linux/fs/btrfs/delayed-inode.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011 Fujitsu.  All rights reserved.
   4 * Written by Miao Xie <miaox@cn.fujitsu.com>
   5 */
   6
   7#include <linux/slab.h>
   8#include <linux/iversion.h>
   9#include <linux/sched/mm.h>
  10#include "misc.h"
  11#include "delayed-inode.h"
  12#include "disk-io.h"
  13#include "transaction.h"
  14#include "ctree.h"
  15#include "qgroup.h"
  16#include "locking.h"
  17
  18#define BTRFS_DELAYED_WRITEBACK         512
  19#define BTRFS_DELAYED_BACKGROUND        128
  20#define BTRFS_DELAYED_BATCH             16
  21
  22static struct kmem_cache *delayed_node_cache;
  23
  24int __init btrfs_delayed_inode_init(void)
  25{
  26        delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  27                                        sizeof(struct btrfs_delayed_node),
  28                                        0,
  29                                        SLAB_MEM_SPREAD,
  30                                        NULL);
  31        if (!delayed_node_cache)
  32                return -ENOMEM;
  33        return 0;
  34}
  35
  36void __cold btrfs_delayed_inode_exit(void)
  37{
  38        kmem_cache_destroy(delayed_node_cache);
  39}
  40
  41static inline void btrfs_init_delayed_node(
  42                                struct btrfs_delayed_node *delayed_node,
  43                                struct btrfs_root *root, u64 inode_id)
  44{
  45        delayed_node->root = root;
  46        delayed_node->inode_id = inode_id;
  47        refcount_set(&delayed_node->refs, 0);
  48        delayed_node->ins_root = RB_ROOT_CACHED;
  49        delayed_node->del_root = RB_ROOT_CACHED;
  50        mutex_init(&delayed_node->mutex);
  51        INIT_LIST_HEAD(&delayed_node->n_list);
  52        INIT_LIST_HEAD(&delayed_node->p_list);
  53}
  54
  55static inline int btrfs_is_continuous_delayed_item(
  56                                        struct btrfs_delayed_item *item1,
  57                                        struct btrfs_delayed_item *item2)
  58{
  59        if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  60            item1->key.objectid == item2->key.objectid &&
  61            item1->key.type == item2->key.type &&
  62            item1->key.offset + 1 == item2->key.offset)
  63                return 1;
  64        return 0;
  65}
  66
  67static struct btrfs_delayed_node *btrfs_get_delayed_node(
  68                struct btrfs_inode *btrfs_inode)
  69{
  70        struct btrfs_root *root = btrfs_inode->root;
  71        u64 ino = btrfs_ino(btrfs_inode);
  72        struct btrfs_delayed_node *node;
  73
  74        node = READ_ONCE(btrfs_inode->delayed_node);
  75        if (node) {
  76                refcount_inc(&node->refs);
  77                return node;
  78        }
  79
  80        spin_lock(&root->inode_lock);
  81        node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  82
  83        if (node) {
  84                if (btrfs_inode->delayed_node) {
  85                        refcount_inc(&node->refs);      /* can be accessed */
  86                        BUG_ON(btrfs_inode->delayed_node != node);
  87                        spin_unlock(&root->inode_lock);
  88                        return node;
  89                }
  90
  91                /*
  92                 * It's possible that we're racing into the middle of removing
  93                 * this node from the radix tree.  In this case, the refcount
  94                 * was zero and it should never go back to one.  Just return
  95                 * NULL like it was never in the radix at all; our release
  96                 * function is in the process of removing it.
  97                 *
  98                 * Some implementations of refcount_inc refuse to bump the
  99                 * refcount once it has hit zero.  If we don't do this dance
 100                 * here, refcount_inc() may decide to just WARN_ONCE() instead
 101                 * of actually bumping the refcount.
 102                 *
 103                 * If this node is properly in the radix, we want to bump the
 104                 * refcount twice, once for the inode and once for this get
 105                 * operation.
 106                 */
 107                if (refcount_inc_not_zero(&node->refs)) {
 108                        refcount_inc(&node->refs);
 109                        btrfs_inode->delayed_node = node;
 110                } else {
 111                        node = NULL;
 112                }
 113
 114                spin_unlock(&root->inode_lock);
 115                return node;
 116        }
 117        spin_unlock(&root->inode_lock);
 118
 119        return NULL;
 120}
 121
 122/* Will return either the node or PTR_ERR(-ENOMEM) */
 123static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
 124                struct btrfs_inode *btrfs_inode)
 125{
 126        struct btrfs_delayed_node *node;
 127        struct btrfs_root *root = btrfs_inode->root;
 128        u64 ino = btrfs_ino(btrfs_inode);
 129        int ret;
 130
 131again:
 132        node = btrfs_get_delayed_node(btrfs_inode);
 133        if (node)
 134                return node;
 135
 136        node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
 137        if (!node)
 138                return ERR_PTR(-ENOMEM);
 139        btrfs_init_delayed_node(node, root, ino);
 140
 141        /* cached in the btrfs inode and can be accessed */
 142        refcount_set(&node->refs, 2);
 143
 144        ret = radix_tree_preload(GFP_NOFS);
 145        if (ret) {
 146                kmem_cache_free(delayed_node_cache, node);
 147                return ERR_PTR(ret);
 148        }
 149
 150        spin_lock(&root->inode_lock);
 151        ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
 152        if (ret == -EEXIST) {
 153                spin_unlock(&root->inode_lock);
 154                kmem_cache_free(delayed_node_cache, node);
 155                radix_tree_preload_end();
 156                goto again;
 157        }
 158        btrfs_inode->delayed_node = node;
 159        spin_unlock(&root->inode_lock);
 160        radix_tree_preload_end();
 161
 162        return node;
 163}
 164
 165/*
 166 * Call it when holding delayed_node->mutex
 167 *
 168 * If mod = 1, add this node into the prepared list.
 169 */
 170static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
 171                                     struct btrfs_delayed_node *node,
 172                                     int mod)
 173{
 174        spin_lock(&root->lock);
 175        if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 176                if (!list_empty(&node->p_list))
 177                        list_move_tail(&node->p_list, &root->prepare_list);
 178                else if (mod)
 179                        list_add_tail(&node->p_list, &root->prepare_list);
 180        } else {
 181                list_add_tail(&node->n_list, &root->node_list);
 182                list_add_tail(&node->p_list, &root->prepare_list);
 183                refcount_inc(&node->refs);      /* inserted into list */
 184                root->nodes++;
 185                set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 186        }
 187        spin_unlock(&root->lock);
 188}
 189
 190/* Call it when holding delayed_node->mutex */
 191static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
 192                                       struct btrfs_delayed_node *node)
 193{
 194        spin_lock(&root->lock);
 195        if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 196                root->nodes--;
 197                refcount_dec(&node->refs);      /* not in the list */
 198                list_del_init(&node->n_list);
 199                if (!list_empty(&node->p_list))
 200                        list_del_init(&node->p_list);
 201                clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 202        }
 203        spin_unlock(&root->lock);
 204}
 205
 206static struct btrfs_delayed_node *btrfs_first_delayed_node(
 207                        struct btrfs_delayed_root *delayed_root)
 208{
 209        struct list_head *p;
 210        struct btrfs_delayed_node *node = NULL;
 211
 212        spin_lock(&delayed_root->lock);
 213        if (list_empty(&delayed_root->node_list))
 214                goto out;
 215
 216        p = delayed_root->node_list.next;
 217        node = list_entry(p, struct btrfs_delayed_node, n_list);
 218        refcount_inc(&node->refs);
 219out:
 220        spin_unlock(&delayed_root->lock);
 221
 222        return node;
 223}
 224
 225static struct btrfs_delayed_node *btrfs_next_delayed_node(
 226                                                struct btrfs_delayed_node *node)
 227{
 228        struct btrfs_delayed_root *delayed_root;
 229        struct list_head *p;
 230        struct btrfs_delayed_node *next = NULL;
 231
 232        delayed_root = node->root->fs_info->delayed_root;
 233        spin_lock(&delayed_root->lock);
 234        if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 235                /* not in the list */
 236                if (list_empty(&delayed_root->node_list))
 237                        goto out;
 238                p = delayed_root->node_list.next;
 239        } else if (list_is_last(&node->n_list, &delayed_root->node_list))
 240                goto out;
 241        else
 242                p = node->n_list.next;
 243
 244        next = list_entry(p, struct btrfs_delayed_node, n_list);
 245        refcount_inc(&next->refs);
 246out:
 247        spin_unlock(&delayed_root->lock);
 248
 249        return next;
 250}
 251
 252static void __btrfs_release_delayed_node(
 253                                struct btrfs_delayed_node *delayed_node,
 254                                int mod)
 255{
 256        struct btrfs_delayed_root *delayed_root;
 257
 258        if (!delayed_node)
 259                return;
 260
 261        delayed_root = delayed_node->root->fs_info->delayed_root;
 262
 263        mutex_lock(&delayed_node->mutex);
 264        if (delayed_node->count)
 265                btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
 266        else
 267                btrfs_dequeue_delayed_node(delayed_root, delayed_node);
 268        mutex_unlock(&delayed_node->mutex);
 269
 270        if (refcount_dec_and_test(&delayed_node->refs)) {
 271                struct btrfs_root *root = delayed_node->root;
 272
 273                spin_lock(&root->inode_lock);
 274                /*
 275                 * Once our refcount goes to zero, nobody is allowed to bump it
 276                 * back up.  We can delete it now.
 277                 */
 278                ASSERT(refcount_read(&delayed_node->refs) == 0);
 279                radix_tree_delete(&root->delayed_nodes_tree,
 280                                  delayed_node->inode_id);
 281                spin_unlock(&root->inode_lock);
 282                kmem_cache_free(delayed_node_cache, delayed_node);
 283        }
 284}
 285
 286static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
 287{
 288        __btrfs_release_delayed_node(node, 0);
 289}
 290
 291static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
 292                                        struct btrfs_delayed_root *delayed_root)
 293{
 294        struct list_head *p;
 295        struct btrfs_delayed_node *node = NULL;
 296
 297        spin_lock(&delayed_root->lock);
 298        if (list_empty(&delayed_root->prepare_list))
 299                goto out;
 300
 301        p = delayed_root->prepare_list.next;
 302        list_del_init(p);
 303        node = list_entry(p, struct btrfs_delayed_node, p_list);
 304        refcount_inc(&node->refs);
 305out:
 306        spin_unlock(&delayed_root->lock);
 307
 308        return node;
 309}
 310
 311static inline void btrfs_release_prepared_delayed_node(
 312                                        struct btrfs_delayed_node *node)
 313{
 314        __btrfs_release_delayed_node(node, 1);
 315}
 316
 317static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
 318{
 319        struct btrfs_delayed_item *item;
 320        item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
 321        if (item) {
 322                item->data_len = data_len;
 323                item->ins_or_del = 0;
 324                item->bytes_reserved = 0;
 325                item->delayed_node = NULL;
 326                refcount_set(&item->refs, 1);
 327        }
 328        return item;
 329}
 330
 331/*
 332 * __btrfs_lookup_delayed_item - look up the delayed item by key
 333 * @delayed_node: pointer to the delayed node
 334 * @key:          the key to look up
 335 * @prev:         used to store the prev item if the right item isn't found
 336 * @next:         used to store the next item if the right item isn't found
 337 *
 338 * Note: if we don't find the right item, we will return the prev item and
 339 * the next item.
 340 */
 341static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
 342                                struct rb_root *root,
 343                                struct btrfs_key *key,
 344                                struct btrfs_delayed_item **prev,
 345                                struct btrfs_delayed_item **next)
 346{
 347        struct rb_node *node, *prev_node = NULL;
 348        struct btrfs_delayed_item *delayed_item = NULL;
 349        int ret = 0;
 350
 351        node = root->rb_node;
 352
 353        while (node) {
 354                delayed_item = rb_entry(node, struct btrfs_delayed_item,
 355                                        rb_node);
 356                prev_node = node;
 357                ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
 358                if (ret < 0)
 359                        node = node->rb_right;
 360                else if (ret > 0)
 361                        node = node->rb_left;
 362                else
 363                        return delayed_item;
 364        }
 365
 366        if (prev) {
 367                if (!prev_node)
 368                        *prev = NULL;
 369                else if (ret < 0)
 370                        *prev = delayed_item;
 371                else if ((node = rb_prev(prev_node)) != NULL) {
 372                        *prev = rb_entry(node, struct btrfs_delayed_item,
 373                                         rb_node);
 374                } else
 375                        *prev = NULL;
 376        }
 377
 378        if (next) {
 379                if (!prev_node)
 380                        *next = NULL;
 381                else if (ret > 0)
 382                        *next = delayed_item;
 383                else if ((node = rb_next(prev_node)) != NULL) {
 384                        *next = rb_entry(node, struct btrfs_delayed_item,
 385                                         rb_node);
 386                } else
 387                        *next = NULL;
 388        }
 389        return NULL;
 390}
 391
 392static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
 393                                        struct btrfs_delayed_node *delayed_node,
 394                                        struct btrfs_key *key)
 395{
 396        return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
 397                                           NULL, NULL);
 398}
 399
 400static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
 401                                    struct btrfs_delayed_item *ins,
 402                                    int action)
 403{
 404        struct rb_node **p, *node;
 405        struct rb_node *parent_node = NULL;
 406        struct rb_root_cached *root;
 407        struct btrfs_delayed_item *item;
 408        int cmp;
 409        bool leftmost = true;
 410
 411        if (action == BTRFS_DELAYED_INSERTION_ITEM)
 412                root = &delayed_node->ins_root;
 413        else if (action == BTRFS_DELAYED_DELETION_ITEM)
 414                root = &delayed_node->del_root;
 415        else
 416                BUG();
 417        p = &root->rb_root.rb_node;
 418        node = &ins->rb_node;
 419
 420        while (*p) {
 421                parent_node = *p;
 422                item = rb_entry(parent_node, struct btrfs_delayed_item,
 423                                 rb_node);
 424
 425                cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
 426                if (cmp < 0) {
 427                        p = &(*p)->rb_right;
 428                        leftmost = false;
 429                } else if (cmp > 0) {
 430                        p = &(*p)->rb_left;
 431                } else {
 432                        return -EEXIST;
 433                }
 434        }
 435
 436        rb_link_node(node, parent_node, p);
 437        rb_insert_color_cached(node, root, leftmost);
 438        ins->delayed_node = delayed_node;
 439        ins->ins_or_del = action;
 440
 441        if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
 442            action == BTRFS_DELAYED_INSERTION_ITEM &&
 443            ins->key.offset >= delayed_node->index_cnt)
 444                        delayed_node->index_cnt = ins->key.offset + 1;
 445
 446        delayed_node->count++;
 447        atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
 448        return 0;
 449}
 450
 451static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
 452                                              struct btrfs_delayed_item *item)
 453{
 454        return __btrfs_add_delayed_item(node, item,
 455                                        BTRFS_DELAYED_INSERTION_ITEM);
 456}
 457
 458static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
 459                                             struct btrfs_delayed_item *item)
 460{
 461        return __btrfs_add_delayed_item(node, item,
 462                                        BTRFS_DELAYED_DELETION_ITEM);
 463}
 464
 465static void finish_one_item(struct btrfs_delayed_root *delayed_root)
 466{
 467        int seq = atomic_inc_return(&delayed_root->items_seq);
 468
 469        /* atomic_dec_return implies a barrier */
 470        if ((atomic_dec_return(&delayed_root->items) <
 471            BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
 472                cond_wake_up_nomb(&delayed_root->wait);
 473}
 474
 475static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
 476{
 477        struct rb_root_cached *root;
 478        struct btrfs_delayed_root *delayed_root;
 479
 480        /* Not associated with any delayed_node */
 481        if (!delayed_item->delayed_node)
 482                return;
 483        delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
 484
 485        BUG_ON(!delayed_root);
 486        BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
 487               delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
 488
 489        if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
 490                root = &delayed_item->delayed_node->ins_root;
 491        else
 492                root = &delayed_item->delayed_node->del_root;
 493
 494        rb_erase_cached(&delayed_item->rb_node, root);
 495        delayed_item->delayed_node->count--;
 496
 497        finish_one_item(delayed_root);
 498}
 499
 500static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
 501{
 502        if (item) {
 503                __btrfs_remove_delayed_item(item);
 504                if (refcount_dec_and_test(&item->refs))
 505                        kfree(item);
 506        }
 507}
 508
 509static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
 510                                        struct btrfs_delayed_node *delayed_node)
 511{
 512        struct rb_node *p;
 513        struct btrfs_delayed_item *item = NULL;
 514
 515        p = rb_first_cached(&delayed_node->ins_root);
 516        if (p)
 517                item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 518
 519        return item;
 520}
 521
 522static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
 523                                        struct btrfs_delayed_node *delayed_node)
 524{
 525        struct rb_node *p;
 526        struct btrfs_delayed_item *item = NULL;
 527
 528        p = rb_first_cached(&delayed_node->del_root);
 529        if (p)
 530                item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 531
 532        return item;
 533}
 534
 535static struct btrfs_delayed_item *__btrfs_next_delayed_item(
 536                                                struct btrfs_delayed_item *item)
 537{
 538        struct rb_node *p;
 539        struct btrfs_delayed_item *next = NULL;
 540
 541        p = rb_next(&item->rb_node);
 542        if (p)
 543                next = rb_entry(p, struct btrfs_delayed_item, rb_node);
 544
 545        return next;
 546}
 547
 548static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
 549                                               struct btrfs_root *root,
 550                                               struct btrfs_delayed_item *item)
 551{
 552        struct btrfs_block_rsv *src_rsv;
 553        struct btrfs_block_rsv *dst_rsv;
 554        struct btrfs_fs_info *fs_info = root->fs_info;
 555        u64 num_bytes;
 556        int ret;
 557
 558        if (!trans->bytes_reserved)
 559                return 0;
 560
 561        src_rsv = trans->block_rsv;
 562        dst_rsv = &fs_info->delayed_block_rsv;
 563
 564        num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
 565
 566        /*
 567         * Here we migrate space rsv from transaction rsv, since have already
 568         * reserved space when starting a transaction.  So no need to reserve
 569         * qgroup space here.
 570         */
 571        ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
 572        if (!ret) {
 573                trace_btrfs_space_reservation(fs_info, "delayed_item",
 574                                              item->key.objectid,
 575                                              num_bytes, 1);
 576                item->bytes_reserved = num_bytes;
 577        }
 578
 579        return ret;
 580}
 581
 582static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
 583                                                struct btrfs_delayed_item *item)
 584{
 585        struct btrfs_block_rsv *rsv;
 586        struct btrfs_fs_info *fs_info = root->fs_info;
 587
 588        if (!item->bytes_reserved)
 589                return;
 590
 591        rsv = &fs_info->delayed_block_rsv;
 592        /*
 593         * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
 594         * to release/reserve qgroup space.
 595         */
 596        trace_btrfs_space_reservation(fs_info, "delayed_item",
 597                                      item->key.objectid, item->bytes_reserved,
 598                                      0);
 599        btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
 600}
 601
 602static int btrfs_delayed_inode_reserve_metadata(
 603                                        struct btrfs_trans_handle *trans,
 604                                        struct btrfs_root *root,
 605                                        struct btrfs_inode *inode,
 606                                        struct btrfs_delayed_node *node)
 607{
 608        struct btrfs_fs_info *fs_info = root->fs_info;
 609        struct btrfs_block_rsv *src_rsv;
 610        struct btrfs_block_rsv *dst_rsv;
 611        u64 num_bytes;
 612        int ret;
 613
 614        src_rsv = trans->block_rsv;
 615        dst_rsv = &fs_info->delayed_block_rsv;
 616
 617        num_bytes = btrfs_calc_metadata_size(fs_info, 1);
 618
 619        /*
 620         * btrfs_dirty_inode will update the inode under btrfs_join_transaction
 621         * which doesn't reserve space for speed.  This is a problem since we
 622         * still need to reserve space for this update, so try to reserve the
 623         * space.
 624         *
 625         * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
 626         * we always reserve enough to update the inode item.
 627         */
 628        if (!src_rsv || (!trans->bytes_reserved &&
 629                         src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
 630                ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true);
 631                if (ret < 0)
 632                        return ret;
 633                ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
 634                                          BTRFS_RESERVE_NO_FLUSH);
 635                /*
 636                 * Since we're under a transaction reserve_metadata_bytes could
 637                 * try to commit the transaction which will make it return
 638                 * EAGAIN to make us stop the transaction we have, so return
 639                 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
 640                 */
 641                if (ret == -EAGAIN) {
 642                        ret = -ENOSPC;
 643                        btrfs_qgroup_free_meta_prealloc(root, num_bytes);
 644                }
 645                if (!ret) {
 646                        node->bytes_reserved = num_bytes;
 647                        trace_btrfs_space_reservation(fs_info,
 648                                                      "delayed_inode",
 649                                                      btrfs_ino(inode),
 650                                                      num_bytes, 1);
 651                } else {
 652                        btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize);
 653                }
 654                return ret;
 655        }
 656
 657        ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
 658        if (!ret) {
 659                trace_btrfs_space_reservation(fs_info, "delayed_inode",
 660                                              btrfs_ino(inode), num_bytes, 1);
 661                node->bytes_reserved = num_bytes;
 662        }
 663
 664        return ret;
 665}
 666
 667static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
 668                                                struct btrfs_delayed_node *node,
 669                                                bool qgroup_free)
 670{
 671        struct btrfs_block_rsv *rsv;
 672
 673        if (!node->bytes_reserved)
 674                return;
 675
 676        rsv = &fs_info->delayed_block_rsv;
 677        trace_btrfs_space_reservation(fs_info, "delayed_inode",
 678                                      node->inode_id, node->bytes_reserved, 0);
 679        btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
 680        if (qgroup_free)
 681                btrfs_qgroup_free_meta_prealloc(node->root,
 682                                node->bytes_reserved);
 683        else
 684                btrfs_qgroup_convert_reserved_meta(node->root,
 685                                node->bytes_reserved);
 686        node->bytes_reserved = 0;
 687}
 688
 689/*
 690 * This helper will insert some continuous items into the same leaf according
 691 * to the free space of the leaf.
 692 */
 693static int btrfs_batch_insert_items(struct btrfs_root *root,
 694                                    struct btrfs_path *path,
 695                                    struct btrfs_delayed_item *item)
 696{
 697        struct btrfs_delayed_item *curr, *next;
 698        int free_space;
 699        int total_data_size = 0, total_size = 0;
 700        struct extent_buffer *leaf;
 701        char *data_ptr;
 702        struct btrfs_key *keys;
 703        u32 *data_size;
 704        struct list_head head;
 705        int slot;
 706        int nitems;
 707        int i;
 708        int ret = 0;
 709
 710        BUG_ON(!path->nodes[0]);
 711
 712        leaf = path->nodes[0];
 713        free_space = btrfs_leaf_free_space(leaf);
 714        INIT_LIST_HEAD(&head);
 715
 716        next = item;
 717        nitems = 0;
 718
 719        /*
 720         * count the number of the continuous items that we can insert in batch
 721         */
 722        while (total_size + next->data_len + sizeof(struct btrfs_item) <=
 723               free_space) {
 724                total_data_size += next->data_len;
 725                total_size += next->data_len + sizeof(struct btrfs_item);
 726                list_add_tail(&next->tree_list, &head);
 727                nitems++;
 728
 729                curr = next;
 730                next = __btrfs_next_delayed_item(curr);
 731                if (!next)
 732                        break;
 733
 734                if (!btrfs_is_continuous_delayed_item(curr, next))
 735                        break;
 736        }
 737
 738        if (!nitems) {
 739                ret = 0;
 740                goto out;
 741        }
 742
 743        /*
 744         * we need allocate some memory space, but it might cause the task
 745         * to sleep, so we set all locked nodes in the path to blocking locks
 746         * first.
 747         */
 748        btrfs_set_path_blocking(path);
 749
 750        keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
 751        if (!keys) {
 752                ret = -ENOMEM;
 753                goto out;
 754        }
 755
 756        data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
 757        if (!data_size) {
 758                ret = -ENOMEM;
 759                goto error;
 760        }
 761
 762        /* get keys of all the delayed items */
 763        i = 0;
 764        list_for_each_entry(next, &head, tree_list) {
 765                keys[i] = next->key;
 766                data_size[i] = next->data_len;
 767                i++;
 768        }
 769
 770        /* insert the keys of the items */
 771        setup_items_for_insert(root, path, keys, data_size, nitems);
 772
 773        /* insert the dir index items */
 774        slot = path->slots[0];
 775        list_for_each_entry_safe(curr, next, &head, tree_list) {
 776                data_ptr = btrfs_item_ptr(leaf, slot, char);
 777                write_extent_buffer(leaf, &curr->data,
 778                                    (unsigned long)data_ptr,
 779                                    curr->data_len);
 780                slot++;
 781
 782                btrfs_delayed_item_release_metadata(root, curr);
 783
 784                list_del(&curr->tree_list);
 785                btrfs_release_delayed_item(curr);
 786        }
 787
 788error:
 789        kfree(data_size);
 790        kfree(keys);
 791out:
 792        return ret;
 793}
 794
 795/*
 796 * This helper can just do simple insertion that needn't extend item for new
 797 * data, such as directory name index insertion, inode insertion.
 798 */
 799static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
 800                                     struct btrfs_root *root,
 801                                     struct btrfs_path *path,
 802                                     struct btrfs_delayed_item *delayed_item)
 803{
 804        struct extent_buffer *leaf;
 805        unsigned int nofs_flag;
 806        char *ptr;
 807        int ret;
 808
 809        nofs_flag = memalloc_nofs_save();
 810        ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
 811                                      delayed_item->data_len);
 812        memalloc_nofs_restore(nofs_flag);
 813        if (ret < 0 && ret != -EEXIST)
 814                return ret;
 815
 816        leaf = path->nodes[0];
 817
 818        ptr = btrfs_item_ptr(leaf, path->slots[0], char);
 819
 820        write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
 821                            delayed_item->data_len);
 822        btrfs_mark_buffer_dirty(leaf);
 823
 824        btrfs_delayed_item_release_metadata(root, delayed_item);
 825        return 0;
 826}
 827
 828/*
 829 * we insert an item first, then if there are some continuous items, we try
 830 * to insert those items into the same leaf.
 831 */
 832static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
 833                                      struct btrfs_path *path,
 834                                      struct btrfs_root *root,
 835                                      struct btrfs_delayed_node *node)
 836{
 837        struct btrfs_delayed_item *curr, *prev;
 838        int ret = 0;
 839
 840do_again:
 841        mutex_lock(&node->mutex);
 842        curr = __btrfs_first_delayed_insertion_item(node);
 843        if (!curr)
 844                goto insert_end;
 845
 846        ret = btrfs_insert_delayed_item(trans, root, path, curr);
 847        if (ret < 0) {
 848                btrfs_release_path(path);
 849                goto insert_end;
 850        }
 851
 852        prev = curr;
 853        curr = __btrfs_next_delayed_item(prev);
 854        if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
 855                /* insert the continuous items into the same leaf */
 856                path->slots[0]++;
 857                btrfs_batch_insert_items(root, path, curr);
 858        }
 859        btrfs_release_delayed_item(prev);
 860        btrfs_mark_buffer_dirty(path->nodes[0]);
 861
 862        btrfs_release_path(path);
 863        mutex_unlock(&node->mutex);
 864        goto do_again;
 865
 866insert_end:
 867        mutex_unlock(&node->mutex);
 868        return ret;
 869}
 870
 871static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
 872                                    struct btrfs_root *root,
 873                                    struct btrfs_path *path,
 874                                    struct btrfs_delayed_item *item)
 875{
 876        struct btrfs_delayed_item *curr, *next;
 877        struct extent_buffer *leaf;
 878        struct btrfs_key key;
 879        struct list_head head;
 880        int nitems, i, last_item;
 881        int ret = 0;
 882
 883        BUG_ON(!path->nodes[0]);
 884
 885        leaf = path->nodes[0];
 886
 887        i = path->slots[0];
 888        last_item = btrfs_header_nritems(leaf) - 1;
 889        if (i > last_item)
 890                return -ENOENT; /* FIXME: Is errno suitable? */
 891
 892        next = item;
 893        INIT_LIST_HEAD(&head);
 894        btrfs_item_key_to_cpu(leaf, &key, i);
 895        nitems = 0;
 896        /*
 897         * count the number of the dir index items that we can delete in batch
 898         */
 899        while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
 900                list_add_tail(&next->tree_list, &head);
 901                nitems++;
 902
 903                curr = next;
 904                next = __btrfs_next_delayed_item(curr);
 905                if (!next)
 906                        break;
 907
 908                if (!btrfs_is_continuous_delayed_item(curr, next))
 909                        break;
 910
 911                i++;
 912                if (i > last_item)
 913                        break;
 914                btrfs_item_key_to_cpu(leaf, &key, i);
 915        }
 916
 917        if (!nitems)
 918                return 0;
 919
 920        ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
 921        if (ret)
 922                goto out;
 923
 924        list_for_each_entry_safe(curr, next, &head, tree_list) {
 925                btrfs_delayed_item_release_metadata(root, curr);
 926                list_del(&curr->tree_list);
 927                btrfs_release_delayed_item(curr);
 928        }
 929
 930out:
 931        return ret;
 932}
 933
 934static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
 935                                      struct btrfs_path *path,
 936                                      struct btrfs_root *root,
 937                                      struct btrfs_delayed_node *node)
 938{
 939        struct btrfs_delayed_item *curr, *prev;
 940        unsigned int nofs_flag;
 941        int ret = 0;
 942
 943do_again:
 944        mutex_lock(&node->mutex);
 945        curr = __btrfs_first_delayed_deletion_item(node);
 946        if (!curr)
 947                goto delete_fail;
 948
 949        nofs_flag = memalloc_nofs_save();
 950        ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
 951        memalloc_nofs_restore(nofs_flag);
 952        if (ret < 0)
 953                goto delete_fail;
 954        else if (ret > 0) {
 955                /*
 956                 * can't find the item which the node points to, so this node
 957                 * is invalid, just drop it.
 958                 */
 959                prev = curr;
 960                curr = __btrfs_next_delayed_item(prev);
 961                btrfs_release_delayed_item(prev);
 962                ret = 0;
 963                btrfs_release_path(path);
 964                if (curr) {
 965                        mutex_unlock(&node->mutex);
 966                        goto do_again;
 967                } else
 968                        goto delete_fail;
 969        }
 970
 971        btrfs_batch_delete_items(trans, root, path, curr);
 972        btrfs_release_path(path);
 973        mutex_unlock(&node->mutex);
 974        goto do_again;
 975
 976delete_fail:
 977        btrfs_release_path(path);
 978        mutex_unlock(&node->mutex);
 979        return ret;
 980}
 981
 982static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
 983{
 984        struct btrfs_delayed_root *delayed_root;
 985
 986        if (delayed_node &&
 987            test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
 988                BUG_ON(!delayed_node->root);
 989                clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
 990                delayed_node->count--;
 991
 992                delayed_root = delayed_node->root->fs_info->delayed_root;
 993                finish_one_item(delayed_root);
 994        }
 995}
 996
 997static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
 998{
 999        struct btrfs_delayed_root *delayed_root;
1000
1001        ASSERT(delayed_node->root);
1002        clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1003        delayed_node->count--;
1004
1005        delayed_root = delayed_node->root->fs_info->delayed_root;
1006        finish_one_item(delayed_root);
1007}
1008
1009static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1010                                        struct btrfs_root *root,
1011                                        struct btrfs_path *path,
1012                                        struct btrfs_delayed_node *node)
1013{
1014        struct btrfs_fs_info *fs_info = root->fs_info;
1015        struct btrfs_key key;
1016        struct btrfs_inode_item *inode_item;
1017        struct extent_buffer *leaf;
1018        unsigned int nofs_flag;
1019        int mod;
1020        int ret;
1021
1022        key.objectid = node->inode_id;
1023        key.type = BTRFS_INODE_ITEM_KEY;
1024        key.offset = 0;
1025
1026        if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1027                mod = -1;
1028        else
1029                mod = 1;
1030
1031        nofs_flag = memalloc_nofs_save();
1032        ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1033        memalloc_nofs_restore(nofs_flag);
1034        if (ret > 0) {
1035                btrfs_release_path(path);
1036                return -ENOENT;
1037        } else if (ret < 0) {
1038                return ret;
1039        }
1040
1041        leaf = path->nodes[0];
1042        inode_item = btrfs_item_ptr(leaf, path->slots[0],
1043                                    struct btrfs_inode_item);
1044        write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1045                            sizeof(struct btrfs_inode_item));
1046        btrfs_mark_buffer_dirty(leaf);
1047
1048        if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1049                goto no_iref;
1050
1051        path->slots[0]++;
1052        if (path->slots[0] >= btrfs_header_nritems(leaf))
1053                goto search;
1054again:
1055        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1056        if (key.objectid != node->inode_id)
1057                goto out;
1058
1059        if (key.type != BTRFS_INODE_REF_KEY &&
1060            key.type != BTRFS_INODE_EXTREF_KEY)
1061                goto out;
1062
1063        /*
1064         * Delayed iref deletion is for the inode who has only one link,
1065         * so there is only one iref. The case that several irefs are
1066         * in the same item doesn't exist.
1067         */
1068        btrfs_del_item(trans, root, path);
1069out:
1070        btrfs_release_delayed_iref(node);
1071no_iref:
1072        btrfs_release_path(path);
1073err_out:
1074        btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1075        btrfs_release_delayed_inode(node);
1076
1077        return ret;
1078
1079search:
1080        btrfs_release_path(path);
1081
1082        key.type = BTRFS_INODE_EXTREF_KEY;
1083        key.offset = -1;
1084
1085        nofs_flag = memalloc_nofs_save();
1086        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1087        memalloc_nofs_restore(nofs_flag);
1088        if (ret < 0)
1089                goto err_out;
1090        ASSERT(ret);
1091
1092        ret = 0;
1093        leaf = path->nodes[0];
1094        path->slots[0]--;
1095        goto again;
1096}
1097
1098static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1099                                             struct btrfs_root *root,
1100                                             struct btrfs_path *path,
1101                                             struct btrfs_delayed_node *node)
1102{
1103        int ret;
1104
1105        mutex_lock(&node->mutex);
1106        if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1107                mutex_unlock(&node->mutex);
1108                return 0;
1109        }
1110
1111        ret = __btrfs_update_delayed_inode(trans, root, path, node);
1112        mutex_unlock(&node->mutex);
1113        return ret;
1114}
1115
1116static inline int
1117__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1118                                   struct btrfs_path *path,
1119                                   struct btrfs_delayed_node *node)
1120{
1121        int ret;
1122
1123        ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1124        if (ret)
1125                return ret;
1126
1127        ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1128        if (ret)
1129                return ret;
1130
1131        ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1132        return ret;
1133}
1134
1135/*
1136 * Called when committing the transaction.
1137 * Returns 0 on success.
1138 * Returns < 0 on error and returns with an aborted transaction with any
1139 * outstanding delayed items cleaned up.
1140 */
1141static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1142{
1143        struct btrfs_fs_info *fs_info = trans->fs_info;
1144        struct btrfs_delayed_root *delayed_root;
1145        struct btrfs_delayed_node *curr_node, *prev_node;
1146        struct btrfs_path *path;
1147        struct btrfs_block_rsv *block_rsv;
1148        int ret = 0;
1149        bool count = (nr > 0);
1150
1151        if (TRANS_ABORTED(trans))
1152                return -EIO;
1153
1154        path = btrfs_alloc_path();
1155        if (!path)
1156                return -ENOMEM;
1157        path->leave_spinning = 1;
1158
1159        block_rsv = trans->block_rsv;
1160        trans->block_rsv = &fs_info->delayed_block_rsv;
1161
1162        delayed_root = fs_info->delayed_root;
1163
1164        curr_node = btrfs_first_delayed_node(delayed_root);
1165        while (curr_node && (!count || (count && nr--))) {
1166                ret = __btrfs_commit_inode_delayed_items(trans, path,
1167                                                         curr_node);
1168                if (ret) {
1169                        btrfs_release_delayed_node(curr_node);
1170                        curr_node = NULL;
1171                        btrfs_abort_transaction(trans, ret);
1172                        break;
1173                }
1174
1175                prev_node = curr_node;
1176                curr_node = btrfs_next_delayed_node(curr_node);
1177                btrfs_release_delayed_node(prev_node);
1178        }
1179
1180        if (curr_node)
1181                btrfs_release_delayed_node(curr_node);
1182        btrfs_free_path(path);
1183        trans->block_rsv = block_rsv;
1184
1185        return ret;
1186}
1187
1188int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1189{
1190        return __btrfs_run_delayed_items(trans, -1);
1191}
1192
1193int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1194{
1195        return __btrfs_run_delayed_items(trans, nr);
1196}
1197
1198int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1199                                     struct btrfs_inode *inode)
1200{
1201        struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1202        struct btrfs_path *path;
1203        struct btrfs_block_rsv *block_rsv;
1204        int ret;
1205
1206        if (!delayed_node)
1207                return 0;
1208
1209        mutex_lock(&delayed_node->mutex);
1210        if (!delayed_node->count) {
1211                mutex_unlock(&delayed_node->mutex);
1212                btrfs_release_delayed_node(delayed_node);
1213                return 0;
1214        }
1215        mutex_unlock(&delayed_node->mutex);
1216
1217        path = btrfs_alloc_path();
1218        if (!path) {
1219                btrfs_release_delayed_node(delayed_node);
1220                return -ENOMEM;
1221        }
1222        path->leave_spinning = 1;
1223
1224        block_rsv = trans->block_rsv;
1225        trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1226
1227        ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1228
1229        btrfs_release_delayed_node(delayed_node);
1230        btrfs_free_path(path);
1231        trans->block_rsv = block_rsv;
1232
1233        return ret;
1234}
1235
1236int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1237{
1238        struct btrfs_fs_info *fs_info = inode->root->fs_info;
1239        struct btrfs_trans_handle *trans;
1240        struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1241        struct btrfs_path *path;
1242        struct btrfs_block_rsv *block_rsv;
1243        int ret;
1244
1245        if (!delayed_node)
1246                return 0;
1247
1248        mutex_lock(&delayed_node->mutex);
1249        if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1250                mutex_unlock(&delayed_node->mutex);
1251                btrfs_release_delayed_node(delayed_node);
1252                return 0;
1253        }
1254        mutex_unlock(&delayed_node->mutex);
1255
1256        trans = btrfs_join_transaction(delayed_node->root);
1257        if (IS_ERR(trans)) {
1258                ret = PTR_ERR(trans);
1259                goto out;
1260        }
1261
1262        path = btrfs_alloc_path();
1263        if (!path) {
1264                ret = -ENOMEM;
1265                goto trans_out;
1266        }
1267        path->leave_spinning = 1;
1268
1269        block_rsv = trans->block_rsv;
1270        trans->block_rsv = &fs_info->delayed_block_rsv;
1271
1272        mutex_lock(&delayed_node->mutex);
1273        if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1274                ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1275                                                   path, delayed_node);
1276        else
1277                ret = 0;
1278        mutex_unlock(&delayed_node->mutex);
1279
1280        btrfs_free_path(path);
1281        trans->block_rsv = block_rsv;
1282trans_out:
1283        btrfs_end_transaction(trans);
1284        btrfs_btree_balance_dirty(fs_info);
1285out:
1286        btrfs_release_delayed_node(delayed_node);
1287
1288        return ret;
1289}
1290
1291void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1292{
1293        struct btrfs_delayed_node *delayed_node;
1294
1295        delayed_node = READ_ONCE(inode->delayed_node);
1296        if (!delayed_node)
1297                return;
1298
1299        inode->delayed_node = NULL;
1300        btrfs_release_delayed_node(delayed_node);
1301}
1302
1303struct btrfs_async_delayed_work {
1304        struct btrfs_delayed_root *delayed_root;
1305        int nr;
1306        struct btrfs_work work;
1307};
1308
1309static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1310{
1311        struct btrfs_async_delayed_work *async_work;
1312        struct btrfs_delayed_root *delayed_root;
1313        struct btrfs_trans_handle *trans;
1314        struct btrfs_path *path;
1315        struct btrfs_delayed_node *delayed_node = NULL;
1316        struct btrfs_root *root;
1317        struct btrfs_block_rsv *block_rsv;
1318        int total_done = 0;
1319
1320        async_work = container_of(work, struct btrfs_async_delayed_work, work);
1321        delayed_root = async_work->delayed_root;
1322
1323        path = btrfs_alloc_path();
1324        if (!path)
1325                goto out;
1326
1327        do {
1328                if (atomic_read(&delayed_root->items) <
1329                    BTRFS_DELAYED_BACKGROUND / 2)
1330                        break;
1331
1332                delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1333                if (!delayed_node)
1334                        break;
1335
1336                path->leave_spinning = 1;
1337                root = delayed_node->root;
1338
1339                trans = btrfs_join_transaction(root);
1340                if (IS_ERR(trans)) {
1341                        btrfs_release_path(path);
1342                        btrfs_release_prepared_delayed_node(delayed_node);
1343                        total_done++;
1344                        continue;
1345                }
1346
1347                block_rsv = trans->block_rsv;
1348                trans->block_rsv = &root->fs_info->delayed_block_rsv;
1349
1350                __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1351
1352                trans->block_rsv = block_rsv;
1353                btrfs_end_transaction(trans);
1354                btrfs_btree_balance_dirty_nodelay(root->fs_info);
1355
1356                btrfs_release_path(path);
1357                btrfs_release_prepared_delayed_node(delayed_node);
1358                total_done++;
1359
1360        } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1361                 || total_done < async_work->nr);
1362
1363        btrfs_free_path(path);
1364out:
1365        wake_up(&delayed_root->wait);
1366        kfree(async_work);
1367}
1368
1369
1370static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1371                                     struct btrfs_fs_info *fs_info, int nr)
1372{
1373        struct btrfs_async_delayed_work *async_work;
1374
1375        async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1376        if (!async_work)
1377                return -ENOMEM;
1378
1379        async_work->delayed_root = delayed_root;
1380        btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1381                        NULL);
1382        async_work->nr = nr;
1383
1384        btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1385        return 0;
1386}
1387
1388void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1389{
1390        WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1391}
1392
1393static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1394{
1395        int val = atomic_read(&delayed_root->items_seq);
1396
1397        if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1398                return 1;
1399
1400        if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1401                return 1;
1402
1403        return 0;
1404}
1405
1406void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1407{
1408        struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1409
1410        if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1411                btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1412                return;
1413
1414        if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1415                int seq;
1416                int ret;
1417
1418                seq = atomic_read(&delayed_root->items_seq);
1419
1420                ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1421                if (ret)
1422                        return;
1423
1424                wait_event_interruptible(delayed_root->wait,
1425                                         could_end_wait(delayed_root, seq));
1426                return;
1427        }
1428
1429        btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1430}
1431
1432/* Will return 0 or -ENOMEM */
1433int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1434                                   const char *name, int name_len,
1435                                   struct btrfs_inode *dir,
1436                                   struct btrfs_disk_key *disk_key, u8 type,
1437                                   u64 index)
1438{
1439        struct btrfs_delayed_node *delayed_node;
1440        struct btrfs_delayed_item *delayed_item;
1441        struct btrfs_dir_item *dir_item;
1442        int ret;
1443
1444        delayed_node = btrfs_get_or_create_delayed_node(dir);
1445        if (IS_ERR(delayed_node))
1446                return PTR_ERR(delayed_node);
1447
1448        delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1449        if (!delayed_item) {
1450                ret = -ENOMEM;
1451                goto release_node;
1452        }
1453
1454        delayed_item->key.objectid = btrfs_ino(dir);
1455        delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1456        delayed_item->key.offset = index;
1457
1458        dir_item = (struct btrfs_dir_item *)delayed_item->data;
1459        dir_item->location = *disk_key;
1460        btrfs_set_stack_dir_transid(dir_item, trans->transid);
1461        btrfs_set_stack_dir_data_len(dir_item, 0);
1462        btrfs_set_stack_dir_name_len(dir_item, name_len);
1463        btrfs_set_stack_dir_type(dir_item, type);
1464        memcpy((char *)(dir_item + 1), name, name_len);
1465
1466        ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1467        /*
1468         * we have reserved enough space when we start a new transaction,
1469         * so reserving metadata failure is impossible
1470         */
1471        BUG_ON(ret);
1472
1473        mutex_lock(&delayed_node->mutex);
1474        ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1475        if (unlikely(ret)) {
1476                btrfs_err(trans->fs_info,
1477                          "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1478                          name_len, name, delayed_node->root->root_key.objectid,
1479                          delayed_node->inode_id, ret);
1480                BUG();
1481        }
1482        mutex_unlock(&delayed_node->mutex);
1483
1484release_node:
1485        btrfs_release_delayed_node(delayed_node);
1486        return ret;
1487}
1488
1489static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1490                                               struct btrfs_delayed_node *node,
1491                                               struct btrfs_key *key)
1492{
1493        struct btrfs_delayed_item *item;
1494
1495        mutex_lock(&node->mutex);
1496        item = __btrfs_lookup_delayed_insertion_item(node, key);
1497        if (!item) {
1498                mutex_unlock(&node->mutex);
1499                return 1;
1500        }
1501
1502        btrfs_delayed_item_release_metadata(node->root, item);
1503        btrfs_release_delayed_item(item);
1504        mutex_unlock(&node->mutex);
1505        return 0;
1506}
1507
1508int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1509                                   struct btrfs_inode *dir, u64 index)
1510{
1511        struct btrfs_delayed_node *node;
1512        struct btrfs_delayed_item *item;
1513        struct btrfs_key item_key;
1514        int ret;
1515
1516        node = btrfs_get_or_create_delayed_node(dir);
1517        if (IS_ERR(node))
1518                return PTR_ERR(node);
1519
1520        item_key.objectid = btrfs_ino(dir);
1521        item_key.type = BTRFS_DIR_INDEX_KEY;
1522        item_key.offset = index;
1523
1524        ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1525                                                  &item_key);
1526        if (!ret)
1527                goto end;
1528
1529        item = btrfs_alloc_delayed_item(0);
1530        if (!item) {
1531                ret = -ENOMEM;
1532                goto end;
1533        }
1534
1535        item->key = item_key;
1536
1537        ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1538        /*
1539         * we have reserved enough space when we start a new transaction,
1540         * so reserving metadata failure is impossible.
1541         */
1542        if (ret < 0) {
1543                btrfs_err(trans->fs_info,
1544"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1545                btrfs_release_delayed_item(item);
1546                goto end;
1547        }
1548
1549        mutex_lock(&node->mutex);
1550        ret = __btrfs_add_delayed_deletion_item(node, item);
1551        if (unlikely(ret)) {
1552                btrfs_err(trans->fs_info,
1553                          "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1554                          index, node->root->root_key.objectid,
1555                          node->inode_id, ret);
1556                btrfs_delayed_item_release_metadata(dir->root, item);
1557                btrfs_release_delayed_item(item);
1558        }
1559        mutex_unlock(&node->mutex);
1560end:
1561        btrfs_release_delayed_node(node);
1562        return ret;
1563}
1564
1565int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1566{
1567        struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1568
1569        if (!delayed_node)
1570                return -ENOENT;
1571
1572        /*
1573         * Since we have held i_mutex of this directory, it is impossible that
1574         * a new directory index is added into the delayed node and index_cnt
1575         * is updated now. So we needn't lock the delayed node.
1576         */
1577        if (!delayed_node->index_cnt) {
1578                btrfs_release_delayed_node(delayed_node);
1579                return -EINVAL;
1580        }
1581
1582        inode->index_cnt = delayed_node->index_cnt;
1583        btrfs_release_delayed_node(delayed_node);
1584        return 0;
1585}
1586
1587bool btrfs_readdir_get_delayed_items(struct inode *inode,
1588                                     struct list_head *ins_list,
1589                                     struct list_head *del_list)
1590{
1591        struct btrfs_delayed_node *delayed_node;
1592        struct btrfs_delayed_item *item;
1593
1594        delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1595        if (!delayed_node)
1596                return false;
1597
1598        /*
1599         * We can only do one readdir with delayed items at a time because of
1600         * item->readdir_list.
1601         */
1602        inode_unlock_shared(inode);
1603        inode_lock(inode);
1604
1605        mutex_lock(&delayed_node->mutex);
1606        item = __btrfs_first_delayed_insertion_item(delayed_node);
1607        while (item) {
1608                refcount_inc(&item->refs);
1609                list_add_tail(&item->readdir_list, ins_list);
1610                item = __btrfs_next_delayed_item(item);
1611        }
1612
1613        item = __btrfs_first_delayed_deletion_item(delayed_node);
1614        while (item) {
1615                refcount_inc(&item->refs);
1616                list_add_tail(&item->readdir_list, del_list);
1617                item = __btrfs_next_delayed_item(item);
1618        }
1619        mutex_unlock(&delayed_node->mutex);
1620        /*
1621         * This delayed node is still cached in the btrfs inode, so refs
1622         * must be > 1 now, and we needn't check it is going to be freed
1623         * or not.
1624         *
1625         * Besides that, this function is used to read dir, we do not
1626         * insert/delete delayed items in this period. So we also needn't
1627         * requeue or dequeue this delayed node.
1628         */
1629        refcount_dec(&delayed_node->refs);
1630
1631        return true;
1632}
1633
1634void btrfs_readdir_put_delayed_items(struct inode *inode,
1635                                     struct list_head *ins_list,
1636                                     struct list_head *del_list)
1637{
1638        struct btrfs_delayed_item *curr, *next;
1639
1640        list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1641                list_del(&curr->readdir_list);
1642                if (refcount_dec_and_test(&curr->refs))
1643                        kfree(curr);
1644        }
1645
1646        list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1647                list_del(&curr->readdir_list);
1648                if (refcount_dec_and_test(&curr->refs))
1649                        kfree(curr);
1650        }
1651
1652        /*
1653         * The VFS is going to do up_read(), so we need to downgrade back to a
1654         * read lock.
1655         */
1656        downgrade_write(&inode->i_rwsem);
1657}
1658
1659int btrfs_should_delete_dir_index(struct list_head *del_list,
1660                                  u64 index)
1661{
1662        struct btrfs_delayed_item *curr;
1663        int ret = 0;
1664
1665        list_for_each_entry(curr, del_list, readdir_list) {
1666                if (curr->key.offset > index)
1667                        break;
1668                if (curr->key.offset == index) {
1669                        ret = 1;
1670                        break;
1671                }
1672        }
1673        return ret;
1674}
1675
1676/*
1677 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1678 *
1679 */
1680int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1681                                    struct list_head *ins_list)
1682{
1683        struct btrfs_dir_item *di;
1684        struct btrfs_delayed_item *curr, *next;
1685        struct btrfs_key location;
1686        char *name;
1687        int name_len;
1688        int over = 0;
1689        unsigned char d_type;
1690
1691        if (list_empty(ins_list))
1692                return 0;
1693
1694        /*
1695         * Changing the data of the delayed item is impossible. So
1696         * we needn't lock them. And we have held i_mutex of the
1697         * directory, nobody can delete any directory indexes now.
1698         */
1699        list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1700                list_del(&curr->readdir_list);
1701
1702                if (curr->key.offset < ctx->pos) {
1703                        if (refcount_dec_and_test(&curr->refs))
1704                                kfree(curr);
1705                        continue;
1706                }
1707
1708                ctx->pos = curr->key.offset;
1709
1710                di = (struct btrfs_dir_item *)curr->data;
1711                name = (char *)(di + 1);
1712                name_len = btrfs_stack_dir_name_len(di);
1713
1714                d_type = fs_ftype_to_dtype(di->type);
1715                btrfs_disk_key_to_cpu(&location, &di->location);
1716
1717                over = !dir_emit(ctx, name, name_len,
1718                               location.objectid, d_type);
1719
1720                if (refcount_dec_and_test(&curr->refs))
1721                        kfree(curr);
1722
1723                if (over)
1724                        return 1;
1725                ctx->pos++;
1726        }
1727        return 0;
1728}
1729
1730static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1731                                  struct btrfs_inode_item *inode_item,
1732                                  struct inode *inode)
1733{
1734        btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1735        btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1736        btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1737        btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1738        btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1739        btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1740        btrfs_set_stack_inode_generation(inode_item,
1741                                         BTRFS_I(inode)->generation);
1742        btrfs_set_stack_inode_sequence(inode_item,
1743                                       inode_peek_iversion(inode));
1744        btrfs_set_stack_inode_transid(inode_item, trans->transid);
1745        btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1746        btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1747        btrfs_set_stack_inode_block_group(inode_item, 0);
1748
1749        btrfs_set_stack_timespec_sec(&inode_item->atime,
1750                                     inode->i_atime.tv_sec);
1751        btrfs_set_stack_timespec_nsec(&inode_item->atime,
1752                                      inode->i_atime.tv_nsec);
1753
1754        btrfs_set_stack_timespec_sec(&inode_item->mtime,
1755                                     inode->i_mtime.tv_sec);
1756        btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1757                                      inode->i_mtime.tv_nsec);
1758
1759        btrfs_set_stack_timespec_sec(&inode_item->ctime,
1760                                     inode->i_ctime.tv_sec);
1761        btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1762                                      inode->i_ctime.tv_nsec);
1763
1764        btrfs_set_stack_timespec_sec(&inode_item->otime,
1765                                     BTRFS_I(inode)->i_otime.tv_sec);
1766        btrfs_set_stack_timespec_nsec(&inode_item->otime,
1767                                     BTRFS_I(inode)->i_otime.tv_nsec);
1768}
1769
1770int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1771{
1772        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1773        struct btrfs_delayed_node *delayed_node;
1774        struct btrfs_inode_item *inode_item;
1775
1776        delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1777        if (!delayed_node)
1778                return -ENOENT;
1779
1780        mutex_lock(&delayed_node->mutex);
1781        if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1782                mutex_unlock(&delayed_node->mutex);
1783                btrfs_release_delayed_node(delayed_node);
1784                return -ENOENT;
1785        }
1786
1787        inode_item = &delayed_node->inode_item;
1788
1789        i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1790        i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1791        btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1792        btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1793                        round_up(i_size_read(inode), fs_info->sectorsize));
1794        inode->i_mode = btrfs_stack_inode_mode(inode_item);
1795        set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1796        inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1797        BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1798        BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1799
1800        inode_set_iversion_queried(inode,
1801                                   btrfs_stack_inode_sequence(inode_item));
1802        inode->i_rdev = 0;
1803        *rdev = btrfs_stack_inode_rdev(inode_item);
1804        BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1805
1806        inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1807        inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1808
1809        inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1810        inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1811
1812        inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1813        inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1814
1815        BTRFS_I(inode)->i_otime.tv_sec =
1816                btrfs_stack_timespec_sec(&inode_item->otime);
1817        BTRFS_I(inode)->i_otime.tv_nsec =
1818                btrfs_stack_timespec_nsec(&inode_item->otime);
1819
1820        inode->i_generation = BTRFS_I(inode)->generation;
1821        BTRFS_I(inode)->index_cnt = (u64)-1;
1822
1823        mutex_unlock(&delayed_node->mutex);
1824        btrfs_release_delayed_node(delayed_node);
1825        return 0;
1826}
1827
1828int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1829                               struct btrfs_root *root, struct inode *inode)
1830{
1831        struct btrfs_delayed_node *delayed_node;
1832        int ret = 0;
1833
1834        delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1835        if (IS_ERR(delayed_node))
1836                return PTR_ERR(delayed_node);
1837
1838        mutex_lock(&delayed_node->mutex);
1839        if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1840                fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1841                goto release_node;
1842        }
1843
1844        ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1845                                                   delayed_node);
1846        if (ret)
1847                goto release_node;
1848
1849        fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1850        set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1851        delayed_node->count++;
1852        atomic_inc(&root->fs_info->delayed_root->items);
1853release_node:
1854        mutex_unlock(&delayed_node->mutex);
1855        btrfs_release_delayed_node(delayed_node);
1856        return ret;
1857}
1858
1859int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1860{
1861        struct btrfs_fs_info *fs_info = inode->root->fs_info;
1862        struct btrfs_delayed_node *delayed_node;
1863
1864        /*
1865         * we don't do delayed inode updates during log recovery because it
1866         * leads to enospc problems.  This means we also can't do
1867         * delayed inode refs
1868         */
1869        if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1870                return -EAGAIN;
1871
1872        delayed_node = btrfs_get_or_create_delayed_node(inode);
1873        if (IS_ERR(delayed_node))
1874                return PTR_ERR(delayed_node);
1875
1876        /*
1877         * We don't reserve space for inode ref deletion is because:
1878         * - We ONLY do async inode ref deletion for the inode who has only
1879         *   one link(i_nlink == 1), it means there is only one inode ref.
1880         *   And in most case, the inode ref and the inode item are in the
1881         *   same leaf, and we will deal with them at the same time.
1882         *   Since we are sure we will reserve the space for the inode item,
1883         *   it is unnecessary to reserve space for inode ref deletion.
1884         * - If the inode ref and the inode item are not in the same leaf,
1885         *   We also needn't worry about enospc problem, because we reserve
1886         *   much more space for the inode update than it needs.
1887         * - At the worst, we can steal some space from the global reservation.
1888         *   It is very rare.
1889         */
1890        mutex_lock(&delayed_node->mutex);
1891        if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1892                goto release_node;
1893
1894        set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1895        delayed_node->count++;
1896        atomic_inc(&fs_info->delayed_root->items);
1897release_node:
1898        mutex_unlock(&delayed_node->mutex);
1899        btrfs_release_delayed_node(delayed_node);
1900        return 0;
1901}
1902
1903static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1904{
1905        struct btrfs_root *root = delayed_node->root;
1906        struct btrfs_fs_info *fs_info = root->fs_info;
1907        struct btrfs_delayed_item *curr_item, *prev_item;
1908
1909        mutex_lock(&delayed_node->mutex);
1910        curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1911        while (curr_item) {
1912                btrfs_delayed_item_release_metadata(root, curr_item);
1913                prev_item = curr_item;
1914                curr_item = __btrfs_next_delayed_item(prev_item);
1915                btrfs_release_delayed_item(prev_item);
1916        }
1917
1918        curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1919        while (curr_item) {
1920                btrfs_delayed_item_release_metadata(root, curr_item);
1921                prev_item = curr_item;
1922                curr_item = __btrfs_next_delayed_item(prev_item);
1923                btrfs_release_delayed_item(prev_item);
1924        }
1925
1926        if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1927                btrfs_release_delayed_iref(delayed_node);
1928
1929        if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1930                btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1931                btrfs_release_delayed_inode(delayed_node);
1932        }
1933        mutex_unlock(&delayed_node->mutex);
1934}
1935
1936void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1937{
1938        struct btrfs_delayed_node *delayed_node;
1939
1940        delayed_node = btrfs_get_delayed_node(inode);
1941        if (!delayed_node)
1942                return;
1943
1944        __btrfs_kill_delayed_node(delayed_node);
1945        btrfs_release_delayed_node(delayed_node);
1946}
1947
1948void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1949{
1950        u64 inode_id = 0;
1951        struct btrfs_delayed_node *delayed_nodes[8];
1952        int i, n;
1953
1954        while (1) {
1955                spin_lock(&root->inode_lock);
1956                n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1957                                           (void **)delayed_nodes, inode_id,
1958                                           ARRAY_SIZE(delayed_nodes));
1959                if (!n) {
1960                        spin_unlock(&root->inode_lock);
1961                        break;
1962                }
1963
1964                inode_id = delayed_nodes[n - 1]->inode_id + 1;
1965                for (i = 0; i < n; i++) {
1966                        /*
1967                         * Don't increase refs in case the node is dead and
1968                         * about to be removed from the tree in the loop below
1969                         */
1970                        if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
1971                                delayed_nodes[i] = NULL;
1972                }
1973                spin_unlock(&root->inode_lock);
1974
1975                for (i = 0; i < n; i++) {
1976                        if (!delayed_nodes[i])
1977                                continue;
1978                        __btrfs_kill_delayed_node(delayed_nodes[i]);
1979                        btrfs_release_delayed_node(delayed_nodes[i]);
1980                }
1981        }
1982}
1983
1984void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1985{
1986        struct btrfs_delayed_node *curr_node, *prev_node;
1987
1988        curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1989        while (curr_node) {
1990                __btrfs_kill_delayed_node(curr_node);
1991
1992                prev_node = curr_node;
1993                curr_node = btrfs_next_delayed_node(curr_node);
1994                btrfs_release_delayed_node(prev_node);
1995        }
1996}
1997
1998