linux/drivers/usb/gadget/function/f_fs.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * f_fs.c -- user mode file system API for USB composite function controllers
   4 *
   5 * Copyright (C) 2010 Samsung Electronics
   6 * Author: Michal Nazarewicz <mina86@mina86.com>
   7 *
   8 * Based on inode.c (GadgetFS) which was:
   9 * Copyright (C) 2003-2004 David Brownell
  10 * Copyright (C) 2003 Agilent Technologies
  11 */
  12
  13
  14/* #define DEBUG */
  15/* #define VERBOSE_DEBUG */
  16
  17#include <linux/blkdev.h>
  18#include <linux/pagemap.h>
  19#include <linux/export.h>
  20#include <linux/fs_parser.h>
  21#include <linux/hid.h>
  22#include <linux/mm.h>
  23#include <linux/module.h>
  24#include <linux/scatterlist.h>
  25#include <linux/sched/signal.h>
  26#include <linux/uio.h>
  27#include <linux/vmalloc.h>
  28#include <asm/unaligned.h>
  29
  30#include <linux/usb/ccid.h>
  31#include <linux/usb/composite.h>
  32#include <linux/usb/functionfs.h>
  33
  34#include <linux/aio.h>
  35#include <linux/kthread.h>
  36#include <linux/poll.h>
  37#include <linux/eventfd.h>
  38
  39#include "u_fs.h"
  40#include "u_f.h"
  41#include "u_os_desc.h"
  42#include "configfs.h"
  43
  44#define FUNCTIONFS_MAGIC        0xa647361 /* Chosen by a honest dice roll ;) */
  45
  46/* Reference counter handling */
  47static void ffs_data_get(struct ffs_data *ffs);
  48static void ffs_data_put(struct ffs_data *ffs);
  49/* Creates new ffs_data object. */
  50static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
  51        __attribute__((malloc));
  52
  53/* Opened counter handling. */
  54static void ffs_data_opened(struct ffs_data *ffs);
  55static void ffs_data_closed(struct ffs_data *ffs);
  56
  57/* Called with ffs->mutex held; take over ownership of data. */
  58static int __must_check
  59__ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
  60static int __must_check
  61__ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
  62
  63
  64/* The function structure ***************************************************/
  65
  66struct ffs_ep;
  67
  68struct ffs_function {
  69        struct usb_configuration        *conf;
  70        struct usb_gadget               *gadget;
  71        struct ffs_data                 *ffs;
  72
  73        struct ffs_ep                   *eps;
  74        u8                              eps_revmap[16];
  75        short                           *interfaces_nums;
  76
  77        struct usb_function             function;
  78};
  79
  80
  81static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
  82{
  83        return container_of(f, struct ffs_function, function);
  84}
  85
  86
  87static inline enum ffs_setup_state
  88ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
  89{
  90        return (enum ffs_setup_state)
  91                cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
  92}
  93
  94
  95static void ffs_func_eps_disable(struct ffs_function *func);
  96static int __must_check ffs_func_eps_enable(struct ffs_function *func);
  97
  98static int ffs_func_bind(struct usb_configuration *,
  99                         struct usb_function *);
 100static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
 101static void ffs_func_disable(struct usb_function *);
 102static int ffs_func_setup(struct usb_function *,
 103                          const struct usb_ctrlrequest *);
 104static bool ffs_func_req_match(struct usb_function *,
 105                               const struct usb_ctrlrequest *,
 106                               bool config0);
 107static void ffs_func_suspend(struct usb_function *);
 108static void ffs_func_resume(struct usb_function *);
 109
 110
 111static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
 112static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
 113
 114
 115/* The endpoints structures *************************************************/
 116
 117struct ffs_ep {
 118        struct usb_ep                   *ep;    /* P: ffs->eps_lock */
 119        struct usb_request              *req;   /* P: epfile->mutex */
 120
 121        /* [0]: full speed, [1]: high speed, [2]: super speed */
 122        struct usb_endpoint_descriptor  *descs[3];
 123
 124        u8                              num;
 125
 126        int                             status; /* P: epfile->mutex */
 127};
 128
 129struct ffs_epfile {
 130        /* Protects ep->ep and ep->req. */
 131        struct mutex                    mutex;
 132
 133        struct ffs_data                 *ffs;
 134        struct ffs_ep                   *ep;    /* P: ffs->eps_lock */
 135
 136        struct dentry                   *dentry;
 137
 138        /*
 139         * Buffer for holding data from partial reads which may happen since
 140         * we’re rounding user read requests to a multiple of a max packet size.
 141         *
 142         * The pointer is initialised with NULL value and may be set by
 143         * __ffs_epfile_read_data function to point to a temporary buffer.
 144         *
 145         * In normal operation, calls to __ffs_epfile_read_buffered will consume
 146         * data from said buffer and eventually free it.  Importantly, while the
 147         * function is using the buffer, it sets the pointer to NULL.  This is
 148         * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
 149         * can never run concurrently (they are synchronised by epfile->mutex)
 150         * so the latter will not assign a new value to the pointer.
 151         *
 152         * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
 153         * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
 154         * value is crux of the synchronisation between ffs_func_eps_disable and
 155         * __ffs_epfile_read_data.
 156         *
 157         * Once __ffs_epfile_read_data is about to finish it will try to set the
 158         * pointer back to its old value (as described above), but seeing as the
 159         * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
 160         * the buffer.
 161         *
 162         * == State transitions ==
 163         *
 164         * • ptr == NULL:  (initial state)
 165         *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
 166         *   ◦ __ffs_epfile_read_buffered:    nop
 167         *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
 168         *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 169         * • ptr == DROP:
 170         *   ◦ __ffs_epfile_read_buffer_free: nop
 171         *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
 172         *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
 173         *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 174         * • ptr == buf:
 175         *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
 176         *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
 177         *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
 178         *                                    is always called first
 179         *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 180         * • ptr == NULL and reading:
 181         *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
 182         *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
 183         *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
 184         *   ◦ reading finishes and …
 185         *     … all data read:               free buf, go to ptr == NULL
 186         *     … otherwise:                   go to ptr == buf and reading
 187         * • ptr == DROP and reading:
 188         *   ◦ __ffs_epfile_read_buffer_free: nop
 189         *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
 190         *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
 191         *   ◦ reading finishes:              free buf, go to ptr == DROP
 192         */
 193        struct ffs_buffer               *read_buffer;
 194#define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
 195
 196        char                            name[5];
 197
 198        unsigned char                   in;     /* P: ffs->eps_lock */
 199        unsigned char                   isoc;   /* P: ffs->eps_lock */
 200
 201        unsigned char                   _pad;
 202};
 203
 204struct ffs_buffer {
 205        size_t length;
 206        char *data;
 207        char storage[];
 208};
 209
 210/*  ffs_io_data structure ***************************************************/
 211
 212struct ffs_io_data {
 213        bool aio;
 214        bool read;
 215
 216        struct kiocb *kiocb;
 217        struct iov_iter data;
 218        const void *to_free;
 219        char *buf;
 220
 221        struct mm_struct *mm;
 222        struct work_struct work;
 223
 224        struct usb_ep *ep;
 225        struct usb_request *req;
 226        struct sg_table sgt;
 227        bool use_sg;
 228
 229        struct ffs_data *ffs;
 230};
 231
 232struct ffs_desc_helper {
 233        struct ffs_data *ffs;
 234        unsigned interfaces_count;
 235        unsigned eps_count;
 236};
 237
 238static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
 239static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
 240
 241static struct dentry *
 242ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
 243                   const struct file_operations *fops);
 244
 245/* Devices management *******************************************************/
 246
 247DEFINE_MUTEX(ffs_lock);
 248EXPORT_SYMBOL_GPL(ffs_lock);
 249
 250static struct ffs_dev *_ffs_find_dev(const char *name);
 251static struct ffs_dev *_ffs_alloc_dev(void);
 252static void _ffs_free_dev(struct ffs_dev *dev);
 253static void *ffs_acquire_dev(const char *dev_name);
 254static void ffs_release_dev(struct ffs_data *ffs_data);
 255static int ffs_ready(struct ffs_data *ffs);
 256static void ffs_closed(struct ffs_data *ffs);
 257
 258/* Misc helper functions ****************************************************/
 259
 260static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
 261        __attribute__((warn_unused_result, nonnull));
 262static char *ffs_prepare_buffer(const char __user *buf, size_t len)
 263        __attribute__((warn_unused_result, nonnull));
 264
 265
 266/* Control file aka ep0 *****************************************************/
 267
 268static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
 269{
 270        struct ffs_data *ffs = req->context;
 271
 272        complete(&ffs->ep0req_completion);
 273}
 274
 275static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
 276        __releases(&ffs->ev.waitq.lock)
 277{
 278        struct usb_request *req = ffs->ep0req;
 279        int ret;
 280
 281        req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
 282
 283        spin_unlock_irq(&ffs->ev.waitq.lock);
 284
 285        req->buf      = data;
 286        req->length   = len;
 287
 288        /*
 289         * UDC layer requires to provide a buffer even for ZLP, but should
 290         * not use it at all. Let's provide some poisoned pointer to catch
 291         * possible bug in the driver.
 292         */
 293        if (req->buf == NULL)
 294                req->buf = (void *)0xDEADBABE;
 295
 296        reinit_completion(&ffs->ep0req_completion);
 297
 298        ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
 299        if (unlikely(ret < 0))
 300                return ret;
 301
 302        ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
 303        if (unlikely(ret)) {
 304                usb_ep_dequeue(ffs->gadget->ep0, req);
 305                return -EINTR;
 306        }
 307
 308        ffs->setup_state = FFS_NO_SETUP;
 309        return req->status ? req->status : req->actual;
 310}
 311
 312static int __ffs_ep0_stall(struct ffs_data *ffs)
 313{
 314        if (ffs->ev.can_stall) {
 315                pr_vdebug("ep0 stall\n");
 316                usb_ep_set_halt(ffs->gadget->ep0);
 317                ffs->setup_state = FFS_NO_SETUP;
 318                return -EL2HLT;
 319        } else {
 320                pr_debug("bogus ep0 stall!\n");
 321                return -ESRCH;
 322        }
 323}
 324
 325static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
 326                             size_t len, loff_t *ptr)
 327{
 328        struct ffs_data *ffs = file->private_data;
 329        ssize_t ret;
 330        char *data;
 331
 332        ENTER();
 333
 334        /* Fast check if setup was canceled */
 335        if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 336                return -EIDRM;
 337
 338        /* Acquire mutex */
 339        ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 340        if (unlikely(ret < 0))
 341                return ret;
 342
 343        /* Check state */
 344        switch (ffs->state) {
 345        case FFS_READ_DESCRIPTORS:
 346        case FFS_READ_STRINGS:
 347                /* Copy data */
 348                if (unlikely(len < 16)) {
 349                        ret = -EINVAL;
 350                        break;
 351                }
 352
 353                data = ffs_prepare_buffer(buf, len);
 354                if (IS_ERR(data)) {
 355                        ret = PTR_ERR(data);
 356                        break;
 357                }
 358
 359                /* Handle data */
 360                if (ffs->state == FFS_READ_DESCRIPTORS) {
 361                        pr_info("read descriptors\n");
 362                        ret = __ffs_data_got_descs(ffs, data, len);
 363                        if (unlikely(ret < 0))
 364                                break;
 365
 366                        ffs->state = FFS_READ_STRINGS;
 367                        ret = len;
 368                } else {
 369                        pr_info("read strings\n");
 370                        ret = __ffs_data_got_strings(ffs, data, len);
 371                        if (unlikely(ret < 0))
 372                                break;
 373
 374                        ret = ffs_epfiles_create(ffs);
 375                        if (unlikely(ret)) {
 376                                ffs->state = FFS_CLOSING;
 377                                break;
 378                        }
 379
 380                        ffs->state = FFS_ACTIVE;
 381                        mutex_unlock(&ffs->mutex);
 382
 383                        ret = ffs_ready(ffs);
 384                        if (unlikely(ret < 0)) {
 385                                ffs->state = FFS_CLOSING;
 386                                return ret;
 387                        }
 388
 389                        return len;
 390                }
 391                break;
 392
 393        case FFS_ACTIVE:
 394                data = NULL;
 395                /*
 396                 * We're called from user space, we can use _irq
 397                 * rather then _irqsave
 398                 */
 399                spin_lock_irq(&ffs->ev.waitq.lock);
 400                switch (ffs_setup_state_clear_cancelled(ffs)) {
 401                case FFS_SETUP_CANCELLED:
 402                        ret = -EIDRM;
 403                        goto done_spin;
 404
 405                case FFS_NO_SETUP:
 406                        ret = -ESRCH;
 407                        goto done_spin;
 408
 409                case FFS_SETUP_PENDING:
 410                        break;
 411                }
 412
 413                /* FFS_SETUP_PENDING */
 414                if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
 415                        spin_unlock_irq(&ffs->ev.waitq.lock);
 416                        ret = __ffs_ep0_stall(ffs);
 417                        break;
 418                }
 419
 420                /* FFS_SETUP_PENDING and not stall */
 421                len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
 422
 423                spin_unlock_irq(&ffs->ev.waitq.lock);
 424
 425                data = ffs_prepare_buffer(buf, len);
 426                if (IS_ERR(data)) {
 427                        ret = PTR_ERR(data);
 428                        break;
 429                }
 430
 431                spin_lock_irq(&ffs->ev.waitq.lock);
 432
 433                /*
 434                 * We are guaranteed to be still in FFS_ACTIVE state
 435                 * but the state of setup could have changed from
 436                 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
 437                 * to check for that.  If that happened we copied data
 438                 * from user space in vain but it's unlikely.
 439                 *
 440                 * For sure we are not in FFS_NO_SETUP since this is
 441                 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
 442                 * transition can be performed and it's protected by
 443                 * mutex.
 444                 */
 445                if (ffs_setup_state_clear_cancelled(ffs) ==
 446                    FFS_SETUP_CANCELLED) {
 447                        ret = -EIDRM;
 448done_spin:
 449                        spin_unlock_irq(&ffs->ev.waitq.lock);
 450                } else {
 451                        /* unlocks spinlock */
 452                        ret = __ffs_ep0_queue_wait(ffs, data, len);
 453                }
 454                kfree(data);
 455                break;
 456
 457        default:
 458                ret = -EBADFD;
 459                break;
 460        }
 461
 462        mutex_unlock(&ffs->mutex);
 463        return ret;
 464}
 465
 466/* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
 467static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
 468                                     size_t n)
 469        __releases(&ffs->ev.waitq.lock)
 470{
 471        /*
 472         * n cannot be bigger than ffs->ev.count, which cannot be bigger than
 473         * size of ffs->ev.types array (which is four) so that's how much space
 474         * we reserve.
 475         */
 476        struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
 477        const size_t size = n * sizeof *events;
 478        unsigned i = 0;
 479
 480        memset(events, 0, size);
 481
 482        do {
 483                events[i].type = ffs->ev.types[i];
 484                if (events[i].type == FUNCTIONFS_SETUP) {
 485                        events[i].u.setup = ffs->ev.setup;
 486                        ffs->setup_state = FFS_SETUP_PENDING;
 487                }
 488        } while (++i < n);
 489
 490        ffs->ev.count -= n;
 491        if (ffs->ev.count)
 492                memmove(ffs->ev.types, ffs->ev.types + n,
 493                        ffs->ev.count * sizeof *ffs->ev.types);
 494
 495        spin_unlock_irq(&ffs->ev.waitq.lock);
 496        mutex_unlock(&ffs->mutex);
 497
 498        return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
 499}
 500
 501static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
 502                            size_t len, loff_t *ptr)
 503{
 504        struct ffs_data *ffs = file->private_data;
 505        char *data = NULL;
 506        size_t n;
 507        int ret;
 508
 509        ENTER();
 510
 511        /* Fast check if setup was canceled */
 512        if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 513                return -EIDRM;
 514
 515        /* Acquire mutex */
 516        ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 517        if (unlikely(ret < 0))
 518                return ret;
 519
 520        /* Check state */
 521        if (ffs->state != FFS_ACTIVE) {
 522                ret = -EBADFD;
 523                goto done_mutex;
 524        }
 525
 526        /*
 527         * We're called from user space, we can use _irq rather then
 528         * _irqsave
 529         */
 530        spin_lock_irq(&ffs->ev.waitq.lock);
 531
 532        switch (ffs_setup_state_clear_cancelled(ffs)) {
 533        case FFS_SETUP_CANCELLED:
 534                ret = -EIDRM;
 535                break;
 536
 537        case FFS_NO_SETUP:
 538                n = len / sizeof(struct usb_functionfs_event);
 539                if (unlikely(!n)) {
 540                        ret = -EINVAL;
 541                        break;
 542                }
 543
 544                if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
 545                        ret = -EAGAIN;
 546                        break;
 547                }
 548
 549                if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
 550                                                        ffs->ev.count)) {
 551                        ret = -EINTR;
 552                        break;
 553                }
 554
 555                /* unlocks spinlock */
 556                return __ffs_ep0_read_events(ffs, buf,
 557                                             min(n, (size_t)ffs->ev.count));
 558
 559        case FFS_SETUP_PENDING:
 560                if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
 561                        spin_unlock_irq(&ffs->ev.waitq.lock);
 562                        ret = __ffs_ep0_stall(ffs);
 563                        goto done_mutex;
 564                }
 565
 566                len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
 567
 568                spin_unlock_irq(&ffs->ev.waitq.lock);
 569
 570                if (likely(len)) {
 571                        data = kmalloc(len, GFP_KERNEL);
 572                        if (unlikely(!data)) {
 573                                ret = -ENOMEM;
 574                                goto done_mutex;
 575                        }
 576                }
 577
 578                spin_lock_irq(&ffs->ev.waitq.lock);
 579
 580                /* See ffs_ep0_write() */
 581                if (ffs_setup_state_clear_cancelled(ffs) ==
 582                    FFS_SETUP_CANCELLED) {
 583                        ret = -EIDRM;
 584                        break;
 585                }
 586
 587                /* unlocks spinlock */
 588                ret = __ffs_ep0_queue_wait(ffs, data, len);
 589                if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
 590                        ret = -EFAULT;
 591                goto done_mutex;
 592
 593        default:
 594                ret = -EBADFD;
 595                break;
 596        }
 597
 598        spin_unlock_irq(&ffs->ev.waitq.lock);
 599done_mutex:
 600        mutex_unlock(&ffs->mutex);
 601        kfree(data);
 602        return ret;
 603}
 604
 605static int ffs_ep0_open(struct inode *inode, struct file *file)
 606{
 607        struct ffs_data *ffs = inode->i_private;
 608
 609        ENTER();
 610
 611        if (unlikely(ffs->state == FFS_CLOSING))
 612                return -EBUSY;
 613
 614        file->private_data = ffs;
 615        ffs_data_opened(ffs);
 616
 617        return 0;
 618}
 619
 620static int ffs_ep0_release(struct inode *inode, struct file *file)
 621{
 622        struct ffs_data *ffs = file->private_data;
 623
 624        ENTER();
 625
 626        ffs_data_closed(ffs);
 627
 628        return 0;
 629}
 630
 631static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
 632{
 633        struct ffs_data *ffs = file->private_data;
 634        struct usb_gadget *gadget = ffs->gadget;
 635        long ret;
 636
 637        ENTER();
 638
 639        if (code == FUNCTIONFS_INTERFACE_REVMAP) {
 640                struct ffs_function *func = ffs->func;
 641                ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
 642        } else if (gadget && gadget->ops->ioctl) {
 643                ret = gadget->ops->ioctl(gadget, code, value);
 644        } else {
 645                ret = -ENOTTY;
 646        }
 647
 648        return ret;
 649}
 650
 651static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
 652{
 653        struct ffs_data *ffs = file->private_data;
 654        __poll_t mask = EPOLLWRNORM;
 655        int ret;
 656
 657        poll_wait(file, &ffs->ev.waitq, wait);
 658
 659        ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 660        if (unlikely(ret < 0))
 661                return mask;
 662
 663        switch (ffs->state) {
 664        case FFS_READ_DESCRIPTORS:
 665        case FFS_READ_STRINGS:
 666                mask |= EPOLLOUT;
 667                break;
 668
 669        case FFS_ACTIVE:
 670                switch (ffs->setup_state) {
 671                case FFS_NO_SETUP:
 672                        if (ffs->ev.count)
 673                                mask |= EPOLLIN;
 674                        break;
 675
 676                case FFS_SETUP_PENDING:
 677                case FFS_SETUP_CANCELLED:
 678                        mask |= (EPOLLIN | EPOLLOUT);
 679                        break;
 680                }
 681        case FFS_CLOSING:
 682                break;
 683        case FFS_DEACTIVATED:
 684                break;
 685        }
 686
 687        mutex_unlock(&ffs->mutex);
 688
 689        return mask;
 690}
 691
 692static const struct file_operations ffs_ep0_operations = {
 693        .llseek =       no_llseek,
 694
 695        .open =         ffs_ep0_open,
 696        .write =        ffs_ep0_write,
 697        .read =         ffs_ep0_read,
 698        .release =      ffs_ep0_release,
 699        .unlocked_ioctl =       ffs_ep0_ioctl,
 700        .poll =         ffs_ep0_poll,
 701};
 702
 703
 704/* "Normal" endpoints operations ********************************************/
 705
 706static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
 707{
 708        ENTER();
 709        if (likely(req->context)) {
 710                struct ffs_ep *ep = _ep->driver_data;
 711                ep->status = req->status ? req->status : req->actual;
 712                complete(req->context);
 713        }
 714}
 715
 716static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
 717{
 718        ssize_t ret = copy_to_iter(data, data_len, iter);
 719        if (likely(ret == data_len))
 720                return ret;
 721
 722        if (unlikely(iov_iter_count(iter)))
 723                return -EFAULT;
 724
 725        /*
 726         * Dear user space developer!
 727         *
 728         * TL;DR: To stop getting below error message in your kernel log, change
 729         * user space code using functionfs to align read buffers to a max
 730         * packet size.
 731         *
 732         * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
 733         * packet size.  When unaligned buffer is passed to functionfs, it
 734         * internally uses a larger, aligned buffer so that such UDCs are happy.
 735         *
 736         * Unfortunately, this means that host may send more data than was
 737         * requested in read(2) system call.  f_fs doesn’t know what to do with
 738         * that excess data so it simply drops it.
 739         *
 740         * Was the buffer aligned in the first place, no such problem would
 741         * happen.
 742         *
 743         * Data may be dropped only in AIO reads.  Synchronous reads are handled
 744         * by splitting a request into multiple parts.  This splitting may still
 745         * be a problem though so it’s likely best to align the buffer
 746         * regardless of it being AIO or not..
 747         *
 748         * This only affects OUT endpoints, i.e. reading data with a read(2),
 749         * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
 750         * affected.
 751         */
 752        pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
 753               "Align read buffer size to max packet size to avoid the problem.\n",
 754               data_len, ret);
 755
 756        return ret;
 757}
 758
 759/*
 760 * allocate a virtually contiguous buffer and create a scatterlist describing it
 761 * @sg_table    - pointer to a place to be filled with sg_table contents
 762 * @size        - required buffer size
 763 */
 764static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
 765{
 766        struct page **pages;
 767        void *vaddr, *ptr;
 768        unsigned int n_pages;
 769        int i;
 770
 771        vaddr = vmalloc(sz);
 772        if (!vaddr)
 773                return NULL;
 774
 775        n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
 776        pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
 777        if (!pages) {
 778                vfree(vaddr);
 779
 780                return NULL;
 781        }
 782        for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
 783                pages[i] = vmalloc_to_page(ptr);
 784
 785        if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
 786                kvfree(pages);
 787                vfree(vaddr);
 788
 789                return NULL;
 790        }
 791        kvfree(pages);
 792
 793        return vaddr;
 794}
 795
 796static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
 797        size_t data_len)
 798{
 799        if (io_data->use_sg)
 800                return ffs_build_sg_list(&io_data->sgt, data_len);
 801
 802        return kmalloc(data_len, GFP_KERNEL);
 803}
 804
 805static inline void ffs_free_buffer(struct ffs_io_data *io_data)
 806{
 807        if (!io_data->buf)
 808                return;
 809
 810        if (io_data->use_sg) {
 811                sg_free_table(&io_data->sgt);
 812                vfree(io_data->buf);
 813        } else {
 814                kfree(io_data->buf);
 815        }
 816}
 817
 818static void ffs_user_copy_worker(struct work_struct *work)
 819{
 820        struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
 821                                                   work);
 822        int ret = io_data->req->status ? io_data->req->status :
 823                                         io_data->req->actual;
 824        bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
 825
 826        if (io_data->read && ret > 0) {
 827                kthread_use_mm(io_data->mm);
 828                ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
 829                kthread_unuse_mm(io_data->mm);
 830        }
 831
 832        io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
 833
 834        if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
 835                eventfd_signal(io_data->ffs->ffs_eventfd, 1);
 836
 837        usb_ep_free_request(io_data->ep, io_data->req);
 838
 839        if (io_data->read)
 840                kfree(io_data->to_free);
 841        ffs_free_buffer(io_data);
 842        kfree(io_data);
 843}
 844
 845static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
 846                                         struct usb_request *req)
 847{
 848        struct ffs_io_data *io_data = req->context;
 849        struct ffs_data *ffs = io_data->ffs;
 850
 851        ENTER();
 852
 853        INIT_WORK(&io_data->work, ffs_user_copy_worker);
 854        queue_work(ffs->io_completion_wq, &io_data->work);
 855}
 856
 857static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
 858{
 859        /*
 860         * See comment in struct ffs_epfile for full read_buffer pointer
 861         * synchronisation story.
 862         */
 863        struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
 864        if (buf && buf != READ_BUFFER_DROP)
 865                kfree(buf);
 866}
 867
 868/* Assumes epfile->mutex is held. */
 869static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
 870                                          struct iov_iter *iter)
 871{
 872        /*
 873         * Null out epfile->read_buffer so ffs_func_eps_disable does not free
 874         * the buffer while we are using it.  See comment in struct ffs_epfile
 875         * for full read_buffer pointer synchronisation story.
 876         */
 877        struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
 878        ssize_t ret;
 879        if (!buf || buf == READ_BUFFER_DROP)
 880                return 0;
 881
 882        ret = copy_to_iter(buf->data, buf->length, iter);
 883        if (buf->length == ret) {
 884                kfree(buf);
 885                return ret;
 886        }
 887
 888        if (unlikely(iov_iter_count(iter))) {
 889                ret = -EFAULT;
 890        } else {
 891                buf->length -= ret;
 892                buf->data += ret;
 893        }
 894
 895        if (cmpxchg(&epfile->read_buffer, NULL, buf))
 896                kfree(buf);
 897
 898        return ret;
 899}
 900
 901/* Assumes epfile->mutex is held. */
 902static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
 903                                      void *data, int data_len,
 904                                      struct iov_iter *iter)
 905{
 906        struct ffs_buffer *buf;
 907
 908        ssize_t ret = copy_to_iter(data, data_len, iter);
 909        if (likely(data_len == ret))
 910                return ret;
 911
 912        if (unlikely(iov_iter_count(iter)))
 913                return -EFAULT;
 914
 915        /* See ffs_copy_to_iter for more context. */
 916        pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
 917                data_len, ret);
 918
 919        data_len -= ret;
 920        buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
 921        if (!buf)
 922                return -ENOMEM;
 923        buf->length = data_len;
 924        buf->data = buf->storage;
 925        memcpy(buf->storage, data + ret, data_len);
 926
 927        /*
 928         * At this point read_buffer is NULL or READ_BUFFER_DROP (if
 929         * ffs_func_eps_disable has been called in the meanwhile).  See comment
 930         * in struct ffs_epfile for full read_buffer pointer synchronisation
 931         * story.
 932         */
 933        if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
 934                kfree(buf);
 935
 936        return ret;
 937}
 938
 939static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
 940{
 941        struct ffs_epfile *epfile = file->private_data;
 942        struct usb_request *req;
 943        struct ffs_ep *ep;
 944        char *data = NULL;
 945        ssize_t ret, data_len = -EINVAL;
 946        int halt;
 947
 948        /* Are we still active? */
 949        if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
 950                return -ENODEV;
 951
 952        /* Wait for endpoint to be enabled */
 953        ep = epfile->ep;
 954        if (!ep) {
 955                if (file->f_flags & O_NONBLOCK)
 956                        return -EAGAIN;
 957
 958                ret = wait_event_interruptible(
 959                                epfile->ffs->wait, (ep = epfile->ep));
 960                if (ret)
 961                        return -EINTR;
 962        }
 963
 964        /* Do we halt? */
 965        halt = (!io_data->read == !epfile->in);
 966        if (halt && epfile->isoc)
 967                return -EINVAL;
 968
 969        /* We will be using request and read_buffer */
 970        ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
 971        if (unlikely(ret))
 972                goto error;
 973
 974        /* Allocate & copy */
 975        if (!halt) {
 976                struct usb_gadget *gadget;
 977
 978                /*
 979                 * Do we have buffered data from previous partial read?  Check
 980                 * that for synchronous case only because we do not have
 981                 * facility to ‘wake up’ a pending asynchronous read and push
 982                 * buffered data to it which we would need to make things behave
 983                 * consistently.
 984                 */
 985                if (!io_data->aio && io_data->read) {
 986                        ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
 987                        if (ret)
 988                                goto error_mutex;
 989                }
 990
 991                /*
 992                 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
 993                 * before the waiting completes, so do not assign to 'gadget'
 994                 * earlier
 995                 */
 996                gadget = epfile->ffs->gadget;
 997
 998                spin_lock_irq(&epfile->ffs->eps_lock);
 999                /* In the meantime, endpoint got disabled or changed. */
1000                if (epfile->ep != ep) {
1001                        ret = -ESHUTDOWN;
1002                        goto error_lock;
1003                }
1004                data_len = iov_iter_count(&io_data->data);
1005                /*
1006                 * Controller may require buffer size to be aligned to
1007                 * maxpacketsize of an out endpoint.
1008                 */
1009                if (io_data->read)
1010                        data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1011
1012                io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1013                spin_unlock_irq(&epfile->ffs->eps_lock);
1014
1015                data = ffs_alloc_buffer(io_data, data_len);
1016                if (unlikely(!data)) {
1017                        ret = -ENOMEM;
1018                        goto error_mutex;
1019                }
1020                if (!io_data->read &&
1021                    !copy_from_iter_full(data, data_len, &io_data->data)) {
1022                        ret = -EFAULT;
1023                        goto error_mutex;
1024                }
1025        }
1026
1027        spin_lock_irq(&epfile->ffs->eps_lock);
1028
1029        if (epfile->ep != ep) {
1030                /* In the meantime, endpoint got disabled or changed. */
1031                ret = -ESHUTDOWN;
1032        } else if (halt) {
1033                ret = usb_ep_set_halt(ep->ep);
1034                if (!ret)
1035                        ret = -EBADMSG;
1036        } else if (unlikely(data_len == -EINVAL)) {
1037                /*
1038                 * Sanity Check: even though data_len can't be used
1039                 * uninitialized at the time I write this comment, some
1040                 * compilers complain about this situation.
1041                 * In order to keep the code clean from warnings, data_len is
1042                 * being initialized to -EINVAL during its declaration, which
1043                 * means we can't rely on compiler anymore to warn no future
1044                 * changes won't result in data_len being used uninitialized.
1045                 * For such reason, we're adding this redundant sanity check
1046                 * here.
1047                 */
1048                WARN(1, "%s: data_len == -EINVAL\n", __func__);
1049                ret = -EINVAL;
1050        } else if (!io_data->aio) {
1051                DECLARE_COMPLETION_ONSTACK(done);
1052                bool interrupted = false;
1053
1054                req = ep->req;
1055                if (io_data->use_sg) {
1056                        req->buf = NULL;
1057                        req->sg = io_data->sgt.sgl;
1058                        req->num_sgs = io_data->sgt.nents;
1059                } else {
1060                        req->buf = data;
1061                        req->num_sgs = 0;
1062                }
1063                req->length = data_len;
1064
1065                io_data->buf = data;
1066
1067                req->context  = &done;
1068                req->complete = ffs_epfile_io_complete;
1069
1070                ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1071                if (unlikely(ret < 0))
1072                        goto error_lock;
1073
1074                spin_unlock_irq(&epfile->ffs->eps_lock);
1075
1076                if (unlikely(wait_for_completion_interruptible(&done))) {
1077                        /*
1078                         * To avoid race condition with ffs_epfile_io_complete,
1079                         * dequeue the request first then check
1080                         * status. usb_ep_dequeue API should guarantee no race
1081                         * condition with req->complete callback.
1082                         */
1083                        usb_ep_dequeue(ep->ep, req);
1084                        wait_for_completion(&done);
1085                        interrupted = ep->status < 0;
1086                }
1087
1088                if (interrupted)
1089                        ret = -EINTR;
1090                else if (io_data->read && ep->status > 0)
1091                        ret = __ffs_epfile_read_data(epfile, data, ep->status,
1092                                                     &io_data->data);
1093                else
1094                        ret = ep->status;
1095                goto error_mutex;
1096        } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1097                ret = -ENOMEM;
1098        } else {
1099                if (io_data->use_sg) {
1100                        req->buf = NULL;
1101                        req->sg = io_data->sgt.sgl;
1102                        req->num_sgs = io_data->sgt.nents;
1103                } else {
1104                        req->buf = data;
1105                        req->num_sgs = 0;
1106                }
1107                req->length = data_len;
1108
1109                io_data->buf = data;
1110                io_data->ep = ep->ep;
1111                io_data->req = req;
1112                io_data->ffs = epfile->ffs;
1113
1114                req->context  = io_data;
1115                req->complete = ffs_epfile_async_io_complete;
1116
1117                ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1118                if (unlikely(ret)) {
1119                        io_data->req = NULL;
1120                        usb_ep_free_request(ep->ep, req);
1121                        goto error_lock;
1122                }
1123
1124                ret = -EIOCBQUEUED;
1125                /*
1126                 * Do not kfree the buffer in this function.  It will be freed
1127                 * by ffs_user_copy_worker.
1128                 */
1129                data = NULL;
1130        }
1131
1132error_lock:
1133        spin_unlock_irq(&epfile->ffs->eps_lock);
1134error_mutex:
1135        mutex_unlock(&epfile->mutex);
1136error:
1137        if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1138                ffs_free_buffer(io_data);
1139        return ret;
1140}
1141
1142static int
1143ffs_epfile_open(struct inode *inode, struct file *file)
1144{
1145        struct ffs_epfile *epfile = inode->i_private;
1146
1147        ENTER();
1148
1149        if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1150                return -ENODEV;
1151
1152        file->private_data = epfile;
1153        ffs_data_opened(epfile->ffs);
1154
1155        return 0;
1156}
1157
1158static int ffs_aio_cancel(struct kiocb *kiocb)
1159{
1160        struct ffs_io_data *io_data = kiocb->private;
1161        struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1162        unsigned long flags;
1163        int value;
1164
1165        ENTER();
1166
1167        spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1168
1169        if (likely(io_data && io_data->ep && io_data->req))
1170                value = usb_ep_dequeue(io_data->ep, io_data->req);
1171        else
1172                value = -EINVAL;
1173
1174        spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1175
1176        return value;
1177}
1178
1179static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1180{
1181        struct ffs_io_data io_data, *p = &io_data;
1182        ssize_t res;
1183
1184        ENTER();
1185
1186        if (!is_sync_kiocb(kiocb)) {
1187                p = kzalloc(sizeof(io_data), GFP_KERNEL);
1188                if (unlikely(!p))
1189                        return -ENOMEM;
1190                p->aio = true;
1191        } else {
1192                memset(p, 0, sizeof(*p));
1193                p->aio = false;
1194        }
1195
1196        p->read = false;
1197        p->kiocb = kiocb;
1198        p->data = *from;
1199        p->mm = current->mm;
1200
1201        kiocb->private = p;
1202
1203        if (p->aio)
1204                kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1205
1206        res = ffs_epfile_io(kiocb->ki_filp, p);
1207        if (res == -EIOCBQUEUED)
1208                return res;
1209        if (p->aio)
1210                kfree(p);
1211        else
1212                *from = p->data;
1213        return res;
1214}
1215
1216static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1217{
1218        struct ffs_io_data io_data, *p = &io_data;
1219        ssize_t res;
1220
1221        ENTER();
1222
1223        if (!is_sync_kiocb(kiocb)) {
1224                p = kzalloc(sizeof(io_data), GFP_KERNEL);
1225                if (unlikely(!p))
1226                        return -ENOMEM;
1227                p->aio = true;
1228        } else {
1229                memset(p, 0, sizeof(*p));
1230                p->aio = false;
1231        }
1232
1233        p->read = true;
1234        p->kiocb = kiocb;
1235        if (p->aio) {
1236                p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1237                if (!p->to_free) {
1238                        kfree(p);
1239                        return -ENOMEM;
1240                }
1241        } else {
1242                p->data = *to;
1243                p->to_free = NULL;
1244        }
1245        p->mm = current->mm;
1246
1247        kiocb->private = p;
1248
1249        if (p->aio)
1250                kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1251
1252        res = ffs_epfile_io(kiocb->ki_filp, p);
1253        if (res == -EIOCBQUEUED)
1254                return res;
1255
1256        if (p->aio) {
1257                kfree(p->to_free);
1258                kfree(p);
1259        } else {
1260                *to = p->data;
1261        }
1262        return res;
1263}
1264
1265static int
1266ffs_epfile_release(struct inode *inode, struct file *file)
1267{
1268        struct ffs_epfile *epfile = inode->i_private;
1269
1270        ENTER();
1271
1272        __ffs_epfile_read_buffer_free(epfile);
1273        ffs_data_closed(epfile->ffs);
1274
1275        return 0;
1276}
1277
1278static long ffs_epfile_ioctl(struct file *file, unsigned code,
1279                             unsigned long value)
1280{
1281        struct ffs_epfile *epfile = file->private_data;
1282        struct ffs_ep *ep;
1283        int ret;
1284
1285        ENTER();
1286
1287        if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1288                return -ENODEV;
1289
1290        /* Wait for endpoint to be enabled */
1291        ep = epfile->ep;
1292        if (!ep) {
1293                if (file->f_flags & O_NONBLOCK)
1294                        return -EAGAIN;
1295
1296                ret = wait_event_interruptible(
1297                                epfile->ffs->wait, (ep = epfile->ep));
1298                if (ret)
1299                        return -EINTR;
1300        }
1301
1302        spin_lock_irq(&epfile->ffs->eps_lock);
1303
1304        /* In the meantime, endpoint got disabled or changed. */
1305        if (epfile->ep != ep) {
1306                spin_unlock_irq(&epfile->ffs->eps_lock);
1307                return -ESHUTDOWN;
1308        }
1309
1310        switch (code) {
1311        case FUNCTIONFS_FIFO_STATUS:
1312                ret = usb_ep_fifo_status(epfile->ep->ep);
1313                break;
1314        case FUNCTIONFS_FIFO_FLUSH:
1315                usb_ep_fifo_flush(epfile->ep->ep);
1316                ret = 0;
1317                break;
1318        case FUNCTIONFS_CLEAR_HALT:
1319                ret = usb_ep_clear_halt(epfile->ep->ep);
1320                break;
1321        case FUNCTIONFS_ENDPOINT_REVMAP:
1322                ret = epfile->ep->num;
1323                break;
1324        case FUNCTIONFS_ENDPOINT_DESC:
1325        {
1326                int desc_idx;
1327                struct usb_endpoint_descriptor desc1, *desc;
1328
1329                switch (epfile->ffs->gadget->speed) {
1330                case USB_SPEED_SUPER:
1331                        desc_idx = 2;
1332                        break;
1333                case USB_SPEED_HIGH:
1334                        desc_idx = 1;
1335                        break;
1336                default:
1337                        desc_idx = 0;
1338                }
1339
1340                desc = epfile->ep->descs[desc_idx];
1341                memcpy(&desc1, desc, desc->bLength);
1342
1343                spin_unlock_irq(&epfile->ffs->eps_lock);
1344                ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1345                if (ret)
1346                        ret = -EFAULT;
1347                return ret;
1348        }
1349        default:
1350                ret = -ENOTTY;
1351        }
1352        spin_unlock_irq(&epfile->ffs->eps_lock);
1353
1354        return ret;
1355}
1356
1357static const struct file_operations ffs_epfile_operations = {
1358        .llseek =       no_llseek,
1359
1360        .open =         ffs_epfile_open,
1361        .write_iter =   ffs_epfile_write_iter,
1362        .read_iter =    ffs_epfile_read_iter,
1363        .release =      ffs_epfile_release,
1364        .unlocked_ioctl =       ffs_epfile_ioctl,
1365        .compat_ioctl = compat_ptr_ioctl,
1366};
1367
1368
1369/* File system and super block operations ***********************************/
1370
1371/*
1372 * Mounting the file system creates a controller file, used first for
1373 * function configuration then later for event monitoring.
1374 */
1375
1376static struct inode *__must_check
1377ffs_sb_make_inode(struct super_block *sb, void *data,
1378                  const struct file_operations *fops,
1379                  const struct inode_operations *iops,
1380                  struct ffs_file_perms *perms)
1381{
1382        struct inode *inode;
1383
1384        ENTER();
1385
1386        inode = new_inode(sb);
1387
1388        if (likely(inode)) {
1389                struct timespec64 ts = current_time(inode);
1390
1391                inode->i_ino     = get_next_ino();
1392                inode->i_mode    = perms->mode;
1393                inode->i_uid     = perms->uid;
1394                inode->i_gid     = perms->gid;
1395                inode->i_atime   = ts;
1396                inode->i_mtime   = ts;
1397                inode->i_ctime   = ts;
1398                inode->i_private = data;
1399                if (fops)
1400                        inode->i_fop = fops;
1401                if (iops)
1402                        inode->i_op  = iops;
1403        }
1404
1405        return inode;
1406}
1407
1408/* Create "regular" file */
1409static struct dentry *ffs_sb_create_file(struct super_block *sb,
1410                                        const char *name, void *data,
1411                                        const struct file_operations *fops)
1412{
1413        struct ffs_data *ffs = sb->s_fs_info;
1414        struct dentry   *dentry;
1415        struct inode    *inode;
1416
1417        ENTER();
1418
1419        dentry = d_alloc_name(sb->s_root, name);
1420        if (unlikely(!dentry))
1421                return NULL;
1422
1423        inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1424        if (unlikely(!inode)) {
1425                dput(dentry);
1426                return NULL;
1427        }
1428
1429        d_add(dentry, inode);
1430        return dentry;
1431}
1432
1433/* Super block */
1434static const struct super_operations ffs_sb_operations = {
1435        .statfs =       simple_statfs,
1436        .drop_inode =   generic_delete_inode,
1437};
1438
1439struct ffs_sb_fill_data {
1440        struct ffs_file_perms perms;
1441        umode_t root_mode;
1442        const char *dev_name;
1443        bool no_disconnect;
1444        struct ffs_data *ffs_data;
1445};
1446
1447static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1448{
1449        struct ffs_sb_fill_data *data = fc->fs_private;
1450        struct inode    *inode;
1451        struct ffs_data *ffs = data->ffs_data;
1452
1453        ENTER();
1454
1455        ffs->sb              = sb;
1456        data->ffs_data       = NULL;
1457        sb->s_fs_info        = ffs;
1458        sb->s_blocksize      = PAGE_SIZE;
1459        sb->s_blocksize_bits = PAGE_SHIFT;
1460        sb->s_magic          = FUNCTIONFS_MAGIC;
1461        sb->s_op             = &ffs_sb_operations;
1462        sb->s_time_gran      = 1;
1463
1464        /* Root inode */
1465        data->perms.mode = data->root_mode;
1466        inode = ffs_sb_make_inode(sb, NULL,
1467                                  &simple_dir_operations,
1468                                  &simple_dir_inode_operations,
1469                                  &data->perms);
1470        sb->s_root = d_make_root(inode);
1471        if (unlikely(!sb->s_root))
1472                return -ENOMEM;
1473
1474        /* EP0 file */
1475        if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1476                                         &ffs_ep0_operations)))
1477                return -ENOMEM;
1478
1479        return 0;
1480}
1481
1482enum {
1483        Opt_no_disconnect,
1484        Opt_rmode,
1485        Opt_fmode,
1486        Opt_mode,
1487        Opt_uid,
1488        Opt_gid,
1489};
1490
1491static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1492        fsparam_bool    ("no_disconnect",       Opt_no_disconnect),
1493        fsparam_u32     ("rmode",               Opt_rmode),
1494        fsparam_u32     ("fmode",               Opt_fmode),
1495        fsparam_u32     ("mode",                Opt_mode),
1496        fsparam_u32     ("uid",                 Opt_uid),
1497        fsparam_u32     ("gid",                 Opt_gid),
1498        {}
1499};
1500
1501static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1502{
1503        struct ffs_sb_fill_data *data = fc->fs_private;
1504        struct fs_parse_result result;
1505        int opt;
1506
1507        ENTER();
1508
1509        opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1510        if (opt < 0)
1511                return opt;
1512
1513        switch (opt) {
1514        case Opt_no_disconnect:
1515                data->no_disconnect = result.boolean;
1516                break;
1517        case Opt_rmode:
1518                data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1519                break;
1520        case Opt_fmode:
1521                data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1522                break;
1523        case Opt_mode:
1524                data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1525                data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1526                break;
1527
1528        case Opt_uid:
1529                data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1530                if (!uid_valid(data->perms.uid))
1531                        goto unmapped_value;
1532                break;
1533        case Opt_gid:
1534                data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1535                if (!gid_valid(data->perms.gid))
1536                        goto unmapped_value;
1537                break;
1538
1539        default:
1540                return -ENOPARAM;
1541        }
1542
1543        return 0;
1544
1545unmapped_value:
1546        return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
1547}
1548
1549/*
1550 * Set up the superblock for a mount.
1551 */
1552static int ffs_fs_get_tree(struct fs_context *fc)
1553{
1554        struct ffs_sb_fill_data *ctx = fc->fs_private;
1555        void *ffs_dev;
1556        struct ffs_data *ffs;
1557
1558        ENTER();
1559
1560        if (!fc->source)
1561                return invalf(fc, "No source specified");
1562
1563        ffs = ffs_data_new(fc->source);
1564        if (unlikely(!ffs))
1565                return -ENOMEM;
1566        ffs->file_perms = ctx->perms;
1567        ffs->no_disconnect = ctx->no_disconnect;
1568
1569        ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
1570        if (unlikely(!ffs->dev_name)) {
1571                ffs_data_put(ffs);
1572                return -ENOMEM;
1573        }
1574
1575        ffs_dev = ffs_acquire_dev(ffs->dev_name);
1576        if (IS_ERR(ffs_dev)) {
1577                ffs_data_put(ffs);
1578                return PTR_ERR(ffs_dev);
1579        }
1580
1581        ffs->private_data = ffs_dev;
1582        ctx->ffs_data = ffs;
1583        return get_tree_nodev(fc, ffs_sb_fill);
1584}
1585
1586static void ffs_fs_free_fc(struct fs_context *fc)
1587{
1588        struct ffs_sb_fill_data *ctx = fc->fs_private;
1589
1590        if (ctx) {
1591                if (ctx->ffs_data) {
1592                        ffs_release_dev(ctx->ffs_data);
1593                        ffs_data_put(ctx->ffs_data);
1594                }
1595
1596                kfree(ctx);
1597        }
1598}
1599
1600static const struct fs_context_operations ffs_fs_context_ops = {
1601        .free           = ffs_fs_free_fc,
1602        .parse_param    = ffs_fs_parse_param,
1603        .get_tree       = ffs_fs_get_tree,
1604};
1605
1606static int ffs_fs_init_fs_context(struct fs_context *fc)
1607{
1608        struct ffs_sb_fill_data *ctx;
1609
1610        ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
1611        if (!ctx)
1612                return -ENOMEM;
1613
1614        ctx->perms.mode = S_IFREG | 0600;
1615        ctx->perms.uid = GLOBAL_ROOT_UID;
1616        ctx->perms.gid = GLOBAL_ROOT_GID;
1617        ctx->root_mode = S_IFDIR | 0500;
1618        ctx->no_disconnect = false;
1619
1620        fc->fs_private = ctx;
1621        fc->ops = &ffs_fs_context_ops;
1622        return 0;
1623}
1624
1625static void
1626ffs_fs_kill_sb(struct super_block *sb)
1627{
1628        ENTER();
1629
1630        kill_litter_super(sb);
1631        if (sb->s_fs_info) {
1632                ffs_release_dev(sb->s_fs_info);
1633                ffs_data_closed(sb->s_fs_info);
1634        }
1635}
1636
1637static struct file_system_type ffs_fs_type = {
1638        .owner          = THIS_MODULE,
1639        .name           = "functionfs",
1640        .init_fs_context = ffs_fs_init_fs_context,
1641        .parameters     = ffs_fs_fs_parameters,
1642        .kill_sb        = ffs_fs_kill_sb,
1643};
1644MODULE_ALIAS_FS("functionfs");
1645
1646
1647/* Driver's main init/cleanup functions *************************************/
1648
1649static int functionfs_init(void)
1650{
1651        int ret;
1652
1653        ENTER();
1654
1655        ret = register_filesystem(&ffs_fs_type);
1656        if (likely(!ret))
1657                pr_info("file system registered\n");
1658        else
1659                pr_err("failed registering file system (%d)\n", ret);
1660
1661        return ret;
1662}
1663
1664static void functionfs_cleanup(void)
1665{
1666        ENTER();
1667
1668        pr_info("unloading\n");
1669        unregister_filesystem(&ffs_fs_type);
1670}
1671
1672
1673/* ffs_data and ffs_function construction and destruction code **************/
1674
1675static void ffs_data_clear(struct ffs_data *ffs);
1676static void ffs_data_reset(struct ffs_data *ffs);
1677
1678static void ffs_data_get(struct ffs_data *ffs)
1679{
1680        ENTER();
1681
1682        refcount_inc(&ffs->ref);
1683}
1684
1685static void ffs_data_opened(struct ffs_data *ffs)
1686{
1687        ENTER();
1688
1689        refcount_inc(&ffs->ref);
1690        if (atomic_add_return(1, &ffs->opened) == 1 &&
1691                        ffs->state == FFS_DEACTIVATED) {
1692                ffs->state = FFS_CLOSING;
1693                ffs_data_reset(ffs);
1694        }
1695}
1696
1697static void ffs_data_put(struct ffs_data *ffs)
1698{
1699        ENTER();
1700
1701        if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1702                pr_info("%s(): freeing\n", __func__);
1703                ffs_data_clear(ffs);
1704                BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1705                       swait_active(&ffs->ep0req_completion.wait) ||
1706                       waitqueue_active(&ffs->wait));
1707                destroy_workqueue(ffs->io_completion_wq);
1708                kfree(ffs->dev_name);
1709                kfree(ffs);
1710        }
1711}
1712
1713static void ffs_data_closed(struct ffs_data *ffs)
1714{
1715        ENTER();
1716
1717        if (atomic_dec_and_test(&ffs->opened)) {
1718                if (ffs->no_disconnect) {
1719                        ffs->state = FFS_DEACTIVATED;
1720                        if (ffs->epfiles) {
1721                                ffs_epfiles_destroy(ffs->epfiles,
1722                                                   ffs->eps_count);
1723                                ffs->epfiles = NULL;
1724                        }
1725                        if (ffs->setup_state == FFS_SETUP_PENDING)
1726                                __ffs_ep0_stall(ffs);
1727                } else {
1728                        ffs->state = FFS_CLOSING;
1729                        ffs_data_reset(ffs);
1730                }
1731        }
1732        if (atomic_read(&ffs->opened) < 0) {
1733                ffs->state = FFS_CLOSING;
1734                ffs_data_reset(ffs);
1735        }
1736
1737        ffs_data_put(ffs);
1738}
1739
1740static struct ffs_data *ffs_data_new(const char *dev_name)
1741{
1742        struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1743        if (unlikely(!ffs))
1744                return NULL;
1745
1746        ENTER();
1747
1748        ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1749        if (!ffs->io_completion_wq) {
1750                kfree(ffs);
1751                return NULL;
1752        }
1753
1754        refcount_set(&ffs->ref, 1);
1755        atomic_set(&ffs->opened, 0);
1756        ffs->state = FFS_READ_DESCRIPTORS;
1757        mutex_init(&ffs->mutex);
1758        spin_lock_init(&ffs->eps_lock);
1759        init_waitqueue_head(&ffs->ev.waitq);
1760        init_waitqueue_head(&ffs->wait);
1761        init_completion(&ffs->ep0req_completion);
1762
1763        /* XXX REVISIT need to update it in some places, or do we? */
1764        ffs->ev.can_stall = 1;
1765
1766        return ffs;
1767}
1768
1769static void ffs_data_clear(struct ffs_data *ffs)
1770{
1771        ENTER();
1772
1773        ffs_closed(ffs);
1774
1775        BUG_ON(ffs->gadget);
1776
1777        if (ffs->epfiles)
1778                ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1779
1780        if (ffs->ffs_eventfd)
1781                eventfd_ctx_put(ffs->ffs_eventfd);
1782
1783        kfree(ffs->raw_descs_data);
1784        kfree(ffs->raw_strings);
1785        kfree(ffs->stringtabs);
1786}
1787
1788static void ffs_data_reset(struct ffs_data *ffs)
1789{
1790        ENTER();
1791
1792        ffs_data_clear(ffs);
1793
1794        ffs->epfiles = NULL;
1795        ffs->raw_descs_data = NULL;
1796        ffs->raw_descs = NULL;
1797        ffs->raw_strings = NULL;
1798        ffs->stringtabs = NULL;
1799
1800        ffs->raw_descs_length = 0;
1801        ffs->fs_descs_count = 0;
1802        ffs->hs_descs_count = 0;
1803        ffs->ss_descs_count = 0;
1804
1805        ffs->strings_count = 0;
1806        ffs->interfaces_count = 0;
1807        ffs->eps_count = 0;
1808
1809        ffs->ev.count = 0;
1810
1811        ffs->state = FFS_READ_DESCRIPTORS;
1812        ffs->setup_state = FFS_NO_SETUP;
1813        ffs->flags = 0;
1814
1815        ffs->ms_os_descs_ext_prop_count = 0;
1816        ffs->ms_os_descs_ext_prop_name_len = 0;
1817        ffs->ms_os_descs_ext_prop_data_len = 0;
1818}
1819
1820
1821static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1822{
1823        struct usb_gadget_strings **lang;
1824        int first_id;
1825
1826        ENTER();
1827
1828        if (WARN_ON(ffs->state != FFS_ACTIVE
1829                 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1830                return -EBADFD;
1831
1832        first_id = usb_string_ids_n(cdev, ffs->strings_count);
1833        if (unlikely(first_id < 0))
1834                return first_id;
1835
1836        ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1837        if (unlikely(!ffs->ep0req))
1838                return -ENOMEM;
1839        ffs->ep0req->complete = ffs_ep0_complete;
1840        ffs->ep0req->context = ffs;
1841
1842        lang = ffs->stringtabs;
1843        if (lang) {
1844                for (; *lang; ++lang) {
1845                        struct usb_string *str = (*lang)->strings;
1846                        int id = first_id;
1847                        for (; str->s; ++id, ++str)
1848                                str->id = id;
1849                }
1850        }
1851
1852        ffs->gadget = cdev->gadget;
1853        ffs_data_get(ffs);
1854        return 0;
1855}
1856
1857static void functionfs_unbind(struct ffs_data *ffs)
1858{
1859        ENTER();
1860
1861        if (!WARN_ON(!ffs->gadget)) {
1862                usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1863                ffs->ep0req = NULL;
1864                ffs->gadget = NULL;
1865                clear_bit(FFS_FL_BOUND, &ffs->flags);
1866                ffs_data_put(ffs);
1867        }
1868}
1869
1870static int ffs_epfiles_create(struct ffs_data *ffs)
1871{
1872        struct ffs_epfile *epfile, *epfiles;
1873        unsigned i, count;
1874
1875        ENTER();
1876
1877        count = ffs->eps_count;
1878        epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1879        if (!epfiles)
1880                return -ENOMEM;
1881
1882        epfile = epfiles;
1883        for (i = 1; i <= count; ++i, ++epfile) {
1884                epfile->ffs = ffs;
1885                mutex_init(&epfile->mutex);
1886                if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1887                        sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1888                else
1889                        sprintf(epfile->name, "ep%u", i);
1890                epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1891                                                 epfile,
1892                                                 &ffs_epfile_operations);
1893                if (unlikely(!epfile->dentry)) {
1894                        ffs_epfiles_destroy(epfiles, i - 1);
1895                        return -ENOMEM;
1896                }
1897        }
1898
1899        ffs->epfiles = epfiles;
1900        return 0;
1901}
1902
1903static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1904{
1905        struct ffs_epfile *epfile = epfiles;
1906
1907        ENTER();
1908
1909        for (; count; --count, ++epfile) {
1910                BUG_ON(mutex_is_locked(&epfile->mutex));
1911                if (epfile->dentry) {
1912                        d_delete(epfile->dentry);
1913                        dput(epfile->dentry);
1914                        epfile->dentry = NULL;
1915                }
1916        }
1917
1918        kfree(epfiles);
1919}
1920
1921static void ffs_func_eps_disable(struct ffs_function *func)
1922{
1923        struct ffs_ep *ep         = func->eps;
1924        struct ffs_epfile *epfile = func->ffs->epfiles;
1925        unsigned count            = func->ffs->eps_count;
1926        unsigned long flags;
1927
1928        spin_lock_irqsave(&func->ffs->eps_lock, flags);
1929        while (count--) {
1930                /* pending requests get nuked */
1931                if (likely(ep->ep))
1932                        usb_ep_disable(ep->ep);
1933                ++ep;
1934
1935                if (epfile) {
1936                        epfile->ep = NULL;
1937                        __ffs_epfile_read_buffer_free(epfile);
1938                        ++epfile;
1939                }
1940        }
1941        spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1942}
1943
1944static int ffs_func_eps_enable(struct ffs_function *func)
1945{
1946        struct ffs_data *ffs      = func->ffs;
1947        struct ffs_ep *ep         = func->eps;
1948        struct ffs_epfile *epfile = ffs->epfiles;
1949        unsigned count            = ffs->eps_count;
1950        unsigned long flags;
1951        int ret = 0;
1952
1953        spin_lock_irqsave(&func->ffs->eps_lock, flags);
1954        while(count--) {
1955                ep->ep->driver_data = ep;
1956
1957                ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
1958                if (ret) {
1959                        pr_err("%s: config_ep_by_speed(%s) returned %d\n",
1960                                        __func__, ep->ep->name, ret);
1961                        break;
1962                }
1963
1964                ret = usb_ep_enable(ep->ep);
1965                if (likely(!ret)) {
1966                        epfile->ep = ep;
1967                        epfile->in = usb_endpoint_dir_in(ep->ep->desc);
1968                        epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1969                } else {
1970                        break;
1971                }
1972
1973                ++ep;
1974                ++epfile;
1975        }
1976
1977        wake_up_interruptible(&ffs->wait);
1978        spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1979
1980        return ret;
1981}
1982
1983
1984/* Parsing and building descriptors and strings *****************************/
1985
1986/*
1987 * This validates if data pointed by data is a valid USB descriptor as
1988 * well as record how many interfaces, endpoints and strings are
1989 * required by given configuration.  Returns address after the
1990 * descriptor or NULL if data is invalid.
1991 */
1992
1993enum ffs_entity_type {
1994        FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1995};
1996
1997enum ffs_os_desc_type {
1998        FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1999};
2000
2001typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2002                                   u8 *valuep,
2003                                   struct usb_descriptor_header *desc,
2004                                   void *priv);
2005
2006typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2007                                    struct usb_os_desc_header *h, void *data,
2008                                    unsigned len, void *priv);
2009
2010static int __must_check ffs_do_single_desc(char *data, unsigned len,
2011                                           ffs_entity_callback entity,
2012                                           void *priv, int *current_class)
2013{
2014        struct usb_descriptor_header *_ds = (void *)data;
2015        u8 length;
2016        int ret;
2017
2018        ENTER();
2019
2020        /* At least two bytes are required: length and type */
2021        if (len < 2) {
2022                pr_vdebug("descriptor too short\n");
2023                return -EINVAL;
2024        }
2025
2026        /* If we have at least as many bytes as the descriptor takes? */
2027        length = _ds->bLength;
2028        if (len < length) {
2029                pr_vdebug("descriptor longer then available data\n");
2030                return -EINVAL;
2031        }
2032
2033#define __entity_check_INTERFACE(val)  1
2034#define __entity_check_STRING(val)     (val)
2035#define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2036#define __entity(type, val) do {                                        \
2037                pr_vdebug("entity " #type "(%02x)\n", (val));           \
2038                if (unlikely(!__entity_check_ ##type(val))) {           \
2039                        pr_vdebug("invalid entity's value\n");          \
2040                        return -EINVAL;                                 \
2041                }                                                       \
2042                ret = entity(FFS_ ##type, &val, _ds, priv);             \
2043                if (unlikely(ret < 0)) {                                \
2044                        pr_debug("entity " #type "(%02x); ret = %d\n",  \
2045                                 (val), ret);                           \
2046                        return ret;                                     \
2047                }                                                       \
2048        } while (0)
2049
2050        /* Parse descriptor depending on type. */
2051        switch (_ds->bDescriptorType) {
2052        case USB_DT_DEVICE:
2053        case USB_DT_CONFIG:
2054        case USB_DT_STRING:
2055        case USB_DT_DEVICE_QUALIFIER:
2056                /* function can't have any of those */
2057                pr_vdebug("descriptor reserved for gadget: %d\n",
2058                      _ds->bDescriptorType);
2059                return -EINVAL;
2060
2061        case USB_DT_INTERFACE: {
2062                struct usb_interface_descriptor *ds = (void *)_ds;
2063                pr_vdebug("interface descriptor\n");
2064                if (length != sizeof *ds)
2065                        goto inv_length;
2066
2067                __entity(INTERFACE, ds->bInterfaceNumber);
2068                if (ds->iInterface)
2069                        __entity(STRING, ds->iInterface);
2070                *current_class = ds->bInterfaceClass;
2071        }
2072                break;
2073
2074        case USB_DT_ENDPOINT: {
2075                struct usb_endpoint_descriptor *ds = (void *)_ds;
2076                pr_vdebug("endpoint descriptor\n");
2077                if (length != USB_DT_ENDPOINT_SIZE &&
2078                    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2079                        goto inv_length;
2080                __entity(ENDPOINT, ds->bEndpointAddress);
2081        }
2082                break;
2083
2084        case USB_TYPE_CLASS | 0x01:
2085                if (*current_class == USB_INTERFACE_CLASS_HID) {
2086                        pr_vdebug("hid descriptor\n");
2087                        if (length != sizeof(struct hid_descriptor))
2088                                goto inv_length;
2089                        break;
2090                } else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2091                        pr_vdebug("ccid descriptor\n");
2092                        if (length != sizeof(struct ccid_descriptor))
2093                                goto inv_length;
2094                        break;
2095                } else {
2096                        pr_vdebug("unknown descriptor: %d for class %d\n",
2097                              _ds->bDescriptorType, *current_class);
2098                        return -EINVAL;
2099                }
2100
2101        case USB_DT_OTG:
2102                if (length != sizeof(struct usb_otg_descriptor))
2103                        goto inv_length;
2104                break;
2105
2106        case USB_DT_INTERFACE_ASSOCIATION: {
2107                struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2108                pr_vdebug("interface association descriptor\n");
2109                if (length != sizeof *ds)
2110                        goto inv_length;
2111                if (ds->iFunction)
2112                        __entity(STRING, ds->iFunction);
2113        }
2114                break;
2115
2116        case USB_DT_SS_ENDPOINT_COMP:
2117                pr_vdebug("EP SS companion descriptor\n");
2118                if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2119                        goto inv_length;
2120                break;
2121
2122        case USB_DT_OTHER_SPEED_CONFIG:
2123        case USB_DT_INTERFACE_POWER:
2124        case USB_DT_DEBUG:
2125        case USB_DT_SECURITY:
2126        case USB_DT_CS_RADIO_CONTROL:
2127                /* TODO */
2128                pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2129                return -EINVAL;
2130
2131        default:
2132                /* We should never be here */
2133                pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2134                return -EINVAL;
2135
2136inv_length:
2137                pr_vdebug("invalid length: %d (descriptor %d)\n",
2138                          _ds->bLength, _ds->bDescriptorType);
2139                return -EINVAL;
2140        }
2141
2142#undef __entity
2143#undef __entity_check_DESCRIPTOR
2144#undef __entity_check_INTERFACE
2145#undef __entity_check_STRING
2146#undef __entity_check_ENDPOINT
2147
2148        return length;
2149}
2150
2151static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2152                                     ffs_entity_callback entity, void *priv)
2153{
2154        const unsigned _len = len;
2155        unsigned long num = 0;
2156        int current_class = -1;
2157
2158        ENTER();
2159
2160        for (;;) {
2161                int ret;
2162
2163                if (num == count)
2164                        data = NULL;
2165
2166                /* Record "descriptor" entity */
2167                ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2168                if (unlikely(ret < 0)) {
2169                        pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2170                                 num, ret);
2171                        return ret;
2172                }
2173
2174                if (!data)
2175                        return _len - len;
2176
2177                ret = ffs_do_single_desc(data, len, entity, priv,
2178                        &current_class);
2179                if (unlikely(ret < 0)) {
2180                        pr_debug("%s returns %d\n", __func__, ret);
2181                        return ret;
2182                }
2183
2184                len -= ret;
2185                data += ret;
2186                ++num;
2187        }
2188}
2189
2190static int __ffs_data_do_entity(enum ffs_entity_type type,
2191                                u8 *valuep, struct usb_descriptor_header *desc,
2192                                void *priv)
2193{
2194        struct ffs_desc_helper *helper = priv;
2195        struct usb_endpoint_descriptor *d;
2196
2197        ENTER();
2198
2199        switch (type) {
2200        case FFS_DESCRIPTOR:
2201                break;
2202
2203        case FFS_INTERFACE:
2204                /*
2205                 * Interfaces are indexed from zero so if we
2206                 * encountered interface "n" then there are at least
2207                 * "n+1" interfaces.
2208                 */
2209                if (*valuep >= helper->interfaces_count)
2210                        helper->interfaces_count = *valuep + 1;
2211                break;
2212
2213        case FFS_STRING:
2214                /*
2215                 * Strings are indexed from 1 (0 is reserved
2216                 * for languages list)
2217                 */
2218                if (*valuep > helper->ffs->strings_count)
2219                        helper->ffs->strings_count = *valuep;
2220                break;
2221
2222        case FFS_ENDPOINT:
2223                d = (void *)desc;
2224                helper->eps_count++;
2225                if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2226                        return -EINVAL;
2227                /* Check if descriptors for any speed were already parsed */
2228                if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2229                        helper->ffs->eps_addrmap[helper->eps_count] =
2230                                d->bEndpointAddress;
2231                else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2232                                d->bEndpointAddress)
2233                        return -EINVAL;
2234                break;
2235        }
2236
2237        return 0;
2238}
2239
2240static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2241                                   struct usb_os_desc_header *desc)
2242{
2243        u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2244        u16 w_index = le16_to_cpu(desc->wIndex);
2245
2246        if (bcd_version != 1) {
2247                pr_vdebug("unsupported os descriptors version: %d",
2248                          bcd_version);
2249                return -EINVAL;
2250        }
2251        switch (w_index) {
2252        case 0x4:
2253                *next_type = FFS_OS_DESC_EXT_COMPAT;
2254                break;
2255        case 0x5:
2256                *next_type = FFS_OS_DESC_EXT_PROP;
2257                break;
2258        default:
2259                pr_vdebug("unsupported os descriptor type: %d", w_index);
2260                return -EINVAL;
2261        }
2262
2263        return sizeof(*desc);
2264}
2265
2266/*
2267 * Process all extended compatibility/extended property descriptors
2268 * of a feature descriptor
2269 */
2270static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2271                                              enum ffs_os_desc_type type,
2272                                              u16 feature_count,
2273                                              ffs_os_desc_callback entity,
2274                                              void *priv,
2275                                              struct usb_os_desc_header *h)
2276{
2277        int ret;
2278        const unsigned _len = len;
2279
2280        ENTER();
2281
2282        /* loop over all ext compat/ext prop descriptors */
2283        while (feature_count--) {
2284                ret = entity(type, h, data, len, priv);
2285                if (unlikely(ret < 0)) {
2286                        pr_debug("bad OS descriptor, type: %d\n", type);
2287                        return ret;
2288                }
2289                data += ret;
2290                len -= ret;
2291        }
2292        return _len - len;
2293}
2294
2295/* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2296static int __must_check ffs_do_os_descs(unsigned count,
2297                                        char *data, unsigned len,
2298                                        ffs_os_desc_callback entity, void *priv)
2299{
2300        const unsigned _len = len;
2301        unsigned long num = 0;
2302
2303        ENTER();
2304
2305        for (num = 0; num < count; ++num) {
2306                int ret;
2307                enum ffs_os_desc_type type;
2308                u16 feature_count;
2309                struct usb_os_desc_header *desc = (void *)data;
2310
2311                if (len < sizeof(*desc))
2312                        return -EINVAL;
2313
2314                /*
2315                 * Record "descriptor" entity.
2316                 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2317                 * Move the data pointer to the beginning of extended
2318                 * compatibilities proper or extended properties proper
2319                 * portions of the data
2320                 */
2321                if (le32_to_cpu(desc->dwLength) > len)
2322                        return -EINVAL;
2323
2324                ret = __ffs_do_os_desc_header(&type, desc);
2325                if (unlikely(ret < 0)) {
2326                        pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2327                                 num, ret);
2328                        return ret;
2329                }
2330                /*
2331                 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2332                 */
2333                feature_count = le16_to_cpu(desc->wCount);
2334                if (type == FFS_OS_DESC_EXT_COMPAT &&
2335                    (feature_count > 255 || desc->Reserved))
2336                                return -EINVAL;
2337                len -= ret;
2338                data += ret;
2339
2340                /*
2341                 * Process all function/property descriptors
2342                 * of this Feature Descriptor
2343                 */
2344                ret = ffs_do_single_os_desc(data, len, type,
2345                                            feature_count, entity, priv, desc);
2346                if (unlikely(ret < 0)) {
2347                        pr_debug("%s returns %d\n", __func__, ret);
2348                        return ret;
2349                }
2350
2351                len -= ret;
2352                data += ret;
2353        }
2354        return _len - len;
2355}
2356
2357/*
2358 * Validate contents of the buffer from userspace related to OS descriptors.
2359 */
2360static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2361                                 struct usb_os_desc_header *h, void *data,
2362                                 unsigned len, void *priv)
2363{
2364        struct ffs_data *ffs = priv;
2365        u8 length;
2366
2367        ENTER();
2368
2369        switch (type) {
2370        case FFS_OS_DESC_EXT_COMPAT: {
2371                struct usb_ext_compat_desc *d = data;
2372                int i;
2373
2374                if (len < sizeof(*d) ||
2375                    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2376                        return -EINVAL;
2377                if (d->Reserved1 != 1) {
2378                        /*
2379                         * According to the spec, Reserved1 must be set to 1
2380                         * but older kernels incorrectly rejected non-zero
2381                         * values.  We fix it here to avoid returning EINVAL
2382                         * in response to values we used to accept.
2383                         */
2384                        pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2385                        d->Reserved1 = 1;
2386                }
2387                for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2388                        if (d->Reserved2[i])
2389                                return -EINVAL;
2390
2391                length = sizeof(struct usb_ext_compat_desc);
2392        }
2393                break;
2394        case FFS_OS_DESC_EXT_PROP: {
2395                struct usb_ext_prop_desc *d = data;
2396                u32 type, pdl;
2397                u16 pnl;
2398
2399                if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2400                        return -EINVAL;
2401                length = le32_to_cpu(d->dwSize);
2402                if (len < length)
2403                        return -EINVAL;
2404                type = le32_to_cpu(d->dwPropertyDataType);
2405                if (type < USB_EXT_PROP_UNICODE ||
2406                    type > USB_EXT_PROP_UNICODE_MULTI) {
2407                        pr_vdebug("unsupported os descriptor property type: %d",
2408                                  type);
2409                        return -EINVAL;
2410                }
2411                pnl = le16_to_cpu(d->wPropertyNameLength);
2412                if (length < 14 + pnl) {
2413                        pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2414                                  length, pnl, type);
2415                        return -EINVAL;
2416                }
2417                pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2418                if (length != 14 + pnl + pdl) {
2419                        pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2420                                  length, pnl, pdl, type);
2421                        return -EINVAL;
2422                }
2423                ++ffs->ms_os_descs_ext_prop_count;
2424                /* property name reported to the host as "WCHAR"s */
2425                ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2426                ffs->ms_os_descs_ext_prop_data_len += pdl;
2427        }
2428                break;
2429        default:
2430                pr_vdebug("unknown descriptor: %d\n", type);
2431                return -EINVAL;
2432        }
2433        return length;
2434}
2435
2436static int __ffs_data_got_descs(struct ffs_data *ffs,
2437                                char *const _data, size_t len)
2438{
2439        char *data = _data, *raw_descs;
2440        unsigned os_descs_count = 0, counts[3], flags;
2441        int ret = -EINVAL, i;
2442        struct ffs_desc_helper helper;
2443
2444        ENTER();
2445
2446        if (get_unaligned_le32(data + 4) != len)
2447                goto error;
2448
2449        switch (get_unaligned_le32(data)) {
2450        case FUNCTIONFS_DESCRIPTORS_MAGIC:
2451                flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2452                data += 8;
2453                len  -= 8;
2454                break;
2455        case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2456                flags = get_unaligned_le32(data + 8);
2457                ffs->user_flags = flags;
2458                if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2459                              FUNCTIONFS_HAS_HS_DESC |
2460                              FUNCTIONFS_HAS_SS_DESC |
2461                              FUNCTIONFS_HAS_MS_OS_DESC |
2462                              FUNCTIONFS_VIRTUAL_ADDR |
2463                              FUNCTIONFS_EVENTFD |
2464                              FUNCTIONFS_ALL_CTRL_RECIP |
2465                              FUNCTIONFS_CONFIG0_SETUP)) {
2466                        ret = -ENOSYS;
2467                        goto error;
2468                }
2469                data += 12;
2470                len  -= 12;
2471                break;
2472        default:
2473                goto error;
2474        }
2475
2476        if (flags & FUNCTIONFS_EVENTFD) {
2477                if (len < 4)
2478                        goto error;
2479                ffs->ffs_eventfd =
2480                        eventfd_ctx_fdget((int)get_unaligned_le32(data));
2481                if (IS_ERR(ffs->ffs_eventfd)) {
2482                        ret = PTR_ERR(ffs->ffs_eventfd);
2483                        ffs->ffs_eventfd = NULL;
2484                        goto error;
2485                }
2486                data += 4;
2487                len  -= 4;
2488        }
2489
2490        /* Read fs_count, hs_count and ss_count (if present) */
2491        for (i = 0; i < 3; ++i) {
2492                if (!(flags & (1 << i))) {
2493                        counts[i] = 0;
2494                } else if (len < 4) {
2495                        goto error;
2496                } else {
2497                        counts[i] = get_unaligned_le32(data);
2498                        data += 4;
2499                        len  -= 4;
2500                }
2501        }
2502        if (flags & (1 << i)) {
2503                if (len < 4) {
2504                        goto error;
2505                }
2506                os_descs_count = get_unaligned_le32(data);
2507                data += 4;
2508                len -= 4;
2509        }
2510
2511        /* Read descriptors */
2512        raw_descs = data;
2513        helper.ffs = ffs;
2514        for (i = 0; i < 3; ++i) {
2515                if (!counts[i])
2516                        continue;
2517                helper.interfaces_count = 0;
2518                helper.eps_count = 0;
2519                ret = ffs_do_descs(counts[i], data, len,
2520                                   __ffs_data_do_entity, &helper);
2521                if (ret < 0)
2522                        goto error;
2523                if (!ffs->eps_count && !ffs->interfaces_count) {
2524                        ffs->eps_count = helper.eps_count;
2525                        ffs->interfaces_count = helper.interfaces_count;
2526                } else {
2527                        if (ffs->eps_count != helper.eps_count) {
2528                                ret = -EINVAL;
2529                                goto error;
2530                        }
2531                        if (ffs->interfaces_count != helper.interfaces_count) {
2532                                ret = -EINVAL;
2533                                goto error;
2534                        }
2535                }
2536                data += ret;
2537                len  -= ret;
2538        }
2539        if (os_descs_count) {
2540                ret = ffs_do_os_descs(os_descs_count, data, len,
2541                                      __ffs_data_do_os_desc, ffs);
2542                if (ret < 0)
2543                        goto error;
2544                data += ret;
2545                len -= ret;
2546        }
2547
2548        if (raw_descs == data || len) {
2549                ret = -EINVAL;
2550                goto error;
2551        }
2552
2553        ffs->raw_descs_data     = _data;
2554        ffs->raw_descs          = raw_descs;
2555        ffs->raw_descs_length   = data - raw_descs;
2556        ffs->fs_descs_count     = counts[0];
2557        ffs->hs_descs_count     = counts[1];
2558        ffs->ss_descs_count     = counts[2];
2559        ffs->ms_os_descs_count  = os_descs_count;
2560
2561        return 0;
2562
2563error:
2564        kfree(_data);
2565        return ret;
2566}
2567
2568static int __ffs_data_got_strings(struct ffs_data *ffs,
2569                                  char *const _data, size_t len)
2570{
2571        u32 str_count, needed_count, lang_count;
2572        struct usb_gadget_strings **stringtabs, *t;
2573        const char *data = _data;
2574        struct usb_string *s;
2575
2576        ENTER();
2577
2578        if (unlikely(len < 16 ||
2579                     get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2580                     get_unaligned_le32(data + 4) != len))
2581                goto error;
2582        str_count  = get_unaligned_le32(data + 8);
2583        lang_count = get_unaligned_le32(data + 12);
2584
2585        /* if one is zero the other must be zero */
2586        if (unlikely(!str_count != !lang_count))
2587                goto error;
2588
2589        /* Do we have at least as many strings as descriptors need? */
2590        needed_count = ffs->strings_count;
2591        if (unlikely(str_count < needed_count))
2592                goto error;
2593
2594        /*
2595         * If we don't need any strings just return and free all
2596         * memory.
2597         */
2598        if (!needed_count) {
2599                kfree(_data);
2600                return 0;
2601        }
2602
2603        /* Allocate everything in one chunk so there's less maintenance. */
2604        {
2605                unsigned i = 0;
2606                vla_group(d);
2607                vla_item(d, struct usb_gadget_strings *, stringtabs,
2608                        lang_count + 1);
2609                vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2610                vla_item(d, struct usb_string, strings,
2611                        lang_count*(needed_count+1));
2612
2613                char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2614
2615                if (unlikely(!vlabuf)) {
2616                        kfree(_data);
2617                        return -ENOMEM;
2618                }
2619
2620                /* Initialize the VLA pointers */
2621                stringtabs = vla_ptr(vlabuf, d, stringtabs);
2622                t = vla_ptr(vlabuf, d, stringtab);
2623                i = lang_count;
2624                do {
2625                        *stringtabs++ = t++;
2626                } while (--i);
2627                *stringtabs = NULL;
2628
2629                /* stringtabs = vlabuf = d_stringtabs for later kfree */
2630                stringtabs = vla_ptr(vlabuf, d, stringtabs);
2631                t = vla_ptr(vlabuf, d, stringtab);
2632                s = vla_ptr(vlabuf, d, strings);
2633        }
2634
2635        /* For each language */
2636        data += 16;
2637        len -= 16;
2638
2639        do { /* lang_count > 0 so we can use do-while */
2640                unsigned needed = needed_count;
2641
2642                if (unlikely(len < 3))
2643                        goto error_free;
2644                t->language = get_unaligned_le16(data);
2645                t->strings  = s;
2646                ++t;
2647
2648                data += 2;
2649                len -= 2;
2650
2651                /* For each string */
2652                do { /* str_count > 0 so we can use do-while */
2653                        size_t length = strnlen(data, len);
2654
2655                        if (unlikely(length == len))
2656                                goto error_free;
2657
2658                        /*
2659                         * User may provide more strings then we need,
2660                         * if that's the case we simply ignore the
2661                         * rest
2662                         */
2663                        if (likely(needed)) {
2664                                /*
2665                                 * s->id will be set while adding
2666                                 * function to configuration so for
2667                                 * now just leave garbage here.
2668                                 */
2669                                s->s = data;
2670                                --needed;
2671                                ++s;
2672                        }
2673
2674                        data += length + 1;
2675                        len -= length + 1;
2676                } while (--str_count);
2677
2678                s->id = 0;   /* terminator */
2679                s->s = NULL;
2680                ++s;
2681
2682        } while (--lang_count);
2683
2684        /* Some garbage left? */
2685        if (unlikely(len))
2686                goto error_free;
2687
2688        /* Done! */
2689        ffs->stringtabs = stringtabs;
2690        ffs->raw_strings = _data;
2691
2692        return 0;
2693
2694error_free:
2695        kfree(stringtabs);
2696error:
2697        kfree(_data);
2698        return -EINVAL;
2699}
2700
2701
2702/* Events handling and management *******************************************/
2703
2704static void __ffs_event_add(struct ffs_data *ffs,
2705                            enum usb_functionfs_event_type type)
2706{
2707        enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2708        int neg = 0;
2709
2710        /*
2711         * Abort any unhandled setup
2712         *
2713         * We do not need to worry about some cmpxchg() changing value
2714         * of ffs->setup_state without holding the lock because when
2715         * state is FFS_SETUP_PENDING cmpxchg() in several places in
2716         * the source does nothing.
2717         */
2718        if (ffs->setup_state == FFS_SETUP_PENDING)
2719                ffs->setup_state = FFS_SETUP_CANCELLED;
2720
2721        /*
2722         * Logic of this function guarantees that there are at most four pending
2723         * evens on ffs->ev.types queue.  This is important because the queue
2724         * has space for four elements only and __ffs_ep0_read_events function
2725         * depends on that limit as well.  If more event types are added, those
2726         * limits have to be revisited or guaranteed to still hold.
2727         */
2728        switch (type) {
2729        case FUNCTIONFS_RESUME:
2730                rem_type2 = FUNCTIONFS_SUSPEND;
2731                fallthrough;
2732        case FUNCTIONFS_SUSPEND:
2733        case FUNCTIONFS_SETUP:
2734                rem_type1 = type;
2735                /* Discard all similar events */
2736                break;
2737
2738        case FUNCTIONFS_BIND:
2739        case FUNCTIONFS_UNBIND:
2740        case FUNCTIONFS_DISABLE:
2741        case FUNCTIONFS_ENABLE:
2742                /* Discard everything other then power management. */
2743                rem_type1 = FUNCTIONFS_SUSPEND;
2744                rem_type2 = FUNCTIONFS_RESUME;
2745                neg = 1;
2746                break;
2747
2748        default:
2749                WARN(1, "%d: unknown event, this should not happen\n", type);
2750                return;
2751        }
2752
2753        {
2754                u8 *ev  = ffs->ev.types, *out = ev;
2755                unsigned n = ffs->ev.count;
2756                for (; n; --n, ++ev)
2757                        if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2758                                *out++ = *ev;
2759                        else
2760                                pr_vdebug("purging event %d\n", *ev);
2761                ffs->ev.count = out - ffs->ev.types;
2762        }
2763
2764        pr_vdebug("adding event %d\n", type);
2765        ffs->ev.types[ffs->ev.count++] = type;
2766        wake_up_locked(&ffs->ev.waitq);
2767        if (ffs->ffs_eventfd)
2768                eventfd_signal(ffs->ffs_eventfd, 1);
2769}
2770
2771static void ffs_event_add(struct ffs_data *ffs,
2772                          enum usb_functionfs_event_type type)
2773{
2774        unsigned long flags;
2775        spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2776        __ffs_event_add(ffs, type);
2777        spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2778}
2779
2780/* Bind/unbind USB function hooks *******************************************/
2781
2782static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2783{
2784        int i;
2785
2786        for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2787                if (ffs->eps_addrmap[i] == endpoint_address)
2788                        return i;
2789        return -ENOENT;
2790}
2791
2792static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2793                                    struct usb_descriptor_header *desc,
2794                                    void *priv)
2795{
2796        struct usb_endpoint_descriptor *ds = (void *)desc;
2797        struct ffs_function *func = priv;
2798        struct ffs_ep *ffs_ep;
2799        unsigned ep_desc_id;
2800        int idx;
2801        static const char *speed_names[] = { "full", "high", "super" };
2802
2803        if (type != FFS_DESCRIPTOR)
2804                return 0;
2805
2806        /*
2807         * If ss_descriptors is not NULL, we are reading super speed
2808         * descriptors; if hs_descriptors is not NULL, we are reading high
2809         * speed descriptors; otherwise, we are reading full speed
2810         * descriptors.
2811         */
2812        if (func->function.ss_descriptors) {
2813                ep_desc_id = 2;
2814                func->function.ss_descriptors[(long)valuep] = desc;
2815        } else if (func->function.hs_descriptors) {
2816                ep_desc_id = 1;
2817                func->function.hs_descriptors[(long)valuep] = desc;
2818        } else {
2819                ep_desc_id = 0;
2820                func->function.fs_descriptors[(long)valuep]    = desc;
2821        }
2822
2823        if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2824                return 0;
2825
2826        idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2827        if (idx < 0)
2828                return idx;
2829
2830        ffs_ep = func->eps + idx;
2831
2832        if (unlikely(ffs_ep->descs[ep_desc_id])) {
2833                pr_err("two %sspeed descriptors for EP %d\n",
2834                          speed_names[ep_desc_id],
2835                          ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2836                return -EINVAL;
2837        }
2838        ffs_ep->descs[ep_desc_id] = ds;
2839
2840        ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2841        if (ffs_ep->ep) {
2842                ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2843                if (!ds->wMaxPacketSize)
2844                        ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2845        } else {
2846                struct usb_request *req;
2847                struct usb_ep *ep;
2848                u8 bEndpointAddress;
2849                u16 wMaxPacketSize;
2850
2851                /*
2852                 * We back up bEndpointAddress because autoconfig overwrites
2853                 * it with physical endpoint address.
2854                 */
2855                bEndpointAddress = ds->bEndpointAddress;
2856                /*
2857                 * We back up wMaxPacketSize because autoconfig treats
2858                 * endpoint descriptors as if they were full speed.
2859                 */
2860                wMaxPacketSize = ds->wMaxPacketSize;
2861                pr_vdebug("autoconfig\n");
2862                ep = usb_ep_autoconfig(func->gadget, ds);
2863                if (unlikely(!ep))
2864                        return -ENOTSUPP;
2865                ep->driver_data = func->eps + idx;
2866
2867                req = usb_ep_alloc_request(ep, GFP_KERNEL);
2868                if (unlikely(!req))
2869                        return -ENOMEM;
2870
2871                ffs_ep->ep  = ep;
2872                ffs_ep->req = req;
2873                func->eps_revmap[ds->bEndpointAddress &
2874                                 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2875                /*
2876                 * If we use virtual address mapping, we restore
2877                 * original bEndpointAddress value.
2878                 */
2879                if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2880                        ds->bEndpointAddress = bEndpointAddress;
2881                /*
2882                 * Restore wMaxPacketSize which was potentially
2883                 * overwritten by autoconfig.
2884                 */
2885                ds->wMaxPacketSize = wMaxPacketSize;
2886        }
2887        ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2888
2889        return 0;
2890}
2891
2892static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2893                                   struct usb_descriptor_header *desc,
2894                                   void *priv)
2895{
2896        struct ffs_function *func = priv;
2897        unsigned idx;
2898        u8 newValue;
2899
2900        switch (type) {
2901        default:
2902        case FFS_DESCRIPTOR:
2903                /* Handled in previous pass by __ffs_func_bind_do_descs() */
2904                return 0;
2905
2906        case FFS_INTERFACE:
2907                idx = *valuep;
2908                if (func->interfaces_nums[idx] < 0) {
2909                        int id = usb_interface_id(func->conf, &func->function);
2910                        if (unlikely(id < 0))
2911                                return id;
2912                        func->interfaces_nums[idx] = id;
2913                }
2914                newValue = func->interfaces_nums[idx];
2915                break;
2916
2917        case FFS_STRING:
2918                /* String' IDs are allocated when fsf_data is bound to cdev */
2919                newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2920                break;
2921
2922        case FFS_ENDPOINT:
2923                /*
2924                 * USB_DT_ENDPOINT are handled in
2925                 * __ffs_func_bind_do_descs().
2926                 */
2927                if (desc->bDescriptorType == USB_DT_ENDPOINT)
2928                        return 0;
2929
2930                idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2931                if (unlikely(!func->eps[idx].ep))
2932                        return -EINVAL;
2933
2934                {
2935                        struct usb_endpoint_descriptor **descs;
2936                        descs = func->eps[idx].descs;
2937                        newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2938                }
2939                break;
2940        }
2941
2942        pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2943        *valuep = newValue;
2944        return 0;
2945}
2946
2947static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2948                                      struct usb_os_desc_header *h, void *data,
2949                                      unsigned len, void *priv)
2950{
2951        struct ffs_function *func = priv;
2952        u8 length = 0;
2953
2954        switch (type) {
2955        case FFS_OS_DESC_EXT_COMPAT: {
2956                struct usb_ext_compat_desc *desc = data;
2957                struct usb_os_desc_table *t;
2958
2959                t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2960                t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2961                memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2962                       ARRAY_SIZE(desc->CompatibleID) +
2963                       ARRAY_SIZE(desc->SubCompatibleID));
2964                length = sizeof(*desc);
2965        }
2966                break;
2967        case FFS_OS_DESC_EXT_PROP: {
2968                struct usb_ext_prop_desc *desc = data;
2969                struct usb_os_desc_table *t;
2970                struct usb_os_desc_ext_prop *ext_prop;
2971                char *ext_prop_name;
2972                char *ext_prop_data;
2973
2974                t = &func->function.os_desc_table[h->interface];
2975                t->if_id = func->interfaces_nums[h->interface];
2976
2977                ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2978                func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2979
2980                ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2981                ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2982                ext_prop->data_len = le32_to_cpu(*(__le32 *)
2983                        usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2984                length = ext_prop->name_len + ext_prop->data_len + 14;
2985
2986                ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2987                func->ffs->ms_os_descs_ext_prop_name_avail +=
2988                        ext_prop->name_len;
2989
2990                ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2991                func->ffs->ms_os_descs_ext_prop_data_avail +=
2992                        ext_prop->data_len;
2993                memcpy(ext_prop_data,
2994                       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2995                       ext_prop->data_len);
2996                /* unicode data reported to the host as "WCHAR"s */
2997                switch (ext_prop->type) {
2998                case USB_EXT_PROP_UNICODE:
2999                case USB_EXT_PROP_UNICODE_ENV:
3000                case USB_EXT_PROP_UNICODE_LINK:
3001                case USB_EXT_PROP_UNICODE_MULTI:
3002                        ext_prop->data_len *= 2;
3003                        break;
3004                }
3005                ext_prop->data = ext_prop_data;
3006
3007                memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3008                       ext_prop->name_len);
3009                /* property name reported to the host as "WCHAR"s */
3010                ext_prop->name_len *= 2;
3011                ext_prop->name = ext_prop_name;
3012
3013                t->os_desc->ext_prop_len +=
3014                        ext_prop->name_len + ext_prop->data_len + 14;
3015                ++t->os_desc->ext_prop_count;
3016                list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3017        }
3018                break;
3019        default:
3020                pr_vdebug("unknown descriptor: %d\n", type);
3021        }
3022
3023        return length;
3024}
3025
3026static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3027                                                struct usb_configuration *c)
3028{
3029        struct ffs_function *func = ffs_func_from_usb(f);
3030        struct f_fs_opts *ffs_opts =
3031                container_of(f->fi, struct f_fs_opts, func_inst);
3032        int ret;
3033
3034        ENTER();
3035
3036        /*
3037         * Legacy gadget triggers binding in functionfs_ready_callback,
3038         * which already uses locking; taking the same lock here would
3039         * cause a deadlock.
3040         *
3041         * Configfs-enabled gadgets however do need ffs_dev_lock.
3042         */
3043        if (!ffs_opts->no_configfs)
3044                ffs_dev_lock();
3045        ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3046        func->ffs = ffs_opts->dev->ffs_data;
3047        if (!ffs_opts->no_configfs)
3048                ffs_dev_unlock();
3049        if (ret)
3050                return ERR_PTR(ret);
3051
3052        func->conf = c;
3053        func->gadget = c->cdev->gadget;
3054
3055        /*
3056         * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3057         * configurations are bound in sequence with list_for_each_entry,
3058         * in each configuration its functions are bound in sequence
3059         * with list_for_each_entry, so we assume no race condition
3060         * with regard to ffs_opts->bound access
3061         */
3062        if (!ffs_opts->refcnt) {
3063                ret = functionfs_bind(func->ffs, c->cdev);
3064                if (ret)
3065                        return ERR_PTR(ret);
3066        }
3067        ffs_opts->refcnt++;
3068        func->function.strings = func->ffs->stringtabs;
3069
3070        return ffs_opts;
3071}
3072
3073static int _ffs_func_bind(struct usb_configuration *c,
3074                          struct usb_function *f)
3075{
3076        struct ffs_function *func = ffs_func_from_usb(f);
3077        struct ffs_data *ffs = func->ffs;
3078
3079        const int full = !!func->ffs->fs_descs_count;
3080        const int high = !!func->ffs->hs_descs_count;
3081        const int super = !!func->ffs->ss_descs_count;
3082
3083        int fs_len, hs_len, ss_len, ret, i;
3084        struct ffs_ep *eps_ptr;
3085
3086        /* Make it a single chunk, less management later on */
3087        vla_group(d);
3088        vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3089        vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3090                full ? ffs->fs_descs_count + 1 : 0);
3091        vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3092                high ? ffs->hs_descs_count + 1 : 0);
3093        vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3094                super ? ffs->ss_descs_count + 1 : 0);
3095        vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3096        vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3097                         c->cdev->use_os_string ? ffs->interfaces_count : 0);
3098        vla_item_with_sz(d, char[16], ext_compat,
3099                         c->cdev->use_os_string ? ffs->interfaces_count : 0);
3100        vla_item_with_sz(d, struct usb_os_desc, os_desc,
3101                         c->cdev->use_os_string ? ffs->interfaces_count : 0);
3102        vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3103                         ffs->ms_os_descs_ext_prop_count);
3104        vla_item_with_sz(d, char, ext_prop_name,
3105                         ffs->ms_os_descs_ext_prop_name_len);
3106        vla_item_with_sz(d, char, ext_prop_data,
3107                         ffs->ms_os_descs_ext_prop_data_len);
3108        vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3109        char *vlabuf;
3110
3111        ENTER();
3112
3113        /* Has descriptors only for speeds gadget does not support */
3114        if (unlikely(!(full | high | super)))
3115                return -ENOTSUPP;
3116
3117        /* Allocate a single chunk, less management later on */
3118        vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3119        if (unlikely(!vlabuf))
3120                return -ENOMEM;
3121
3122        ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3123        ffs->ms_os_descs_ext_prop_name_avail =
3124                vla_ptr(vlabuf, d, ext_prop_name);
3125        ffs->ms_os_descs_ext_prop_data_avail =
3126                vla_ptr(vlabuf, d, ext_prop_data);
3127
3128        /* Copy descriptors  */
3129        memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3130               ffs->raw_descs_length);
3131
3132        memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3133        eps_ptr = vla_ptr(vlabuf, d, eps);
3134        for (i = 0; i < ffs->eps_count; i++)
3135                eps_ptr[i].num = -1;
3136
3137        /* Save pointers
3138         * d_eps == vlabuf, func->eps used to kfree vlabuf later
3139        */
3140        func->eps             = vla_ptr(vlabuf, d, eps);
3141        func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3142
3143        /*
3144         * Go through all the endpoint descriptors and allocate
3145         * endpoints first, so that later we can rewrite the endpoint
3146         * numbers without worrying that it may be described later on.
3147         */
3148        if (likely(full)) {
3149                func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3150                fs_len = ffs_do_descs(ffs->fs_descs_count,
3151                                      vla_ptr(vlabuf, d, raw_descs),
3152                                      d_raw_descs__sz,
3153                                      __ffs_func_bind_do_descs, func);
3154                if (unlikely(fs_len < 0)) {
3155                        ret = fs_len;
3156                        goto error;
3157                }
3158        } else {
3159                fs_len = 0;
3160        }
3161
3162        if (likely(high)) {
3163                func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3164                hs_len = ffs_do_descs(ffs->hs_descs_count,
3165                                      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3166                                      d_raw_descs__sz - fs_len,
3167                                      __ffs_func_bind_do_descs, func);
3168                if (unlikely(hs_len < 0)) {
3169                        ret = hs_len;
3170                        goto error;
3171                }
3172        } else {
3173                hs_len = 0;
3174        }
3175
3176        if (likely(super)) {
3177                func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3178                ss_len = ffs_do_descs(ffs->ss_descs_count,
3179                                vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3180                                d_raw_descs__sz - fs_len - hs_len,
3181                                __ffs_func_bind_do_descs, func);
3182                if (unlikely(ss_len < 0)) {
3183                        ret = ss_len;
3184                        goto error;
3185                }
3186        } else {
3187                ss_len = 0;
3188        }
3189
3190        /*
3191         * Now handle interface numbers allocation and interface and
3192         * endpoint numbers rewriting.  We can do that in one go
3193         * now.
3194         */
3195        ret = ffs_do_descs(ffs->fs_descs_count +
3196                           (high ? ffs->hs_descs_count : 0) +
3197                           (super ? ffs->ss_descs_count : 0),
3198                           vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3199                           __ffs_func_bind_do_nums, func);
3200        if (unlikely(ret < 0))
3201                goto error;
3202
3203        func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3204        if (c->cdev->use_os_string) {
3205                for (i = 0; i < ffs->interfaces_count; ++i) {
3206                        struct usb_os_desc *desc;
3207
3208                        desc = func->function.os_desc_table[i].os_desc =
3209                                vla_ptr(vlabuf, d, os_desc) +
3210                                i * sizeof(struct usb_os_desc);
3211                        desc->ext_compat_id =
3212                                vla_ptr(vlabuf, d, ext_compat) + i * 16;
3213                        INIT_LIST_HEAD(&desc->ext_prop);
3214                }
3215                ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3216                                      vla_ptr(vlabuf, d, raw_descs) +
3217                                      fs_len + hs_len + ss_len,
3218                                      d_raw_descs__sz - fs_len - hs_len -
3219                                      ss_len,
3220                                      __ffs_func_bind_do_os_desc, func);
3221                if (unlikely(ret < 0))
3222                        goto error;
3223        }
3224        func->function.os_desc_n =
3225                c->cdev->use_os_string ? ffs->interfaces_count : 0;
3226
3227        /* And we're done */
3228        ffs_event_add(ffs, FUNCTIONFS_BIND);
3229        return 0;
3230
3231error:
3232        /* XXX Do we need to release all claimed endpoints here? */
3233        return ret;
3234}
3235
3236static int ffs_func_bind(struct usb_configuration *c,
3237                         struct usb_function *f)
3238{
3239        struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3240        struct ffs_function *func = ffs_func_from_usb(f);
3241        int ret;
3242
3243        if (IS_ERR(ffs_opts))
3244                return PTR_ERR(ffs_opts);
3245
3246        ret = _ffs_func_bind(c, f);
3247        if (ret && !--ffs_opts->refcnt)
3248                functionfs_unbind(func->ffs);
3249
3250        return ret;
3251}
3252
3253
3254/* Other USB function hooks *************************************************/
3255
3256static void ffs_reset_work(struct work_struct *work)
3257{
3258        struct ffs_data *ffs = container_of(work,
3259                struct ffs_data, reset_work);
3260        ffs_data_reset(ffs);
3261}
3262
3263static int ffs_func_set_alt(struct usb_function *f,
3264                            unsigned interface, unsigned alt)
3265{
3266        struct ffs_function *func = ffs_func_from_usb(f);
3267        struct ffs_data *ffs = func->ffs;
3268        int ret = 0, intf;
3269
3270        if (alt != (unsigned)-1) {
3271                intf = ffs_func_revmap_intf(func, interface);
3272                if (unlikely(intf < 0))
3273                        return intf;
3274        }
3275
3276        if (ffs->func)
3277                ffs_func_eps_disable(ffs->func);
3278
3279        if (ffs->state == FFS_DEACTIVATED) {
3280                ffs->state = FFS_CLOSING;
3281                INIT_WORK(&ffs->reset_work, ffs_reset_work);
3282                schedule_work(&ffs->reset_work);
3283                return -ENODEV;
3284        }
3285
3286        if (ffs->state != FFS_ACTIVE)
3287                return -ENODEV;
3288
3289        if (alt == (unsigned)-1) {
3290                ffs->func = NULL;
3291                ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3292                return 0;
3293        }
3294
3295        ffs->func = func;
3296        ret = ffs_func_eps_enable(func);
3297        if (likely(ret >= 0))
3298                ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3299        return ret;
3300}
3301
3302static void ffs_func_disable(struct usb_function *f)
3303{
3304        ffs_func_set_alt(f, 0, (unsigned)-1);
3305}
3306
3307static int ffs_func_setup(struct usb_function *f,
3308                          const struct usb_ctrlrequest *creq)
3309{
3310        struct ffs_function *func = ffs_func_from_usb(f);
3311        struct ffs_data *ffs = func->ffs;
3312        unsigned long flags;
3313        int ret;
3314
3315        ENTER();
3316
3317        pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3318        pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3319        pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3320        pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3321        pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3322
3323        /*
3324         * Most requests directed to interface go through here
3325         * (notable exceptions are set/get interface) so we need to
3326         * handle them.  All other either handled by composite or
3327         * passed to usb_configuration->setup() (if one is set).  No
3328         * matter, we will handle requests directed to endpoint here
3329         * as well (as it's straightforward).  Other request recipient
3330         * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3331         * is being used.
3332         */
3333        if (ffs->state != FFS_ACTIVE)
3334                return -ENODEV;
3335
3336        switch (creq->bRequestType & USB_RECIP_MASK) {
3337        case USB_RECIP_INTERFACE:
3338                ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3339                if (unlikely(ret < 0))
3340                        return ret;
3341                break;
3342
3343        case USB_RECIP_ENDPOINT:
3344                ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3345                if (unlikely(ret < 0))
3346                        return ret;
3347                if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3348                        ret = func->ffs->eps_addrmap[ret];
3349                break;
3350
3351        default:
3352                if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3353                        ret = le16_to_cpu(creq->wIndex);
3354                else
3355                        return -EOPNOTSUPP;
3356        }
3357
3358        spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3359        ffs->ev.setup = *creq;
3360        ffs->ev.setup.wIndex = cpu_to_le16(ret);
3361        __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3362        spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3363
3364        return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3365}
3366
3367static bool ffs_func_req_match(struct usb_function *f,
3368                               const struct usb_ctrlrequest *creq,
3369                               bool config0)
3370{
3371        struct ffs_function *func = ffs_func_from_usb(f);
3372
3373        if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3374                return false;
3375
3376        switch (creq->bRequestType & USB_RECIP_MASK) {
3377        case USB_RECIP_INTERFACE:
3378                return (ffs_func_revmap_intf(func,
3379                                             le16_to_cpu(creq->wIndex)) >= 0);
3380        case USB_RECIP_ENDPOINT:
3381                return (ffs_func_revmap_ep(func,
3382                                           le16_to_cpu(creq->wIndex)) >= 0);
3383        default:
3384                return (bool) (func->ffs->user_flags &
3385                               FUNCTIONFS_ALL_CTRL_RECIP);
3386        }
3387}
3388
3389static void ffs_func_suspend(struct usb_function *f)
3390{
3391        ENTER();
3392        ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3393}
3394
3395static void ffs_func_resume(struct usb_function *f)
3396{
3397        ENTER();
3398        ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3399}
3400
3401
3402/* Endpoint and interface numbers reverse mapping ***************************/
3403
3404static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3405{
3406        num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3407        return num ? num : -EDOM;
3408}
3409
3410static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3411{
3412        short *nums = func->interfaces_nums;
3413        unsigned count = func->ffs->interfaces_count;
3414
3415        for (; count; --count, ++nums) {
3416                if (*nums >= 0 && *nums == intf)
3417                        return nums - func->interfaces_nums;
3418        }
3419
3420        return -EDOM;
3421}
3422
3423
3424/* Devices management *******************************************************/
3425
3426static LIST_HEAD(ffs_devices);
3427
3428static struct ffs_dev *_ffs_do_find_dev(const char *name)
3429{
3430        struct ffs_dev *dev;
3431
3432        if (!name)
3433                return NULL;
3434
3435        list_for_each_entry(dev, &ffs_devices, entry) {
3436                if (strcmp(dev->name, name) == 0)
3437                        return dev;
3438        }
3439
3440        return NULL;
3441}
3442
3443/*
3444 * ffs_lock must be taken by the caller of this function
3445 */
3446static struct ffs_dev *_ffs_get_single_dev(void)
3447{
3448        struct ffs_dev *dev;
3449
3450        if (list_is_singular(&ffs_devices)) {
3451                dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3452                if (dev->single)
3453                        return dev;
3454        }
3455
3456        return NULL;
3457}
3458
3459/*
3460 * ffs_lock must be taken by the caller of this function
3461 */
3462static struct ffs_dev *_ffs_find_dev(const char *name)
3463{
3464        struct ffs_dev *dev;
3465
3466        dev = _ffs_get_single_dev();
3467        if (dev)
3468                return dev;
3469
3470        return _ffs_do_find_dev(name);
3471}
3472
3473/* Configfs support *********************************************************/
3474
3475static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3476{
3477        return container_of(to_config_group(item), struct f_fs_opts,
3478                            func_inst.group);
3479}
3480
3481static void ffs_attr_release(struct config_item *item)
3482{
3483        struct f_fs_opts *opts = to_ffs_opts(item);
3484
3485        usb_put_function_instance(&opts->func_inst);
3486}
3487
3488static struct configfs_item_operations ffs_item_ops = {
3489        .release        = ffs_attr_release,
3490};
3491
3492static const struct config_item_type ffs_func_type = {
3493        .ct_item_ops    = &ffs_item_ops,
3494        .ct_owner       = THIS_MODULE,
3495};
3496
3497
3498/* Function registration interface ******************************************/
3499
3500static void ffs_free_inst(struct usb_function_instance *f)
3501{
3502        struct f_fs_opts *opts;
3503
3504        opts = to_f_fs_opts(f);
3505        ffs_dev_lock();
3506        _ffs_free_dev(opts->dev);
3507        ffs_dev_unlock();
3508        kfree(opts);
3509}
3510
3511static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3512{
3513        if (strlen(name) >= sizeof_field(struct ffs_dev, name))
3514                return -ENAMETOOLONG;
3515        return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3516}
3517
3518static struct usb_function_instance *ffs_alloc_inst(void)
3519{
3520        struct f_fs_opts *opts;
3521        struct ffs_dev *dev;
3522
3523        opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3524        if (!opts)
3525                return ERR_PTR(-ENOMEM);
3526
3527        opts->func_inst.set_inst_name = ffs_set_inst_name;
3528        opts->func_inst.free_func_inst = ffs_free_inst;
3529        ffs_dev_lock();
3530        dev = _ffs_alloc_dev();
3531        ffs_dev_unlock();
3532        if (IS_ERR(dev)) {
3533                kfree(opts);
3534                return ERR_CAST(dev);
3535        }
3536        opts->dev = dev;
3537        dev->opts = opts;
3538
3539        config_group_init_type_name(&opts->func_inst.group, "",
3540                                    &ffs_func_type);
3541        return &opts->func_inst;
3542}
3543
3544static void ffs_free(struct usb_function *f)
3545{
3546        kfree(ffs_func_from_usb(f));
3547}
3548
3549static void ffs_func_unbind(struct usb_configuration *c,
3550                            struct usb_function *f)
3551{
3552        struct ffs_function *func = ffs_func_from_usb(f);
3553        struct ffs_data *ffs = func->ffs;
3554        struct f_fs_opts *opts =
3555                container_of(f->fi, struct f_fs_opts, func_inst);
3556        struct ffs_ep *ep = func->eps;
3557        unsigned count = ffs->eps_count;
3558        unsigned long flags;
3559
3560        ENTER();
3561        if (ffs->func == func) {
3562                ffs_func_eps_disable(func);
3563                ffs->func = NULL;
3564        }
3565
3566        if (!--opts->refcnt)
3567                functionfs_unbind(ffs);
3568
3569        /* cleanup after autoconfig */
3570        spin_lock_irqsave(&func->ffs->eps_lock, flags);
3571        while (count--) {
3572                if (ep->ep && ep->req)
3573                        usb_ep_free_request(ep->ep, ep->req);
3574                ep->req = NULL;
3575                ++ep;
3576        }
3577        spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3578        kfree(func->eps);
3579        func->eps = NULL;
3580        /*
3581         * eps, descriptors and interfaces_nums are allocated in the
3582         * same chunk so only one free is required.
3583         */
3584        func->function.fs_descriptors = NULL;
3585        func->function.hs_descriptors = NULL;
3586        func->function.ss_descriptors = NULL;
3587        func->interfaces_nums = NULL;
3588
3589        ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3590}
3591
3592static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3593{
3594        struct ffs_function *func;
3595
3596        ENTER();
3597
3598        func = kzalloc(sizeof(*func), GFP_KERNEL);
3599        if (unlikely(!func))
3600                return ERR_PTR(-ENOMEM);
3601
3602        func->function.name    = "Function FS Gadget";
3603
3604        func->function.bind    = ffs_func_bind;
3605        func->function.unbind  = ffs_func_unbind;
3606        func->function.set_alt = ffs_func_set_alt;
3607        func->function.disable = ffs_func_disable;
3608        func->function.setup   = ffs_func_setup;
3609        func->function.req_match = ffs_func_req_match;
3610        func->function.suspend = ffs_func_suspend;
3611        func->function.resume  = ffs_func_resume;
3612        func->function.free_func = ffs_free;
3613
3614        return &func->function;
3615}
3616
3617/*
3618 * ffs_lock must be taken by the caller of this function
3619 */
3620static struct ffs_dev *_ffs_alloc_dev(void)
3621{
3622        struct ffs_dev *dev;
3623        int ret;
3624
3625        if (_ffs_get_single_dev())
3626                        return ERR_PTR(-EBUSY);
3627
3628        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3629        if (!dev)
3630                return ERR_PTR(-ENOMEM);
3631
3632        if (list_empty(&ffs_devices)) {
3633                ret = functionfs_init();
3634                if (ret) {
3635                        kfree(dev);
3636                        return ERR_PTR(ret);
3637                }
3638        }
3639
3640        list_add(&dev->entry, &ffs_devices);
3641
3642        return dev;
3643}
3644
3645int ffs_name_dev(struct ffs_dev *dev, const char *name)
3646{
3647        struct ffs_dev *existing;
3648        int ret = 0;
3649
3650        ffs_dev_lock();
3651
3652        existing = _ffs_do_find_dev(name);
3653        if (!existing)
3654                strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3655        else if (existing != dev)
3656                ret = -EBUSY;
3657
3658        ffs_dev_unlock();
3659
3660        return ret;
3661}
3662EXPORT_SYMBOL_GPL(ffs_name_dev);
3663
3664int ffs_single_dev(struct ffs_dev *dev)
3665{
3666        int ret;
3667
3668        ret = 0;
3669        ffs_dev_lock();
3670
3671        if (!list_is_singular(&ffs_devices))
3672                ret = -EBUSY;
3673        else
3674                dev->single = true;
3675
3676        ffs_dev_unlock();
3677        return ret;
3678}
3679EXPORT_SYMBOL_GPL(ffs_single_dev);
3680
3681/*
3682 * ffs_lock must be taken by the caller of this function
3683 */
3684static void _ffs_free_dev(struct ffs_dev *dev)
3685{
3686        list_del(&dev->entry);
3687
3688        /* Clear the private_data pointer to stop incorrect dev access */
3689        if (dev->ffs_data)
3690                dev->ffs_data->private_data = NULL;
3691
3692        kfree(dev);
3693        if (list_empty(&ffs_devices))
3694                functionfs_cleanup();
3695}
3696
3697static void *ffs_acquire_dev(const char *dev_name)
3698{
3699        struct ffs_dev *ffs_dev;
3700
3701        ENTER();
3702        ffs_dev_lock();
3703
3704        ffs_dev = _ffs_find_dev(dev_name);
3705        if (!ffs_dev)
3706                ffs_dev = ERR_PTR(-ENOENT);
3707        else if (ffs_dev->mounted)
3708                ffs_dev = ERR_PTR(-EBUSY);
3709        else if (ffs_dev->ffs_acquire_dev_callback &&
3710            ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3711                ffs_dev = ERR_PTR(-ENOENT);
3712        else
3713                ffs_dev->mounted = true;
3714
3715        ffs_dev_unlock();
3716        return ffs_dev;
3717}
3718
3719static void ffs_release_dev(struct ffs_data *ffs_data)
3720{
3721        struct ffs_dev *ffs_dev;
3722
3723        ENTER();
3724        ffs_dev_lock();
3725
3726        ffs_dev = ffs_data->private_data;
3727        if (ffs_dev) {
3728                ffs_dev->mounted = false;
3729
3730                if (ffs_dev->ffs_release_dev_callback)
3731                        ffs_dev->ffs_release_dev_callback(ffs_dev);
3732        }
3733
3734        ffs_dev_unlock();
3735}
3736
3737static int ffs_ready(struct ffs_data *ffs)
3738{
3739        struct ffs_dev *ffs_obj;
3740        int ret = 0;
3741
3742        ENTER();
3743        ffs_dev_lock();
3744
3745        ffs_obj = ffs->private_data;
3746        if (!ffs_obj) {
3747                ret = -EINVAL;
3748                goto done;
3749        }
3750        if (WARN_ON(ffs_obj->desc_ready)) {
3751                ret = -EBUSY;
3752                goto done;
3753        }
3754
3755        ffs_obj->desc_ready = true;
3756        ffs_obj->ffs_data = ffs;
3757
3758        if (ffs_obj->ffs_ready_callback) {
3759                ret = ffs_obj->ffs_ready_callback(ffs);
3760                if (ret)
3761                        goto done;
3762        }
3763
3764        set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3765done:
3766        ffs_dev_unlock();
3767        return ret;
3768}
3769
3770static void ffs_closed(struct ffs_data *ffs)
3771{
3772        struct ffs_dev *ffs_obj;
3773        struct f_fs_opts *opts;
3774        struct config_item *ci;
3775
3776        ENTER();
3777        ffs_dev_lock();
3778
3779        ffs_obj = ffs->private_data;
3780        if (!ffs_obj)
3781                goto done;
3782
3783        ffs_obj->desc_ready = false;
3784        ffs_obj->ffs_data = NULL;
3785
3786        if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3787            ffs_obj->ffs_closed_callback)
3788                ffs_obj->ffs_closed_callback(ffs);
3789
3790        if (ffs_obj->opts)
3791                opts = ffs_obj->opts;
3792        else
3793                goto done;
3794
3795        if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3796            || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3797                goto done;
3798
3799        ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3800        ffs_dev_unlock();
3801
3802        if (test_bit(FFS_FL_BOUND, &ffs->flags))
3803                unregister_gadget_item(ci);
3804        return;
3805done:
3806        ffs_dev_unlock();
3807}
3808
3809/* Misc helper functions ****************************************************/
3810
3811static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3812{
3813        return nonblock
3814                ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3815                : mutex_lock_interruptible(mutex);
3816}
3817
3818static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3819{
3820        char *data;
3821
3822        if (unlikely(!len))
3823                return NULL;
3824
3825        data = kmalloc(len, GFP_KERNEL);
3826        if (unlikely(!data))
3827                return ERR_PTR(-ENOMEM);
3828
3829        if (unlikely(copy_from_user(data, buf, len))) {
3830                kfree(data);
3831                return ERR_PTR(-EFAULT);
3832        }
3833
3834        pr_vdebug("Buffer from user space:\n");
3835        ffs_dump_mem("", data, len);
3836
3837        return data;
3838}
3839
3840DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3841MODULE_LICENSE("GPL");
3842MODULE_AUTHOR("Michal Nazarewicz");
3843