT_SSP_REG_CR0_ST ( \
 589        GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
 590        GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
 591        GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 592        GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 593        GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
 594        GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)      | \
 595        GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
 596)
 597
 598/* The PL023 version is slightly different again */
 599#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
 600        GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
 601        GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 602        GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 603        GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
 604)
 605
 606#define DEFAULT_SSP_REG_CR1 ( \
 607        GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
 608        GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
 609        GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
 610        GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
 611)
 612
 613/* ST versions extend this register to use all 16 bits */
 614#define DEFAULT_SSP_REG_CR1_ST ( \
 615        DEFAULT_SSP_REG_CR1 | \
 616        GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
 617        GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
 618        GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
 619        GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
 620        GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
 621)
 622
 623/*
 624 * The PL023 variant has further differences: no loopback mode, no microwire
 625 * support, and a new clock feedback delay setting.
 626 */
 627#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
 628        GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
 629        GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
 630        GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
 631        GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
 632        GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
 633        GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
 634        GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
 635        GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
 636)
 637
 638#define DEFAULT_SSP_REG_CPSR ( \
 639        GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
 640)
 641
 642#define DEFAULT_SSP_REG_DMACR (\
 643        GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
 644        GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
 645)
 646
 647/**
 648 * load_ssp_default_config - Load default configuration for SSP
 649 * @pl022: SSP driver private data structure
 650 */
 651static void load_ssp_default_config(struct pl022 *pl022)
 652{
 653        if (pl022->vendor->pl023) {
 654                writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
 655                writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
 656        } else if (pl022->vendor->extended_cr) {
 657                writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
 658                writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
 659        } else {
 660                writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
 661                writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
 662        }
 663        writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
 664        writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
 665        writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
 666        writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 667}
 668
 669/*
 670 * This will write to TX and read from RX according to the parameters
 671 * set in pl022.
 672 */
 673static void readwriter(struct pl022 *pl022)
 674{
 675
 676        /*
 677         * The FIFO depth is different between primecell variants.
 678         * I believe filling in too much in the FIFO might cause
 679         * errons in 8bit wide transfers on ARM variants (just 8 words
 680         * FIFO, means only 8x8 = 64 bits in FIFO) at least.
 681         *
 682         * To prevent this issue, the TX FIFO is only filled to the
 683         * unused RX FIFO fill length, regardless of what the TX
 684         * FIFO status flag indicates.
 685         */
 686        dev_dbg(&pl022->adev->dev,
 687                "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
 688                __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
 689
 690        /* Read as much as you can */
 691        while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 692               && (pl022->rx < pl022->rx_end)) {
 693                switch (pl022->read) {
 694                case READING_NULL:
 695                        readw(SSP_DR(pl022->virtbase));
 696                        break;
 697                case READING_U8:
 698                        *(u8 *) (pl022->rx) =
 699                                readw(SSP_DR(pl022->virtbase)) & 0xFFU;
 700                        break;
 701                case READING_U16:
 702                        *(u16 *) (pl022->rx) =
 703                                (u16) readw(SSP_DR(pl022->virtbase));
 704                        break;
 705                case READING_U32:
 706                        *(u32 *) (pl022->rx) =
 707                                readl(SSP_DR(pl022->virtbase));
 708                        break;
 709                }
 710                pl022->rx += (pl022->cur_chip->n_bytes);
 711                pl022->exp_fifo_level--;
 712        }
 713        /*
 714         * Write as much as possible up to the RX FIFO size
 715         */
 716        while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
 717               && (pl022->tx < pl022->tx_end)) {
 718                switch (pl022->write) {
 719                case WRITING_NULL:
 720                        writew(0x0, SSP_DR(pl022->virtbase));
 721                        break;
 722                case WRITING_U8:
 723                        writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
 724                        break;
 725                case WRITING_U16:
 726                        writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
 727                        break;
 728                case WRITING_U32:
 729                        writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
 730                        break;
 731                }
 732                pl022->tx += (pl022->cur_chip->n_bytes);
 733                pl022->exp_fifo_level++;
 734                /*
 735                 * This inner reader takes care of things appearing in the RX
 736                 * FIFO as we're transmitting. This will happen a lot since the
 737                 * clock starts running when you put things into the TX FIFO,
 738                 * and then things are continuously clocked into the RX FIFO.
 739                 */
 740                while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 741                       && (pl022->rx < pl022->rx_end)) {
 742                        switch (pl022->read) {
 743                        case READING_NULL:
 744                                readw(SSP_DR(pl022->virtbase));
 745                                break;
 746                        case READING_U8:
 747                                *(u8 *) (pl022->rx) =
 748                                        readw(SSP_DR(pl022->virtbase)) & 0xFFU;
 749                                break;
 750                        case READING_U16:
 751                                *(u16 *) (pl022->rx) =
 752                                        (u16) readw(SSP_DR(pl022->virtbase));
 753                                break;
 754                        case READING_U32:
 755                                *(u32 *) (pl022->rx) =
 756                                        readl(SSP_DR(pl022->virtbase));
 757                                break;
 758                        }
 759                        pl022->rx += (pl022->cur_chip->n_bytes);
 760                        pl022->exp_fifo_level--;
 761                }
 762        }
 763        /*
 764         * When we exit here the TX FIFO should be full and the RX FIFO
 765         * should be empty
 766         */
 767}
 768
 769/**
 770 * next_transfer - Move to the Next transfer in the current spi message
 771 * @pl022: SSP driver private data structure
 772 *
 773 * This function moves though the linked list of spi transfers in the
 774 * current spi message and returns with the state of current spi
 775 * message i.e whether its last transfer is done(STATE_DONE) or
 776 * Next transfer is ready(STATE_RUNNING)
 777 */
 778static void *next_transfer(struct pl022 *pl022)
 779{
 780        struct spi_message *msg = pl022->cur_msg;
 781        struct spi_transfer *trans = pl022->cur_transfer;
 782
 783        /* Move to next transfer */
 784        if (trans->transfer_list.next != &msg->transfers) {
 785                pl022->cur_transfer =
 786                    list_entry(trans->transfer_list.next,
 787                               struct spi_transfer, transfer_list);
 788                return STATE_RUNNING;
 789        }
 790        return STATE_DONE;
 791}
 792
 793/*
 794 * This DMA functionality is only compiled in if we have
 795 * access to the generic DMA devices/DMA engine.
 796 */
 797#ifdef CONFIG_DMA_ENGINE
 798static void unmap_free_dma_scatter(struct pl022 *pl022)
 799{
 800        /* Unmap and free the SG tables */
 801        dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
 802                     pl022->sgt_tx.nents, DMA_TO_DEVICE);
 803        dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
 804                     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
 805        sg_free_table(&pl022->sgt_rx);
 806        sg_free_table(&pl022->sgt_tx);
 807}
 808
 809static void dma_callback(void *data)
 810{
 811        struct pl022 *pl022 = data;
 812        struct spi_message *msg = pl022->cur_msg;
 813
 814        BUG_ON(!pl022->sgt_rx.sgl);
 815
 816#ifdef VERBOSE_DEBUG
 817        /*
 818         * Optionally dump out buffers to inspect contents, this is
 819         * good if you want to convince yourself that the loopback
 820         * read/write contents are the same, when adopting to a new
 821         * DMA engine.
 822         */
 823        {
 824                struct scatterlist *sg;
 825                unsigned int i;
 826
 827                dma_sync_sg_for_cpu(&pl022->adev->dev,
 828                                    pl022->sgt_rx.sgl,
 829                                    pl022->sgt_rx.nents,
 830                                    DMA_FROM_DEVICE);
 831
 832                for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
 833                        dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
 834                        print_hex_dump(KERN_ERR, "SPI RX: ",
 835                                       DUMP_PREFIX_OFFSET,
 836                                       16,
 837                                       1,
 838                                       sg_virt(sg),
 839                                       sg_dma_len(sg),
 840                                       1);
 841                }
 842                for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
 843                        dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
 844                        print_hex_dump(KERN_ERR, "SPI TX: ",
 845                                       DUMP_PREFIX_OFFSET,
 846                                       16,
 847                                       1,
 848                                       sg_virt(sg),
 849                                       sg_dma_len(sg),
 850                                       1);
 851                }
 852        }
 853#endif
 854
 855        unmap_free_dma_scatter(pl022);
 856
 857        /* Update total bytes transferred */
 858        msg->actual_length += pl022->cur_transfer->len;
 859        /* Move to next transfer */
 860        msg->state = next_transfer(pl022);
 861        if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
 862                pl022_cs_control(pl022, SSP_CHIP_DESELECT);
 863        tasklet_schedule(&pl022->pump_transfers);
 864}
 865
 866static void setup_dma_scatter(struct pl022 *pl022,
 867                              void *buffer,
 868                              unsigned int length,
 869                              struct sg_table *sgtab)
 870{
 871        struct scatterlist *sg;
 872        int bytesleft = length;
 873        void *bufp = buffer;
 874        int mapbytes;
 875        int i;
 876
 877        if (buffer) {
 878                for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
 879                        /*
 880                         * If there are less bytes left than what fits
 881                         * in the current page (plus page alignment offset)
 882                         * we just feed in this, else we stuff in as much
 883                         * as we can.
 884                         */
 885                        if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
 886                                mapbytes = bytesleft;
 887                        else
 888                                mapbytes = PAGE_SIZE - offset_in_page(bufp);
 889                        sg_set_page(sg, virt_to_page(bufp),
 890                                    mapbytes, offset_in_page(bufp));
 891                        bufp += mapbytes;
 892                        bytesleft -= mapbytes;
 893                        dev_dbg(&pl022->adev->dev,
 894                                "set RX/TX target page @ %p, %d bytes, %d left\n",
 895                                bufp, mapbytes, bytesleft);
 896                }
 897        } else {
 898                /* Map the dummy buffer on every page */
 899                for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
 900                        if (bytesleft < PAGE_SIZE)
 901                                mapbytes = bytesleft;
 902                        else
 903                                mapbytes = PAGE_SIZE;
 904                        sg_set_page(sg, virt_to_page(pl022->dummypage),
 905                                    mapbytes, 0);
 906                        bytesleft -= mapbytes;
 907                        dev_dbg(&pl022->adev->dev,
 908                                "set RX/TX to dummy page %d bytes, %d left\n",
 909                                mapbytes, bytesleft);
 910
 911                }
 912        }
 913        BUG_ON(bytesleft);
 914}
 915
 916/**
 917 * configure_dma - configures the channels for the next transfer
 918 * @pl022: SSP driver's private data structure
 919 */
 920static int configure_dma(struct pl022 *pl022)
 921{
 922        struct dma_slave_config rx_conf = {
 923                .src_addr = SSP_DR(pl022->phybase),
 924                .direction = DMA_DEV_TO_MEM,
 925                .device_fc = false,
 926        };
 927        struct dma_slave_config tx_conf = {
 928                .dst_addr = SSP_DR(pl022->phybase),
 929                .direction = DMA_MEM_TO_DEV,
 930                .device_fc = false,
 931        };
 932        unsigned int pages;
 933        int ret;
 934        int rx_sglen, tx_sglen;
 935        struct dma_chan *rxchan = pl022->dma_rx_channel;
 936        struct dma_chan *txchan = pl022->dma_tx_channel;
 937        struct dma_async_tx_descriptor *rxdesc;
 938        struct dma_async_tx_descriptor *txdesc;
 939
 940        /* Check that the channels are available */
 941        if (!rxchan || !txchan)
 942                return -ENODEV;
 943
 944        /*
 945         * If supplied, the DMA burstsize should equal the FIFO trigger level.
 946         * Notice that the DMA engine uses one-to-one mapping. Since we can
 947         * not trigger on 2 elements this needs explicit mapping rather than
 948         * calculation.
 949         */
 950        switch (pl022->rx_lev_trig) {
 951        case SSP_RX_1_OR_MORE_ELEM:
 952                rx_conf.src_maxburst = 1;
 953                break;
 954        case SSP_RX_4_OR_MORE_ELEM:
 955                rx_conf.src_maxburst = 4;
 956                break;
 957        case SSP_RX_8_OR_MORE_ELEM:
 958                rx_conf.src_maxburst = 8;
 959                break;
 960        case SSP_RX_16_OR_MORE_ELEM:
 961                rx_conf.src_maxburst = 16;
 962                break;
 963        case SSP_RX_32_OR_MORE_ELEM:
 964                rx_conf.src_maxburst = 32;
 965                break;
 966        default:
 967                rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
 968                break;
 969        }
 970
 971        switch (pl022->tx_lev_trig) {
 972        case SSP_TX_1_OR_MORE_EMPTY_LOC:
 973                tx_conf.dst_maxburst = 1;
 974                break;
 975        case SSP_TX_4_OR_MORE_EMPTY_LOC:
 976                tx_conf.dst_maxburst = 4;
 977                break;
 978        case SSP_TX_8_OR_MORE_EMPTY_LOC:
 979                tx_conf.dst_maxburst = 8;
 980                break;
 981        case SSP_TX_16_OR_MORE_EMPTY_LOC:
 982                tx_conf.dst_maxburst = 16;
 983                break;
 984        case SSP_TX_32_OR_MORE_EMPTY_LOC:
 985                tx_conf.dst_maxburst = 32;
 986                break;
 987        default:
 988                tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
 989                break;
 990        }
 991
 992        switch (pl022->read) {
 993        case READING_NULL:
 994                /* Use the same as for writing */
 995                rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
 996                break;
 997        case READING_U8:
 998                rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 999                break;
1000        case READING_U16:
1001                rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1002                break;
1003        case READING_U32:
1004                rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1005                break;
1006        }
1007
1008        switch (pl022->write) {
1009        case WRITING_NULL:
1010                /* Use the same as for reading */
1011                tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1012                break;
1013        case WRITING_U8:
1014                tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1015                break;
1016        case WRITING_U16:
1017                tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1018                break;
1019        case WRITING_U32:
1020                tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1021                break;
1022        }
1023
1024        /* SPI pecularity: we need to read and write the same width */
1025        if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1026                rx_conf.src_addr_width = tx_conf.dst_addr_width;
1027        if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1028                tx_conf.dst_addr_width = rx_conf.src_addr_width;
1029        BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1030
1031        dmaengine_slave_config(rxchan, &rx_conf);
1032        dmaengine_slave_config(txchan, &tx_conf);
1033
1034        /* Create sglists for the transfers */
1035        pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1036        dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1037
1038        ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1039        if (ret)
1040                goto err_alloc_rx_sg;
1041
1042        ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1043        if (ret)
1044                goto err_alloc_tx_sg;
1045
1046        /* Fill in the scatterlists for the RX+TX buffers */
1047        setup_dma_scatter(pl022, pl022->rx,
1048                          pl022->cur_transfer->len, &pl022->sgt_rx);
1049        setup_dma_scatter(pl022, pl022->tx,
1050                          pl022->cur_transfer->len, &pl022->sgt_tx);
1051
1052        /* Map DMA buffers */
1053        rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1054                           pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1055        if (!rx_sglen)
1056                goto err_rx_sgmap;
1057
1058        tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1059                           pl022->sgt_tx.nents, DMA_TO_DEVICE);
1060        if (!tx_sglen)
1061                goto err_tx_sgmap;
1062
1063        /* Send both scatterlists */
1064        rxdesc = dmaengine_prep_slave_sg(rxchan,
1065                                      pl022->sgt_rx.sgl,
1066                                      rx_sglen,
1067                                      DMA_DEV_TO_MEM,
1068                                      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1069        if (!rxdesc)
1070                goto err_rxdesc;
1071
1072        txdesc = dmaengine_prep_slave_sg(txchan,
1073                                      pl022->sgt_tx.sgl,
1074                                      tx_sglen,
1075                                      DMA_MEM_TO_DEV,
1076                                      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1077        if (!txdesc)
1078                goto err_txdesc;
1079
1080        /* Put the callback on the RX transfer only, that should finish last */
1081        rxdesc->callback = dma_callback;
1082        rxdesc->callback_param = pl022;
1083
1084        /* Submit and fire RX and TX with TX last so we're ready to read! */
1085        dmaengine_submit(rxdesc);
1086        dmaengine_submit(txdesc);
1087        dma_async_issue_pending(rxchan);
1088        dma_async_issue_pending(txchan);
1089        pl022->dma_running = true;
1090
1091        return 0;
1092
1093err_txdesc:
1094        dmaengine_terminate_all(txchan);
1095err_rxdesc:
1096        dmaengine_terminate_all(rxchan);
1097        dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1098                     pl022->sgt_tx.nents, DMA_TO_DEVICE);
1099err_tx_sgmap:
1100        dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1101                     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1102err_rx_sgmap:
1103        sg_free_table(&pl022->sgt_tx);
1104err_alloc_tx_sg:
1105        sg_free_table(&pl022->sgt_rx);
1106err_alloc_rx_sg:
1107        return -ENOMEM;
1108}
1109
1110static int pl022_dma_probe(struct pl022 *pl022)
1111{
1112        dma_cap_mask_t mask;
1113
1114        /* Try to acquire a generic DMA engine slave channel */
1115        dma_cap_zero(mask);
1116        dma_cap_set(DMA_SLAVE, mask);
1117        /*
1118         * We need both RX and TX channels to do DMA, else do none
1119         * of them.
1120         */
1121        pl022->dma_rx_channel = dma_request_channel(mask,
1122                                            pl022->master_info->dma_filter,
1123                                            pl022->master_info->dma_rx_param);
1124        if (!pl022->dma_rx_channel) {
1125                dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1126                goto err_no_rxchan;
1127        }
1128
1129        pl022->dma_tx_channel = dma_request_channel(mask,
1130                                            pl022->master_info->dma_filter,
1131                                            pl022->master_info->dma_tx_param);
1132        if (!pl022->dma_tx_channel) {
1133                dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1134                goto err_no_txchan;
1135        }
1136
1137        pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1138        if (!pl022->dummypage)
1139                goto err_no_dummypage;
1140
1141        dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1142                 dma_chan_name(pl022->dma_rx_channel),
1143                 dma_chan_name(pl022->dma_tx_channel));
1144
1145        return 0;
1146
1147err_no_dummypage:
1148        dma_release_channel(pl022->dma_tx_channel);
1149err_no_txchan:
1150        dma_release_channel(pl022->dma_rx_channel);
1151        pl022->dma_rx_channel = NULL;
1152err_no_rxchan:
1153        dev_err(&pl022->adev->dev,
1154                        "Failed to work in dma mode, work without dma!\n");
1155        return -ENODEV;
1156}
1157
1158static int pl022_dma_autoprobe(struct pl022 *pl022)
1159{
1160        struct device *dev = &pl022->adev->dev;
1161        struct dma_chan *chan;
1162        int err;
1163
1164        /* automatically configure DMA channels from platform, normally using DT */
1165        chan = dma_request_chan(dev, "rx");
1166        if (IS_ERR(chan)) {
1167                err = PTR_ERR(chan);
1168                goto err_no_rxchan;
1169        }
1170
1171        pl022->dma_rx_channel = chan;
1172
1173        chan = dma_request_chan(dev, "tx");
1174        if (IS_ERR(chan)) {
1175                err = PTR_ERR(chan);
1176                goto err_no_txchan;
1177        }
1178
1179        pl022->dma_tx_channel = chan;
1180
1181        pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1182        if (!pl022->dummypage) {
1183                err = -ENOMEM;
1184                goto err_no_dummypage;
1185        }
1186
1187        return 0;
1188
1189err_no_dummypage:
1190        dma_release_channel(pl022->dma_tx_channel);
1191        pl022->dma_tx_channel = NULL;
1192err_no_txchan:
1193        dma_release_channel(pl022->dma_rx_channel);
1194        pl022->dma_rx_channel = NULL;
1195err_no_rxchan:
1196        return err;
1197}
1198                
1199static void terminate_dma(struct pl022 *pl022)
1200{
1201        struct dma_chan *rxchan = pl022->dma_rx_channel;
1202        struct dma_chan *txchan = pl022->dma_tx_channel;
1203
1204        dmaengine_terminate_all(rxchan);
1205        dmaengine_terminate_all(txchan);
1206        unmap_free_dma_scatter(pl022);
1207        pl022->dma_running = false;
1208}
1209
1210static void pl022_dma_remove(struct pl022 *pl022)
1211{
1212        if (pl022->dma_running)
1213                terminate_dma(pl022);
1214        if (pl022->dma_tx_channel)
1215                dma_release_channel(pl022->dma_tx_channel);
1216        if (pl022->dma_rx_channel)
1217                dma_release_channel(pl022->dma_rx_channel);
1218        kfree(pl022->dummypage);
1219}
1220
1221#else
1222static inline int configure_dma(struct pl022 *pl022)
1223{
1224        return -ENODEV;
1225}
1226
1227static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1228{
1229        return 0;
1230}
1231
1232static inline int pl022_dma_probe(struct pl022 *pl022)
1233{
1234        return 0;
1235}
1236
1237static inline void pl022_dma_remove(struct pl022 *pl022)
1238{
1239}
1240#endif
1241
1242/**
1243 * pl022_interrupt_handler - Interrupt handler for SSP controller
1244 * @irq: IRQ number
1245 * @dev_id: Local device data
1246 *
1247 * This function handles interrupts generated for an interrupt based transfer.
1248 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1249 * current message's state as STATE_ERROR and schedule the tasklet
1250 * pump_transfers which will do the postprocessing of the current message by
1251 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1252 * more data, and writes data in TX FIFO till it is not full. If we complete
1253 * the transfer we move to the next transfer and schedule the tasklet.
1254 */
1255static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1256{
1257        struct pl022 *pl022 = dev_id;
1258        struct spi_message *msg = pl022->cur_msg;
1259        u16 irq_status = 0;
1260
1261        if (unlikely(!msg)) {
1262                dev_err(&pl022->adev->dev,
1263                        "bad message state in interrupt handler");
1264                /* Never fail */
1265                return IRQ_HANDLED;
1266        }
1267
1268        /* Read the Interrupt Status Register */
1269        irq_status = readw(SSP_MIS(pl022->virtbase));
1270
1271        if (unlikely(!irq_status))
1272                return IRQ_NONE;
1273
1274        /*
1275         * This handles the FIFO interrupts, the timeout
1276         * interrupts are flatly ignored, they cannot be
1277         * trusted.
1278         */
1279        if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1280                /*
1281                 * Overrun interrupt - bail out since our Data has been
1282                 * corrupted
1283                 */
1284                dev_err(&pl022->adev->dev, "FIFO overrun\n");
1285                if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1286                        dev_err(&pl022->adev->dev,
1287                                "RXFIFO is full\n");
1288
1289                /*
1290                 * Disable and clear interrupts, disable SSP,
1291                 * mark message with bad status so it can be
1292                 * retried.
1293                 */
1294                writew(DISABLE_ALL_INTERRUPTS,
1295                       SSP_IMSC(pl022->virtbase));
1296                writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1297                writew((readw(SSP_CR1(pl022->virtbase)) &
1298                        (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1299                msg->state = STATE_ERROR;
1300
1301                /* Schedule message queue handler */
1302                tasklet_schedule(&pl022->pump_transfers);
1303                return IRQ_HANDLED;
1304        }
1305
1306        readwriter(pl022);
1307
1308        if (pl022->tx == pl022->tx_end) {
1309                /* Disable Transmit interrupt, enable receive interrupt */
1310                writew((readw(SSP_IMSC(pl022->virtbase)) &
1311                       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1312                       SSP_IMSC(pl022->virtbase));
1313        }
1314
1315        /*
1316         * Since all transactions must write as much as shall be read,
1317         * we can conclude the entire transaction once RX is complete.
1318         * At this point, all TX will always be finished.
1319         */
1320        if (pl022->rx >= pl022->rx_end) {
1321                writew(DISABLE_ALL_INTERRUPTS,
1322                       SSP_IMSC(pl022->virtbase));
1323                writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1324                if (unlikely(pl022->rx > pl022->rx_end)) {
1325                        dev_warn(&pl022->adev->dev, "read %u surplus "
1326                                 "bytes (did you request an odd "
1327                                 "number of bytes on a 16bit bus?)\n",
1328                                 (u32) (pl022->rx - pl022->rx_end));
1329                }
1330                /* Update total bytes transferred */
1331                msg->actual_length += pl022->cur_transfer->len;
1332                /* Move to next transfer */
1333                msg->state = next_transfer(pl022);
1334                if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
1335                        pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1336                tasklet_schedule(&pl022->pump_transfers);
1337                return IRQ_HANDLED;
1338        }
1339
1340        return IRQ_HANDLED;
1341}
1342
1343/*
1344 * This sets up the pointers to memory for the next message to
1345 * send out on the SPI bus.
1346 */
1347static int set_up_next_transfer(struct pl022 *pl022,
1348                                struct spi_transfer *transfer)
1349{
1350        int residue;
1351
1352        /* Sanity check the message for this bus width */
1353        residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1354        if (unlikely(residue != 0)) {
1355                dev_err(&pl022->adev->dev,
1356                        "message of %u bytes to transmit but the current "
1357                        "chip bus has a data width of %u bytes!\n",
1358                        pl022->cur_transfer->len,
1359                        pl022->cur_chip->n_bytes);
1360                dev_err(&pl022->adev->dev, "skipping this message\n");
1361                return -EIO;
1362        }
1363        pl022->tx = (void *)transfer->tx_buf;
1364        pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1365        pl022->rx = (void *)transfer->rx_buf;
1366        pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1367        pl022->write =
1368            pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1369        pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1370        return 0;
1371}
1372
1373/**
1374 * pump_transfers - Tasklet function which schedules next transfer
1375 * when running in interrupt or DMA transfer mode.
1376 * @data: SSP driver private data structure
1377 *
1378 */
1379static void pump_transfers(unsigned long data)
1380{
1381        struct pl022 *pl022 = (struct pl022 *) data;
1382        struct spi_message *message = NULL;
1383        struct spi_transfer *transfer = NULL;
1384        struct spi_transfer *previous = NULL;
1385
1386        /* Get current state information */
1387        message = pl022->cur_msg;
1388        transfer = pl022->cur_transfer;
1389
1390        /* Handle for abort */
1391        if (message->state == STATE_ERROR) {
1392                message->status = -EIO;
1393                giveback(pl022);
1394                return;
1395        }
1396
1397        /* Handle end of message */
1398        if (message->state == STATE_DONE) {
1399                message->status = 0;
1400                giveback(pl022);
1401                return;
1402        }
1403
1404        /* Delay if requested at end of transfer before CS change */
1405        if (message->state == STATE_RUNNING) {
1406                previous = list_entry(transfer->transfer_list.prev,
1407                                        struct spi_transfer,
1408                                        transfer_list);
1409                /*
1410                 * FIXME: This runs in interrupt context.
1411                 * Is this really smart?
1412                 */
1413                spi_transfer_delay_exec(previous);
1414
1415                /* Reselect chip select only if cs_change was requested */
1416                if (previous->cs_change)
1417                        pl022_cs_control(pl022, SSP_CHIP_SELECT);
1418        } else {
1419                /* STATE_START */
1420                message->state = STATE_RUNNING;
1421        }
1422
1423        if (set_up_next_transfer(pl022, transfer)) {
1424                message->state = STATE_ERROR;
1425                message->status = -EIO;
1426                giveback(pl022);
1427                return;
1428        }
1429        /* Flush the FIFOs and let's go! */
1430        flush(pl022);
1431
1432        if (pl022->cur_chip->enable_dma) {
1433                if (configure_dma(pl022)) {
1434                        dev_dbg(&pl022->adev->dev,
1435                                "configuration of DMA failed, fall back to interrupt mode\n");
1436                        goto err_config_dma;
1437                }
1438                return;
1439        }
1440
1441err_config_dma:
1442        /* enable all interrupts except RX */
1443        writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1444}
1445
1446static void do_interrupt_dma_transfer(struct pl022 *pl022)
1447{
1448        /*
1449         * Default is to enable all interrupts except RX -
1450         * this will be enabled once TX is complete
1451         */
1452        u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1453
1454        /* Enable target chip, if not already active */
1455        if (!pl022->next_msg_cs_active)
1456                pl022_cs_control(pl022, SSP_CHIP_SELECT);
1457
1458        if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1459                /* Error path */
1460                pl022->cur_msg->state = STATE_ERROR;
1461                pl022->cur_msg->status = -EIO;
1462                giveback(pl022);
1463                return;
1464        }
1465        /* If we're using DMA, set up DMA here */
1466        if (pl022->cur_chip->enable_dma) {
1467                /* Configure DMA transfer */
1468                if (configure_dma(pl022)) {
1469                        dev_dbg(&pl022->adev->dev,
1470                                "configuration of DMA failed, fall back to interrupt mode\n");
1471                        goto err_config_dma;
1472                }
1473                /* Disable interrupts in DMA mode, IRQ from DMA controller */
1474                irqflags = DISABLE_ALL_INTERRUPTS;
1475        }
1476err_config_dma:
1477        /* Enable SSP, turn on interrupts */
1478        writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1479               SSP_CR1(pl022->virtbase));
1480        writew(irqflags, SSP_IMSC(pl022->virtbase));
1481}
1482
1483static void print_current_status(struct pl022 *pl022)
1484{
1485        u32 read_cr0;
1486        u16 read_cr1, read_dmacr, read_sr;
1487
1488        if (pl022->vendor->extended_cr)
1489                read_cr0 = readl(SSP_CR0(pl022->virtbase));
1490        else
1491                read_cr0 = readw(SSP_CR0(pl022->virtbase));
1492        read_cr1 = readw(SSP_CR1(pl022->virtbase));
1493        read_dmacr = readw(SSP_DMACR(pl022->virtbase));
1494        read_sr = readw(SSP_SR(pl022->virtbase));
1495
1496        dev_warn(&pl022->adev->dev, "spi-pl022 CR0: %x\n", read_cr0);
1497        dev_warn(&pl022->adev->dev, "spi-pl022 CR1: %x\n", read_cr1);
1498        dev_warn(&pl022->adev->dev, "spi-pl022 DMACR: %x\n", read_dmacr);
1499        dev_warn(&pl022->adev->dev, "spi-pl022 SR: %x\n", read_sr);
1500        dev_warn(&pl022->adev->dev,
1501                        "spi-pl022 exp_fifo_level/fifodepth: %u/%d\n",
1502                        pl022->exp_fifo_level,
1503                        pl022->vendor->fifodepth);
1504
1505}
1506
1507static void do_polling_transfer(struct pl022 *pl022)
1508{
1509        struct spi_message *message = NULL;
1510        struct spi_transfer *transfer = NULL;
1511        struct spi_transfer *previous = NULL;
1512        unsigned long time, timeout;
1513
1514        message = pl022->cur_msg;
1515
1516        while (message->state != STATE_DONE) {
1517                /* Handle for abort */
1518                if (message->state == STATE_ERROR)
1519                        break;
1520                transfer = pl022->cur_transfer;
1521
1522                /* Delay if requested at end of transfer */
1523                if (message->state == STATE_RUNNING) {
1524                        previous =
1525                            list_entry(transfer->transfer_list.prev,
1526                                       struct spi_transfer, transfer_list);
1527                        spi_transfer_delay_exec(previous);
1528                        if (previous->cs_change)
1529                                pl022_cs_control(pl022, SSP_CHIP_SELECT);
1530                } else {
1531                        /* STATE_START */
1532                        message->state = STATE_RUNNING;
1533                        if (!pl022->next_msg_cs_active)
1534                                pl022_cs_control(pl022, SSP_CHIP_SELECT);
1535                }
1536
1537                /* Configuration Changing Per Transfer */
1538                if (set_up_next_transfer(pl022, transfer)) {
1539                        /* Error path */
1540                        message->state = STATE_ERROR;
1541                        break;
1542                }
1543                /* Flush FIFOs and enable SSP */
1544                flush(pl022);
1545                writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1546                       SSP_CR1(pl022->virtbase));
1547
1548                dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1549
1550                timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1551                while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1552                        time = jiffies;
1553                        readwriter(pl022);
1554                        if (time_after(time, timeout)) {
1555                                dev_warn(&pl022->adev->dev,
1556                                "%s: timeout!\n", __func__);
1557                                message->state = STATE_TIMEOUT;
1558                                print_current_status(pl022);
1559                                goto out;
1560                        }
1561                        cpu_relax();
1562                }
1563
1564                /* Update total byte transferred */
1565                message->actual_length += pl022->cur_transfer->len;
1566                /* Move to next transfer */
1567                message->state = next_transfer(pl022);
1568                if (message->state != STATE_DONE
1569                    && pl022->cur_transfer->cs_change)
1570                        pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1571        }
1572out:
1573        /* Handle end of message */
1574        if (message->state == STATE_DONE)
1575                message->status = 0;
1576        else if (message->state == STATE_TIMEOUT)
1577                message->status = -EAGAIN;
1578        else
1579                message->status = -EIO;
1580
1581        giveback(pl022);
1582        return;
1583}
1584
1585static int pl022_transfer_one_message(struct spi_master *master,
1586                                      struct spi_message *msg)
1587{
1588        struct pl022 *pl022 = spi_master_get_devdata(master);
1589
1590        /* Initial message state */
1591        pl022->cur_msg = msg;
1592        msg->state = STATE_START;
1593
1594        pl022->cur_transfer = list_entry(msg->transfers.next,
1595                                         struct spi_transfer, transfer_list);
1596
1597        /* Setup the SPI using the per chip configuration */
1598        pl022->cur_chip = spi_get_ctldata(msg->spi);
1599        pl022->cur_cs = pl022->chipselects[msg->spi->chip_select];
1600
1601        restore_state(pl022);
1602        flush(pl022);
1603
1604        if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1605                do_polling_transfer(pl022);
1606        else
1607                do_interrupt_dma_transfer(pl022);
1608
1609        return 0;
1610}
1611
1612static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1613{
1614        struct pl022 *pl022 = spi_master_get_devdata(master);
1615
1616        /* nothing more to do - disable spi/ssp and power off */
1617        writew((readw(SSP_CR1(pl022->virtbase)) &
1618                (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1619
1620        return 0;
1621}
1622
1623static int verify_controller_parameters(struct pl022 *pl022,
1624                                struct pl022_config_chip const *chip_info)
1625{
1626        if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1627            || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1628                dev_err(&pl022->adev->dev,
1629                        "interface is configured incorrectly\n");
1630                return -EINVAL;
1631        }
1632        if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1633            (!pl022->vendor->unidir)) {
1634                dev_err(&pl022->adev->dev,
1635                        "unidirectional mode not supported in this "
1636                        "hardware version\n");
1637                return -EINVAL;
1638        }
1639        if ((chip_info->hierarchy != SSP_MASTER)
1640            && (chip_info->hierarchy != SSP_SLAVE)) {
1641                dev_err(&pl022->adev->dev,
1642                        "hierarchy is configured incorrectly\n");
1643                return -EINVAL;
1644        }
1645        if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1646            && (chip_info->com_mode != DMA_TRANSFER)
1647            && (chip_info->com_mode != POLLING_TRANSFER)) {
1648                dev_err(&pl022->adev->dev,
1649                        "Communication mode is configured incorrectly\n");
1650                return -EINVAL;
1651        }
1652        switch (chip_info->rx_lev_trig) {
1653        case SSP_RX_1_OR_MORE_ELEM:
1654        case SSP_RX_4_OR_MORE_ELEM:
1655        case SSP_RX_8_OR_MORE_ELEM:
1656                /* These are always OK, all variants can handle this */
1657                break;
1658        case SSP_RX_16_OR_MORE_ELEM:
1659                if (pl022->vendor->fifodepth < 16) {
1660                        dev_err(&pl022->adev->dev,
1661                        "RX FIFO Trigger Level is configured incorrectly\n");
1662                        return -EINVAL;
1663                }
1664                break;
1665        case SSP_RX_32_OR_MORE_ELEM:
1666                if (pl022->vendor->fifodepth < 32) {
1667                        dev_err(&pl022->adev->dev,
1668                        "RX FIFO Trigger Level is configured incorrectly\n");
1669                        return -EINVAL;
1670                }
1671                break;
1672        default:
1673                dev_err(&pl022->adev->dev,
1674                        "RX FIFO Trigger Level is configured incorrectly\n");
1675                return -EINVAL;
1676        }
1677        switch (chip_info->tx_lev_trig) {
1678        case SSP_TX_1_OR_MORE_EMPTY_LOC:
1679        case SSP_TX_4_OR_MORE_EMPTY_LOC:
1680        case SSP_TX_8_OR_MORE_EMPTY_LOC:
1681                /* These are always OK, all variants can handle this */
1682                break;
1683        case SSP_TX_16_OR_MORE_EMPTY_LOC:
1684                if (pl022->vendor->fifodepth < 16) {
1685                        dev_err(&pl022->adev->dev,
1686                        "TX FIFO Trigger Level is configured incorrectly\n");
1687                        return -EINVAL;
1688                }
1689                break;
1690        case SSP_TX_32_OR_MORE_EMPTY_LOC:
1691                if (pl022->vendor->fifodepth < 32) {
1692                        dev_err(&pl022->adev->dev,
1693                        "TX FIFO Trigger Level is configured incorrectly\n");
1694                        return -EINVAL;
1695                }
1696                break;
1697        default:
1698                dev_err(&pl022->adev->dev,
1699                        "TX FIFO Trigger Level is configured incorrectly\n");
1700                return -EINVAL;
1701        }
1702        if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1703                if ((chip_info->ctrl_len < SSP_BITS_4)
1704                    || (chip_info->ctrl_len > SSP_BITS_32)) {
1705                        dev_err(&pl022->adev->dev,
1706                                "CTRL LEN is configured incorrectly\n");
1707                        return -EINVAL;
1708                }
1709                if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1710                    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1711                        dev_err(&pl022->adev->dev,
1712                                "Wait State is configured incorrectly\n");
1713                        return -EINVAL;
1714                }
1715                /* Half duplex is only available in the ST Micro version */
1716                if (pl022->vendor->extended_cr) {
1717                        if ((chip_info->duplex !=
1718                             SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1719                            && (chip_info->duplex !=
1720                                SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1721                                dev_err(&pl022->adev->dev,
1722                                        "Microwire duplex mode is configured incorrectly\n");
1723                                return -EINVAL;
1724                        }
1725                } else {
1726                        if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1727                                dev_err(&pl022->adev->dev,
1728                                        "Microwire half duplex mode requested,"
1729                                        " but this is only available in the"
1730                                        " ST version of PL022\n");
1731                        return -EINVAL;
1732                }
1733        }
1734        return 0;
1735}
1736
1737static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1738{
1739        return rate / (cpsdvsr * (1 + scr));
1740}
1741
1742static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1743                                    ssp_clock_params * clk_freq)
1744{
1745        /* Lets calculate the frequency parameters */
1746        u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1747        u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1748                best_scr = 0, tmp, found = 0;
1749
1750        rate = clk_get_rate(pl022->clk);
1751        /* cpsdvscr = 2 & scr 0 */
1752        max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1753        /* cpsdvsr = 254 & scr = 255 */
1754        min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1755
1756        if (freq > max_tclk)
1757                dev_warn(&pl022->adev->dev,
1758                        "Max speed that can be programmed is %d Hz, you requested %d\n",
1759                        max_tclk, freq);
1760
1761        if (freq < min_tclk) {
1762                dev_err(&pl022->adev->dev,
1763                        "Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1764                        freq, min_tclk);
1765                return -EINVAL;
1766        }
1767
1768        /*
1769         * best_freq will give closest possible available rate (<= requested
1770         * freq) for all values of scr & cpsdvsr.
1771         */
1772        while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1773                while (scr <= SCR_MAX) {
1774                        tmp = spi_rate(rate, cpsdvsr, scr);
1775
1776                        if (tmp > freq) {
1777                                /* we need lower freq */
1778                                scr++;
1779                                continue;
1780                        }
1781
1782                        /*
1783                         * If found exact value, mark found and break.
1784                         * If found more closer value, update and break.
1785                         */
1786                        if (tmp > best_freq) {
1787                                best_freq = tmp;
1788                                best_cpsdvsr = cpsdvsr;
1789                                best_scr = scr;
1790
1791                                if (tmp == freq)
1792                                        found = 1;
1793                        }
1794                        /*
1795                         * increased scr will give lower rates, which are not
1796                         * required
1797                         */
1798                        break;
1799                }
1800                cpsdvsr += 2;
1801                scr = SCR_MIN;
1802        }
1803
1804        WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1805                        freq);
1806
1807        clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1808        clk_freq->scr = (u8) (best_scr & 0xFF);
1809        dev_dbg(&pl022->adev->dev,
1810                "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1811                freq, best_freq);
1812        dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1813                clk_freq->cpsdvsr, clk_freq->scr);
1814
1815        return 0;
1816}
1817
1818/*
1819 * A piece of default chip info unless the platform
1820 * supplies it.
1821 */
1822static const struct pl022_config_chip pl022_default_chip_info = {
1823        .com_mode = POLLING_TRANSFER,
1824        .iface = SSP_INTERFACE_MOTOROLA_SPI,
1825        .hierarchy = SSP_SLAVE,
1826        .slave_tx_disable = DO_NOT_DRIVE_TX,
1827        .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1828        .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1829        .ctrl_len = SSP_BITS_8,
1830        .wait_state = SSP_MWIRE_WAIT_ZERO,
1831        .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1832        .cs_control = null_cs_control,
1833};
1834
1835/**
1836 * pl022_setup - setup function registered to SPI master framework
1837 * @spi: spi device which is requesting setup
1838 *
1839 * This function is registered to the SPI framework for this SPI master
1840 * controller. If it is the first time when setup is called by this device,
1841 * this function will initialize the runtime state for this chip and save
1842 * the same in the device structure. Else it will update the runtime info
1843 * with the updated chip info. Nothing is really being written to the
1844 * controller hardware here, that is not done until the actual transfer
1845 * commence.
1846 */
1847static int pl022_setup(struct spi_device *spi)
1848{
1849        struct pl022_config_chip const *chip_info;
1850        struct pl022_config_chip chip_info_dt;
1851        struct chip_data *chip;
1852        struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1853        int status = 0;
1854        struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1855        unsigned int bits = spi->bits_per_word;
1856        u32 tmp;
1857        struct device_node *np = spi->dev.of_node;
1858
1859        if (!spi->max_speed_hz)
1860                return -EINVAL;
1861
1862        /* Get controller_state if one is supplied */
1863        chip = spi_get_ctldata(spi);
1864
1865        if (chip == NULL) {
1866                chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1867                if (!chip)
1868                        return -ENOMEM;
1869                dev_dbg(&spi->dev,
1870                        "allocated memory for controller's runtime state\n");
1871        }
1872
1873        /* Get controller data if one is supplied */
1874        chip_info = spi->controller_data;
1875
1876        if (chip_info == NULL) {
1877                if (np) {
1878                        chip_info_dt = pl022_default_chip_info;
1879
1880                        chip_info_dt.hierarchy = SSP_MASTER;
1881                        of_property_read_u32(np, "pl022,interface",
1882                                &chip_info_dt.iface);
1883                        of_property_read_u32(np, "pl022,com-mode",
1884                                &chip_info_dt.com_mode);
1885                        of_property_read_u32(np, "pl022,rx-level-trig",
1886                                &chip_info_dt.rx_lev_trig);
1887                        of_property_read_u32(np, "pl022,tx-level-trig",
1888                                &chip_info_dt.tx_lev_trig);
1889                        of_property_read_u32(np, "pl022,ctrl-len",
1890                                &chip_info_dt.ctrl_len);
1891                        of_property_read_u32(np, "pl022,wait-state",
1892                                &chip_info_dt.wait_state);
1893                        of_property_read_u32(np, "pl022,duplex",
1894                                &chip_info_dt.duplex);
1895
1896                        chip_info = &chip_info_dt;
1897                } else {
1898                        chip_info = &pl022_default_chip_info;
1899                        /* spi_board_info.controller_data not is supplied */
1900                        dev_dbg(&spi->dev,
1901                                "using default controller_data settings\n");
1902                }
1903        } else
1904                dev_dbg(&spi->dev,
1905                        "using user supplied controller_data settings\n");
1906
1907        /*
1908         * We can override with custom divisors, else we use the board
1909         * frequency setting
1910         */
1911        if ((0 == chip_info->clk_freq.cpsdvsr)
1912            && (0 == chip_info->clk_freq.scr)) {
1913                status = calculate_effective_freq(pl022,
1914                                                  spi->max_speed_hz,
1915                                                  &clk_freq);
1916                if (status < 0)
1917                        goto err_config_params;
1918        } else {
1919                memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1920                if ((clk_freq.cpsdvsr % 2) != 0)
1921                        clk_freq.cpsdvsr =
1922                                clk_freq.cpsdvsr - 1;
1923        }
1924        if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1925            || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1926                status = -EINVAL;
1927                dev_err(&spi->dev,
1928                        "cpsdvsr is configured incorrectly\n");
1929                goto err_config_params;
1930        }
1931
1932        status = verify_controller_parameters(pl022, chip_info);
1933        if (status) {
1934                dev_err(&spi->dev, "controller data is incorrect");
1935                goto err_config_params;
1936        }
1937
1938        pl022->rx_lev_trig = chip_info->rx_lev_trig;
1939        pl022->tx_lev_trig = chip_info->tx_lev_trig;
1940
1941        /* Now set controller state based on controller data */
1942        chip->xfer_type = chip_info->com_mode;
1943        if (!chip_info->cs_control) {
1944                chip->cs_control = null_cs_control;
1945                if (!gpio_is_valid(pl022->chipselects[spi->chip_select]))
1946                        dev_warn(&spi->dev,
1947                                 "invalid chip select\n");
1948        } else
1949                chip->cs_control = chip_info->cs_control;
1950
1951        /* Check bits per word with vendor specific range */
1952        if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1953                status = -ENOTSUPP;
1954                dev_err(&spi->dev, "illegal data size for this controller!\n");
1955                dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1956                                pl022->vendor->max_bpw);
1957                goto err_config_params;
1958        } else if (bits <= 8) {
1959                dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1960                chip->n_bytes = 1;
1961                chip->read = READING_U8;
1962                chip->write = WRITING_U8;
1963        } else if (bits <= 16) {
1964                dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1965                chip->n_bytes = 2;
1966                chip->read = READING_U16;
1967                chip->write = WRITING_U16;
1968        } else {
1969                dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1970                chip->n_bytes = 4;
1971                chip->read = READING_U32;
1972                chip->write = WRITING_U32;
1973        }
1974
1975        /* Now Initialize all register settings required for this chip */
1976        chip->cr0 = 0;
1977        chip->cr1 = 0;
1978        chip->dmacr = 0;
1979        chip->cpsr = 0;
1980        if ((chip_info->com_mode == DMA_TRANSFER)
1981            && ((pl022->master_info)->enable_dma)) {
1982                chip->enable_dma = true;
1983                dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1984                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1985                               SSP_DMACR_MASK_RXDMAE, 0);
1986                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1987                               SSP_DMACR_MASK_TXDMAE, 1);
1988        } else {
1989                chip->enable_dma = false;
1990                dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1991                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1992                               SSP_DMACR_MASK_RXDMAE, 0);
1993                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1994                               SSP_DMACR_MASK_TXDMAE, 1);
1995        }
1996
1997        chip->cpsr = clk_freq.cpsdvsr;
1998
1999        /* Special setup for the ST micro extended control registers */
2000        if (pl022->vendor->extended_cr) {
2001                u32 etx;
2002
2003                if (pl022->vendor->pl023) {
2004                        /* These bits are only in the PL023 */
2005                        SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
2006                                       SSP_CR1_MASK_FBCLKDEL_ST, 13);
2007                } else {
2008                        /* These bits are in the PL022 but not PL023 */
2009                        SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
2010                                       SSP_CR0_MASK_HALFDUP_ST, 5);
2011                        SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
2012                                       SSP_CR0_MASK_CSS_ST, 16);
2013                        SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2014                                       SSP_CR0_MASK_FRF_ST, 21);
2015                        SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
2016                                       SSP_CR1_MASK_MWAIT_ST, 6);
2017                }
2018                SSP_WRITE_BITS(chip->cr0, bits - 1,
2019                               SSP_CR0_MASK_DSS_ST, 0);
2020
2021                if (spi->mode & SPI_LSB_FIRST) {
2022                        tmp = SSP_RX_LSB;
2023                        etx = SSP_TX_LSB;
2024                } else {
2025                        tmp = SSP_RX_MSB;
2026                        etx = SSP_TX_MSB;
2027                }
2028                SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2029                SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2030                SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2031                               SSP_CR1_MASK_RXIFLSEL_ST, 7);
2032                SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2033                               SSP_CR1_MASK_TXIFLSEL_ST, 10);
2034        } else {
2035                SSP_WRITE_BITS(chip->cr0, bits - 1,
2036                               SSP_CR0_MASK_DSS, 0);
2037                SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2038                               SSP_CR0_MASK_FRF, 4);
2039        }
2040
2041        /* Stuff that is common for all versions */
2042        if (spi->mode & SPI_CPOL)
2043                tmp = SSP_CLK_POL_IDLE_HIGH;
2044        else
2045                tmp = SSP_CLK_POL_IDLE_LOW;
2046        SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2047
2048        if (spi->mode & SPI_CPHA)
2049                tmp = SSP_CLK_SECOND_EDGE;
2050        else
2051                tmp = SSP_CLK_FIRST_EDGE;
2052        SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2053
2054        SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2055        /* Loopback is available on all versions except PL023 */
2056        if (pl022->vendor->loopback) {
2057                if (spi->mode & SPI_LOOP)
2058                        tmp = LOOPBACK_ENABLED;
2059                else
2060                        tmp = LOOPBACK_DISABLED;
2061                SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2062        }
2063        SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2064        SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2065        SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2066                3);
2067
2068        /* Save controller_state */
2069        spi_set_ctldata(spi, chip);
2070        return status;
2071 err_config_params:
2072        spi_set_ctldata(spi, NULL);
2073        kfree(chip);
2074        return status;
2075}
2076
2077/**
2078 * pl022_cleanup - cleanup function registered to SPI master framework
2079 * @spi: spi device which is requesting cleanup
2080 *
2081 * This function is registered to the SPI framework for this SPI master
2082 * controller. It will free the runtime state of chip.
2083 */
2084static void pl022_cleanup(struct spi_device *spi)
2085{
2086        struct chip_data *chip = spi_get_ctldata(spi);
2087
2088        spi_set_ctldata(spi, NULL);
2089        kfree(chip);
2090}
2091
2092static struct pl022_ssp_controller *
2093pl022_platform_data_dt_get(struct device *dev)
2094{
2095        struct device_node *np = dev->of_node;
2096        struct pl022_ssp_controller *pd;
2097        u32 tmp = 0;
2098
2099        if (!np) {
2100                dev_err(dev, "no dt node defined\n");
2101                return NULL;
2102        }
2103
2104        pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2105        if (!pd)
2106                return NULL;
2107
2108        pd->bus_id = -1;
2109        pd->enable_dma = 1;
2110        of_property_read_u32(np, "num-cs", &tmp);
2111        pd->num_chipselect = tmp;
2112        of_property_read_u32(np, "pl022,autosuspend-delay",
2113                             &pd->autosuspend_delay);
2114        pd->rt = of_property_read_bool(np, "pl022,rt");
2115
2116        return pd;
2117}
2118
2119static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
2120{
2121        struct device *dev = &adev->dev;
2122        struct pl022_ssp_controller *platform_info =
2123                        dev_get_platdata(&adev->dev);
2124        struct spi_master *master;
2125        struct pl022 *pl022 = NULL;     /*Data for this driver */
2126        struct device_node *np = adev->dev.of_node;
2127        int status = 0, i, num_cs;
2128
2129        dev_info(&adev->dev,
2130                 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2131        if (!platform_info && IS_ENABLED(CONFIG_OF))
2132                platform_info = pl022_platform_data_dt_get(dev);
2133
2134        if (!platform_info) {
2135                dev_err(dev, "probe: no platform data defined\n");
2136                return -ENODEV;
2137        }
2138
2139        if (platform_info->num_chipselect) {
2140                num_cs = platform_info->num_chipselect;
2141        } else {
2142                dev_err(dev, "probe: no chip select defined\n");
2143                return -ENODEV;
2144        }
2145
2146        /* Allocate master with space for data */
2147        master = spi_alloc_master(dev, sizeof(struct pl022));
2148        if (master == NULL) {
2149                dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2150                return -ENOMEM;
2151        }
2152
2153        pl022 = spi_master_get_devdata(master);
2154        pl022->master = master;
2155        pl022->master_info = platform_info;
2156        pl022->adev = adev;
2157        pl022->vendor = id->data;
2158        pl022->chipselects = devm_kcalloc(dev, num_cs, sizeof(int),
2159                                          GFP_KERNEL);
2160        if (!pl022->chipselects) {
2161                status = -ENOMEM;
2162                goto err_no_mem;
2163        }
2164
2165        /*
2166         * Bus Number Which has been Assigned to this SSP controller
2167         * on this board
2168         */
2169        master->bus_num = platform_info->bus_id;
2170        master->num_chipselect = num_cs;
2171        master->cleanup = pl022_cleanup;
2172        master->setup = pl022_setup;
2173        master->auto_runtime_pm = true;
2174        master->transfer_one_message = pl022_transfer_one_message;
2175        master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2176        master->rt = platform_info->rt;
2177        master->dev.of_node = dev->of_node;
2178
2179        if (platform_info->num_chipselect && platform_info->chipselects) {
2180                for (i = 0; i < num_cs; i++)
2181                        pl022->chipselects[i] = platform_info->chipselects[i];
2182        } else if (pl022->vendor->internal_cs_ctrl) {
2183                for (i = 0; i < num_cs; i++)
2184                        pl022->chipselects[i] = i;
2185        } else if (IS_ENABLED(CONFIG_OF)) {
2186                for (i = 0; i < num_cs; i++) {
2187                        int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
2188
2189                        if (cs_gpio == -EPROBE_DEFER) {
2190                                status = -EPROBE_DEFER;
2191                                goto err_no_gpio;
2192                        }
2193
2194                        pl022->chipselects[i] = cs_gpio;
2195
2196                        if (gpio_is_valid(cs_gpio)) {
2197                                if (devm_gpio_request(dev, cs_gpio, "ssp-pl022"))
2198                                        dev_err(&adev->dev,
2199                                                "could not request %d gpio\n",
2200                                                cs_gpio);
2201                                else if (gpio_direction_output(cs_gpio, 1))
2202                                        dev_err(&adev->dev,
2203                                                "could not set gpio %d as output\n",
2204                                                cs_gpio);
2205                        }
2206                }
2207        }
2208
2209        /*
2210         * Supports mode 0-3, loopback, and active low CS. Transfers are
2211         * always MS bit first on the original pl022.
2212         */
2213        master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2214        if (pl022->vendor->extended_cr)
2215                master->mode_bits |= SPI_LSB_FIRST;
2216
2217        dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2218
2219        status = amba_request_regions(adev, NULL);
2220        if (status)
2221                goto err_no_ioregion;
2222
2223        pl022->phybase = adev->res.start;
2224        pl022->virtbase = devm_ioremap(dev, adev->res.start,
2225                                       resource_size(&adev->res));
2226        if (pl022->virtbase == NULL) {
2227                status = -ENOMEM;
2228                goto err_no_ioremap;
2229        }
2230        dev_info(&adev->dev, "mapped registers from %pa to %p\n",
2231                &adev->res.start, pl022->virtbase);
2232
2233        pl022->clk = devm_clk_get(&adev->dev, NULL);
2234        if (IS_ERR(pl022->clk)) {
2235                status = PTR_ERR(pl022->clk);
2236                dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2237                goto err_no_clk;
2238        }
2239
2240        status = clk_prepare_enable(pl022->clk);
2241        if (status) {
2242                dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2243                goto err_no_clk_en;
2244        }
2245
2246        /* Initialize transfer pump */
2247        tasklet_init(&pl022->pump_transfers, pump_transfers,
2248                     (unsigned long)pl022);
2249
2250        /* Disable SSP */
2251        writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2252               SSP_CR1(pl022->virtbase));
2253        load_ssp_default_config(pl022);
2254
2255        status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
2256                                  0, "pl022", pl022);
2257        if (status < 0) {
2258                dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2259                goto err_no_irq;
2260        }
2261
2262        /* Get DMA channels, try autoconfiguration first */
2263        status = pl022_dma_autoprobe(pl022);
2264        if (status == -EPROBE_DEFER) {
2265                dev_dbg(dev, "deferring probe to get DMA channel\n");
2266                goto err_no_irq;
2267        }
2268
2269        /* If that failed, use channels from platform_info */
2270        if (status == 0)
2271                platform_info->enable_dma = 1;
2272        else if (platform_info->enable_dma) {
2273                status = pl022_dma_probe(pl022);
2274                if (status != 0)
2275                        platform_info->enable_dma = 0;
2276        }
2277
2278        /* Register with the SPI framework */
2279        amba_set_drvdata(adev, pl022);
2280        status = devm_spi_register_master(&adev->dev, master);
2281        if (status != 0) {
2282                dev_err(&adev->dev,
2283                        "probe - problem registering spi master\n");
2284                goto err_spi_register;
2285        }
2286        dev_dbg(dev, "probe succeeded\n");
2287
2288        /* let runtime pm put suspend */
2289        if (platform_info->autosuspend_delay > 0) {
2290                dev_info(&adev->dev,
2291                        "will use autosuspend for runtime pm, delay %dms\n",
2292                        platform_info->autosuspend_delay);
2293                pm_runtime_set_autosuspend_delay(dev,
2294                        platform_info->autosuspend_delay);
2295                pm_runtime_use_autosuspend(dev);
2296        }
2297        pm_runtime_put(dev);
2298
2299        return 0;
2300
2301 err_spi_register:
2302        if (platform_info->enable_dma)
2303                pl022_dma_remove(pl022);
2304 err_no_irq:
2305        clk_disable_unprepare(pl022->clk);
2306 err_no_clk_en:
2307 err_no_clk:
2308 err_no_ioremap:
2309        amba_release_regions(adev);
2310 err_no_ioregion:
2311 err_no_gpio:
2312 err_no_mem:
2313        spi_master_put(master);
2314        return status;
2315}
2316
2317static int
2318pl022_remove(struct amba_device *adev)
2319{
2320        struct pl022 *pl022 = amba_get_drvdata(adev);
2321
2322        if (!pl022)
2323                return 0;
2324
2325        /*
2326         * undo pm_runtime_put() in probe.  I assume that we're not
2327         * accessing the primecell here.
2328         */
2329        pm_runtime_get_noresume(&adev->dev);
2330
2331        load_ssp_default_config(pl022);
2332        if (pl022->master_info->enable_dma)
2333                pl022_dma_remove(pl022);
2334
2335        clk_disable_unprepare(pl022->clk);
2336        amba_release_regions(adev);
2337        tasklet_disable(&pl022->pump_transfers);
2338        return 0;
2339}
2340
2341#ifdef CONFIG_PM_SLEEP
2342static int pl022_suspend(struct device *dev)
2343{
2344        struct pl022 *pl022 = dev_get_drvdata(dev);
2345        int ret;
2346
2347        ret = spi_master_suspend(pl022->master);
2348        if (ret)
2349                return ret;
2350
2351        ret = pm_runtime_force_suspend(dev);
2352        if (ret) {
2353                spi_master_resume(pl022->master);
2354                return ret;
2355        }
2356
2357        pinctrl_pm_select_sleep_state(dev);
2358
2359        dev_dbg(dev, "suspended\n");
2360        return 0;
2361}
2362
2363static int pl022_resume(struct device *dev)
2364{
2365        struct pl022 *pl022 = dev_get_drvdata(dev);
2366        int ret;
2367
2368        ret = pm_runtime_force_resume(dev);
2369        if (ret)
2370                dev_err(dev, "problem resuming\n");
2371
2372        /* Start the queue running */
2373        ret = spi_master_resume(pl022->master);
2374        if (!ret)
2375                dev_dbg(dev, "resumed\n");
2376
2377        return ret;
2378}
2379#endif
2380
2381#ifdef CONFIG_PM
2382static int pl022_runtime_suspend(struct device *dev)
2383{
2384        struct pl022 *pl022 = dev_get_drvdata(dev);
2385
2386        clk_disable_unprepare(pl022->clk);
2387        pinctrl_pm_select_idle_state(dev);
2388
2389        return 0;
2390}
2391
2392static int pl022_runtime_resume(struct device *dev)
2393{
2394        struct pl022 *pl022 = dev_get_drvdata(dev);
2395
2396        pinctrl_pm_select_default_state(dev);
2397        clk_prepare_enable(pl022->clk);
2398
2399        return 0;
2400}
2401#endif
2402
2403static const struct dev_pm_ops pl022_dev_pm_ops = {
2404        SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2405        SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2406};
2407
2408static struct vendor_data vendor_arm = {
2409        .fifodepth = 8,
2410        .max_bpw = 16,
2411        .unidir = false,
2412        .extended_cr = false,
2413        .pl023 = false,
2414        .loopback = true,
2415        .internal_cs_ctrl = false,
2416};
2417
2418static struct vendor_data vendor_st = {
2419        .fifodepth = 32,
2420        .max_bpw = 32,
2421        .unidir = false,
2422        .extended_cr = true,
2423        .pl023 = false,
2424        .loopback = true,
2425        .internal_cs_ctrl = false,
2426};
2427
2428static struct vendor_data vendor_st_pl023 = {
2429        .fifodepth = 32,
2430        .max_bpw = 32,
2431        .unidir = false,
2432        .extended_cr = true,
2433        .pl023 = true,
2434        .loopback = false,
2435        .internal_cs_ctrl = false,
2436};
2437
2438static struct vendor_data vendor_lsi = {
2439        .fifodepth = 8,
2440        .max_bpw = 16,
2441        .unidir = false,
2442        .extended_cr = false,
2443        .pl023 = false,
2444        .loopback = true,
2445        .internal_cs_ctrl = true,
2446};
2447
2448static const struct amba_id pl022_ids[] = {
2449        {
2450                /*
2451                 * ARM PL022 variant, this has a 16bit wide
2452                 * and 8 locations deep TX/RX FIFO
2453                 */
2454                .id     = 0x00041022,
2455                .mask   = 0x000fffff,
2456                .data   = &vendor_arm,
2457        },
2458        {
2459                /*
2460                 * ST Micro derivative, this has 32bit wide
2461                 * and 32 locations deep TX/RX FIFO
2462                 */
2463                .id     = 0x01080022,
2464                .mask   = 0xffffffff,
2465                .data   = &vendor_st,
2466        },
2467        {
2468                /*
2469                 * ST-Ericsson derivative "PL023" (this is not
2470                 * an official ARM number), this is a PL022 SSP block
2471                 * stripped to SPI mode only, it has 32bit wide
2472                 * and 32 locations deep TX/RX FIFO but no extended
2473                 * CR0/CR1 register
2474                 */
2475                .id     = 0x00080023,
2476                .mask   = 0xffffffff,
2477                .data   = &vendor_st_pl023,
2478        },
2479        {
2480                /*
2481                 * PL022 variant that has a chip select control register whih
2482                 * allows control of 5 output signals nCS[0:4].
2483                 */
2484                .id     = 0x000b6022,
2485                .mask   = 0x000fffff,
2486                .data   = &vendor_lsi,
2487        },
2488        { 0, 0 },
2489};
2490
2491MODULE_DEVICE_TABLE(amba, pl022_ids);
2492
2493static struct amba_driver pl022_driver = {
2494        .drv = {
2495                .name   = "ssp-pl022",
2496                .pm     = &pl022_dev_pm_ops,
2497        },
2498        .id_table       = pl022_ids,
2499        .probe          = pl022_probe,
2500        .remove         = pl022_remove,
2501};
2502
2503static int __init pl022_init(void)
2504{
2505        return amba_driver_register(&pl022_driver);
2506}
2507subsys_initcall(pl022_init);
2508
2509static void __exit pl022_exit(void)
2510{
2511        amba_driver_unregister(&pl022_driver);
2512}
2513module_exit(pl022_exit);
2514
2515MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2516MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2517MODULE_LICENSE("GPL");
2518