linux/drivers/spi/spi-rspi.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SH RSPI driver
   4 *
   5 * Copyright (C) 2012, 2013  Renesas Solutions Corp.
   6 * Copyright (C) 2014 Glider bvba
   7 *
   8 * Based on spi-sh.c:
   9 * Copyright (C) 2011 Renesas Solutions Corp.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/kernel.h>
  14#include <linux/sched.h>
  15#include <linux/errno.h>
  16#include <linux/interrupt.h>
  17#include <linux/platform_device.h>
  18#include <linux/io.h>
  19#include <linux/clk.h>
  20#include <linux/dmaengine.h>
  21#include <linux/dma-mapping.h>
  22#include <linux/of_device.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/sh_dma.h>
  25#include <linux/spi/spi.h>
  26#include <linux/spi/rspi.h>
  27#include <linux/spinlock.h>
  28
  29#define RSPI_SPCR               0x00    /* Control Register */
  30#define RSPI_SSLP               0x01    /* Slave Select Polarity Register */
  31#define RSPI_SPPCR              0x02    /* Pin Control Register */
  32#define RSPI_SPSR               0x03    /* Status Register */
  33#define RSPI_SPDR               0x04    /* Data Register */
  34#define RSPI_SPSCR              0x08    /* Sequence Control Register */
  35#define RSPI_SPSSR              0x09    /* Sequence Status Register */
  36#define RSPI_SPBR               0x0a    /* Bit Rate Register */
  37#define RSPI_SPDCR              0x0b    /* Data Control Register */
  38#define RSPI_SPCKD              0x0c    /* Clock Delay Register */
  39#define RSPI_SSLND              0x0d    /* Slave Select Negation Delay Register */
  40#define RSPI_SPND               0x0e    /* Next-Access Delay Register */
  41#define RSPI_SPCR2              0x0f    /* Control Register 2 (SH only) */
  42#define RSPI_SPCMD0             0x10    /* Command Register 0 */
  43#define RSPI_SPCMD1             0x12    /* Command Register 1 */
  44#define RSPI_SPCMD2             0x14    /* Command Register 2 */
  45#define RSPI_SPCMD3             0x16    /* Command Register 3 */
  46#define RSPI_SPCMD4             0x18    /* Command Register 4 */
  47#define RSPI_SPCMD5             0x1a    /* Command Register 5 */
  48#define RSPI_SPCMD6             0x1c    /* Command Register 6 */
  49#define RSPI_SPCMD7             0x1e    /* Command Register 7 */
  50#define RSPI_SPCMD(i)           (RSPI_SPCMD0 + (i) * 2)
  51#define RSPI_NUM_SPCMD          8
  52#define RSPI_RZ_NUM_SPCMD       4
  53#define QSPI_NUM_SPCMD          4
  54
  55/* RSPI on RZ only */
  56#define RSPI_SPBFCR             0x20    /* Buffer Control Register */
  57#define RSPI_SPBFDR             0x22    /* Buffer Data Count Setting Register */
  58
  59/* QSPI only */
  60#define QSPI_SPBFCR             0x18    /* Buffer Control Register */
  61#define QSPI_SPBDCR             0x1a    /* Buffer Data Count Register */
  62#define QSPI_SPBMUL0            0x1c    /* Transfer Data Length Multiplier Setting Register 0 */
  63#define QSPI_SPBMUL1            0x20    /* Transfer Data Length Multiplier Setting Register 1 */
  64#define QSPI_SPBMUL2            0x24    /* Transfer Data Length Multiplier Setting Register 2 */
  65#define QSPI_SPBMUL3            0x28    /* Transfer Data Length Multiplier Setting Register 3 */
  66#define QSPI_SPBMUL(i)          (QSPI_SPBMUL0 + (i) * 4)
  67
  68/* SPCR - Control Register */
  69#define SPCR_SPRIE              0x80    /* Receive Interrupt Enable */
  70#define SPCR_SPE                0x40    /* Function Enable */
  71#define SPCR_SPTIE              0x20    /* Transmit Interrupt Enable */
  72#define SPCR_SPEIE              0x10    /* Error Interrupt Enable */
  73#define SPCR_MSTR               0x08    /* Master/Slave Mode Select */
  74#define SPCR_MODFEN             0x04    /* Mode Fault Error Detection Enable */
  75/* RSPI on SH only */
  76#define SPCR_TXMD               0x02    /* TX Only Mode (vs. Full Duplex) */
  77#define SPCR_SPMS               0x01    /* 3-wire Mode (vs. 4-wire) */
  78/* QSPI on R-Car Gen2 only */
  79#define SPCR_WSWAP              0x02    /* Word Swap of read-data for DMAC */
  80#define SPCR_BSWAP              0x01    /* Byte Swap of read-data for DMAC */
  81
  82/* SSLP - Slave Select Polarity Register */
  83#define SSLP_SSLP(i)            BIT(i)  /* SSLi Signal Polarity Setting */
  84
  85/* SPPCR - Pin Control Register */
  86#define SPPCR_MOIFE             0x20    /* MOSI Idle Value Fixing Enable */
  87#define SPPCR_MOIFV             0x10    /* MOSI Idle Fixed Value */
  88#define SPPCR_SPOM              0x04
  89#define SPPCR_SPLP2             0x02    /* Loopback Mode 2 (non-inverting) */
  90#define SPPCR_SPLP              0x01    /* Loopback Mode (inverting) */
  91
  92#define SPPCR_IO3FV             0x04    /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
  93#define SPPCR_IO2FV             0x04    /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
  94
  95/* SPSR - Status Register */
  96#define SPSR_SPRF               0x80    /* Receive Buffer Full Flag */
  97#define SPSR_TEND               0x40    /* Transmit End */
  98#define SPSR_SPTEF              0x20    /* Transmit Buffer Empty Flag */
  99#define SPSR_PERF               0x08    /* Parity Error Flag */
 100#define SPSR_MODF               0x04    /* Mode Fault Error Flag */
 101#define SPSR_IDLNF              0x02    /* RSPI Idle Flag */
 102#define SPSR_OVRF               0x01    /* Overrun Error Flag (RSPI only) */
 103
 104/* SPSCR - Sequence Control Register */
 105#define SPSCR_SPSLN_MASK        0x07    /* Sequence Length Specification */
 106
 107/* SPSSR - Sequence Status Register */
 108#define SPSSR_SPECM_MASK        0x70    /* Command Error Mask */
 109#define SPSSR_SPCP_MASK         0x07    /* Command Pointer Mask */
 110
 111/* SPDCR - Data Control Register */
 112#define SPDCR_TXDMY             0x80    /* Dummy Data Transmission Enable */
 113#define SPDCR_SPLW1             0x40    /* Access Width Specification (RZ) */
 114#define SPDCR_SPLW0             0x20    /* Access Width Specification (RZ) */
 115#define SPDCR_SPLLWORD          (SPDCR_SPLW1 | SPDCR_SPLW0)
 116#define SPDCR_SPLWORD           SPDCR_SPLW1
 117#define SPDCR_SPLBYTE           SPDCR_SPLW0
 118#define SPDCR_SPLW              0x20    /* Access Width Specification (SH) */
 119#define SPDCR_SPRDTD            0x10    /* Receive Transmit Data Select (SH) */
 120#define SPDCR_SLSEL1            0x08
 121#define SPDCR_SLSEL0            0x04
 122#define SPDCR_SLSEL_MASK        0x0c    /* SSL1 Output Select (SH) */
 123#define SPDCR_SPFC1             0x02
 124#define SPDCR_SPFC0             0x01
 125#define SPDCR_SPFC_MASK         0x03    /* Frame Count Setting (1-4) (SH) */
 126
 127/* SPCKD - Clock Delay Register */
 128#define SPCKD_SCKDL_MASK        0x07    /* Clock Delay Setting (1-8) */
 129
 130/* SSLND - Slave Select Negation Delay Register */
 131#define SSLND_SLNDL_MASK        0x07    /* SSL Negation Delay Setting (1-8) */
 132
 133/* SPND - Next-Access Delay Register */
 134#define SPND_SPNDL_MASK         0x07    /* Next-Access Delay Setting (1-8) */
 135
 136/* SPCR2 - Control Register 2 */
 137#define SPCR2_PTE               0x08    /* Parity Self-Test Enable */
 138#define SPCR2_SPIE              0x04    /* Idle Interrupt Enable */
 139#define SPCR2_SPOE              0x02    /* Odd Parity Enable (vs. Even) */
 140#define SPCR2_SPPE              0x01    /* Parity Enable */
 141
 142/* SPCMDn - Command Registers */
 143#define SPCMD_SCKDEN            0x8000  /* Clock Delay Setting Enable */
 144#define SPCMD_SLNDEN            0x4000  /* SSL Negation Delay Setting Enable */
 145#define SPCMD_SPNDEN            0x2000  /* Next-Access Delay Enable */
 146#define SPCMD_LSBF              0x1000  /* LSB First */
 147#define SPCMD_SPB_MASK          0x0f00  /* Data Length Setting */
 148#define SPCMD_SPB_8_TO_16(bit)  (((bit - 1) << 8) & SPCMD_SPB_MASK)
 149#define SPCMD_SPB_8BIT          0x0000  /* QSPI only */
 150#define SPCMD_SPB_16BIT         0x0100
 151#define SPCMD_SPB_20BIT         0x0000
 152#define SPCMD_SPB_24BIT         0x0100
 153#define SPCMD_SPB_32BIT         0x0200
 154#define SPCMD_SSLKP             0x0080  /* SSL Signal Level Keeping */
 155#define SPCMD_SPIMOD_MASK       0x0060  /* SPI Operating Mode (QSPI only) */
 156#define SPCMD_SPIMOD1           0x0040
 157#define SPCMD_SPIMOD0           0x0020
 158#define SPCMD_SPIMOD_SINGLE     0
 159#define SPCMD_SPIMOD_DUAL       SPCMD_SPIMOD0
 160#define SPCMD_SPIMOD_QUAD       SPCMD_SPIMOD1
 161#define SPCMD_SPRW              0x0010  /* SPI Read/Write Access (Dual/Quad) */
 162#define SPCMD_SSLA(i)           ((i) << 4)      /* SSL Assert Signal Setting */
 163#define SPCMD_BRDV_MASK         0x000c  /* Bit Rate Division Setting */
 164#define SPCMD_BRDV(brdv)        ((brdv) << 2)
 165#define SPCMD_CPOL              0x0002  /* Clock Polarity Setting */
 166#define SPCMD_CPHA              0x0001  /* Clock Phase Setting */
 167
 168/* SPBFCR - Buffer Control Register */
 169#define SPBFCR_TXRST            0x80    /* Transmit Buffer Data Reset */
 170#define SPBFCR_RXRST            0x40    /* Receive Buffer Data Reset */
 171#define SPBFCR_TXTRG_MASK       0x30    /* Transmit Buffer Data Triggering Number */
 172#define SPBFCR_RXTRG_MASK       0x07    /* Receive Buffer Data Triggering Number */
 173/* QSPI on R-Car Gen2 */
 174#define SPBFCR_TXTRG_1B         0x00    /* 31 bytes (1 byte available) */
 175#define SPBFCR_TXTRG_32B        0x30    /* 0 byte (32 bytes available) */
 176#define SPBFCR_RXTRG_1B         0x00    /* 1 byte (31 bytes available) */
 177#define SPBFCR_RXTRG_32B        0x07    /* 32 bytes (0 byte available) */
 178
 179#define QSPI_BUFFER_SIZE        32u
 180
 181struct rspi_data {
 182        void __iomem *addr;
 183        u32 speed_hz;
 184        struct spi_controller *ctlr;
 185        struct platform_device *pdev;
 186        wait_queue_head_t wait;
 187        spinlock_t lock;                /* Protects RMW-access to RSPI_SSLP */
 188        struct clk *clk;
 189        u16 spcmd;
 190        u8 spsr;
 191        u8 sppcr;
 192        int rx_irq, tx_irq;
 193        const struct spi_ops *ops;
 194
 195        unsigned dma_callbacked:1;
 196        unsigned byte_access:1;
 197};
 198
 199static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
 200{
 201        iowrite8(data, rspi->addr + offset);
 202}
 203
 204static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
 205{
 206        iowrite16(data, rspi->addr + offset);
 207}
 208
 209static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
 210{
 211        iowrite32(data, rspi->addr + offset);
 212}
 213
 214static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
 215{
 216        return ioread8(rspi->addr + offset);
 217}
 218
 219static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
 220{
 221        return ioread16(rspi->addr + offset);
 222}
 223
 224static void rspi_write_data(const struct rspi_data *rspi, u16 data)
 225{
 226        if (rspi->byte_access)
 227                rspi_write8(rspi, data, RSPI_SPDR);
 228        else /* 16 bit */
 229                rspi_write16(rspi, data, RSPI_SPDR);
 230}
 231
 232static u16 rspi_read_data(const struct rspi_data *rspi)
 233{
 234        if (rspi->byte_access)
 235                return rspi_read8(rspi, RSPI_SPDR);
 236        else /* 16 bit */
 237                return rspi_read16(rspi, RSPI_SPDR);
 238}
 239
 240/* optional functions */
 241struct spi_ops {
 242        int (*set_config_register)(struct rspi_data *rspi, int access_size);
 243        int (*transfer_one)(struct spi_controller *ctlr,
 244                            struct spi_device *spi, struct spi_transfer *xfer);
 245        u16 extra_mode_bits;
 246        u16 min_div;
 247        u16 max_div;
 248        u16 flags;
 249        u16 fifo_size;
 250        u8 num_hw_ss;
 251};
 252
 253static void rspi_set_rate(struct rspi_data *rspi)
 254{
 255        unsigned long clksrc;
 256        int brdv = 0, spbr;
 257
 258        clksrc = clk_get_rate(rspi->clk);
 259        spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz) - 1;
 260        while (spbr > 255 && brdv < 3) {
 261                brdv++;
 262                spbr = DIV_ROUND_UP(spbr + 1, 2) - 1;
 263        }
 264
 265        rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
 266        rspi->spcmd |= SPCMD_BRDV(brdv);
 267        rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * (spbr + 1));
 268}
 269
 270/*
 271 * functions for RSPI on legacy SH
 272 */
 273static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
 274{
 275        /* Sets output mode, MOSI signal, and (optionally) loopback */
 276        rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
 277
 278        /* Sets transfer bit rate */
 279        rspi_set_rate(rspi);
 280
 281        /* Disable dummy transmission, set 16-bit word access, 1 frame */
 282        rspi_write8(rspi, 0, RSPI_SPDCR);
 283        rspi->byte_access = 0;
 284
 285        /* Sets RSPCK, SSL, next-access delay value */
 286        rspi_write8(rspi, 0x00, RSPI_SPCKD);
 287        rspi_write8(rspi, 0x00, RSPI_SSLND);
 288        rspi_write8(rspi, 0x00, RSPI_SPND);
 289
 290        /* Sets parity, interrupt mask */
 291        rspi_write8(rspi, 0x00, RSPI_SPCR2);
 292
 293        /* Resets sequencer */
 294        rspi_write8(rspi, 0, RSPI_SPSCR);
 295        rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
 296        rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 297
 298        /* Sets RSPI mode */
 299        rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
 300
 301        return 0;
 302}
 303
 304/*
 305 * functions for RSPI on RZ
 306 */
 307static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
 308{
 309        /* Sets output mode, MOSI signal, and (optionally) loopback */
 310        rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
 311
 312        /* Sets transfer bit rate */
 313        rspi_set_rate(rspi);
 314
 315        /* Disable dummy transmission, set byte access */
 316        rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
 317        rspi->byte_access = 1;
 318
 319        /* Sets RSPCK, SSL, next-access delay value */
 320        rspi_write8(rspi, 0x00, RSPI_SPCKD);
 321        rspi_write8(rspi, 0x00, RSPI_SSLND);
 322        rspi_write8(rspi, 0x00, RSPI_SPND);
 323
 324        /* Resets sequencer */
 325        rspi_write8(rspi, 0, RSPI_SPSCR);
 326        rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
 327        rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 328
 329        /* Sets RSPI mode */
 330        rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
 331
 332        return 0;
 333}
 334
 335/*
 336 * functions for QSPI
 337 */
 338static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
 339{
 340        unsigned long clksrc;
 341        int brdv = 0, spbr;
 342
 343        /* Sets output mode, MOSI signal, and (optionally) loopback */
 344        rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
 345
 346        /* Sets transfer bit rate */
 347        clksrc = clk_get_rate(rspi->clk);
 348        if (rspi->speed_hz >= clksrc) {
 349                spbr = 0;
 350                rspi->speed_hz = clksrc;
 351        } else {
 352                spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz);
 353                while (spbr > 255 && brdv < 3) {
 354                        brdv++;
 355                        spbr = DIV_ROUND_UP(spbr, 2);
 356                }
 357                spbr = clamp(spbr, 0, 255);
 358                rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * spbr);
 359        }
 360        rspi_write8(rspi, spbr, RSPI_SPBR);
 361        rspi->spcmd |= SPCMD_BRDV(brdv);
 362
 363        /* Disable dummy transmission, set byte access */
 364        rspi_write8(rspi, 0, RSPI_SPDCR);
 365        rspi->byte_access = 1;
 366
 367        /* Sets RSPCK, SSL, next-access delay value */
 368        rspi_write8(rspi, 0x00, RSPI_SPCKD);
 369        rspi_write8(rspi, 0x00, RSPI_SSLND);
 370        rspi_write8(rspi, 0x00, RSPI_SPND);
 371
 372        /* Data Length Setting */
 373        if (access_size == 8)
 374                rspi->spcmd |= SPCMD_SPB_8BIT;
 375        else if (access_size == 16)
 376                rspi->spcmd |= SPCMD_SPB_16BIT;
 377        else
 378                rspi->spcmd |= SPCMD_SPB_32BIT;
 379
 380        rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
 381
 382        /* Resets transfer data length */
 383        rspi_write32(rspi, 0, QSPI_SPBMUL0);
 384
 385        /* Resets transmit and receive buffer */
 386        rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
 387        /* Sets buffer to allow normal operation */
 388        rspi_write8(rspi, 0x00, QSPI_SPBFCR);
 389
 390        /* Resets sequencer */
 391        rspi_write8(rspi, 0, RSPI_SPSCR);
 392        rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 393
 394        /* Sets RSPI mode */
 395        rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
 396
 397        return 0;
 398}
 399
 400static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
 401{
 402        u8 data;
 403
 404        data = rspi_read8(rspi, reg);
 405        data &= ~mask;
 406        data |= (val & mask);
 407        rspi_write8(rspi, data, reg);
 408}
 409
 410static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
 411                                          unsigned int len)
 412{
 413        unsigned int n;
 414
 415        n = min(len, QSPI_BUFFER_SIZE);
 416
 417        if (len >= QSPI_BUFFER_SIZE) {
 418                /* sets triggering number to 32 bytes */
 419                qspi_update(rspi, SPBFCR_TXTRG_MASK,
 420                             SPBFCR_TXTRG_32B, QSPI_SPBFCR);
 421        } else {
 422                /* sets triggering number to 1 byte */
 423                qspi_update(rspi, SPBFCR_TXTRG_MASK,
 424                             SPBFCR_TXTRG_1B, QSPI_SPBFCR);
 425        }
 426
 427        return n;
 428}
 429
 430static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
 431{
 432        unsigned int n;
 433
 434        n = min(len, QSPI_BUFFER_SIZE);
 435
 436        if (len >= QSPI_BUFFER_SIZE) {
 437                /* sets triggering number to 32 bytes */
 438                qspi_update(rspi, SPBFCR_RXTRG_MASK,
 439                             SPBFCR_RXTRG_32B, QSPI_SPBFCR);
 440        } else {
 441                /* sets triggering number to 1 byte */
 442                qspi_update(rspi, SPBFCR_RXTRG_MASK,
 443                             SPBFCR_RXTRG_1B, QSPI_SPBFCR);
 444        }
 445        return n;
 446}
 447
 448static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
 449{
 450        rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
 451}
 452
 453static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
 454{
 455        rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
 456}
 457
 458static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
 459                                   u8 enable_bit)
 460{
 461        int ret;
 462
 463        rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
 464        if (rspi->spsr & wait_mask)
 465                return 0;
 466
 467        rspi_enable_irq(rspi, enable_bit);
 468        ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
 469        if (ret == 0 && !(rspi->spsr & wait_mask))
 470                return -ETIMEDOUT;
 471
 472        return 0;
 473}
 474
 475static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
 476{
 477        return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
 478}
 479
 480static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
 481{
 482        return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
 483}
 484
 485static int rspi_data_out(struct rspi_data *rspi, u8 data)
 486{
 487        int error = rspi_wait_for_tx_empty(rspi);
 488        if (error < 0) {
 489                dev_err(&rspi->ctlr->dev, "transmit timeout\n");
 490                return error;
 491        }
 492        rspi_write_data(rspi, data);
 493        return 0;
 494}
 495
 496static int rspi_data_in(struct rspi_data *rspi)
 497{
 498        int error;
 499        u8 data;
 500
 501        error = rspi_wait_for_rx_full(rspi);
 502        if (error < 0) {
 503                dev_err(&rspi->ctlr->dev, "receive timeout\n");
 504                return error;
 505        }
 506        data = rspi_read_data(rspi);
 507        return data;
 508}
 509
 510static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
 511                             unsigned int n)
 512{
 513        while (n-- > 0) {
 514                if (tx) {
 515                        int ret = rspi_data_out(rspi, *tx++);
 516                        if (ret < 0)
 517                                return ret;
 518                }
 519                if (rx) {
 520                        int ret = rspi_data_in(rspi);
 521                        if (ret < 0)
 522                                return ret;
 523                        *rx++ = ret;
 524                }
 525        }
 526
 527        return 0;
 528}
 529
 530static void rspi_dma_complete(void *arg)
 531{
 532        struct rspi_data *rspi = arg;
 533
 534        rspi->dma_callbacked = 1;
 535        wake_up_interruptible(&rspi->wait);
 536}
 537
 538static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
 539                             struct sg_table *rx)
 540{
 541        struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
 542        u8 irq_mask = 0;
 543        unsigned int other_irq = 0;
 544        dma_cookie_t cookie;
 545        int ret;
 546
 547        /* First prepare and submit the DMA request(s), as this may fail */
 548        if (rx) {
 549                desc_rx = dmaengine_prep_slave_sg(rspi->ctlr->dma_rx, rx->sgl,
 550                                        rx->nents, DMA_DEV_TO_MEM,
 551                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 552                if (!desc_rx) {
 553                        ret = -EAGAIN;
 554                        goto no_dma_rx;
 555                }
 556
 557                desc_rx->callback = rspi_dma_complete;
 558                desc_rx->callback_param = rspi;
 559                cookie = dmaengine_submit(desc_rx);
 560                if (dma_submit_error(cookie)) {
 561                        ret = cookie;
 562                        goto no_dma_rx;
 563                }
 564
 565                irq_mask |= SPCR_SPRIE;
 566        }
 567
 568        if (tx) {
 569                desc_tx = dmaengine_prep_slave_sg(rspi->ctlr->dma_tx, tx->sgl,
 570                                        tx->nents, DMA_MEM_TO_DEV,
 571                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 572                if (!desc_tx) {
 573                        ret = -EAGAIN;
 574                        goto no_dma_tx;
 575                }
 576
 577                if (rx) {
 578                        /* No callback */
 579                        desc_tx->callback = NULL;
 580                } else {
 581                        desc_tx->callback = rspi_dma_complete;
 582                        desc_tx->callback_param = rspi;
 583                }
 584                cookie = dmaengine_submit(desc_tx);
 585                if (dma_submit_error(cookie)) {
 586                        ret = cookie;
 587                        goto no_dma_tx;
 588                }
 589
 590                irq_mask |= SPCR_SPTIE;
 591        }
 592
 593        /*
 594         * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
 595         * called. So, this driver disables the IRQ while DMA transfer.
 596         */
 597        if (tx)
 598                disable_irq(other_irq = rspi->tx_irq);
 599        if (rx && rspi->rx_irq != other_irq)
 600                disable_irq(rspi->rx_irq);
 601
 602        rspi_enable_irq(rspi, irq_mask);
 603        rspi->dma_callbacked = 0;
 604
 605        /* Now start DMA */
 606        if (rx)
 607                dma_async_issue_pending(rspi->ctlr->dma_rx);
 608        if (tx)
 609                dma_async_issue_pending(rspi->ctlr->dma_tx);
 610
 611        ret = wait_event_interruptible_timeout(rspi->wait,
 612                                               rspi->dma_callbacked, HZ);
 613        if (ret > 0 && rspi->dma_callbacked) {
 614                ret = 0;
 615        } else {
 616                if (!ret) {
 617                        dev_err(&rspi->ctlr->dev, "DMA timeout\n");
 618                        ret = -ETIMEDOUT;
 619                }
 620                if (tx)
 621                        dmaengine_terminate_all(rspi->ctlr->dma_tx);
 622                if (rx)
 623                        dmaengine_terminate_all(rspi->ctlr->dma_rx);
 624        }
 625
 626        rspi_disable_irq(rspi, irq_mask);
 627
 628        if (tx)
 629                enable_irq(rspi->tx_irq);
 630        if (rx && rspi->rx_irq != other_irq)
 631                enable_irq(rspi->rx_irq);
 632
 633        return ret;
 634
 635no_dma_tx:
 636        if (rx)
 637                dmaengine_terminate_all(rspi->ctlr->dma_rx);
 638no_dma_rx:
 639        if (ret == -EAGAIN) {
 640                dev_warn_once(&rspi->ctlr->dev,
 641                              "DMA not available, falling back to PIO\n");
 642        }
 643        return ret;
 644}
 645
 646static void rspi_receive_init(const struct rspi_data *rspi)
 647{
 648        u8 spsr;
 649
 650        spsr = rspi_read8(rspi, RSPI_SPSR);
 651        if (spsr & SPSR_SPRF)
 652                rspi_read_data(rspi);   /* dummy read */
 653        if (spsr & SPSR_OVRF)
 654                rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
 655                            RSPI_SPSR);
 656}
 657
 658static void rspi_rz_receive_init(const struct rspi_data *rspi)
 659{
 660        rspi_receive_init(rspi);
 661        rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
 662        rspi_write8(rspi, 0, RSPI_SPBFCR);
 663}
 664
 665static void qspi_receive_init(const struct rspi_data *rspi)
 666{
 667        u8 spsr;
 668
 669        spsr = rspi_read8(rspi, RSPI_SPSR);
 670        if (spsr & SPSR_SPRF)
 671                rspi_read_data(rspi);   /* dummy read */
 672        rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
 673        rspi_write8(rspi, 0, QSPI_SPBFCR);
 674}
 675
 676static bool __rspi_can_dma(const struct rspi_data *rspi,
 677                           const struct spi_transfer *xfer)
 678{
 679        return xfer->len > rspi->ops->fifo_size;
 680}
 681
 682static bool rspi_can_dma(struct spi_controller *ctlr, struct spi_device *spi,
 683                         struct spi_transfer *xfer)
 684{
 685        struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 686
 687        return __rspi_can_dma(rspi, xfer);
 688}
 689
 690static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
 691                                         struct spi_transfer *xfer)
 692{
 693        if (!rspi->ctlr->can_dma || !__rspi_can_dma(rspi, xfer))
 694                return -EAGAIN;
 695
 696        /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
 697        return rspi_dma_transfer(rspi, &xfer->tx_sg,
 698                                xfer->rx_buf ? &xfer->rx_sg : NULL);
 699}
 700
 701static int rspi_common_transfer(struct rspi_data *rspi,
 702                                struct spi_transfer *xfer)
 703{
 704        int ret;
 705
 706        xfer->effective_speed_hz = rspi->speed_hz;
 707
 708        ret = rspi_dma_check_then_transfer(rspi, xfer);
 709        if (ret != -EAGAIN)
 710                return ret;
 711
 712        ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
 713        if (ret < 0)
 714                return ret;
 715
 716        /* Wait for the last transmission */
 717        rspi_wait_for_tx_empty(rspi);
 718
 719        return 0;
 720}
 721
 722static int rspi_transfer_one(struct spi_controller *ctlr,
 723                             struct spi_device *spi, struct spi_transfer *xfer)
 724{
 725        struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 726        u8 spcr;
 727
 728        spcr = rspi_read8(rspi, RSPI_SPCR);
 729        if (xfer->rx_buf) {
 730                rspi_receive_init(rspi);
 731                spcr &= ~SPCR_TXMD;
 732        } else {
 733                spcr |= SPCR_TXMD;
 734        }
 735        rspi_write8(rspi, spcr, RSPI_SPCR);
 736
 737        return rspi_common_transfer(rspi, xfer);
 738}
 739
 740static int rspi_rz_transfer_one(struct spi_controller *ctlr,
 741                                struct spi_device *spi,
 742                                struct spi_transfer *xfer)
 743{
 744        struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 745
 746        rspi_rz_receive_init(rspi);
 747
 748        return rspi_common_transfer(rspi, xfer);
 749}
 750
 751static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
 752                                        u8 *rx, unsigned int len)
 753{
 754        unsigned int i, n;
 755        int ret;
 756
 757        while (len > 0) {
 758                n = qspi_set_send_trigger(rspi, len);
 759                qspi_set_receive_trigger(rspi, len);
 760                ret = rspi_wait_for_tx_empty(rspi);
 761                if (ret < 0) {
 762                        dev_err(&rspi->ctlr->dev, "transmit timeout\n");
 763                        return ret;
 764                }
 765                for (i = 0; i < n; i++)
 766                        rspi_write_data(rspi, *tx++);
 767
 768                ret = rspi_wait_for_rx_full(rspi);
 769                if (ret < 0) {
 770                        dev_err(&rspi->ctlr->dev, "receive timeout\n");
 771                        return ret;
 772                }
 773                for (i = 0; i < n; i++)
 774                        *rx++ = rspi_read_data(rspi);
 775
 776                len -= n;
 777        }
 778
 779        return 0;
 780}
 781
 782static int qspi_transfer_out_in(struct rspi_data *rspi,
 783                                struct spi_transfer *xfer)
 784{
 785        int ret;
 786
 787        qspi_receive_init(rspi);
 788
 789        ret = rspi_dma_check_then_transfer(rspi, xfer);
 790        if (ret != -EAGAIN)
 791                return ret;
 792
 793        return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
 794                                            xfer->rx_buf, xfer->len);
 795}
 796
 797static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
 798{
 799        const u8 *tx = xfer->tx_buf;
 800        unsigned int n = xfer->len;
 801        unsigned int i, len;
 802        int ret;
 803
 804        if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
 805                ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
 806                if (ret != -EAGAIN)
 807                        return ret;
 808        }
 809
 810        while (n > 0) {
 811                len = qspi_set_send_trigger(rspi, n);
 812                ret = rspi_wait_for_tx_empty(rspi);
 813                if (ret < 0) {
 814                        dev_err(&rspi->ctlr->dev, "transmit timeout\n");
 815                        return ret;
 816                }
 817                for (i = 0; i < len; i++)
 818                        rspi_write_data(rspi, *tx++);
 819
 820                n -= len;
 821        }
 822
 823        /* Wait for the last transmission */
 824        rspi_wait_for_tx_empty(rspi);
 825
 826        return 0;
 827}
 828
 829static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
 830{
 831        u8 *rx = xfer->rx_buf;
 832        unsigned int n = xfer->len;
 833        unsigned int i, len;
 834        int ret;
 835
 836        if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
 837                int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
 838                if (ret != -EAGAIN)
 839                        return ret;
 840        }
 841
 842        while (n > 0) {
 843                len = qspi_set_receive_trigger(rspi, n);
 844                ret = rspi_wait_for_rx_full(rspi);
 845                if (ret < 0) {
 846                        dev_err(&rspi->ctlr->dev, "receive timeout\n");
 847                        return ret;
 848                }
 849                for (i = 0; i < len; i++)
 850                        *rx++ = rspi_read_data(rspi);
 851
 852                n -= len;
 853        }
 854
 855        return 0;
 856}
 857
 858static int qspi_transfer_one(struct spi_controller *ctlr,
 859                             struct spi_device *spi, struct spi_transfer *xfer)
 860{
 861        struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 862
 863        xfer->effective_speed_hz = rspi->speed_hz;
 864        if (spi->mode & SPI_LOOP) {
 865                return qspi_transfer_out_in(rspi, xfer);
 866        } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
 867                /* Quad or Dual SPI Write */
 868                return qspi_transfer_out(rspi, xfer);
 869        } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
 870                /* Quad or Dual SPI Read */
 871                return qspi_transfer_in(rspi, xfer);
 872        } else {
 873                /* Single SPI Transfer */
 874                return qspi_transfer_out_in(rspi, xfer);
 875        }
 876}
 877
 878static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
 879{
 880        if (xfer->tx_buf)
 881                switch (xfer->tx_nbits) {
 882                case SPI_NBITS_QUAD:
 883                        return SPCMD_SPIMOD_QUAD;
 884                case SPI_NBITS_DUAL:
 885                        return SPCMD_SPIMOD_DUAL;
 886                default:
 887                        return 0;
 888                }
 889        if (xfer->rx_buf)
 890                switch (xfer->rx_nbits) {
 891                case SPI_NBITS_QUAD:
 892                        return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
 893                case SPI_NBITS_DUAL:
 894                        return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
 895                default:
 896                        return 0;
 897                }
 898
 899        return 0;
 900}
 901
 902static int qspi_setup_sequencer(struct rspi_data *rspi,
 903                                const struct spi_message *msg)
 904{
 905        const struct spi_transfer *xfer;
 906        unsigned int i = 0, len = 0;
 907        u16 current_mode = 0xffff, mode;
 908
 909        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 910                mode = qspi_transfer_mode(xfer);
 911                if (mode == current_mode) {
 912                        len += xfer->len;
 913                        continue;
 914                }
 915
 916                /* Transfer mode change */
 917                if (i) {
 918                        /* Set transfer data length of previous transfer */
 919                        rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
 920                }
 921
 922                if (i >= QSPI_NUM_SPCMD) {
 923                        dev_err(&msg->spi->dev,
 924                                "Too many different transfer modes");
 925                        return -EINVAL;
 926                }
 927
 928                /* Program transfer mode for this transfer */
 929                rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
 930                current_mode = mode;
 931                len = xfer->len;
 932                i++;
 933        }
 934        if (i) {
 935                /* Set final transfer data length and sequence length */
 936                rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
 937                rspi_write8(rspi, i - 1, RSPI_SPSCR);
 938        }
 939
 940        return 0;
 941}
 942
 943static int rspi_setup(struct spi_device *spi)
 944{
 945        struct rspi_data *rspi = spi_controller_get_devdata(spi->controller);
 946        u8 sslp;
 947
 948        if (spi->cs_gpiod)
 949                return 0;
 950
 951        pm_runtime_get_sync(&rspi->pdev->dev);
 952        spin_lock_irq(&rspi->lock);
 953
 954        sslp = rspi_read8(rspi, RSPI_SSLP);
 955        if (spi->mode & SPI_CS_HIGH)
 956                sslp |= SSLP_SSLP(spi->chip_select);
 957        else
 958                sslp &= ~SSLP_SSLP(spi->chip_select);
 959        rspi_write8(rspi, sslp, RSPI_SSLP);
 960
 961        spin_unlock_irq(&rspi->lock);
 962        pm_runtime_put(&rspi->pdev->dev);
 963        return 0;
 964}
 965
 966static int rspi_prepare_message(struct spi_controller *ctlr,
 967                                struct spi_message *msg)
 968{
 969        struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 970        struct spi_device *spi = msg->spi;
 971        const struct spi_transfer *xfer;
 972        int ret;
 973
 974        /*
 975         * As the Bit Rate Register must not be changed while the device is
 976         * active, all transfers in a message must use the same bit rate.
 977         * In theory, the sequencer could be enabled, and each Command Register
 978         * could divide the base bit rate by a different value.
 979         * However, most RSPI variants do not have Transfer Data Length
 980         * Multiplier Setting Registers, so each sequence step would be limited
 981         * to a single word, making this feature unsuitable for large
 982         * transfers, which would gain most from it.
 983         */
 984        rspi->speed_hz = spi->max_speed_hz;
 985        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 986                if (xfer->speed_hz < rspi->speed_hz)
 987                        rspi->speed_hz = xfer->speed_hz;
 988        }
 989
 990        rspi->spcmd = SPCMD_SSLKP;
 991        if (spi->mode & SPI_CPOL)
 992                rspi->spcmd |= SPCMD_CPOL;
 993        if (spi->mode & SPI_CPHA)
 994                rspi->spcmd |= SPCMD_CPHA;
 995        if (spi->mode & SPI_LSB_FIRST)
 996                rspi->spcmd |= SPCMD_LSBF;
 997
 998        /* Configure slave signal to assert */
 999        rspi->spcmd |= SPCMD_SSLA(spi->cs_gpiod ? rspi->ctlr->unused_native_cs
1000                                                : spi->chip_select);
1001
1002        /* CMOS output mode and MOSI signal from previous transfer */
1003        rspi->sppcr = 0;
1004        if (spi->mode & SPI_LOOP)
1005                rspi->sppcr |= SPPCR_SPLP;
1006
1007        rspi->ops->set_config_register(rspi, 8);
1008
1009        if (msg->spi->mode &
1010            (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
1011                /* Setup sequencer for messages with multiple transfer modes */
1012                ret = qspi_setup_sequencer(rspi, msg);
1013                if (ret < 0)
1014                        return ret;
1015        }
1016
1017        /* Enable SPI function in master mode */
1018        rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
1019        return 0;
1020}
1021
1022static int rspi_unprepare_message(struct spi_controller *ctlr,
1023                                  struct spi_message *msg)
1024{
1025        struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
1026
1027        /* Disable SPI function */
1028        rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
1029
1030        /* Reset sequencer for Single SPI Transfers */
1031        rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
1032        rspi_write8(rspi, 0, RSPI_SPSCR);
1033        return 0;
1034}
1035
1036static irqreturn_t rspi_irq_mux(int irq, void *_sr)
1037{
1038        struct rspi_data *rspi = _sr;
1039        u8 spsr;
1040        irqreturn_t ret = IRQ_NONE;
1041        u8 disable_irq = 0;
1042
1043        rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1044        if (spsr & SPSR_SPRF)
1045                disable_irq |= SPCR_SPRIE;
1046        if (spsr & SPSR_SPTEF)
1047                disable_irq |= SPCR_SPTIE;
1048
1049        if (disable_irq) {
1050                ret = IRQ_HANDLED;
1051                rspi_disable_irq(rspi, disable_irq);
1052                wake_up(&rspi->wait);
1053        }
1054
1055        return ret;
1056}
1057
1058static irqreturn_t rspi_irq_rx(int irq, void *_sr)
1059{
1060        struct rspi_data *rspi = _sr;
1061        u8 spsr;
1062
1063        rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1064        if (spsr & SPSR_SPRF) {
1065                rspi_disable_irq(rspi, SPCR_SPRIE);
1066                wake_up(&rspi->wait);
1067                return IRQ_HANDLED;
1068        }
1069
1070        return 0;
1071}
1072
1073static irqreturn_t rspi_irq_tx(int irq, void *_sr)
1074{
1075        struct rspi_data *rspi = _sr;
1076        u8 spsr;
1077
1078        rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1079        if (spsr & SPSR_SPTEF) {
1080                rspi_disable_irq(rspi, SPCR_SPTIE);
1081                wake_up(&rspi->wait);
1082                return IRQ_HANDLED;
1083        }
1084
1085        return 0;
1086}
1087
1088static struct dma_chan *rspi_request_dma_chan(struct device *dev,
1089                                              enum dma_transfer_direction dir,
1090                                              unsigned int id,
1091                                              dma_addr_t port_addr)
1092{
1093        dma_cap_mask_t mask;
1094        struct dma_chan *chan;
1095        struct dma_slave_config cfg;
1096        int ret;
1097
1098        dma_cap_zero(mask);
1099        dma_cap_set(DMA_SLAVE, mask);
1100
1101        chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1102                                (void *)(unsigned long)id, dev,
1103                                dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1104        if (!chan) {
1105                dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1106                return NULL;
1107        }
1108
1109        memset(&cfg, 0, sizeof(cfg));
1110        cfg.direction = dir;
1111        if (dir == DMA_MEM_TO_DEV) {
1112                cfg.dst_addr = port_addr;
1113                cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1114        } else {
1115                cfg.src_addr = port_addr;
1116                cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1117        }
1118
1119        ret = dmaengine_slave_config(chan, &cfg);
1120        if (ret) {
1121                dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1122                dma_release_channel(chan);
1123                return NULL;
1124        }
1125
1126        return chan;
1127}
1128
1129static int rspi_request_dma(struct device *dev, struct spi_controller *ctlr,
1130                            const struct resource *res)
1131{
1132        const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
1133        unsigned int dma_tx_id, dma_rx_id;
1134
1135        if (dev->of_node) {
1136                /* In the OF case we will get the slave IDs from the DT */
1137                dma_tx_id = 0;
1138                dma_rx_id = 0;
1139        } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1140                dma_tx_id = rspi_pd->dma_tx_id;
1141                dma_rx_id = rspi_pd->dma_rx_id;
1142        } else {
1143                /* The driver assumes no error. */
1144                return 0;
1145        }
1146
1147        ctlr->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1148                                             res->start + RSPI_SPDR);
1149        if (!ctlr->dma_tx)
1150                return -ENODEV;
1151
1152        ctlr->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1153                                             res->start + RSPI_SPDR);
1154        if (!ctlr->dma_rx) {
1155                dma_release_channel(ctlr->dma_tx);
1156                ctlr->dma_tx = NULL;
1157                return -ENODEV;
1158        }
1159
1160        ctlr->can_dma = rspi_can_dma;
1161        dev_info(dev, "DMA available");
1162        return 0;
1163}
1164
1165static void rspi_release_dma(struct spi_controller *ctlr)
1166{
1167        if (ctlr->dma_tx)
1168                dma_release_channel(ctlr->dma_tx);
1169        if (ctlr->dma_rx)
1170                dma_release_channel(ctlr->dma_rx);
1171}
1172
1173static int rspi_remove(struct platform_device *pdev)
1174{
1175        struct rspi_data *rspi = platform_get_drvdata(pdev);
1176
1177        rspi_release_dma(rspi->ctlr);
1178        pm_runtime_disable(&pdev->dev);
1179
1180        return 0;
1181}
1182
1183static const struct spi_ops rspi_ops = {
1184        .set_config_register =  rspi_set_config_register,
1185        .transfer_one =         rspi_transfer_one,
1186        .min_div =              2,
1187        .max_div =              4096,
1188        .flags =                SPI_CONTROLLER_MUST_TX,
1189        .fifo_size =            8,
1190        .num_hw_ss =            2,
1191};
1192
1193static const struct spi_ops rspi_rz_ops = {
1194        .set_config_register =  rspi_rz_set_config_register,
1195        .transfer_one =         rspi_rz_transfer_one,
1196        .min_div =              2,
1197        .max_div =              4096,
1198        .flags =                SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1199        .fifo_size =            8,      /* 8 for TX, 32 for RX */
1200        .num_hw_ss =            1,
1201};
1202
1203static const struct spi_ops qspi_ops = {
1204        .set_config_register =  qspi_set_config_register,
1205        .transfer_one =         qspi_transfer_one,
1206        .extra_mode_bits =      SPI_TX_DUAL | SPI_TX_QUAD |
1207                                SPI_RX_DUAL | SPI_RX_QUAD,
1208        .min_div =              1,
1209        .max_div =              4080,
1210        .flags =                SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1211        .fifo_size =            32,
1212        .num_hw_ss =            1,
1213};
1214
1215#ifdef CONFIG_OF
1216static const struct of_device_id rspi_of_match[] = {
1217        /* RSPI on legacy SH */
1218        { .compatible = "renesas,rspi", .data = &rspi_ops },
1219        /* RSPI on RZ/A1H */
1220        { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1221        /* QSPI on R-Car Gen2 */
1222        { .compatible = "renesas,qspi", .data = &qspi_ops },
1223        { /* sentinel */ }
1224};
1225
1226MODULE_DEVICE_TABLE(of, rspi_of_match);
1227
1228static int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1229{
1230        u32 num_cs;
1231        int error;
1232
1233        /* Parse DT properties */
1234        error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1235        if (error) {
1236                dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1237                return error;
1238        }
1239
1240        ctlr->num_chipselect = num_cs;
1241        return 0;
1242}
1243#else
1244#define rspi_of_match   NULL
1245static inline int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1246{
1247        return -EINVAL;
1248}
1249#endif /* CONFIG_OF */
1250
1251static int rspi_request_irq(struct device *dev, unsigned int irq,
1252                            irq_handler_t handler, const char *suffix,
1253                            void *dev_id)
1254{
1255        const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1256                                          dev_name(dev), suffix);
1257        if (!name)
1258                return -ENOMEM;
1259
1260        return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1261}
1262
1263static int rspi_probe(struct platform_device *pdev)
1264{
1265        struct resource *res;
1266        struct spi_controller *ctlr;
1267        struct rspi_data *rspi;
1268        int ret;
1269        const struct rspi_plat_data *rspi_pd;
1270        const struct spi_ops *ops;
1271        unsigned long clksrc;
1272
1273        ctlr = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1274        if (ctlr == NULL)
1275                return -ENOMEM;
1276
1277        ops = of_device_get_match_data(&pdev->dev);
1278        if (ops) {
1279                ret = rspi_parse_dt(&pdev->dev, ctlr);
1280                if (ret)
1281                        goto error1;
1282        } else {
1283                ops = (struct spi_ops *)pdev->id_entry->driver_data;
1284                rspi_pd = dev_get_platdata(&pdev->dev);
1285                if (rspi_pd && rspi_pd->num_chipselect)
1286                        ctlr->num_chipselect = rspi_pd->num_chipselect;
1287                else
1288                        ctlr->num_chipselect = 2; /* default */
1289        }
1290
1291        rspi = spi_controller_get_devdata(ctlr);
1292        platform_set_drvdata(pdev, rspi);
1293        rspi->ops = ops;
1294        rspi->ctlr = ctlr;
1295
1296        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1297        rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1298        if (IS_ERR(rspi->addr)) {
1299                ret = PTR_ERR(rspi->addr);
1300                goto error1;
1301        }
1302
1303        rspi->clk = devm_clk_get(&pdev->dev, NULL);
1304        if (IS_ERR(rspi->clk)) {
1305                dev_err(&pdev->dev, "cannot get clock\n");
1306                ret = PTR_ERR(rspi->clk);
1307                goto error1;
1308        }
1309
1310        rspi->pdev = pdev;
1311        pm_runtime_enable(&pdev->dev);
1312
1313        init_waitqueue_head(&rspi->wait);
1314        spin_lock_init(&rspi->lock);
1315
1316        ctlr->bus_num = pdev->id;
1317        ctlr->setup = rspi_setup;
1318        ctlr->auto_runtime_pm = true;
1319        ctlr->transfer_one = ops->transfer_one;
1320        ctlr->prepare_message = rspi_prepare_message;
1321        ctlr->unprepare_message = rspi_unprepare_message;
1322        ctlr->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1323                          SPI_LOOP | ops->extra_mode_bits;
1324        clksrc = clk_get_rate(rspi->clk);
1325        ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, ops->max_div);
1326        ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, ops->min_div);
1327        ctlr->flags = ops->flags;
1328        ctlr->dev.of_node = pdev->dev.of_node;
1329        ctlr->use_gpio_descriptors = true;
1330        ctlr->max_native_cs = rspi->ops->num_hw_ss;
1331
1332        ret = platform_get_irq_byname_optional(pdev, "rx");
1333        if (ret < 0) {
1334                ret = platform_get_irq_byname_optional(pdev, "mux");
1335                if (ret < 0)
1336                        ret = platform_get_irq(pdev, 0);
1337                if (ret >= 0)
1338                        rspi->rx_irq = rspi->tx_irq = ret;
1339        } else {
1340                rspi->rx_irq = ret;
1341                ret = platform_get_irq_byname(pdev, "tx");
1342                if (ret >= 0)
1343                        rspi->tx_irq = ret;
1344        }
1345
1346        if (rspi->rx_irq == rspi->tx_irq) {
1347                /* Single multiplexed interrupt */
1348                ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1349                                       "mux", rspi);
1350        } else {
1351                /* Multi-interrupt mode, only SPRI and SPTI are used */
1352                ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1353                                       "rx", rspi);
1354                if (!ret)
1355                        ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1356                                               rspi_irq_tx, "tx", rspi);
1357        }
1358        if (ret < 0) {
1359                dev_err(&pdev->dev, "request_irq error\n");
1360                goto error2;
1361        }
1362
1363        ret = rspi_request_dma(&pdev->dev, ctlr, res);
1364        if (ret < 0)
1365                dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1366
1367        ret = devm_spi_register_controller(&pdev->dev, ctlr);
1368        if (ret < 0) {
1369                dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1370                goto error3;
1371        }
1372
1373        dev_info(&pdev->dev, "probed\n");
1374
1375        return 0;
1376
1377error3:
1378        rspi_release_dma(ctlr);
1379error2:
1380        pm_runtime_disable(&pdev->dev);
1381error1:
1382        spi_controller_put(ctlr);
1383
1384        return ret;
1385}
1386
1387static const struct platform_device_id spi_driver_ids[] = {
1388        { "rspi",       (kernel_ulong_t)&rspi_ops },
1389        {},
1390};
1391
1392MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1393
1394#ifdef CONFIG_PM_SLEEP
1395static int rspi_suspend(struct device *dev)
1396{
1397        struct rspi_data *rspi = dev_get_drvdata(dev);
1398
1399        return spi_controller_suspend(rspi->ctlr);
1400}
1401
1402static int rspi_resume(struct device *dev)
1403{
1404        struct rspi_data *rspi = dev_get_drvdata(dev);
1405
1406        return spi_controller_resume(rspi->ctlr);
1407}
1408
1409static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume);
1410#define DEV_PM_OPS      &rspi_pm_ops
1411#else
1412#define DEV_PM_OPS      NULL
1413#endif /* CONFIG_PM_SLEEP */
1414
1415static struct platform_driver rspi_driver = {
1416        .probe =        rspi_probe,
1417        .remove =       rspi_remove,
1418        .id_table =     spi_driver_ids,
1419        .driver         = {
1420                .name = "renesas_spi",
1421                .pm = DEV_PM_OPS,
1422                .of_match_table = of_match_ptr(rspi_of_match),
1423        },
1424};
1425module_platform_driver(rspi_driver);
1426
1427MODULE_DESCRIPTION("Renesas RSPI bus driver");
1428MODULE_LICENSE("GPL v2");
1429MODULE_AUTHOR("Yoshihiro Shimoda");
1430MODULE_ALIAS("platform:rspi");
1431