linux/fs/btrfs/disk-io.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/blkdev.h>
   8#include <linux/radix-tree.h>
   9#include <linux/writeback.h>
  10#include <linux/workqueue.h>
  11#include <linux/kthread.h>
  12#include <linux/slab.h>
  13#include <linux/migrate.h>
  14#include <linux/ratelimit.h>
  15#include <linux/uuid.h>
  16#include <linux/semaphore.h>
  17#include <linux/error-injection.h>
  18#include <linux/crc32c.h>
  19#include <linux/sched/mm.h>
  20#include <asm/unaligned.h>
  21#include <crypto/hash.h>
  22#include "ctree.h"
  23#include "disk-io.h"
  24#include "transaction.h"
  25#include "btrfs_inode.h"
  26#include "volumes.h"
  27#include "print-tree.h"
  28#include "locking.h"
  29#include "tree-log.h"
  30#include "free-space-cache.h"
  31#include "free-space-tree.h"
  32#include "inode-map.h"
  33#include "check-integrity.h"
  34#include "rcu-string.h"
  35#include "dev-replace.h"
  36#include "raid56.h"
  37#include "sysfs.h"
  38#include "qgroup.h"
  39#include "compression.h"
  40#include "tree-checker.h"
  41#include "ref-verify.h"
  42#include "block-group.h"
  43#include "discard.h"
  44#include "space-info.h"
  45
  46#define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
  47                                 BTRFS_HEADER_FLAG_RELOC |\
  48                                 BTRFS_SUPER_FLAG_ERROR |\
  49                                 BTRFS_SUPER_FLAG_SEEDING |\
  50                                 BTRFS_SUPER_FLAG_METADUMP |\
  51                                 BTRFS_SUPER_FLAG_METADUMP_V2)
  52
  53static void end_workqueue_fn(struct btrfs_work *work);
  54static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  56                                      struct btrfs_fs_info *fs_info);
  57static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  58static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  59                                        struct extent_io_tree *dirty_pages,
  60                                        int mark);
  61static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  62                                       struct extent_io_tree *pinned_extents);
  63static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  64static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  65
  66/*
  67 * btrfs_end_io_wq structs are used to do processing in task context when an IO
  68 * is complete.  This is used during reads to verify checksums, and it is used
  69 * by writes to insert metadata for new file extents after IO is complete.
  70 */
  71struct btrfs_end_io_wq {
  72        struct bio *bio;
  73        bio_end_io_t *end_io;
  74        void *private;
  75        struct btrfs_fs_info *info;
  76        blk_status_t status;
  77        enum btrfs_wq_endio_type metadata;
  78        struct btrfs_work work;
  79};
  80
  81static struct kmem_cache *btrfs_end_io_wq_cache;
  82
  83int __init btrfs_end_io_wq_init(void)
  84{
  85        btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  86                                        sizeof(struct btrfs_end_io_wq),
  87                                        0,
  88                                        SLAB_MEM_SPREAD,
  89                                        NULL);
  90        if (!btrfs_end_io_wq_cache)
  91                return -ENOMEM;
  92        return 0;
  93}
  94
  95void __cold btrfs_end_io_wq_exit(void)
  96{
  97        kmem_cache_destroy(btrfs_end_io_wq_cache);
  98}
  99
 100static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
 101{
 102        if (fs_info->csum_shash)
 103                crypto_free_shash(fs_info->csum_shash);
 104}
 105
 106/*
 107 * async submit bios are used to offload expensive checksumming
 108 * onto the worker threads.  They checksum file and metadata bios
 109 * just before they are sent down the IO stack.
 110 */
 111struct async_submit_bio {
 112        void *private_data;
 113        struct bio *bio;
 114        extent_submit_bio_start_t *submit_bio_start;
 115        int mirror_num;
 116        /*
 117         * bio_offset is optional, can be used if the pages in the bio
 118         * can't tell us where in the file the bio should go
 119         */
 120        u64 bio_offset;
 121        struct btrfs_work work;
 122        blk_status_t status;
 123};
 124
 125/*
 126 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 127 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 128 * the level the eb occupies in the tree.
 129 *
 130 * Different roots are used for different purposes and may nest inside each
 131 * other and they require separate keysets.  As lockdep keys should be
 132 * static, assign keysets according to the purpose of the root as indicated
 133 * by btrfs_root->root_key.objectid.  This ensures that all special purpose
 134 * roots have separate keysets.
 135 *
 136 * Lock-nesting across peer nodes is always done with the immediate parent
 137 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 138 * subclass to avoid triggering lockdep warning in such cases.
 139 *
 140 * The key is set by the readpage_end_io_hook after the buffer has passed
 141 * csum validation but before the pages are unlocked.  It is also set by
 142 * btrfs_init_new_buffer on freshly allocated blocks.
 143 *
 144 * We also add a check to make sure the highest level of the tree is the
 145 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 146 * needs update as well.
 147 */
 148#ifdef CONFIG_DEBUG_LOCK_ALLOC
 149# if BTRFS_MAX_LEVEL != 8
 150#  error
 151# endif
 152
 153static struct btrfs_lockdep_keyset {
 154        u64                     id;             /* root objectid */
 155        const char              *name_stem;     /* lock name stem */
 156        char                    names[BTRFS_MAX_LEVEL + 1][20];
 157        struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
 158} btrfs_lockdep_keysets[] = {
 159        { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
 160        { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
 161        { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
 162        { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
 163        { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
 164        { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
 165        { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
 166        { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
 167        { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
 168        { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
 169        { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
 170        { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
 171        { .id = 0,                              .name_stem = "tree"     },
 172};
 173
 174void __init btrfs_init_lockdep(void)
 175{
 176        int i, j;
 177
 178        /* initialize lockdep class names */
 179        for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
 180                struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
 181
 182                for (j = 0; j < ARRAY_SIZE(ks->names); j++)
 183                        snprintf(ks->names[j], sizeof(ks->names[j]),
 184                                 "btrfs-%s-%02d", ks->name_stem, j);
 185        }
 186}
 187
 188void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 189                                    int level)
 190{
 191        struct btrfs_lockdep_keyset *ks;
 192
 193        BUG_ON(level >= ARRAY_SIZE(ks->keys));
 194
 195        /* find the matching keyset, id 0 is the default entry */
 196        for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 197                if (ks->id == objectid)
 198                        break;
 199
 200        lockdep_set_class_and_name(&eb->lock,
 201                                   &ks->keys[level], ks->names[level]);
 202}
 203
 204#endif
 205
 206/*
 207 * Compute the csum of a btree block and store the result to provided buffer.
 208 */
 209static void csum_tree_block(struct extent_buffer *buf, u8 *result)
 210{
 211        struct btrfs_fs_info *fs_info = buf->fs_info;
 212        const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
 213        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 214        char *kaddr;
 215        int i;
 216
 217        shash->tfm = fs_info->csum_shash;
 218        crypto_shash_init(shash);
 219        kaddr = page_address(buf->pages[0]);
 220        crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
 221                            PAGE_SIZE - BTRFS_CSUM_SIZE);
 222
 223        for (i = 1; i < num_pages; i++) {
 224                kaddr = page_address(buf->pages[i]);
 225                crypto_shash_update(shash, kaddr, PAGE_SIZE);
 226        }
 227        memset(result, 0, BTRFS_CSUM_SIZE);
 228        crypto_shash_final(shash, result);
 229}
 230
 231/*
 232 * we can't consider a given block up to date unless the transid of the
 233 * block matches the transid in the parent node's pointer.  This is how we
 234 * detect blocks that either didn't get written at all or got written
 235 * in the wrong place.
 236 */
 237static int verify_parent_transid(struct extent_io_tree *io_tree,
 238                                 struct extent_buffer *eb, u64 parent_transid,
 239                                 int atomic)
 240{
 241        struct extent_state *cached_state = NULL;
 242        int ret;
 243        bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
 244
 245        if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 246                return 0;
 247
 248        if (atomic)
 249                return -EAGAIN;
 250
 251        if (need_lock) {
 252                btrfs_tree_read_lock(eb);
 253                btrfs_set_lock_blocking_read(eb);
 254        }
 255
 256        lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 257                         &cached_state);
 258        if (extent_buffer_uptodate(eb) &&
 259            btrfs_header_generation(eb) == parent_transid) {
 260                ret = 0;
 261                goto out;
 262        }
 263        btrfs_err_rl(eb->fs_info,
 264                "parent transid verify failed on %llu wanted %llu found %llu",
 265                        eb->start,
 266                        parent_transid, btrfs_header_generation(eb));
 267        ret = 1;
 268
 269        /*
 270         * Things reading via commit roots that don't have normal protection,
 271         * like send, can have a really old block in cache that may point at a
 272         * block that has been freed and re-allocated.  So don't clear uptodate
 273         * if we find an eb that is under IO (dirty/writeback) because we could
 274         * end up reading in the stale data and then writing it back out and
 275         * making everybody very sad.
 276         */
 277        if (!extent_buffer_under_io(eb))
 278                clear_extent_buffer_uptodate(eb);
 279out:
 280        unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 281                             &cached_state);
 282        if (need_lock)
 283                btrfs_tree_read_unlock_blocking(eb);
 284        return ret;
 285}
 286
 287static bool btrfs_supported_super_csum(u16 csum_type)
 288{
 289        switch (csum_type) {
 290        case BTRFS_CSUM_TYPE_CRC32:
 291        case BTRFS_CSUM_TYPE_XXHASH:
 292        case BTRFS_CSUM_TYPE_SHA256:
 293        case BTRFS_CSUM_TYPE_BLAKE2:
 294                return true;
 295        default:
 296                return false;
 297        }
 298}
 299
 300/*
 301 * Return 0 if the superblock checksum type matches the checksum value of that
 302 * algorithm. Pass the raw disk superblock data.
 303 */
 304static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
 305                                  char *raw_disk_sb)
 306{
 307        struct btrfs_super_block *disk_sb =
 308                (struct btrfs_super_block *)raw_disk_sb;
 309        char result[BTRFS_CSUM_SIZE];
 310        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 311
 312        shash->tfm = fs_info->csum_shash;
 313
 314        /*
 315         * The super_block structure does not span the whole
 316         * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
 317         * filled with zeros and is included in the checksum.
 318         */
 319        crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
 320                            BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
 321
 322        if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
 323                return 1;
 324
 325        return 0;
 326}
 327
 328int btrfs_verify_level_key(struct extent_buffer *eb, int level,
 329                           struct btrfs_key *first_key, u64 parent_transid)
 330{
 331        struct btrfs_fs_info *fs_info = eb->fs_info;
 332        int found_level;
 333        struct btrfs_key found_key;
 334        int ret;
 335
 336        found_level = btrfs_header_level(eb);
 337        if (found_level != level) {
 338                WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
 339                     KERN_ERR "BTRFS: tree level check failed\n");
 340                btrfs_err(fs_info,
 341"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
 342                          eb->start, level, found_level);
 343                return -EIO;
 344        }
 345
 346        if (!first_key)
 347                return 0;
 348
 349        /*
 350         * For live tree block (new tree blocks in current transaction),
 351         * we need proper lock context to avoid race, which is impossible here.
 352         * So we only checks tree blocks which is read from disk, whose
 353         * generation <= fs_info->last_trans_committed.
 354         */
 355        if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
 356                return 0;
 357
 358        /* We have @first_key, so this @eb must have at least one item */
 359        if (btrfs_header_nritems(eb) == 0) {
 360                btrfs_err(fs_info,
 361                "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
 362                          eb->start);
 363                WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
 364                return -EUCLEAN;
 365        }
 366
 367        if (found_level)
 368                btrfs_node_key_to_cpu(eb, &found_key, 0);
 369        else
 370                btrfs_item_key_to_cpu(eb, &found_key, 0);
 371        ret = btrfs_comp_cpu_keys(first_key, &found_key);
 372
 373        if (ret) {
 374                WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
 375                     KERN_ERR "BTRFS: tree first key check failed\n");
 376                btrfs_err(fs_info,
 377"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
 378                          eb->start, parent_transid, first_key->objectid,
 379                          first_key->type, first_key->offset,
 380                          found_key.objectid, found_key.type,
 381                          found_key.offset);
 382        }
 383        return ret;
 384}
 385
 386/*
 387 * helper to read a given tree block, doing retries as required when
 388 * the checksums don't match and we have alternate mirrors to try.
 389 *
 390 * @parent_transid:     expected transid, skip check if 0
 391 * @level:              expected level, mandatory check
 392 * @first_key:          expected key of first slot, skip check if NULL
 393 */
 394static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
 395                                          u64 parent_transid, int level,
 396                                          struct btrfs_key *first_key)
 397{
 398        struct btrfs_fs_info *fs_info = eb->fs_info;
 399        struct extent_io_tree *io_tree;
 400        int failed = 0;
 401        int ret;
 402        int num_copies = 0;
 403        int mirror_num = 0;
 404        int failed_mirror = 0;
 405
 406        io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
 407        while (1) {
 408                clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 409                ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
 410                if (!ret) {
 411                        if (verify_parent_transid(io_tree, eb,
 412                                                   parent_transid, 0))
 413                                ret = -EIO;
 414                        else if (btrfs_verify_level_key(eb, level,
 415                                                first_key, parent_transid))
 416                                ret = -EUCLEAN;
 417                        else
 418                                break;
 419                }
 420
 421                num_copies = btrfs_num_copies(fs_info,
 422                                              eb->start, eb->len);
 423                if (num_copies == 1)
 424                        break;
 425
 426                if (!failed_mirror) {
 427                        failed = 1;
 428                        failed_mirror = eb->read_mirror;
 429                }
 430
 431                mirror_num++;
 432                if (mirror_num == failed_mirror)
 433                        mirror_num++;
 434
 435                if (mirror_num > num_copies)
 436                        break;
 437        }
 438
 439        if (failed && !ret && failed_mirror)
 440                btrfs_repair_eb_io_failure(eb, failed_mirror);
 441
 442        return ret;
 443}
 444
 445/*
 446 * checksum a dirty tree block before IO.  This has extra checks to make sure
 447 * we only fill in the checksum field in the first page of a multi-page block
 448 */
 449
 450static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
 451{
 452        u64 start = page_offset(page);
 453        u64 found_start;
 454        u8 result[BTRFS_CSUM_SIZE];
 455        u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 456        struct extent_buffer *eb;
 457        int ret;
 458
 459        eb = (struct extent_buffer *)page->private;
 460        if (page != eb->pages[0])
 461                return 0;
 462
 463        found_start = btrfs_header_bytenr(eb);
 464        /*
 465         * Please do not consolidate these warnings into a single if.
 466         * It is useful to know what went wrong.
 467         */
 468        if (WARN_ON(found_start != start))
 469                return -EUCLEAN;
 470        if (WARN_ON(!PageUptodate(page)))
 471                return -EUCLEAN;
 472
 473        ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
 474                                    offsetof(struct btrfs_header, fsid),
 475                                    BTRFS_FSID_SIZE) == 0);
 476
 477        csum_tree_block(eb, result);
 478
 479        if (btrfs_header_level(eb))
 480                ret = btrfs_check_node(eb);
 481        else
 482                ret = btrfs_check_leaf_full(eb);
 483
 484        if (ret < 0) {
 485                btrfs_print_tree(eb, 0);
 486                btrfs_err(fs_info,
 487                "block=%llu write time tree block corruption detected",
 488                          eb->start);
 489                WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
 490                return ret;
 491        }
 492        write_extent_buffer(eb, result, 0, csum_size);
 493
 494        return 0;
 495}
 496
 497static int check_tree_block_fsid(struct extent_buffer *eb)
 498{
 499        struct btrfs_fs_info *fs_info = eb->fs_info;
 500        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
 501        u8 fsid[BTRFS_FSID_SIZE];
 502        u8 *metadata_uuid;
 503
 504        read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
 505                           BTRFS_FSID_SIZE);
 506        /*
 507         * Checking the incompat flag is only valid for the current fs. For
 508         * seed devices it's forbidden to have their uuid changed so reading
 509         * ->fsid in this case is fine
 510         */
 511        if (btrfs_fs_incompat(fs_info, METADATA_UUID))
 512                metadata_uuid = fs_devices->metadata_uuid;
 513        else
 514                metadata_uuid = fs_devices->fsid;
 515
 516        if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
 517                return 0;
 518
 519        list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
 520                if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
 521                        return 0;
 522
 523        return 1;
 524}
 525
 526int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio, u64 phy_offset,
 527                                   struct page *page, u64 start, u64 end,
 528                                   int mirror)
 529{
 530        u64 found_start;
 531        int found_level;
 532        struct extent_buffer *eb;
 533        struct btrfs_fs_info *fs_info;
 534        u16 csum_size;
 535        int ret = 0;
 536        u8 result[BTRFS_CSUM_SIZE];
 537        int reads_done;
 538
 539        if (!page->private)
 540                goto out;
 541
 542        eb = (struct extent_buffer *)page->private;
 543        fs_info = eb->fs_info;
 544        csum_size = btrfs_super_csum_size(fs_info->super_copy);
 545
 546        /* the pending IO might have been the only thing that kept this buffer
 547         * in memory.  Make sure we have a ref for all this other checks
 548         */
 549        atomic_inc(&eb->refs);
 550
 551        reads_done = atomic_dec_and_test(&eb->io_pages);
 552        if (!reads_done)
 553                goto err;
 554
 555        eb->read_mirror = mirror;
 556        if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
 557                ret = -EIO;
 558                goto err;
 559        }
 560
 561        found_start = btrfs_header_bytenr(eb);
 562        if (found_start != eb->start) {
 563                btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
 564                             eb->start, found_start);
 565                ret = -EIO;
 566                goto err;
 567        }
 568        if (check_tree_block_fsid(eb)) {
 569                btrfs_err_rl(fs_info, "bad fsid on block %llu",
 570                             eb->start);
 571                ret = -EIO;
 572                goto err;
 573        }
 574        found_level = btrfs_header_level(eb);
 575        if (found_level >= BTRFS_MAX_LEVEL) {
 576                btrfs_err(fs_info, "bad tree block level %d on %llu",
 577                          (int)btrfs_header_level(eb), eb->start);
 578                ret = -EIO;
 579                goto err;
 580        }
 581
 582        btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
 583                                       eb, found_level);
 584
 585        csum_tree_block(eb, result);
 586
 587        if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
 588                u8 val[BTRFS_CSUM_SIZE] = { 0 };
 589
 590                read_extent_buffer(eb, &val, 0, csum_size);
 591                btrfs_warn_rl(fs_info,
 592        "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
 593                              fs_info->sb->s_id, eb->start,
 594                              CSUM_FMT_VALUE(csum_size, val),
 595                              CSUM_FMT_VALUE(csum_size, result),
 596                              btrfs_header_level(eb));
 597                ret = -EUCLEAN;
 598                goto err;
 599        }
 600
 601        /*
 602         * If this is a leaf block and it is corrupt, set the corrupt bit so
 603         * that we don't try and read the other copies of this block, just
 604         * return -EIO.
 605         */
 606        if (found_level == 0 && btrfs_check_leaf_full(eb)) {
 607                set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 608                ret = -EIO;
 609        }
 610
 611        if (found_level > 0 && btrfs_check_node(eb))
 612                ret = -EIO;
 613
 614        if (!ret)
 615                set_extent_buffer_uptodate(eb);
 616        else
 617                btrfs_err(fs_info,
 618                          "block=%llu read time tree block corruption detected",
 619                          eb->start);
 620err:
 621        if (reads_done &&
 622            test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 623                btree_readahead_hook(eb, ret);
 624
 625        if (ret) {
 626                /*
 627                 * our io error hook is going to dec the io pages
 628                 * again, we have to make sure it has something
 629                 * to decrement
 630                 */
 631                atomic_inc(&eb->io_pages);
 632                clear_extent_buffer_uptodate(eb);
 633        }
 634        free_extent_buffer(eb);
 635out:
 636        return ret;
 637}
 638
 639static void end_workqueue_bio(struct bio *bio)
 640{
 641        struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
 642        struct btrfs_fs_info *fs_info;
 643        struct btrfs_workqueue *wq;
 644
 645        fs_info = end_io_wq->info;
 646        end_io_wq->status = bio->bi_status;
 647
 648        if (bio_op(bio) == REQ_OP_WRITE) {
 649                if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
 650                        wq = fs_info->endio_meta_write_workers;
 651                else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
 652                        wq = fs_info->endio_freespace_worker;
 653                else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
 654                        wq = fs_info->endio_raid56_workers;
 655                else
 656                        wq = fs_info->endio_write_workers;
 657        } else {
 658                if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
 659                        wq = fs_info->endio_raid56_workers;
 660                else if (end_io_wq->metadata)
 661                        wq = fs_info->endio_meta_workers;
 662                else
 663                        wq = fs_info->endio_workers;
 664        }
 665
 666        btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
 667        btrfs_queue_work(wq, &end_io_wq->work);
 668}
 669
 670blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 671                        enum btrfs_wq_endio_type metadata)
 672{
 673        struct btrfs_end_io_wq *end_io_wq;
 674
 675        end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
 676        if (!end_io_wq)
 677                return BLK_STS_RESOURCE;
 678
 679        end_io_wq->private = bio->bi_private;
 680        end_io_wq->end_io = bio->bi_end_io;
 681        end_io_wq->info = info;
 682        end_io_wq->status = 0;
 683        end_io_wq->bio = bio;
 684        end_io_wq->metadata = metadata;
 685
 686        bio->bi_private = end_io_wq;
 687        bio->bi_end_io = end_workqueue_bio;
 688        return 0;
 689}
 690
 691static void run_one_async_start(struct btrfs_work *work)
 692{
 693        struct async_submit_bio *async;
 694        blk_status_t ret;
 695
 696        async = container_of(work, struct  async_submit_bio, work);
 697        ret = async->submit_bio_start(async->private_data, async->bio,
 698                                      async->bio_offset);
 699        if (ret)
 700                async->status = ret;
 701}
 702
 703/*
 704 * In order to insert checksums into the metadata in large chunks, we wait
 705 * until bio submission time.   All the pages in the bio are checksummed and
 706 * sums are attached onto the ordered extent record.
 707 *
 708 * At IO completion time the csums attached on the ordered extent record are
 709 * inserted into the tree.
 710 */
 711static void run_one_async_done(struct btrfs_work *work)
 712{
 713        struct async_submit_bio *async;
 714        struct inode *inode;
 715        blk_status_t ret;
 716
 717        async = container_of(work, struct  async_submit_bio, work);
 718        inode = async->private_data;
 719
 720        /* If an error occurred we just want to clean up the bio and move on */
 721        if (async->status) {
 722                async->bio->bi_status = async->status;
 723                bio_endio(async->bio);
 724                return;
 725        }
 726
 727        /*
 728         * All of the bios that pass through here are from async helpers.
 729         * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
 730         * This changes nothing when cgroups aren't in use.
 731         */
 732        async->bio->bi_opf |= REQ_CGROUP_PUNT;
 733        ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
 734        if (ret) {
 735                async->bio->bi_status = ret;
 736                bio_endio(async->bio);
 737        }
 738}
 739
 740static void run_one_async_free(struct btrfs_work *work)
 741{
 742        struct async_submit_bio *async;
 743
 744        async = container_of(work, struct  async_submit_bio, work);
 745        kfree(async);
 746}
 747
 748blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
 749                                 int mirror_num, unsigned long bio_flags,
 750                                 u64 bio_offset, void *private_data,
 751                                 extent_submit_bio_start_t *submit_bio_start)
 752{
 753        struct async_submit_bio *async;
 754
 755        async = kmalloc(sizeof(*async), GFP_NOFS);
 756        if (!async)
 757                return BLK_STS_RESOURCE;
 758
 759        async->private_data = private_data;
 760        async->bio = bio;
 761        async->mirror_num = mirror_num;
 762        async->submit_bio_start = submit_bio_start;
 763
 764        btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
 765                        run_one_async_free);
 766
 767        async->bio_offset = bio_offset;
 768
 769        async->status = 0;
 770
 771        if (op_is_sync(bio->bi_opf))
 772                btrfs_set_work_high_priority(&async->work);
 773
 774        btrfs_queue_work(fs_info->workers, &async->work);
 775        return 0;
 776}
 777
 778static blk_status_t btree_csum_one_bio(struct bio *bio)
 779{
 780        struct bio_vec *bvec;
 781        struct btrfs_root *root;
 782        int ret = 0;
 783        struct bvec_iter_all iter_all;
 784
 785        ASSERT(!bio_flagged(bio, BIO_CLONED));
 786        bio_for_each_segment_all(bvec, bio, iter_all) {
 787                root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 788                ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
 789                if (ret)
 790                        break;
 791        }
 792
 793        return errno_to_blk_status(ret);
 794}
 795
 796static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
 797                                             u64 bio_offset)
 798{
 799        /*
 800         * when we're called for a write, we're already in the async
 801         * submission context.  Just jump into btrfs_map_bio
 802         */
 803        return btree_csum_one_bio(bio);
 804}
 805
 806static int check_async_write(struct btrfs_fs_info *fs_info,
 807                             struct btrfs_inode *bi)
 808{
 809        if (atomic_read(&bi->sync_writers))
 810                return 0;
 811        if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
 812                return 0;
 813        return 1;
 814}
 815
 816blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
 817                                       int mirror_num, unsigned long bio_flags)
 818{
 819        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 820        int async = check_async_write(fs_info, BTRFS_I(inode));
 821        blk_status_t ret;
 822
 823        if (bio_op(bio) != REQ_OP_WRITE) {
 824                /*
 825                 * called for a read, do the setup so that checksum validation
 826                 * can happen in the async kernel threads
 827                 */
 828                ret = btrfs_bio_wq_end_io(fs_info, bio,
 829                                          BTRFS_WQ_ENDIO_METADATA);
 830                if (ret)
 831                        goto out_w_error;
 832                ret = btrfs_map_bio(fs_info, bio, mirror_num);
 833        } else if (!async) {
 834                ret = btree_csum_one_bio(bio);
 835                if (ret)
 836                        goto out_w_error;
 837                ret = btrfs_map_bio(fs_info, bio, mirror_num);
 838        } else {
 839                /*
 840                 * kthread helpers are used to submit writes so that
 841                 * checksumming can happen in parallel across all CPUs
 842                 */
 843                ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
 844                                          0, inode, btree_submit_bio_start);
 845        }
 846
 847        if (ret)
 848                goto out_w_error;
 849        return 0;
 850
 851out_w_error:
 852        bio->bi_status = ret;
 853        bio_endio(bio);
 854        return ret;
 855}
 856
 857#ifdef CONFIG_MIGRATION
 858static int btree_migratepage(struct address_space *mapping,
 859                        struct page *newpage, struct page *page,
 860                        enum migrate_mode mode)
 861{
 862        /*
 863         * we can't safely write a btree page from here,
 864         * we haven't done the locking hook
 865         */
 866        if (PageDirty(page))
 867                return -EAGAIN;
 868        /*
 869         * Buffers may be managed in a filesystem specific way.
 870         * We must have no buffers or drop them.
 871         */
 872        if (page_has_private(page) &&
 873            !try_to_release_page(page, GFP_KERNEL))
 874                return -EAGAIN;
 875        return migrate_page(mapping, newpage, page, mode);
 876}
 877#endif
 878
 879
 880static int btree_writepages(struct address_space *mapping,
 881                            struct writeback_control *wbc)
 882{
 883        struct btrfs_fs_info *fs_info;
 884        int ret;
 885
 886        if (wbc->sync_mode == WB_SYNC_NONE) {
 887
 888                if (wbc->for_kupdate)
 889                        return 0;
 890
 891                fs_info = BTRFS_I(mapping->host)->root->fs_info;
 892                /* this is a bit racy, but that's ok */
 893                ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
 894                                             BTRFS_DIRTY_METADATA_THRESH,
 895                                             fs_info->dirty_metadata_batch);
 896                if (ret < 0)
 897                        return 0;
 898        }
 899        return btree_write_cache_pages(mapping, wbc);
 900}
 901
 902static int btree_releasepage(struct page *page, gfp_t gfp_flags)
 903{
 904        if (PageWriteback(page) || PageDirty(page))
 905                return 0;
 906
 907        return try_release_extent_buffer(page);
 908}
 909
 910static void btree_invalidatepage(struct page *page, unsigned int offset,
 911                                 unsigned int length)
 912{
 913        struct extent_io_tree *tree;
 914        tree = &BTRFS_I(page->mapping->host)->io_tree;
 915        extent_invalidatepage(tree, page, offset);
 916        btree_releasepage(page, GFP_NOFS);
 917        if (PagePrivate(page)) {
 918                btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
 919                           "page private not zero on page %llu",
 920                           (unsigned long long)page_offset(page));
 921                detach_page_private(page);
 922        }
 923}
 924
 925static int btree_set_page_dirty(struct page *page)
 926{
 927#ifdef DEBUG
 928        struct extent_buffer *eb;
 929
 930        BUG_ON(!PagePrivate(page));
 931        eb = (struct extent_buffer *)page->private;
 932        BUG_ON(!eb);
 933        BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
 934        BUG_ON(!atomic_read(&eb->refs));
 935        btrfs_assert_tree_locked(eb);
 936#endif
 937        return __set_page_dirty_nobuffers(page);
 938}
 939
 940static const struct address_space_operations btree_aops = {
 941        .writepages     = btree_writepages,
 942        .releasepage    = btree_releasepage,
 943        .invalidatepage = btree_invalidatepage,
 944#ifdef CONFIG_MIGRATION
 945        .migratepage    = btree_migratepage,
 946#endif
 947        .set_page_dirty = btree_set_page_dirty,
 948};
 949
 950void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
 951{
 952        struct extent_buffer *buf = NULL;
 953        int ret;
 954
 955        buf = btrfs_find_create_tree_block(fs_info, bytenr);
 956        if (IS_ERR(buf))
 957                return;
 958
 959        ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
 960        if (ret < 0)
 961                free_extent_buffer_stale(buf);
 962        else
 963                free_extent_buffer(buf);
 964}
 965
 966struct extent_buffer *btrfs_find_create_tree_block(
 967                                                struct btrfs_fs_info *fs_info,
 968                                                u64 bytenr)
 969{
 970        if (btrfs_is_testing(fs_info))
 971                return alloc_test_extent_buffer(fs_info, bytenr);
 972        return alloc_extent_buffer(fs_info, bytenr);
 973}
 974
 975/*
 976 * Read tree block at logical address @bytenr and do variant basic but critical
 977 * verification.
 978 *
 979 * @parent_transid:     expected transid of this tree block, skip check if 0
 980 * @level:              expected level, mandatory check
 981 * @first_key:          expected key in slot 0, skip check if NULL
 982 */
 983struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
 984                                      u64 parent_transid, int level,
 985                                      struct btrfs_key *first_key)
 986{
 987        struct extent_buffer *buf = NULL;
 988        int ret;
 989
 990        buf = btrfs_find_create_tree_block(fs_info, bytenr);
 991        if (IS_ERR(buf))
 992                return buf;
 993
 994        ret = btree_read_extent_buffer_pages(buf, parent_transid,
 995                                             level, first_key);
 996        if (ret) {
 997                free_extent_buffer_stale(buf);
 998                return ERR_PTR(ret);
 999        }
1000        return buf;
1001
1002}
1003
1004void btrfs_clean_tree_block(struct extent_buffer *buf)
1005{
1006        struct btrfs_fs_info *fs_info = buf->fs_info;
1007        if (btrfs_header_generation(buf) ==
1008            fs_info->running_transaction->transid) {
1009                btrfs_assert_tree_locked(buf);
1010
1011                if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1012                        percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1013                                                 -buf->len,
1014                                                 fs_info->dirty_metadata_batch);
1015                        /* ugh, clear_extent_buffer_dirty needs to lock the page */
1016                        btrfs_set_lock_blocking_write(buf);
1017                        clear_extent_buffer_dirty(buf);
1018                }
1019        }
1020}
1021
1022static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1023                         u64 objectid)
1024{
1025        bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1026        root->fs_info = fs_info;
1027        root->node = NULL;
1028        root->commit_root = NULL;
1029        root->state = 0;
1030        root->orphan_cleanup_state = 0;
1031
1032        root->last_trans = 0;
1033        root->highest_objectid = 0;
1034        root->nr_delalloc_inodes = 0;
1035        root->nr_ordered_extents = 0;
1036        root->inode_tree = RB_ROOT;
1037        INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1038        root->block_rsv = NULL;
1039
1040        INIT_LIST_HEAD(&root->dirty_list);
1041        INIT_LIST_HEAD(&root->root_list);
1042        INIT_LIST_HEAD(&root->delalloc_inodes);
1043        INIT_LIST_HEAD(&root->delalloc_root);
1044        INIT_LIST_HEAD(&root->ordered_extents);
1045        INIT_LIST_HEAD(&root->ordered_root);
1046        INIT_LIST_HEAD(&root->reloc_dirty_list);
1047        INIT_LIST_HEAD(&root->logged_list[0]);
1048        INIT_LIST_HEAD(&root->logged_list[1]);
1049        spin_lock_init(&root->inode_lock);
1050        spin_lock_init(&root->delalloc_lock);
1051        spin_lock_init(&root->ordered_extent_lock);
1052        spin_lock_init(&root->accounting_lock);
1053        spin_lock_init(&root->log_extents_lock[0]);
1054        spin_lock_init(&root->log_extents_lock[1]);
1055        spin_lock_init(&root->qgroup_meta_rsv_lock);
1056        mutex_init(&root->objectid_mutex);
1057        mutex_init(&root->log_mutex);
1058        mutex_init(&root->ordered_extent_mutex);
1059        mutex_init(&root->delalloc_mutex);
1060        init_waitqueue_head(&root->qgroup_flush_wait);
1061        init_waitqueue_head(&root->log_writer_wait);
1062        init_waitqueue_head(&root->log_commit_wait[0]);
1063        init_waitqueue_head(&root->log_commit_wait[1]);
1064        INIT_LIST_HEAD(&root->log_ctxs[0]);
1065        INIT_LIST_HEAD(&root->log_ctxs[1]);
1066        atomic_set(&root->log_commit[0], 0);
1067        atomic_set(&root->log_commit[1], 0);
1068        atomic_set(&root->log_writers, 0);
1069        atomic_set(&root->log_batch, 0);
1070        refcount_set(&root->refs, 1);
1071        atomic_set(&root->snapshot_force_cow, 0);
1072        atomic_set(&root->nr_swapfiles, 0);
1073        root->log_transid = 0;
1074        root->log_transid_committed = -1;
1075        root->last_log_commit = 0;
1076        if (!dummy) {
1077                extent_io_tree_init(fs_info, &root->dirty_log_pages,
1078                                    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1079                extent_io_tree_init(fs_info, &root->log_csum_range,
1080                                    IO_TREE_LOG_CSUM_RANGE, NULL);
1081        }
1082
1083        memset(&root->root_key, 0, sizeof(root->root_key));
1084        memset(&root->root_item, 0, sizeof(root->root_item));
1085        memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1086        root->root_key.objectid = objectid;
1087        root->anon_dev = 0;
1088
1089        spin_lock_init(&root->root_item_lock);
1090        btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1091#ifdef CONFIG_BTRFS_DEBUG
1092        INIT_LIST_HEAD(&root->leak_list);
1093        spin_lock(&fs_info->fs_roots_radix_lock);
1094        list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1095        spin_unlock(&fs_info->fs_roots_radix_lock);
1096#endif
1097}
1098
1099static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1100                                           u64 objectid, gfp_t flags)
1101{
1102        struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1103        if (root)
1104                __setup_root(root, fs_info, objectid);
1105        return root;
1106}
1107
1108#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1109/* Should only be used by the testing infrastructure */
1110struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1111{
1112        struct btrfs_root *root;
1113
1114        if (!fs_info)
1115                return ERR_PTR(-EINVAL);
1116
1117        root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1118        if (!root)
1119                return ERR_PTR(-ENOMEM);
1120
1121        /* We don't use the stripesize in selftest, set it as sectorsize */
1122        root->alloc_bytenr = 0;
1123
1124        return root;
1125}
1126#endif
1127
1128struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1129                                     u64 objectid)
1130{
1131        struct btrfs_fs_info *fs_info = trans->fs_info;
1132        struct extent_buffer *leaf;
1133        struct btrfs_root *tree_root = fs_info->tree_root;
1134        struct btrfs_root *root;
1135        struct btrfs_key key;
1136        unsigned int nofs_flag;
1137        int ret = 0;
1138
1139        /*
1140         * We're holding a transaction handle, so use a NOFS memory allocation
1141         * context to avoid deadlock if reclaim happens.
1142         */
1143        nofs_flag = memalloc_nofs_save();
1144        root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1145        memalloc_nofs_restore(nofs_flag);
1146        if (!root)
1147                return ERR_PTR(-ENOMEM);
1148
1149        root->root_key.objectid = objectid;
1150        root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1151        root->root_key.offset = 0;
1152
1153        leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1154                                      BTRFS_NESTING_NORMAL);
1155        if (IS_ERR(leaf)) {
1156                ret = PTR_ERR(leaf);
1157                leaf = NULL;
1158                goto fail;
1159        }
1160
1161        root->node = leaf;
1162        btrfs_mark_buffer_dirty(leaf);
1163
1164        root->commit_root = btrfs_root_node(root);
1165        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1166
1167        root->root_item.flags = 0;
1168        root->root_item.byte_limit = 0;
1169        btrfs_set_root_bytenr(&root->root_item, leaf->start);
1170        btrfs_set_root_generation(&root->root_item, trans->transid);
1171        btrfs_set_root_level(&root->root_item, 0);
1172        btrfs_set_root_refs(&root->root_item, 1);
1173        btrfs_set_root_used(&root->root_item, leaf->len);
1174        btrfs_set_root_last_snapshot(&root->root_item, 0);
1175        btrfs_set_root_dirid(&root->root_item, 0);
1176        if (is_fstree(objectid))
1177                generate_random_guid(root->root_item.uuid);
1178        else
1179                export_guid(root->root_item.uuid, &guid_null);
1180        root->root_item.drop_level = 0;
1181
1182        key.objectid = objectid;
1183        key.type = BTRFS_ROOT_ITEM_KEY;
1184        key.offset = 0;
1185        ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1186        if (ret)
1187                goto fail;
1188
1189        btrfs_tree_unlock(leaf);
1190
1191        return root;
1192
1193fail:
1194        if (leaf)
1195                btrfs_tree_unlock(leaf);
1196        btrfs_put_root(root);
1197
1198        return ERR_PTR(ret);
1199}
1200
1201static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1202                                         struct btrfs_fs_info *fs_info)
1203{
1204        struct btrfs_root *root;
1205        struct extent_buffer *leaf;
1206
1207        root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1208        if (!root)
1209                return ERR_PTR(-ENOMEM);
1210
1211        root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1212        root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1213        root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1214
1215        /*
1216         * DON'T set SHAREABLE bit for log trees.
1217         *
1218         * Log trees are not exposed to user space thus can't be snapshotted,
1219         * and they go away before a real commit is actually done.
1220         *
1221         * They do store pointers to file data extents, and those reference
1222         * counts still get updated (along with back refs to the log tree).
1223         */
1224
1225        leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1226                        NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1227        if (IS_ERR(leaf)) {
1228                btrfs_put_root(root);
1229                return ERR_CAST(leaf);
1230        }
1231
1232        root->node = leaf;
1233
1234        btrfs_mark_buffer_dirty(root->node);
1235        btrfs_tree_unlock(root->node);
1236        return root;
1237}
1238
1239int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1240                             struct btrfs_fs_info *fs_info)
1241{
1242        struct btrfs_root *log_root;
1243
1244        log_root = alloc_log_tree(trans, fs_info);
1245        if (IS_ERR(log_root))
1246                return PTR_ERR(log_root);
1247        WARN_ON(fs_info->log_root_tree);
1248        fs_info->log_root_tree = log_root;
1249        return 0;
1250}
1251
1252int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1253                       struct btrfs_root *root)
1254{
1255        struct btrfs_fs_info *fs_info = root->fs_info;
1256        struct btrfs_root *log_root;
1257        struct btrfs_inode_item *inode_item;
1258
1259        log_root = alloc_log_tree(trans, fs_info);
1260        if (IS_ERR(log_root))
1261                return PTR_ERR(log_root);
1262
1263        log_root->last_trans = trans->transid;
1264        log_root->root_key.offset = root->root_key.objectid;
1265
1266        inode_item = &log_root->root_item.inode;
1267        btrfs_set_stack_inode_generation(inode_item, 1);
1268        btrfs_set_stack_inode_size(inode_item, 3);
1269        btrfs_set_stack_inode_nlink(inode_item, 1);
1270        btrfs_set_stack_inode_nbytes(inode_item,
1271                                     fs_info->nodesize);
1272        btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1273
1274        btrfs_set_root_node(&log_root->root_item, log_root->node);
1275
1276        WARN_ON(root->log_root);
1277        root->log_root = log_root;
1278        root->log_transid = 0;
1279        root->log_transid_committed = -1;
1280        root->last_log_commit = 0;
1281        return 0;
1282}
1283
1284static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1285                                              struct btrfs_path *path,
1286                                              struct btrfs_key *key)
1287{
1288        struct btrfs_root *root;
1289        struct btrfs_fs_info *fs_info = tree_root->fs_info;
1290        u64 generation;
1291        int ret;
1292        int level;
1293
1294        root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1295        if (!root)
1296                return ERR_PTR(-ENOMEM);
1297
1298        ret = btrfs_find_root(tree_root, key, path,
1299                              &root->root_item, &root->root_key);
1300        if (ret) {
1301                if (ret > 0)
1302                        ret = -ENOENT;
1303                goto fail;
1304        }
1305
1306        generation = btrfs_root_generation(&root->root_item);
1307        level = btrfs_root_level(&root->root_item);
1308        root->node = read_tree_block(fs_info,
1309                                     btrfs_root_bytenr(&root->root_item),
1310                                     generation, level, NULL);
1311        if (IS_ERR(root->node)) {
1312                ret = PTR_ERR(root->node);
1313                root->node = NULL;
1314                goto fail;
1315        } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1316                ret = -EIO;
1317                goto fail;
1318        }
1319        root->commit_root = btrfs_root_node(root);
1320        return root;
1321fail:
1322        btrfs_put_root(root);
1323        return ERR_PTR(ret);
1324}
1325
1326struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1327                                        struct btrfs_key *key)
1328{
1329        struct btrfs_root *root;
1330        struct btrfs_path *path;
1331
1332        path = btrfs_alloc_path();
1333        if (!path)
1334                return ERR_PTR(-ENOMEM);
1335        root = read_tree_root_path(tree_root, path, key);
1336        btrfs_free_path(path);
1337
1338        return root;
1339}
1340
1341/*
1342 * Initialize subvolume root in-memory structure
1343 *
1344 * @anon_dev:   anonymous device to attach to the root, if zero, allocate new
1345 */
1346static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1347{
1348        int ret;
1349        unsigned int nofs_flag;
1350
1351        root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1352        root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1353                                        GFP_NOFS);
1354        if (!root->free_ino_pinned || !root->free_ino_ctl) {
1355                ret = -ENOMEM;
1356                goto fail;
1357        }
1358
1359        /*
1360         * We might be called under a transaction (e.g. indirect backref
1361         * resolution) which could deadlock if it triggers memory reclaim
1362         */
1363        nofs_flag = memalloc_nofs_save();
1364        ret = btrfs_drew_lock_init(&root->snapshot_lock);
1365        memalloc_nofs_restore(nofs_flag);
1366        if (ret)
1367                goto fail;
1368
1369        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1370            root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1371                set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1372                btrfs_check_and_init_root_item(&root->root_item);
1373        }
1374
1375        btrfs_init_free_ino_ctl(root);
1376        spin_lock_init(&root->ino_cache_lock);
1377        init_waitqueue_head(&root->ino_cache_wait);
1378
1379        /*
1380         * Don't assign anonymous block device to roots that are not exposed to
1381         * userspace, the id pool is limited to 1M
1382         */
1383        if (is_fstree(root->root_key.objectid) &&
1384            btrfs_root_refs(&root->root_item) > 0) {
1385                if (!anon_dev) {
1386                        ret = get_anon_bdev(&root->anon_dev);
1387                        if (ret)
1388                                goto fail;
1389                } else {
1390                        root->anon_dev = anon_dev;
1391                }
1392        }
1393
1394        mutex_lock(&root->objectid_mutex);
1395        ret = btrfs_find_highest_objectid(root,
1396                                        &root->highest_objectid);
1397        if (ret) {
1398                mutex_unlock(&root->objectid_mutex);
1399                goto fail;
1400        }
1401
1402        ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1403
1404        mutex_unlock(&root->objectid_mutex);
1405
1406        return 0;
1407fail:
1408        /* The caller is responsible to call btrfs_free_fs_root */
1409        return ret;
1410}
1411
1412static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1413                                               u64 root_id)
1414{
1415        struct btrfs_root *root;
1416
1417        spin_lock(&fs_info->fs_roots_radix_lock);
1418        root = radix_tree_lookup(&fs_info->fs_roots_radix,
1419                                 (unsigned long)root_id);
1420        if (root)
1421                root = btrfs_grab_root(root);
1422        spin_unlock(&fs_info->fs_roots_radix_lock);
1423        return root;
1424}
1425
1426static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1427                                                u64 objectid)
1428{
1429        if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1430                return btrfs_grab_root(fs_info->tree_root);
1431        if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1432                return btrfs_grab_root(fs_info->extent_root);
1433        if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1434                return btrfs_grab_root(fs_info->chunk_root);
1435        if (objectid == BTRFS_DEV_TREE_OBJECTID)
1436                return btrfs_grab_root(fs_info->dev_root);
1437        if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1438                return btrfs_grab_root(fs_info->csum_root);
1439        if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1440                return btrfs_grab_root(fs_info->quota_root) ?
1441                        fs_info->quota_root : ERR_PTR(-ENOENT);
1442        if (objectid == BTRFS_UUID_TREE_OBJECTID)
1443                return btrfs_grab_root(fs_info->uuid_root) ?
1444                        fs_info->uuid_root : ERR_PTR(-ENOENT);
1445        if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1446                return btrfs_grab_root(fs_info->free_space_root) ?
1447                        fs_info->free_space_root : ERR_PTR(-ENOENT);
1448        return NULL;
1449}
1450
1451int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1452                         struct btrfs_root *root)
1453{
1454        int ret;
1455
1456        ret = radix_tree_preload(GFP_NOFS);
1457        if (ret)
1458                return ret;
1459
1460        spin_lock(&fs_info->fs_roots_radix_lock);
1461        ret = radix_tree_insert(&fs_info->fs_roots_radix,
1462                                (unsigned long)root->root_key.objectid,
1463                                root);
1464        if (ret == 0) {
1465                btrfs_grab_root(root);
1466                set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1467        }
1468        spin_unlock(&fs_info->fs_roots_radix_lock);
1469        radix_tree_preload_end();
1470
1471        return ret;
1472}
1473
1474void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1475{
1476#ifdef CONFIG_BTRFS_DEBUG
1477        struct btrfs_root *root;
1478
1479        while (!list_empty(&fs_info->allocated_roots)) {
1480                char buf[BTRFS_ROOT_NAME_BUF_LEN];
1481
1482                root = list_first_entry(&fs_info->allocated_roots,
1483                                        struct btrfs_root, leak_list);
1484                btrfs_err(fs_info, "leaked root %s refcount %d",
1485                          btrfs_root_name(root->root_key.objectid, buf),
1486                          refcount_read(&root->refs));
1487                while (refcount_read(&root->refs) > 1)
1488                        btrfs_put_root(root);
1489                btrfs_put_root(root);
1490        }
1491#endif
1492}
1493
1494void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1495{
1496        percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1497        percpu_counter_destroy(&fs_info->delalloc_bytes);
1498        percpu_counter_destroy(&fs_info->dio_bytes);
1499        percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1500        btrfs_free_csum_hash(fs_info);
1501        btrfs_free_stripe_hash_table(fs_info);
1502        btrfs_free_ref_cache(fs_info);
1503        kfree(fs_info->balance_ctl);
1504        kfree(fs_info->delayed_root);
1505        btrfs_put_root(fs_info->extent_root);
1506        btrfs_put_root(fs_info->tree_root);
1507        btrfs_put_root(fs_info->chunk_root);
1508        btrfs_put_root(fs_info->dev_root);
1509        btrfs_put_root(fs_info->csum_root);
1510        btrfs_put_root(fs_info->quota_root);
1511        btrfs_put_root(fs_info->uuid_root);
1512        btrfs_put_root(fs_info->free_space_root);
1513        btrfs_put_root(fs_info->fs_root);
1514        btrfs_put_root(fs_info->data_reloc_root);
1515        btrfs_check_leaked_roots(fs_info);
1516        btrfs_extent_buffer_leak_debug_check(fs_info);
1517        kfree(fs_info->super_copy);
1518        kfree(fs_info->super_for_commit);
1519        kvfree(fs_info);
1520}
1521
1522
1523/*
1524 * Get an in-memory reference of a root structure.
1525 *
1526 * For essential trees like root/extent tree, we grab it from fs_info directly.
1527 * For subvolume trees, we check the cached filesystem roots first. If not
1528 * found, then read it from disk and add it to cached fs roots.
1529 *
1530 * Caller should release the root by calling btrfs_put_root() after the usage.
1531 *
1532 * NOTE: Reloc and log trees can't be read by this function as they share the
1533 *       same root objectid.
1534 *
1535 * @objectid:   root id
1536 * @anon_dev:   preallocated anonymous block device number for new roots,
1537 *              pass 0 for new allocation.
1538 * @check_ref:  whether to check root item references, If true, return -ENOENT
1539 *              for orphan roots
1540 */
1541static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1542                                             u64 objectid, dev_t anon_dev,
1543                                             bool check_ref)
1544{
1545        struct btrfs_root *root;
1546        struct btrfs_path *path;
1547        struct btrfs_key key;
1548        int ret;
1549
1550        root = btrfs_get_global_root(fs_info, objectid);
1551        if (root)
1552                return root;
1553again:
1554        root = btrfs_lookup_fs_root(fs_info, objectid);
1555        if (root) {
1556                /* Shouldn't get preallocated anon_dev for cached roots */
1557                ASSERT(!anon_dev);
1558                if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1559                        btrfs_put_root(root);
1560                        return ERR_PTR(-ENOENT);
1561                }
1562                return root;
1563        }
1564
1565        key.objectid = objectid;
1566        key.type = BTRFS_ROOT_ITEM_KEY;
1567        key.offset = (u64)-1;
1568        root = btrfs_read_tree_root(fs_info->tree_root, &key);
1569        if (IS_ERR(root))
1570                return root;
1571
1572        if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1573                ret = -ENOENT;
1574                goto fail;
1575        }
1576
1577        ret = btrfs_init_fs_root(root, anon_dev);
1578        if (ret)
1579                goto fail;
1580
1581        path = btrfs_alloc_path();
1582        if (!path) {
1583                ret = -ENOMEM;
1584                goto fail;
1585        }
1586        key.objectid = BTRFS_ORPHAN_OBJECTID;
1587        key.type = BTRFS_ORPHAN_ITEM_KEY;
1588        key.offset = objectid;
1589
1590        ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1591        btrfs_free_path(path);
1592        if (ret < 0)
1593                goto fail;
1594        if (ret == 0)
1595                set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1596
1597        ret = btrfs_insert_fs_root(fs_info, root);
1598        if (ret) {
1599                btrfs_put_root(root);
1600                if (ret == -EEXIST)
1601                        goto again;
1602                goto fail;
1603        }
1604        return root;
1605fail:
1606        btrfs_put_root(root);
1607        return ERR_PTR(ret);
1608}
1609
1610/*
1611 * Get in-memory reference of a root structure
1612 *
1613 * @objectid:   tree objectid
1614 * @check_ref:  if set, verify that the tree exists and the item has at least
1615 *              one reference
1616 */
1617struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1618                                     u64 objectid, bool check_ref)
1619{
1620        return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1621}
1622
1623/*
1624 * Get in-memory reference of a root structure, created as new, optionally pass
1625 * the anonymous block device id
1626 *
1627 * @objectid:   tree objectid
1628 * @anon_dev:   if zero, allocate a new anonymous block device or use the
1629 *              parameter value
1630 */
1631struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1632                                         u64 objectid, dev_t anon_dev)
1633{
1634        return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1635}
1636
1637/*
1638 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1639 * @fs_info:    the fs_info
1640 * @objectid:   the objectid we need to lookup
1641 *
1642 * This is exclusively used for backref walking, and exists specifically because
1643 * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1644 * creation time, which means we may have to read the tree_root in order to look
1645 * up a fs root that is not in memory.  If the root is not in memory we will
1646 * read the tree root commit root and look up the fs root from there.  This is a
1647 * temporary root, it will not be inserted into the radix tree as it doesn't
1648 * have the most uptodate information, it'll simply be discarded once the
1649 * backref code is finished using the root.
1650 */
1651struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1652                                                 struct btrfs_path *path,
1653                                                 u64 objectid)
1654{
1655        struct btrfs_root *root;
1656        struct btrfs_key key;
1657
1658        ASSERT(path->search_commit_root && path->skip_locking);
1659
1660        /*
1661         * This can return -ENOENT if we ask for a root that doesn't exist, but
1662         * since this is called via the backref walking code we won't be looking
1663         * up a root that doesn't exist, unless there's corruption.  So if root
1664         * != NULL just return it.
1665         */
1666        root = btrfs_get_global_root(fs_info, objectid);
1667        if (root)
1668                return root;
1669
1670        root = btrfs_lookup_fs_root(fs_info, objectid);
1671        if (root)
1672                return root;
1673
1674        key.objectid = objectid;
1675        key.type = BTRFS_ROOT_ITEM_KEY;
1676        key.offset = (u64)-1;
1677        root = read_tree_root_path(fs_info->tree_root, path, &key);
1678        btrfs_release_path(path);
1679
1680        return root;
1681}
1682
1683/*
1684 * called by the kthread helper functions to finally call the bio end_io
1685 * functions.  This is where read checksum verification actually happens
1686 */
1687static void end_workqueue_fn(struct btrfs_work *work)
1688{
1689        struct bio *bio;
1690        struct btrfs_end_io_wq *end_io_wq;
1691
1692        end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1693        bio = end_io_wq->bio;
1694
1695        bio->bi_status = end_io_wq->status;
1696        bio->bi_private = end_io_wq->private;
1697        bio->bi_end_io = end_io_wq->end_io;
1698        bio_endio(bio);
1699        kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1700}
1701
1702static int cleaner_kthread(void *arg)
1703{
1704        struct btrfs_root *root = arg;
1705        struct btrfs_fs_info *fs_info = root->fs_info;
1706        int again;
1707
1708        while (1) {
1709                again = 0;
1710
1711                set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1712
1713                /* Make the cleaner go to sleep early. */
1714                if (btrfs_need_cleaner_sleep(fs_info))
1715                        goto sleep;
1716
1717                /*
1718                 * Do not do anything if we might cause open_ctree() to block
1719                 * before we have finished mounting the filesystem.
1720                 */
1721                if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1722                        goto sleep;
1723
1724                if (!mutex_trylock(&fs_info->cleaner_mutex))
1725                        goto sleep;
1726
1727                /*
1728                 * Avoid the problem that we change the status of the fs
1729                 * during the above check and trylock.
1730                 */
1731                if (btrfs_need_cleaner_sleep(fs_info)) {
1732                        mutex_unlock(&fs_info->cleaner_mutex);
1733                        goto sleep;
1734                }
1735
1736                btrfs_run_delayed_iputs(fs_info);
1737
1738                again = btrfs_clean_one_deleted_snapshot(root);
1739                mutex_unlock(&fs_info->cleaner_mutex);
1740
1741                /*
1742                 * The defragger has dealt with the R/O remount and umount,
1743                 * needn't do anything special here.
1744                 */
1745                btrfs_run_defrag_inodes(fs_info);
1746
1747                /*
1748                 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1749                 * with relocation (btrfs_relocate_chunk) and relocation
1750                 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1751                 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1752                 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1753                 * unused block groups.
1754                 */
1755                btrfs_delete_unused_bgs(fs_info);
1756sleep:
1757                clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1758                if (kthread_should_park())
1759                        kthread_parkme();
1760                if (kthread_should_stop())
1761                        return 0;
1762                if (!again) {
1763                        set_current_state(TASK_INTERRUPTIBLE);
1764                        schedule();
1765                        __set_current_state(TASK_RUNNING);
1766                }
1767        }
1768}
1769
1770static int transaction_kthread(void *arg)
1771{
1772        struct btrfs_root *root = arg;
1773        struct btrfs_fs_info *fs_info = root->fs_info;
1774        struct btrfs_trans_handle *trans;
1775        struct btrfs_transaction *cur;
1776        u64 transid;
1777        time64_t now;
1778        unsigned long delay;
1779        bool cannot_commit;
1780
1781        do {
1782                cannot_commit = false;
1783                delay = HZ * fs_info->commit_interval;
1784                mutex_lock(&fs_info->transaction_kthread_mutex);
1785
1786                spin_lock(&fs_info->trans_lock);
1787                cur = fs_info->running_transaction;
1788                if (!cur) {
1789                        spin_unlock(&fs_info->trans_lock);
1790                        goto sleep;
1791                }
1792
1793                now = ktime_get_seconds();
1794                if (cur->state < TRANS_STATE_COMMIT_START &&
1795                    (now < cur->start_time ||
1796                     now - cur->start_time < fs_info->commit_interval)) {
1797                        spin_unlock(&fs_info->trans_lock);
1798                        delay = HZ * 5;
1799                        goto sleep;
1800                }
1801                transid = cur->transid;
1802                spin_unlock(&fs_info->trans_lock);
1803
1804                /* If the file system is aborted, this will always fail. */
1805                trans = btrfs_attach_transaction(root);
1806                if (IS_ERR(trans)) {
1807                        if (PTR_ERR(trans) != -ENOENT)
1808                                cannot_commit = true;
1809                        goto sleep;
1810                }
1811                if (transid == trans->transid) {
1812                        btrfs_commit_transaction(trans);
1813                } else {
1814                        btrfs_end_transaction(trans);
1815                }
1816sleep:
1817                wake_up_process(fs_info->cleaner_kthread);
1818                mutex_unlock(&fs_info->transaction_kthread_mutex);
1819
1820                if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1821                                      &fs_info->fs_state)))
1822                        btrfs_cleanup_transaction(fs_info);
1823                if (!kthread_should_stop() &&
1824                                (!btrfs_transaction_blocked(fs_info) ||
1825                                 cannot_commit))
1826                        schedule_timeout_interruptible(delay);
1827        } while (!kthread_should_stop());
1828        return 0;
1829}
1830
1831/*
1832 * This will find the highest generation in the array of root backups.  The
1833 * index of the highest array is returned, or -EINVAL if we can't find
1834 * anything.
1835 *
1836 * We check to make sure the array is valid by comparing the
1837 * generation of the latest  root in the array with the generation
1838 * in the super block.  If they don't match we pitch it.
1839 */
1840static int find_newest_super_backup(struct btrfs_fs_info *info)
1841{
1842        const u64 newest_gen = btrfs_super_generation(info->super_copy);
1843        u64 cur;
1844        struct btrfs_root_backup *root_backup;
1845        int i;
1846
1847        for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1848                root_backup = info->super_copy->super_roots + i;
1849                cur = btrfs_backup_tree_root_gen(root_backup);
1850                if (cur == newest_gen)
1851                        return i;
1852        }
1853
1854        return -EINVAL;
1855}
1856
1857/*
1858 * copy all the root pointers into the super backup array.
1859 * this will bump the backup pointer by one when it is
1860 * done
1861 */
1862static void backup_super_roots(struct btrfs_fs_info *info)
1863{
1864        const int next_backup = info->backup_root_index;
1865        struct btrfs_root_backup *root_backup;
1866
1867        root_backup = info->super_for_commit->super_roots + next_backup;
1868
1869        /*
1870         * make sure all of our padding and empty slots get zero filled
1871         * regardless of which ones we use today
1872         */
1873        memset(root_backup, 0, sizeof(*root_backup));
1874
1875        info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1876
1877        btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1878        btrfs_set_backup_tree_root_gen(root_backup,
1879                               btrfs_header_generation(info->tree_root->node));
1880
1881        btrfs_set_backup_tree_root_level(root_backup,
1882                               btrfs_header_level(info->tree_root->node));
1883
1884        btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1885        btrfs_set_backup_chunk_root_gen(root_backup,
1886                               btrfs_header_generation(info->chunk_root->node));
1887        btrfs_set_backup_chunk_root_level(root_backup,
1888                               btrfs_header_level(info->chunk_root->node));
1889
1890        btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1891        btrfs_set_backup_extent_root_gen(root_backup,
1892                               btrfs_header_generation(info->extent_root->node));
1893        btrfs_set_backup_extent_root_level(root_backup,
1894                               btrfs_header_level(info->extent_root->node));
1895
1896        /*
1897         * we might commit during log recovery, which happens before we set
1898         * the fs_root.  Make sure it is valid before we fill it in.
1899         */
1900        if (info->fs_root && info->fs_root->node) {
1901                btrfs_set_backup_fs_root(root_backup,
1902                                         info->fs_root->node->start);
1903                btrfs_set_backup_fs_root_gen(root_backup,
1904                               btrfs_header_generation(info->fs_root->node));
1905                btrfs_set_backup_fs_root_level(root_backup,
1906                               btrfs_header_level(info->fs_root->node));
1907        }
1908
1909        btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1910        btrfs_set_backup_dev_root_gen(root_backup,
1911                               btrfs_header_generation(info->dev_root->node));
1912        btrfs_set_backup_dev_root_level(root_backup,
1913                                       btrfs_header_level(info->dev_root->node));
1914
1915        btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1916        btrfs_set_backup_csum_root_gen(root_backup,
1917                               btrfs_header_generation(info->csum_root->node));
1918        btrfs_set_backup_csum_root_level(root_backup,
1919                               btrfs_header_level(info->csum_root->node));
1920
1921        btrfs_set_backup_total_bytes(root_backup,
1922                             btrfs_super_total_bytes(info->super_copy));
1923        btrfs_set_backup_bytes_used(root_backup,
1924                             btrfs_super_bytes_used(info->super_copy));
1925        btrfs_set_backup_num_devices(root_backup,
1926                             btrfs_super_num_devices(info->super_copy));
1927
1928        /*
1929         * if we don't copy this out to the super_copy, it won't get remembered
1930         * for the next commit
1931         */
1932        memcpy(&info->super_copy->super_roots,
1933               &info->super_for_commit->super_roots,
1934               sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1935}
1936
1937/*
1938 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1939 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1940 *
1941 * fs_info - filesystem whose backup roots need to be read
1942 * priority - priority of backup root required
1943 *
1944 * Returns backup root index on success and -EINVAL otherwise.
1945 */
1946static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1947{
1948        int backup_index = find_newest_super_backup(fs_info);
1949        struct btrfs_super_block *super = fs_info->super_copy;
1950        struct btrfs_root_backup *root_backup;
1951
1952        if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1953                if (priority == 0)
1954                        return backup_index;
1955
1956                backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1957                backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1958        } else {
1959                return -EINVAL;
1960        }
1961
1962        root_backup = super->super_roots + backup_index;
1963
1964        btrfs_set_super_generation(super,
1965                                   btrfs_backup_tree_root_gen(root_backup));
1966        btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1967        btrfs_set_super_root_level(super,
1968                                   btrfs_backup_tree_root_level(root_backup));
1969        btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1970
1971        /*
1972         * Fixme: the total bytes and num_devices need to match or we should
1973         * need a fsck
1974         */
1975        btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1976        btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1977
1978        return backup_index;
1979}
1980
1981/* helper to cleanup workers */
1982static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1983{
1984        btrfs_destroy_workqueue(fs_info->fixup_workers);
1985        btrfs_destroy_workqueue(fs_info->delalloc_workers);
1986        btrfs_destroy_workqueue(fs_info->workers);
1987        btrfs_destroy_workqueue(fs_info->endio_workers);
1988        btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1989        btrfs_destroy_workqueue(fs_info->rmw_workers);
1990        btrfs_destroy_workqueue(fs_info->endio_write_workers);
1991        btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1992        btrfs_destroy_workqueue(fs_info->delayed_workers);
1993        btrfs_destroy_workqueue(fs_info->caching_workers);
1994        btrfs_destroy_workqueue(fs_info->readahead_workers);
1995        btrfs_destroy_workqueue(fs_info->flush_workers);
1996        btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1997        if (fs_info->discard_ctl.discard_workers)
1998                destroy_workqueue(fs_info->discard_ctl.discard_workers);
1999        /*
2000         * Now that all other work queues are destroyed, we can safely destroy
2001         * the queues used for metadata I/O, since tasks from those other work
2002         * queues can do metadata I/O operations.
2003         */
2004        btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2005        btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2006}
2007
2008static void free_root_extent_buffers(struct btrfs_root *root)
2009{
2010        if (root) {
2011                free_extent_buffer(root->node);
2012                free_extent_buffer(root->commit_root);
2013                root->node = NULL;
2014                root->commit_root = NULL;
2015        }
2016}
2017
2018/* helper to cleanup tree roots */
2019static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2020{
2021        free_root_extent_buffers(info->tree_root);
2022
2023        free_root_extent_buffers(info->dev_root);
2024        free_root_extent_buffers(info->extent_root);
2025        free_root_extent_buffers(info->csum_root);
2026        free_root_extent_buffers(info->quota_root);
2027        free_root_extent_buffers(info->uuid_root);
2028        free_root_extent_buffers(info->fs_root);
2029        free_root_extent_buffers(info->data_reloc_root);
2030        if (free_chunk_root)
2031                free_root_extent_buffers(info->chunk_root);
2032        free_root_extent_buffers(info->free_space_root);
2033}
2034
2035void btrfs_put_root(struct btrfs_root *root)
2036{
2037        if (!root)
2038                return;
2039
2040        if (refcount_dec_and_test(&root->refs)) {
2041                WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2042                WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2043                if (root->anon_dev)
2044                        free_anon_bdev(root->anon_dev);
2045                btrfs_drew_lock_destroy(&root->snapshot_lock);
2046                free_root_extent_buffers(root);
2047                kfree(root->free_ino_ctl);
2048                kfree(root->free_ino_pinned);
2049#ifdef CONFIG_BTRFS_DEBUG
2050                spin_lock(&root->fs_info->fs_roots_radix_lock);
2051                list_del_init(&root->leak_list);
2052                spin_unlock(&root->fs_info->fs_roots_radix_lock);
2053#endif
2054                kfree(root);
2055        }
2056}
2057
2058void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2059{
2060        int ret;
2061        struct btrfs_root *gang[8];
2062        int i;
2063
2064        while (!list_empty(&fs_info->dead_roots)) {
2065                gang[0] = list_entry(fs_info->dead_roots.next,
2066                                     struct btrfs_root, root_list);
2067                list_del(&gang[0]->root_list);
2068
2069                if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2070                        btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2071                btrfs_put_root(gang[0]);
2072        }
2073
2074        while (1) {
2075                ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2076                                             (void **)gang, 0,
2077                                             ARRAY_SIZE(gang));
2078                if (!ret)
2079                        break;
2080                for (i = 0; i < ret; i++)
2081                        btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2082        }
2083}
2084
2085static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2086{
2087        mutex_init(&fs_info->scrub_lock);
2088        atomic_set(&fs_info->scrubs_running, 0);
2089        atomic_set(&fs_info->scrub_pause_req, 0);
2090        atomic_set(&fs_info->scrubs_paused, 0);
2091        atomic_set(&fs_info->scrub_cancel_req, 0);
2092        init_waitqueue_head(&fs_info->scrub_pause_wait);
2093        refcount_set(&fs_info->scrub_workers_refcnt, 0);
2094}
2095
2096static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2097{
2098        spin_lock_init(&fs_info->balance_lock);
2099        mutex_init(&fs_info->balance_mutex);
2100        atomic_set(&fs_info->balance_pause_req, 0);
2101        atomic_set(&fs_info->balance_cancel_req, 0);
2102        fs_info->balance_ctl = NULL;
2103        init_waitqueue_head(&fs_info->balance_wait_q);
2104}
2105
2106static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2107{
2108        struct inode *inode = fs_info->btree_inode;
2109
2110        inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2111        set_nlink(inode, 1);
2112        /*
2113         * we set the i_size on the btree inode to the max possible int.
2114         * the real end of the address space is determined by all of
2115         * the devices in the system
2116         */
2117        inode->i_size = OFFSET_MAX;
2118        inode->i_mapping->a_ops = &btree_aops;
2119
2120        RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2121        extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2122                            IO_TREE_BTREE_INODE_IO, inode);
2123        BTRFS_I(inode)->io_tree.track_uptodate = false;
2124        extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2125
2126        BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2127        memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2128        set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2129        btrfs_insert_inode_hash(inode);
2130}
2131
2132static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2133{
2134        mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2135        init_rwsem(&fs_info->dev_replace.rwsem);
2136        init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2137}
2138
2139static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2140{
2141        spin_lock_init(&fs_info->qgroup_lock);
2142        mutex_init(&fs_info->qgroup_ioctl_lock);
2143        fs_info->qgroup_tree = RB_ROOT;
2144        INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2145        fs_info->qgroup_seq = 1;
2146        fs_info->qgroup_ulist = NULL;
2147        fs_info->qgroup_rescan_running = false;
2148        mutex_init(&fs_info->qgroup_rescan_lock);
2149}
2150
2151static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2152                struct btrfs_fs_devices *fs_devices)
2153{
2154        u32 max_active = fs_info->thread_pool_size;
2155        unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2156
2157        fs_info->workers =
2158                btrfs_alloc_workqueue(fs_info, "worker",
2159                                      flags | WQ_HIGHPRI, max_active, 16);
2160
2161        fs_info->delalloc_workers =
2162                btrfs_alloc_workqueue(fs_info, "delalloc",
2163                                      flags, max_active, 2);
2164
2165        fs_info->flush_workers =
2166                btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2167                                      flags, max_active, 0);
2168
2169        fs_info->caching_workers =
2170                btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2171
2172        fs_info->fixup_workers =
2173                btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2174
2175        /*
2176         * endios are largely parallel and should have a very
2177         * low idle thresh
2178         */
2179        fs_info->endio_workers =
2180                btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2181        fs_info->endio_meta_workers =
2182                btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2183                                      max_active, 4);
2184        fs_info->endio_meta_write_workers =
2185                btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2186                                      max_active, 2);
2187        fs_info->endio_raid56_workers =
2188                btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2189                                      max_active, 4);
2190        fs_info->rmw_workers =
2191                btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2192        fs_info->endio_write_workers =
2193                btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2194                                      max_active, 2);
2195        fs_info->endio_freespace_worker =
2196                btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2197                                      max_active, 0);
2198        fs_info->delayed_workers =
2199                btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2200                                      max_active, 0);
2201        fs_info->readahead_workers =
2202                btrfs_alloc_workqueue(fs_info, "readahead", flags,
2203                                      max_active, 2);
2204        fs_info->qgroup_rescan_workers =
2205                btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2206        fs_info->discard_ctl.discard_workers =
2207                alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2208
2209        if (!(fs_info->workers && fs_info->delalloc_workers &&
2210              fs_info->flush_workers &&
2211              fs_info->endio_workers && fs_info->endio_meta_workers &&
2212              fs_info->endio_meta_write_workers &&
2213              fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2214              fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2215              fs_info->caching_workers && fs_info->readahead_workers &&
2216              fs_info->fixup_workers && fs_info->delayed_workers &&
2217              fs_info->qgroup_rescan_workers &&
2218              fs_info->discard_ctl.discard_workers)) {
2219                return -ENOMEM;
2220        }
2221
2222        return 0;
2223}
2224
2225static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2226{
2227        struct crypto_shash *csum_shash;
2228        const char *csum_driver = btrfs_super_csum_driver(csum_type);
2229
2230        csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2231
2232        if (IS_ERR(csum_shash)) {
2233                btrfs_err(fs_info, "error allocating %s hash for checksum",
2234                          csum_driver);
2235                return PTR_ERR(csum_shash);
2236        }
2237
2238        fs_info->csum_shash = csum_shash;
2239
2240        return 0;
2241}
2242
2243static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2244                            struct btrfs_fs_devices *fs_devices)
2245{
2246        int ret;
2247        struct btrfs_root *log_tree_root;
2248        struct btrfs_super_block *disk_super = fs_info->super_copy;
2249        u64 bytenr = btrfs_super_log_root(disk_super);
2250        int level = btrfs_super_log_root_level(disk_super);
2251
2252        if (fs_devices->rw_devices == 0) {
2253                btrfs_warn(fs_info, "log replay required on RO media");
2254                return -EIO;
2255        }
2256
2257        log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2258                                         GFP_KERNEL);
2259        if (!log_tree_root)
2260                return -ENOMEM;
2261
2262        log_tree_root->node = read_tree_block(fs_info, bytenr,
2263                                              fs_info->generation + 1,
2264                                              level, NULL);
2265        if (IS_ERR(log_tree_root->node)) {
2266                btrfs_warn(fs_info, "failed to read log tree");
2267                ret = PTR_ERR(log_tree_root->node);
2268                log_tree_root->node = NULL;
2269                btrfs_put_root(log_tree_root);
2270                return ret;
2271        } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2272                btrfs_err(fs_info, "failed to read log tree");
2273                btrfs_put_root(log_tree_root);
2274                return -EIO;
2275        }
2276        /* returns with log_tree_root freed on success */
2277        ret = btrfs_recover_log_trees(log_tree_root);
2278        if (ret) {
2279                btrfs_handle_fs_error(fs_info, ret,
2280                                      "Failed to recover log tree");
2281                btrfs_put_root(log_tree_root);
2282                return ret;
2283        }
2284
2285        if (sb_rdonly(fs_info->sb)) {
2286                ret = btrfs_commit_super(fs_info);
2287                if (ret)
2288                        return ret;
2289        }
2290
2291        return 0;
2292}
2293
2294static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2295{
2296        struct btrfs_root *tree_root = fs_info->tree_root;
2297        struct btrfs_root *root;
2298        struct btrfs_key location;
2299        int ret;
2300
2301        BUG_ON(!fs_info->tree_root);
2302
2303        location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2304        location.type = BTRFS_ROOT_ITEM_KEY;
2305        location.offset = 0;
2306
2307        root = btrfs_read_tree_root(tree_root, &location);
2308        if (IS_ERR(root)) {
2309                ret = PTR_ERR(root);
2310                goto out;
2311        }
2312        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2313        fs_info->extent_root = root;
2314
2315        location.objectid = BTRFS_DEV_TREE_OBJECTID;
2316        root = btrfs_read_tree_root(tree_root, &location);
2317        if (IS_ERR(root)) {
2318                ret = PTR_ERR(root);
2319                goto out;
2320        }
2321        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2322        fs_info->dev_root = root;
2323        btrfs_init_devices_late(fs_info);
2324
2325        location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2326        root = btrfs_read_tree_root(tree_root, &location);
2327        if (IS_ERR(root)) {
2328                ret = PTR_ERR(root);
2329                goto out;
2330        }
2331        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2332        fs_info->csum_root = root;
2333
2334        /*
2335         * This tree can share blocks with some other fs tree during relocation
2336         * and we need a proper setup by btrfs_get_fs_root
2337         */
2338        root = btrfs_get_fs_root(tree_root->fs_info,
2339                                 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2340        if (IS_ERR(root)) {
2341                ret = PTR_ERR(root);
2342                goto out;
2343        }
2344        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2345        fs_info->data_reloc_root = root;
2346
2347        location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2348        root = btrfs_read_tree_root(tree_root, &location);
2349        if (!IS_ERR(root)) {
2350                set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2351                set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2352                fs_info->quota_root = root;
2353        }
2354
2355        location.objectid = BTRFS_UUID_TREE_OBJECTID;
2356        root = btrfs_read_tree_root(tree_root, &location);
2357        if (IS_ERR(root)) {
2358                ret = PTR_ERR(root);
2359                if (ret != -ENOENT)
2360                        goto out;
2361        } else {
2362                set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2363                fs_info->uuid_root = root;
2364        }
2365
2366        if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2367                location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2368                root = btrfs_read_tree_root(tree_root, &location);
2369                if (IS_ERR(root)) {
2370                        ret = PTR_ERR(root);
2371                        goto out;
2372                }
2373                set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2374                fs_info->free_space_root = root;
2375        }
2376
2377        return 0;
2378out:
2379        btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2380                   location.objectid, ret);
2381        return ret;
2382}
2383
2384/*
2385 * Real super block validation
2386 * NOTE: super csum type and incompat features will not be checked here.
2387 *
2388 * @sb:         super block to check
2389 * @mirror_num: the super block number to check its bytenr:
2390 *              0       the primary (1st) sb
2391 *              1, 2    2nd and 3rd backup copy
2392 *             -1       skip bytenr check
2393 */
2394static int validate_super(struct btrfs_fs_info *fs_info,
2395                            struct btrfs_super_block *sb, int mirror_num)
2396{
2397        u64 nodesize = btrfs_super_nodesize(sb);
2398        u64 sectorsize = btrfs_super_sectorsize(sb);
2399        int ret = 0;
2400
2401        if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2402                btrfs_err(fs_info, "no valid FS found");
2403                ret = -EINVAL;
2404        }
2405        if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2406                btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2407                                btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2408                ret = -EINVAL;
2409        }
2410        if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2411                btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2412                                btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2413                ret = -EINVAL;
2414        }
2415        if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2416                btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2417                                btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2418                ret = -EINVAL;
2419        }
2420        if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2421                btrfs_err(fs_info, "log_root level too big: %d >= %d",
2422                                btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2423                ret = -EINVAL;
2424        }
2425
2426        /*
2427         * Check sectorsize and nodesize first, other check will need it.
2428         * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2429         */
2430        if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2431            sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2432                btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2433                ret = -EINVAL;
2434        }
2435        /* Only PAGE SIZE is supported yet */
2436        if (sectorsize != PAGE_SIZE) {
2437                btrfs_err(fs_info,
2438                        "sectorsize %llu not supported yet, only support %lu",
2439                        sectorsize, PAGE_SIZE);
2440                ret = -EINVAL;
2441        }
2442        if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2443            nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2444                btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2445                ret = -EINVAL;
2446        }
2447        if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2448                btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2449                          le32_to_cpu(sb->__unused_leafsize), nodesize);
2450                ret = -EINVAL;
2451        }
2452
2453        /* Root alignment check */
2454        if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2455                btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2456                           btrfs_super_root(sb));
2457                ret = -EINVAL;
2458        }
2459        if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2460                btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2461                           btrfs_super_chunk_root(sb));
2462                ret = -EINVAL;
2463        }
2464        if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2465                btrfs_warn(fs_info, "log_root block unaligned: %llu",
2466                           btrfs_super_log_root(sb));
2467                ret = -EINVAL;
2468        }
2469
2470        if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2471                   BTRFS_FSID_SIZE) != 0) {
2472                btrfs_err(fs_info,
2473                        "dev_item UUID does not match metadata fsid: %pU != %pU",
2474                        fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2475                ret = -EINVAL;
2476        }
2477
2478        /*
2479         * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2480         * done later
2481         */
2482        if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2483                btrfs_err(fs_info, "bytes_used is too small %llu",
2484                          btrfs_super_bytes_used(sb));
2485                ret = -EINVAL;
2486        }
2487        if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2488                btrfs_err(fs_info, "invalid stripesize %u",
2489                          btrfs_super_stripesize(sb));
2490                ret = -EINVAL;
2491        }
2492        if (btrfs_super_num_devices(sb) > (1UL << 31))
2493                btrfs_warn(fs_info, "suspicious number of devices: %llu",
2494                           btrfs_super_num_devices(sb));
2495        if (btrfs_super_num_devices(sb) == 0) {
2496                btrfs_err(fs_info, "number of devices is 0");
2497                ret = -EINVAL;
2498        }
2499
2500        if (mirror_num >= 0 &&
2501            btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2502                btrfs_err(fs_info, "super offset mismatch %llu != %u",
2503                          btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2504                ret = -EINVAL;
2505        }
2506
2507        /*
2508         * Obvious sys_chunk_array corruptions, it must hold at least one key
2509         * and one chunk
2510         */
2511        if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2512                btrfs_err(fs_info, "system chunk array too big %u > %u",
2513                          btrfs_super_sys_array_size(sb),
2514                          BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2515                ret = -EINVAL;
2516        }
2517        if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2518                        + sizeof(struct btrfs_chunk)) {
2519                btrfs_err(fs_info, "system chunk array too small %u < %zu",
2520                          btrfs_super_sys_array_size(sb),
2521                          sizeof(struct btrfs_disk_key)
2522                          + sizeof(struct btrfs_chunk));
2523                ret = -EINVAL;
2524        }
2525
2526        /*
2527         * The generation is a global counter, we'll trust it more than the others
2528         * but it's still possible that it's the one that's wrong.
2529         */
2530        if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2531                btrfs_warn(fs_info,
2532                        "suspicious: generation < chunk_root_generation: %llu < %llu",
2533                        btrfs_super_generation(sb),
2534                        btrfs_super_chunk_root_generation(sb));
2535        if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2536            && btrfs_super_cache_generation(sb) != (u64)-1)
2537                btrfs_warn(fs_info,
2538                        "suspicious: generation < cache_generation: %llu < %llu",
2539                        btrfs_super_generation(sb),
2540                        btrfs_super_cache_generation(sb));
2541
2542        return ret;
2543}
2544
2545/*
2546 * Validation of super block at mount time.
2547 * Some checks already done early at mount time, like csum type and incompat
2548 * flags will be skipped.
2549 */
2550static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2551{
2552        return validate_super(fs_info, fs_info->super_copy, 0);
2553}
2554
2555/*
2556 * Validation of super block at write time.
2557 * Some checks like bytenr check will be skipped as their values will be
2558 * overwritten soon.
2559 * Extra checks like csum type and incompat flags will be done here.
2560 */
2561static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2562                                      struct btrfs_super_block *sb)
2563{
2564        int ret;
2565
2566        ret = validate_super(fs_info, sb, -1);
2567        if (ret < 0)
2568                goto out;
2569        if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2570                ret = -EUCLEAN;
2571                btrfs_err(fs_info, "invalid csum type, has %u want %u",
2572                          btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2573                goto out;
2574        }
2575        if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2576                ret = -EUCLEAN;
2577                btrfs_err(fs_info,
2578                "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2579                          btrfs_super_incompat_flags(sb),
2580                          (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2581                goto out;
2582        }
2583out:
2584        if (ret < 0)
2585                btrfs_err(fs_info,
2586                "super block corruption detected before writing it to disk");
2587        return ret;
2588}
2589
2590static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2591{
2592        int backup_index = find_newest_super_backup(fs_info);
2593        struct btrfs_super_block *sb = fs_info->super_copy;
2594        struct btrfs_root *tree_root = fs_info->tree_root;
2595        bool handle_error = false;
2596        int ret = 0;
2597        int i;
2598
2599        for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2600                u64 generation;
2601                int level;
2602
2603                if (handle_error) {
2604                        if (!IS_ERR(tree_root->node))
2605                                free_extent_buffer(tree_root->node);
2606                        tree_root->node = NULL;
2607
2608                        if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2609                                break;
2610
2611                        free_root_pointers(fs_info, 0);
2612
2613                        /*
2614                         * Don't use the log in recovery mode, it won't be
2615                         * valid
2616                         */
2617                        btrfs_set_super_log_root(sb, 0);
2618
2619                        /* We can't trust the free space cache either */
2620                        btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2621
2622                        ret = read_backup_root(fs_info, i);
2623                        backup_index = ret;
2624                        if (ret < 0)
2625                                return ret;
2626                }
2627                generation = btrfs_super_generation(sb);
2628                level = btrfs_super_root_level(sb);
2629                tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2630                                                  generation, level, NULL);
2631                if (IS_ERR(tree_root->node)) {
2632                        handle_error = true;
2633                        ret = PTR_ERR(tree_root->node);
2634                        tree_root->node = NULL;
2635                        btrfs_warn(fs_info, "couldn't read tree root");
2636                        continue;
2637
2638                } else if (!extent_buffer_uptodate(tree_root->node)) {
2639                        handle_error = true;
2640                        ret = -EIO;
2641                        btrfs_warn(fs_info, "error while reading tree root");
2642                        continue;
2643                }
2644
2645                btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2646                tree_root->commit_root = btrfs_root_node(tree_root);
2647                btrfs_set_root_refs(&tree_root->root_item, 1);
2648
2649                /*
2650                 * No need to hold btrfs_root::objectid_mutex since the fs
2651                 * hasn't been fully initialised and we are the only user
2652                 */
2653                ret = btrfs_find_highest_objectid(tree_root,
2654                                                &tree_root->highest_objectid);
2655                if (ret < 0) {
2656                        handle_error = true;
2657                        continue;
2658                }
2659
2660                ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2661
2662                ret = btrfs_read_roots(fs_info);
2663                if (ret < 0) {
2664                        handle_error = true;
2665                        continue;
2666                }
2667
2668                /* All successful */
2669                fs_info->generation = generation;
2670                fs_info->last_trans_committed = generation;
2671
2672                /* Always begin writing backup roots after the one being used */
2673                if (backup_index < 0) {
2674                        fs_info->backup_root_index = 0;
2675                } else {
2676                        fs_info->backup_root_index = backup_index + 1;
2677                        fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2678                }
2679                break;
2680        }
2681
2682        return ret;
2683}
2684
2685void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2686{
2687        INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2688        INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2689        INIT_LIST_HEAD(&fs_info->trans_list);
2690        INIT_LIST_HEAD(&fs_info->dead_roots);
2691        INIT_LIST_HEAD(&fs_info->delayed_iputs);
2692        INIT_LIST_HEAD(&fs_info->delalloc_roots);
2693        INIT_LIST_HEAD(&fs_info->caching_block_groups);
2694        spin_lock_init(&fs_info->delalloc_root_lock);
2695        spin_lock_init(&fs_info->trans_lock);
2696        spin_lock_init(&fs_info->fs_roots_radix_lock);
2697        spin_lock_init(&fs_info->delayed_iput_lock);
2698        spin_lock_init(&fs_info->defrag_inodes_lock);
2699        spin_lock_init(&fs_info->super_lock);
2700        spin_lock_init(&fs_info->buffer_lock);
2701        spin_lock_init(&fs_info->unused_bgs_lock);
2702        rwlock_init(&fs_info->tree_mod_log_lock);
2703        mutex_init(&fs_info->unused_bg_unpin_mutex);
2704        mutex_init(&fs_info->delete_unused_bgs_mutex);
2705        mutex_init(&fs_info->reloc_mutex);
2706        mutex_init(&fs_info->delalloc_root_mutex);
2707        seqlock_init(&fs_info->profiles_lock);
2708
2709        INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2710        INIT_LIST_HEAD(&fs_info->space_info);
2711        INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2712        INIT_LIST_HEAD(&fs_info->unused_bgs);
2713#ifdef CONFIG_BTRFS_DEBUG
2714        INIT_LIST_HEAD(&fs_info->allocated_roots);
2715        INIT_LIST_HEAD(&fs_info->allocated_ebs);
2716        spin_lock_init(&fs_info->eb_leak_lock);
2717#endif
2718        extent_map_tree_init(&fs_info->mapping_tree);
2719        btrfs_init_block_rsv(&fs_info->global_block_rsv,
2720                             BTRFS_BLOCK_RSV_GLOBAL);
2721        btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2722        btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2723        btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2724        btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2725                             BTRFS_BLOCK_RSV_DELOPS);
2726        btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2727                             BTRFS_BLOCK_RSV_DELREFS);
2728
2729        atomic_set(&fs_info->async_delalloc_pages, 0);
2730        atomic_set(&fs_info->defrag_running, 0);
2731        atomic_set(&fs_info->reada_works_cnt, 0);
2732        atomic_set(&fs_info->nr_delayed_iputs, 0);
2733        atomic64_set(&fs_info->tree_mod_seq, 0);
2734        fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2735        fs_info->metadata_ratio = 0;
2736        fs_info->defrag_inodes = RB_ROOT;
2737        atomic64_set(&fs_info->free_chunk_space, 0);
2738        fs_info->tree_mod_log = RB_ROOT;
2739        fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2740        fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2741        /* readahead state */
2742        INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2743        spin_lock_init(&fs_info->reada_lock);
2744        btrfs_init_ref_verify(fs_info);
2745
2746        fs_info->thread_pool_size = min_t(unsigned long,
2747                                          num_online_cpus() + 2, 8);
2748
2749        INIT_LIST_HEAD(&fs_info->ordered_roots);
2750        spin_lock_init(&fs_info->ordered_root_lock);
2751
2752        btrfs_init_scrub(fs_info);
2753#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2754        fs_info->check_integrity_print_mask = 0;
2755#endif
2756        btrfs_init_balance(fs_info);
2757        btrfs_init_async_reclaim_work(fs_info);
2758
2759        spin_lock_init(&fs_info->block_group_cache_lock);
2760        fs_info->block_group_cache_tree = RB_ROOT;
2761        fs_info->first_logical_byte = (u64)-1;
2762
2763        extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2764                            IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2765        set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2766
2767        mutex_init(&fs_info->ordered_operations_mutex);
2768        mutex_init(&fs_info->tree_log_mutex);
2769        mutex_init(&fs_info->chunk_mutex);
2770        mutex_init(&fs_info->transaction_kthread_mutex);
2771        mutex_init(&fs_info->cleaner_mutex);
2772        mutex_init(&fs_info->ro_block_group_mutex);
2773        init_rwsem(&fs_info->commit_root_sem);
2774        init_rwsem(&fs_info->cleanup_work_sem);
2775        init_rwsem(&fs_info->subvol_sem);
2776        sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2777
2778        btrfs_init_dev_replace_locks(fs_info);
2779        btrfs_init_qgroup(fs_info);
2780        btrfs_discard_init(fs_info);
2781
2782        btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2783        btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2784
2785        init_waitqueue_head(&fs_info->transaction_throttle);
2786        init_waitqueue_head(&fs_info->transaction_wait);
2787        init_waitqueue_head(&fs_info->transaction_blocked_wait);
2788        init_waitqueue_head(&fs_info->async_submit_wait);
2789        init_waitqueue_head(&fs_info->delayed_iputs_wait);
2790
2791        /* Usable values until the real ones are cached from the superblock */
2792        fs_info->nodesize = 4096;
2793        fs_info->sectorsize = 4096;
2794        fs_info->stripesize = 4096;
2795
2796        spin_lock_init(&fs_info->swapfile_pins_lock);
2797        fs_info->swapfile_pins = RB_ROOT;
2798
2799        fs_info->send_in_progress = 0;
2800}
2801
2802static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2803{
2804        int ret;
2805
2806        fs_info->sb = sb;
2807        sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2808        sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2809
2810        ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2811        if (ret)
2812                return ret;
2813
2814        ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2815        if (ret)
2816                return ret;
2817
2818        fs_info->dirty_metadata_batch = PAGE_SIZE *
2819                                        (1 + ilog2(nr_cpu_ids));
2820
2821        ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2822        if (ret)
2823                return ret;
2824
2825        ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2826                        GFP_KERNEL);
2827        if (ret)
2828                return ret;
2829
2830        fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2831                                        GFP_KERNEL);
2832        if (!fs_info->delayed_root)
2833                return -ENOMEM;
2834        btrfs_init_delayed_root(fs_info->delayed_root);
2835
2836        return btrfs_alloc_stripe_hash_table(fs_info);
2837}
2838
2839static int btrfs_uuid_rescan_kthread(void *data)
2840{
2841        struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2842        int ret;
2843
2844        /*
2845         * 1st step is to iterate through the existing UUID tree and
2846         * to delete all entries that contain outdated data.
2847         * 2nd step is to add all missing entries to the UUID tree.
2848         */
2849        ret = btrfs_uuid_tree_iterate(fs_info);
2850        if (ret < 0) {
2851                if (ret != -EINTR)
2852                        btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2853                                   ret);
2854                up(&fs_info->uuid_tree_rescan_sem);
2855                return ret;
2856        }
2857        return btrfs_uuid_scan_kthread(data);
2858}
2859
2860static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2861{
2862        struct task_struct *task;
2863
2864        down(&fs_info->uuid_tree_rescan_sem);
2865        task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2866        if (IS_ERR(task)) {
2867                /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2868                btrfs_warn(fs_info, "failed to start uuid_rescan task");
2869                up(&fs_info->uuid_tree_rescan_sem);
2870                return PTR_ERR(task);
2871        }
2872
2873        return 0;
2874}
2875
2876int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2877                      char *options)
2878{
2879        u32 sectorsize;
2880        u32 nodesize;
2881        u32 stripesize;
2882        u64 generation;
2883        u64 features;
2884        u16 csum_type;
2885        struct btrfs_super_block *disk_super;
2886        struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2887        struct btrfs_root *tree_root;
2888        struct btrfs_root *chunk_root;
2889        int ret;
2890        int err = -EINVAL;
2891        int clear_free_space_tree = 0;
2892        int level;
2893
2894        ret = init_mount_fs_info(fs_info, sb);
2895        if (ret) {
2896                err = ret;
2897                goto fail;
2898        }
2899
2900        /* These need to be init'ed before we start creating inodes and such. */
2901        tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2902                                     GFP_KERNEL);
2903        fs_info->tree_root = tree_root;
2904        chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2905                                      GFP_KERNEL);
2906        fs_info->chunk_root = chunk_root;
2907        if (!tree_root || !chunk_root) {
2908                err = -ENOMEM;
2909                goto fail;
2910        }
2911
2912        fs_info->btree_inode = new_inode(sb);
2913        if (!fs_info->btree_inode) {
2914                err = -ENOMEM;
2915                goto fail;
2916        }
2917        mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2918        btrfs_init_btree_inode(fs_info);
2919
2920        invalidate_bdev(fs_devices->latest_bdev);
2921
2922        /*
2923         * Read super block and check the signature bytes only
2924         */
2925        disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2926        if (IS_ERR(disk_super)) {
2927                err = PTR_ERR(disk_super);
2928                goto fail_alloc;
2929        }
2930
2931        /*
2932         * Verify the type first, if that or the checksum value are
2933         * corrupted, we'll find out
2934         */
2935        csum_type = btrfs_super_csum_type(disk_super);
2936        if (!btrfs_supported_super_csum(csum_type)) {
2937                btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2938                          csum_type);
2939                err = -EINVAL;
2940                btrfs_release_disk_super(disk_super);
2941                goto fail_alloc;
2942        }
2943
2944        ret = btrfs_init_csum_hash(fs_info, csum_type);
2945        if (ret) {
2946                err = ret;
2947                btrfs_release_disk_super(disk_super);
2948                goto fail_alloc;
2949        }
2950
2951        /*
2952         * We want to check superblock checksum, the type is stored inside.
2953         * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2954         */
2955        if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
2956                btrfs_err(fs_info, "superblock checksum mismatch");
2957                err = -EINVAL;
2958                btrfs_release_disk_super(disk_super);
2959                goto fail_alloc;
2960        }
2961
2962        /*
2963         * super_copy is zeroed at allocation time and we never touch the
2964         * following bytes up to INFO_SIZE, the checksum is calculated from
2965         * the whole block of INFO_SIZE
2966         */
2967        memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2968        btrfs_release_disk_super(disk_super);
2969
2970        disk_super = fs_info->super_copy;
2971
2972        ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2973                       BTRFS_FSID_SIZE));
2974
2975        if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2976                ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2977                                fs_info->super_copy->metadata_uuid,
2978                                BTRFS_FSID_SIZE));
2979        }
2980
2981        features = btrfs_super_flags(disk_super);
2982        if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2983                features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2984                btrfs_set_super_flags(disk_super, features);
2985                btrfs_info(fs_info,
2986                        "found metadata UUID change in progress flag, clearing");
2987        }
2988
2989        memcpy(fs_info->super_for_commit, fs_info->super_copy,
2990               sizeof(*fs_info->super_for_commit));
2991
2992        ret = btrfs_validate_mount_super(fs_info);
2993        if (ret) {
2994                btrfs_err(fs_info, "superblock contains fatal errors");
2995                err = -EINVAL;
2996                goto fail_alloc;
2997        }
2998
2999        if (!btrfs_super_root(disk_super))
3000                goto fail_alloc;
3001
3002        /* check FS state, whether FS is broken. */
3003        if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3004                set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3005
3006        /*
3007         * In the long term, we'll store the compression type in the super
3008         * block, and it'll be used for per file compression control.
3009         */
3010        fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3011
3012        ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3013        if (ret) {
3014                err = ret;
3015                goto fail_alloc;
3016        }
3017
3018        features = btrfs_super_incompat_flags(disk_super) &
3019                ~BTRFS_FEATURE_INCOMPAT_SUPP;
3020        if (features) {
3021                btrfs_err(fs_info,
3022                    "cannot mount because of unsupported optional features (%llx)",
3023                    features);
3024                err = -EINVAL;
3025                goto fail_alloc;
3026        }
3027
3028        features = btrfs_super_incompat_flags(disk_super);
3029        features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3030        if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3031                features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3032        else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3033                features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3034
3035        if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3036                btrfs_info(fs_info, "has skinny extents");
3037
3038        /*
3039         * flag our filesystem as having big metadata blocks if
3040         * they are bigger than the page size
3041         */
3042        if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3043                if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3044                        btrfs_info(fs_info,
3045                                "flagging fs with big metadata feature");
3046                features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3047        }
3048
3049        nodesize = btrfs_super_nodesize(disk_super);
3050        sectorsize = btrfs_super_sectorsize(disk_super);
3051        stripesize = sectorsize;
3052        fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3053        fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3054
3055        /* Cache block sizes */
3056        fs_info->nodesize = nodesize;
3057        fs_info->sectorsize = sectorsize;
3058        fs_info->stripesize = stripesize;
3059
3060        /*
3061         * mixed block groups end up with duplicate but slightly offset
3062         * extent buffers for the same range.  It leads to corruptions
3063         */
3064        if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3065            (sectorsize != nodesize)) {
3066                btrfs_err(fs_info,
3067"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3068                        nodesize, sectorsize);
3069                goto fail_alloc;
3070        }
3071
3072        /*
3073         * Needn't use the lock because there is no other task which will
3074         * update the flag.
3075         */
3076        btrfs_set_super_incompat_flags(disk_super, features);
3077
3078        features = btrfs_super_compat_ro_flags(disk_super) &
3079                ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3080        if (!sb_rdonly(sb) && features) {
3081                btrfs_err(fs_info,
3082        "cannot mount read-write because of unsupported optional features (%llx)",
3083                       features);
3084                err = -EINVAL;
3085                goto fail_alloc;
3086        }
3087
3088        ret = btrfs_init_workqueues(fs_info, fs_devices);
3089        if (ret) {
3090                err = ret;
3091                goto fail_sb_buffer;
3092        }
3093
3094        sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3095        sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3096
3097        sb->s_blocksize = sectorsize;
3098        sb->s_blocksize_bits = blksize_bits(sectorsize);
3099        memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3100
3101        mutex_lock(&fs_info->chunk_mutex);
3102        ret = btrfs_read_sys_array(fs_info);
3103        mutex_unlock(&fs_info->chunk_mutex);
3104        if (ret) {
3105                btrfs_err(fs_info, "failed to read the system array: %d", ret);
3106                goto fail_sb_buffer;
3107        }
3108
3109        generation = btrfs_super_chunk_root_generation(disk_super);
3110        level = btrfs_super_chunk_root_level(disk_super);
3111
3112        chunk_root->node = read_tree_block(fs_info,
3113                                           btrfs_super_chunk_root(disk_super),
3114                                           generation, level, NULL);
3115        if (IS_ERR(chunk_root->node) ||
3116            !extent_buffer_uptodate(chunk_root->node)) {
3117                btrfs_err(fs_info, "failed to read chunk root");
3118                if (!IS_ERR(chunk_root->node))
3119                        free_extent_buffer(chunk_root->node);
3120                chunk_root->node = NULL;
3121                goto fail_tree_roots;
3122        }
3123        btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3124        chunk_root->commit_root = btrfs_root_node(chunk_root);
3125
3126        read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3127                           offsetof(struct btrfs_header, chunk_tree_uuid),
3128                           BTRFS_UUID_SIZE);
3129
3130        ret = btrfs_read_chunk_tree(fs_info);
3131        if (ret) {
3132                btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3133                goto fail_tree_roots;
3134        }
3135
3136        /*
3137         * Keep the devid that is marked to be the target device for the
3138         * device replace procedure
3139         */
3140        btrfs_free_extra_devids(fs_devices, 0);
3141
3142        if (!fs_devices->latest_bdev) {
3143                btrfs_err(fs_info, "failed to read devices");
3144                goto fail_tree_roots;
3145        }
3146
3147        ret = init_tree_roots(fs_info);
3148        if (ret)
3149                goto fail_tree_roots;
3150
3151        /*
3152         * If we have a uuid root and we're not being told to rescan we need to
3153         * check the generation here so we can set the
3154         * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3155         * transaction during a balance or the log replay without updating the
3156         * uuid generation, and then if we crash we would rescan the uuid tree,
3157         * even though it was perfectly fine.
3158         */
3159        if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3160            fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3161                set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3162
3163        ret = btrfs_verify_dev_extents(fs_info);
3164        if (ret) {
3165                btrfs_err(fs_info,
3166                          "failed to verify dev extents against chunks: %d",
3167                          ret);
3168                goto fail_block_groups;
3169        }
3170        ret = btrfs_recover_balance(fs_info);
3171        if (ret) {
3172                btrfs_err(fs_info, "failed to recover balance: %d", ret);
3173                goto fail_block_groups;
3174        }
3175
3176        ret = btrfs_init_dev_stats(fs_info);
3177        if (ret) {
3178                btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3179                goto fail_block_groups;
3180        }
3181
3182        ret = btrfs_init_dev_replace(fs_info);
3183        if (ret) {
3184                btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3185                goto fail_block_groups;
3186        }
3187
3188        btrfs_free_extra_devids(fs_devices, 1);
3189
3190        ret = btrfs_sysfs_add_fsid(fs_devices);
3191        if (ret) {
3192                btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3193                                ret);
3194                goto fail_block_groups;
3195        }
3196
3197        ret = btrfs_sysfs_add_mounted(fs_info);
3198        if (ret) {
3199                btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3200                goto fail_fsdev_sysfs;
3201        }
3202
3203        ret = btrfs_init_space_info(fs_info);
3204        if (ret) {
3205                btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3206                goto fail_sysfs;
3207        }
3208
3209        ret = btrfs_read_block_groups(fs_info);
3210        if (ret) {
3211                btrfs_err(fs_info, "failed to read block groups: %d", ret);
3212                goto fail_sysfs;
3213        }
3214
3215        if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3216                btrfs_warn(fs_info,
3217                "writable mount is not allowed due to too many missing devices");
3218                goto fail_sysfs;
3219        }
3220
3221        fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3222                                               "btrfs-cleaner");
3223        if (IS_ERR(fs_info->cleaner_kthread))
3224                goto fail_sysfs;
3225
3226        fs_info->transaction_kthread = kthread_run(transaction_kthread,
3227                                                   tree_root,
3228                                                   "btrfs-transaction");
3229        if (IS_ERR(fs_info->transaction_kthread))
3230                goto fail_cleaner;
3231
3232        if (!btrfs_test_opt(fs_info, NOSSD) &&
3233            !fs_info->fs_devices->rotating) {
3234                btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3235        }
3236
3237        /*
3238         * Mount does not set all options immediately, we can do it now and do
3239         * not have to wait for transaction commit
3240         */
3241        btrfs_apply_pending_changes(fs_info);
3242
3243#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3244        if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3245                ret = btrfsic_mount(fs_info, fs_devices,
3246                                    btrfs_test_opt(fs_info,
3247                                        CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3248                                    1 : 0,
3249                                    fs_info->check_integrity_print_mask);
3250                if (ret)
3251                        btrfs_warn(fs_info,
3252                                "failed to initialize integrity check module: %d",
3253                                ret);
3254        }
3255#endif
3256        ret = btrfs_read_qgroup_config(fs_info);
3257        if (ret)
3258                goto fail_trans_kthread;
3259
3260        if (btrfs_build_ref_tree(fs_info))
3261                btrfs_err(fs_info, "couldn't build ref tree");
3262
3263        /* do not make disk changes in broken FS or nologreplay is given */
3264        if (btrfs_super_log_root(disk_super) != 0 &&
3265            !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3266                btrfs_info(fs_info, "start tree-log replay");
3267                ret = btrfs_replay_log(fs_info, fs_devices);
3268                if (ret) {
3269                        err = ret;
3270                        goto fail_qgroup;
3271                }
3272        }
3273
3274        ret = btrfs_find_orphan_roots(fs_info);
3275        if (ret)
3276                goto fail_qgroup;
3277
3278        if (!sb_rdonly(sb)) {
3279                ret = btrfs_cleanup_fs_roots(fs_info);
3280                if (ret)
3281                        goto fail_qgroup;
3282
3283                mutex_lock(&fs_info->cleaner_mutex);
3284                ret = btrfs_recover_relocation(tree_root);
3285                mutex_unlock(&fs_info->cleaner_mutex);
3286                if (ret < 0) {
3287                        btrfs_warn(fs_info, "failed to recover relocation: %d",
3288                                        ret);
3289                        err = -EINVAL;
3290                        goto fail_qgroup;
3291                }
3292        }
3293
3294        fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3295        if (IS_ERR(fs_info->fs_root)) {
3296                err = PTR_ERR(fs_info->fs_root);
3297                btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3298                fs_info->fs_root = NULL;
3299                goto fail_qgroup;
3300        }
3301
3302        if (sb_rdonly(sb))
3303                return 0;
3304
3305        if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3306            btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3307                clear_free_space_tree = 1;
3308        } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3309                   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3310                btrfs_warn(fs_info, "free space tree is invalid");
3311                clear_free_space_tree = 1;
3312        }
3313
3314        if (clear_free_space_tree) {
3315                btrfs_info(fs_info, "clearing free space tree");
3316                ret = btrfs_clear_free_space_tree(fs_info);
3317                if (ret) {
3318                        btrfs_warn(fs_info,
3319                                   "failed to clear free space tree: %d", ret);
3320                        close_ctree(fs_info);
3321                        return ret;
3322                }
3323        }
3324
3325        if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3326            !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3327                btrfs_info(fs_info, "creating free space tree");
3328                ret = btrfs_create_free_space_tree(fs_info);
3329                if (ret) {
3330                        btrfs_warn(fs_info,
3331                                "failed to create free space tree: %d", ret);
3332                        close_ctree(fs_info);
3333                        return ret;
3334                }
3335        }
3336
3337        down_read(&fs_info->cleanup_work_sem);
3338        if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3339            (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3340                up_read(&fs_info->cleanup_work_sem);
3341                close_ctree(fs_info);
3342                return ret;
3343        }
3344        up_read(&fs_info->cleanup_work_sem);
3345
3346        ret = btrfs_resume_balance_async(fs_info);
3347        if (ret) {
3348                btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3349                close_ctree(fs_info);
3350                return ret;
3351        }
3352
3353        ret = btrfs_resume_dev_replace_async(fs_info);
3354        if (ret) {
3355                btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3356                close_ctree(fs_info);
3357                return ret;
3358        }
3359
3360        btrfs_qgroup_rescan_resume(fs_info);
3361        btrfs_discard_resume(fs_info);
3362
3363        if (!fs_info->uuid_root) {
3364                btrfs_info(fs_info, "creating UUID tree");
3365                ret = btrfs_create_uuid_tree(fs_info);
3366                if (ret) {
3367                        btrfs_warn(fs_info,
3368                                "failed to create the UUID tree: %d", ret);
3369                        close_ctree(fs_info);
3370                        return ret;
3371                }
3372        } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3373                   fs_info->generation !=
3374                                btrfs_super_uuid_tree_generation(disk_super)) {
3375                btrfs_info(fs_info, "checking UUID tree");
3376                ret = btrfs_check_uuid_tree(fs_info);
3377                if (ret) {
3378                        btrfs_warn(fs_info,
3379                                "failed to check the UUID tree: %d", ret);
3380                        close_ctree(fs_info);
3381                        return ret;
3382                }
3383        }
3384        set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3385
3386        /*
3387         * backuproot only affect mount behavior, and if open_ctree succeeded,
3388         * no need to keep the flag
3389         */
3390        btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3391
3392        return 0;
3393
3394fail_qgroup:
3395        btrfs_free_qgroup_config(fs_info);
3396fail_trans_kthread:
3397        kthread_stop(fs_info->transaction_kthread);
3398        btrfs_cleanup_transaction(fs_info);
3399        btrfs_free_fs_roots(fs_info);
3400fail_cleaner:
3401        kthread_stop(fs_info->cleaner_kthread);
3402
3403        /*
3404         * make sure we're done with the btree inode before we stop our
3405         * kthreads
3406         */
3407        filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3408
3409fail_sysfs:
3410        btrfs_sysfs_remove_mounted(fs_info);
3411
3412fail_fsdev_sysfs:
3413        btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3414
3415fail_block_groups:
3416        btrfs_put_block_group_cache(fs_info);
3417
3418fail_tree_roots:
3419        if (fs_info->data_reloc_root)
3420                btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3421        free_root_pointers(fs_info, true);
3422        invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3423
3424fail_sb_buffer:
3425        btrfs_stop_all_workers(fs_info);
3426        btrfs_free_block_groups(fs_info);
3427fail_alloc:
3428        btrfs_mapping_tree_free(&fs_info->mapping_tree);
3429
3430        iput(fs_info->btree_inode);
3431fail:
3432        btrfs_close_devices(fs_info->fs_devices);
3433        return err;
3434}
3435ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3436
3437static void btrfs_end_super_write(struct bio *bio)
3438{
3439        struct btrfs_device *device = bio->bi_private;
3440        struct bio_vec *bvec;
3441        struct bvec_iter_all iter_all;
3442        struct page *page;
3443
3444        bio_for_each_segment_all(bvec, bio, iter_all) {
3445                page = bvec->bv_page;
3446
3447                if (bio->bi_status) {
3448                        btrfs_warn_rl_in_rcu(device->fs_info,
3449                                "lost page write due to IO error on %s (%d)",
3450                                rcu_str_deref(device->name),
3451                                blk_status_to_errno(bio->bi_status));
3452                        ClearPageUptodate(page);
3453                        SetPageError(page);
3454                        btrfs_dev_stat_inc_and_print(device,
3455                                                     BTRFS_DEV_STAT_WRITE_ERRS);
3456                } else {
3457                        SetPageUptodate(page);
3458                }
3459
3460                put_page(page);
3461                unlock_page(page);
3462        }
3463
3464        bio_put(bio);
3465}
3466
3467struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3468                                                   int copy_num)
3469{
3470        struct btrfs_super_block *super;
3471        struct page *page;
3472        u64 bytenr;
3473        struct address_space *mapping = bdev->bd_inode->i_mapping;
3474
3475        bytenr = btrfs_sb_offset(copy_num);
3476        if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3477                return ERR_PTR(-EINVAL);
3478
3479        page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3480        if (IS_ERR(page))
3481                return ERR_CAST(page);
3482
3483        super = page_address(page);
3484        if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3485                btrfs_release_disk_super(super);
3486                return ERR_PTR(-ENODATA);
3487        }
3488
3489        if (btrfs_super_bytenr(super) != bytenr) {
3490                btrfs_release_disk_super(super);
3491                return ERR_PTR(-EINVAL);
3492        }
3493
3494        return super;
3495}
3496
3497
3498struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3499{
3500        struct btrfs_super_block *super, *latest = NULL;
3501        int i;
3502        u64 transid = 0;
3503
3504        /* we would like to check all the supers, but that would make
3505         * a btrfs mount succeed after a mkfs from a different FS.
3506         * So, we need to add a special mount option to scan for
3507         * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3508         */
3509        for (i = 0; i < 1; i++) {
3510                super = btrfs_read_dev_one_super(bdev, i);
3511                if (IS_ERR(super))
3512                        continue;
3513
3514                if (!latest || btrfs_super_generation(super) > transid) {
3515                        if (latest)
3516                                btrfs_release_disk_super(super);
3517
3518                        latest = super;
3519                        transid = btrfs_super_generation(super);
3520                }
3521        }
3522
3523        return super;
3524}
3525
3526/*
3527 * Write superblock @sb to the @device. Do not wait for completion, all the
3528 * pages we use for writing are locked.
3529 *
3530 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3531 * the expected device size at commit time. Note that max_mirrors must be
3532 * same for write and wait phases.
3533 *
3534 * Return number of errors when page is not found or submission fails.
3535 */
3536static int write_dev_supers(struct btrfs_device *device,
3537                            struct btrfs_super_block *sb, int max_mirrors)
3538{
3539        struct btrfs_fs_info *fs_info = device->fs_info;
3540        struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3541        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3542        int i;
3543        int errors = 0;
3544        u64 bytenr;
3545
3546        if (max_mirrors == 0)
3547                max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3548
3549        shash->tfm = fs_info->csum_shash;
3550
3551        for (i = 0; i < max_mirrors; i++) {
3552                struct page *page;
3553                struct bio *bio;
3554                struct btrfs_super_block *disk_super;
3555
3556                bytenr = btrfs_sb_offset(i);
3557                if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3558                    device->commit_total_bytes)
3559                        break;
3560
3561                btrfs_set_super_bytenr(sb, bytenr);
3562
3563                crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3564                                    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3565                                    sb->csum);
3566
3567                page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3568                                           GFP_NOFS);
3569                if (!page) {
3570                        btrfs_err(device->fs_info,
3571                            "couldn't get super block page for bytenr %llu",
3572                            bytenr);
3573                        errors++;
3574                        continue;
3575                }
3576
3577                /* Bump the refcount for wait_dev_supers() */
3578                get_page(page);
3579
3580                disk_super = page_address(page);
3581                memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3582
3583                /*
3584                 * Directly use bios here instead of relying on the page cache
3585                 * to do I/O, so we don't lose the ability to do integrity
3586                 * checking.
3587                 */
3588                bio = bio_alloc(GFP_NOFS, 1);
3589                bio_set_dev(bio, device->bdev);
3590                bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3591                bio->bi_private = device;
3592                bio->bi_end_io = btrfs_end_super_write;
3593                __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3594                               offset_in_page(bytenr));
3595
3596                /*
3597                 * We FUA only the first super block.  The others we allow to
3598                 * go down lazy and there's a short window where the on-disk
3599                 * copies might still contain the older version.
3600                 */
3601                bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3602                if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3603                        bio->bi_opf |= REQ_FUA;
3604
3605                btrfsic_submit_bio(bio);
3606        }
3607        return errors < i ? 0 : -1;
3608}
3609
3610/*
3611 * Wait for write completion of superblocks done by write_dev_supers,
3612 * @max_mirrors same for write and wait phases.
3613 *
3614 * Return number of errors when page is not found or not marked up to
3615 * date.
3616 */
3617static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3618{
3619        int i;
3620        int errors = 0;
3621        bool primary_failed = false;
3622        u64 bytenr;
3623
3624        if (max_mirrors == 0)
3625                max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3626
3627        for (i = 0; i < max_mirrors; i++) {
3628                struct page *page;
3629
3630                bytenr = btrfs_sb_offset(i);
3631                if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3632                    device->commit_total_bytes)
3633                        break;
3634
3635                page = find_get_page(device->bdev->bd_inode->i_mapping,
3636                                     bytenr >> PAGE_SHIFT);
3637                if (!page) {
3638                        errors++;
3639                        if (i == 0)
3640                                primary_failed = true;
3641                        continue;
3642                }
3643                /* Page is submitted locked and unlocked once the IO completes */
3644                wait_on_page_locked(page);
3645                if (PageError(page)) {
3646                        errors++;
3647                        if (i == 0)
3648                                primary_failed = true;
3649                }
3650
3651                /* Drop our reference */
3652                put_page(page);
3653
3654                /* Drop the reference from the writing run */
3655                put_page(page);
3656        }
3657
3658        /* log error, force error return */
3659        if (primary_failed) {
3660                btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3661                          device->devid);
3662                return -1;
3663        }
3664
3665        return errors < i ? 0 : -1;
3666}
3667
3668/*
3669 * endio for the write_dev_flush, this will wake anyone waiting
3670 * for the barrier when it is done
3671 */
3672static void btrfs_end_empty_barrier(struct bio *bio)
3673{
3674        complete(bio->bi_private);
3675}
3676
3677/*
3678 * Submit a flush request to the device if it supports it. Error handling is
3679 * done in the waiting counterpart.
3680 */
3681static void write_dev_flush(struct btrfs_device *device)
3682{
3683        struct request_queue *q = bdev_get_queue(device->bdev);
3684        struct bio *bio = device->flush_bio;
3685
3686        if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3687                return;
3688
3689        bio_reset(bio);
3690        bio->bi_end_io = btrfs_end_empty_barrier;
3691        bio_set_dev(bio, device->bdev);
3692        bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3693        init_completion(&device->flush_wait);
3694        bio->bi_private = &device->flush_wait;
3695
3696        btrfsic_submit_bio(bio);
3697        set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3698}
3699
3700/*
3701 * If the flush bio has been submitted by write_dev_flush, wait for it.
3702 */
3703static blk_status_t wait_dev_flush(struct btrfs_device *device)
3704{
3705        struct bio *bio = device->flush_bio;
3706
3707        if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3708                return BLK_STS_OK;
3709
3710        clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3711        wait_for_completion_io(&device->flush_wait);
3712
3713        return bio->bi_status;
3714}
3715
3716static int check_barrier_error(struct btrfs_fs_info *fs_info)
3717{
3718        if (!btrfs_check_rw_degradable(fs_info, NULL))
3719                return -EIO;
3720        return 0;
3721}
3722
3723/*
3724 * send an empty flush down to each device in parallel,
3725 * then wait for them
3726 */
3727static int barrier_all_devices(struct btrfs_fs_info *info)
3728{
3729        struct list_head *head;
3730        struct btrfs_device *dev;
3731        int errors_wait = 0;
3732        blk_status_t ret;
3733
3734        lockdep_assert_held(&info->fs_devices->device_list_mutex);
3735        /* send down all the barriers */
3736        head = &info->fs_devices->devices;
3737        list_for_each_entry(dev, head, dev_list) {
3738                if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3739                        continue;
3740                if (!dev->bdev)
3741                        continue;
3742                if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3743                    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3744                        continue;
3745
3746                write_dev_flush(dev);
3747                dev->last_flush_error = BLK_STS_OK;
3748        }
3749
3750        /* wait for all the barriers */
3751        list_for_each_entry(dev, head, dev_list) {
3752                if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3753                        continue;
3754                if (!dev->bdev) {
3755                        errors_wait++;
3756                        continue;
3757                }
3758                if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3759                    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3760                        continue;
3761
3762                ret = wait_dev_flush(dev);
3763                if (ret) {
3764                        dev->last_flush_error = ret;
3765                        btrfs_dev_stat_inc_and_print(dev,
3766                                        BTRFS_DEV_STAT_FLUSH_ERRS);
3767                        errors_wait++;
3768                }
3769        }
3770
3771        if (errors_wait) {
3772                /*
3773                 * At some point we need the status of all disks
3774                 * to arrive at the volume status. So error checking
3775                 * is being pushed to a separate loop.
3776                 */
3777                return check_barrier_error(info);
3778        }
3779        return 0;
3780}
3781
3782int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3783{
3784        int raid_type;
3785        int min_tolerated = INT_MAX;
3786
3787        if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3788            (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3789                min_tolerated = min_t(int, min_tolerated,
3790                                    btrfs_raid_array[BTRFS_RAID_SINGLE].
3791                                    tolerated_failures);
3792
3793        for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3794                if (raid_type == BTRFS_RAID_SINGLE)
3795                        continue;
3796                if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3797                        continue;
3798                min_tolerated = min_t(int, min_tolerated,
3799                                    btrfs_raid_array[raid_type].
3800                                    tolerated_failures);
3801        }
3802
3803        if (min_tolerated == INT_MAX) {
3804                pr_warn("BTRFS: unknown raid flag: %llu", flags);
3805                min_tolerated = 0;
3806        }
3807
3808        return min_tolerated;
3809}
3810
3811int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3812{
3813        struct list_head *head;
3814        struct btrfs_device *dev;
3815        struct btrfs_super_block *sb;
3816        struct btrfs_dev_item *dev_item;
3817        int ret;
3818        int do_barriers;
3819        int max_errors;
3820        int total_errors = 0;
3821        u64 flags;
3822
3823        do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3824
3825        /*
3826         * max_mirrors == 0 indicates we're from commit_transaction,
3827         * not from fsync where the tree roots in fs_info have not
3828         * been consistent on disk.
3829         */
3830        if (max_mirrors == 0)
3831                backup_super_roots(fs_info);
3832
3833        sb = fs_info->super_for_commit;
3834        dev_item = &sb->dev_item;
3835
3836        mutex_lock(&fs_info->fs_devices->device_list_mutex);
3837        head = &fs_info->fs_devices->devices;
3838        max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3839
3840        if (do_barriers) {
3841                ret = barrier_all_devices(fs_info);
3842                if (ret) {
3843                        mutex_unlock(
3844                                &fs_info->fs_devices->device_list_mutex);
3845                        btrfs_handle_fs_error(fs_info, ret,
3846                                              "errors while submitting device barriers.");
3847                        return ret;
3848                }
3849        }
3850
3851        list_for_each_entry(dev, head, dev_list) {
3852                if (!dev->bdev) {
3853                        total_errors++;
3854                        continue;
3855                }
3856                if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3857                    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3858                        continue;
3859
3860                btrfs_set_stack_device_generation(dev_item, 0);
3861                btrfs_set_stack_device_type(dev_item, dev->type);
3862                btrfs_set_stack_device_id(dev_item, dev->devid);
3863                btrfs_set_stack_device_total_bytes(dev_item,
3864                                                   dev->commit_total_bytes);
3865                btrfs_set_stack_device_bytes_used(dev_item,
3866                                                  dev->commit_bytes_used);
3867                btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3868                btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3869                btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3870                memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3871                memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3872                       BTRFS_FSID_SIZE);
3873
3874                flags = btrfs_super_flags(sb);
3875                btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3876
3877                ret = btrfs_validate_write_super(fs_info, sb);
3878                if (ret < 0) {
3879                        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3880                        btrfs_handle_fs_error(fs_info, -EUCLEAN,
3881                                "unexpected superblock corruption detected");
3882                        return -EUCLEAN;
3883                }
3884
3885                ret = write_dev_supers(dev, sb, max_mirrors);
3886                if (ret)
3887                        total_errors++;
3888        }
3889        if (total_errors > max_errors) {
3890                btrfs_err(fs_info, "%d errors while writing supers",
3891                          total_errors);
3892                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3893
3894                /* FUA is masked off if unsupported and can't be the reason */
3895                btrfs_handle_fs_error(fs_info, -EIO,
3896                                      "%d errors while writing supers",
3897                                      total_errors);
3898                return -EIO;
3899        }
3900
3901        total_errors = 0;
3902        list_for_each_entry(dev, head, dev_list) {
3903                if (!dev->bdev)
3904                        continue;
3905                if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3906                    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3907                        continue;
3908
3909                ret = wait_dev_supers(dev, max_mirrors);
3910                if (ret)
3911                        total_errors++;
3912        }
3913        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3914        if (total_errors > max_errors) {
3915                btrfs_handle_fs_error(fs_info, -EIO,
3916                                      "%d errors while writing supers",
3917                                      total_errors);
3918                return -EIO;
3919        }
3920        return 0;
3921}
3922
3923/* Drop a fs root from the radix tree and free it. */
3924void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3925                                  struct btrfs_root *root)
3926{
3927        bool drop_ref = false;
3928
3929        spin_lock(&fs_info->fs_roots_radix_lock);
3930        radix_tree_delete(&fs_info->fs_roots_radix,
3931                          (unsigned long)root->root_key.objectid);
3932        if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3933                drop_ref = true;
3934        spin_unlock(&fs_info->fs_roots_radix_lock);
3935
3936        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3937                ASSERT(root->log_root == NULL);
3938                if (root->reloc_root) {
3939                        btrfs_put_root(root->reloc_root);
3940                        root->reloc_root = NULL;
3941                }
3942        }
3943
3944        if (root->free_ino_pinned)
3945                __btrfs_remove_free_space_cache(root->free_ino_pinned);
3946        if (root->free_ino_ctl)
3947                __btrfs_remove_free_space_cache(root->free_ino_ctl);
3948        if (root->ino_cache_inode) {
3949                iput(root->ino_cache_inode);
3950                root->ino_cache_inode = NULL;
3951        }
3952        if (drop_ref)
3953                btrfs_put_root(root);
3954}
3955
3956int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3957{
3958        u64 root_objectid = 0;
3959        struct btrfs_root *gang[8];
3960        int i = 0;
3961        int err = 0;
3962        unsigned int ret = 0;
3963
3964        while (1) {
3965                spin_lock(&fs_info->fs_roots_radix_lock);
3966                ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3967                                             (void **)gang, root_objectid,
3968                                             ARRAY_SIZE(gang));
3969                if (!ret) {
3970                        spin_unlock(&fs_info->fs_roots_radix_lock);
3971                        break;
3972                }
3973                root_objectid = gang[ret - 1]->root_key.objectid + 1;
3974
3975                for (i = 0; i < ret; i++) {
3976                        /* Avoid to grab roots in dead_roots */
3977                        if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3978                                gang[i] = NULL;
3979                                continue;
3980                        }
3981                        /* grab all the search result for later use */
3982                        gang[i] = btrfs_grab_root(gang[i]);
3983                }
3984                spin_unlock(&fs_info->fs_roots_radix_lock);
3985
3986                for (i = 0; i < ret; i++) {
3987                        if (!gang[i])
3988                                continue;
3989                        root_objectid = gang[i]->root_key.objectid;
3990                        err = btrfs_orphan_cleanup(gang[i]);
3991                        if (err)
3992                                break;
3993                        btrfs_put_root(gang[i]);
3994                }
3995                root_objectid++;
3996        }
3997
3998        /* release the uncleaned roots due to error */
3999        for (; i < ret; i++) {
4000                if (gang[i])
4001                        btrfs_put_root(gang[i]);
4002        }
4003        return err;
4004}
4005
4006int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4007{
4008        struct btrfs_root *root = fs_info->tree_root;
4009        struct btrfs_trans_handle *trans;
4010
4011        mutex_lock(&fs_info->cleaner_mutex);
4012        btrfs_run_delayed_iputs(fs_info);
4013        mutex_unlock(&fs_info->cleaner_mutex);
4014        wake_up_process(fs_info->cleaner_kthread);
4015
4016        /* wait until ongoing cleanup work done */
4017        down_write(&fs_info->cleanup_work_sem);
4018        up_write(&fs_info->cleanup_work_sem);
4019
4020        trans = btrfs_join_transaction(root);
4021        if (IS_ERR(trans))
4022                return PTR_ERR(trans);
4023        return btrfs_commit_transaction(trans);
4024}
4025
4026void __cold close_ctree(struct btrfs_fs_info *fs_info)
4027{
4028        int ret;
4029
4030        set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4031        /*
4032         * We don't want the cleaner to start new transactions, add more delayed
4033         * iputs, etc. while we're closing. We can't use kthread_stop() yet
4034         * because that frees the task_struct, and the transaction kthread might
4035         * still try to wake up the cleaner.
4036         */
4037        kthread_park(fs_info->cleaner_kthread);
4038
4039        /* wait for the qgroup rescan worker to stop */
4040        btrfs_qgroup_wait_for_completion(fs_info, false);
4041
4042        /* wait for the uuid_scan task to finish */
4043        down(&fs_info->uuid_tree_rescan_sem);
4044        /* avoid complains from lockdep et al., set sem back to initial state */
4045        up(&fs_info->uuid_tree_rescan_sem);
4046
4047        /* pause restriper - we want to resume on mount */
4048        btrfs_pause_balance(fs_info);
4049
4050        btrfs_dev_replace_suspend_for_unmount(fs_info);
4051
4052        btrfs_scrub_cancel(fs_info);
4053
4054        /* wait for any defraggers to finish */
4055        wait_event(fs_info->transaction_wait,
4056                   (atomic_read(&fs_info->defrag_running) == 0));
4057
4058        /* clear out the rbtree of defraggable inodes */
4059        btrfs_cleanup_defrag_inodes(fs_info);
4060
4061        cancel_work_sync(&fs_info->async_reclaim_work);
4062        cancel_work_sync(&fs_info->async_data_reclaim_work);
4063
4064        /* Cancel or finish ongoing discard work */
4065        btrfs_discard_cleanup(fs_info);
4066
4067        if (!sb_rdonly(fs_info->sb)) {
4068                /*
4069                 * The cleaner kthread is stopped, so do one final pass over
4070                 * unused block groups.
4071                 */
4072                btrfs_delete_unused_bgs(fs_info);
4073
4074                /*
4075                 * There might be existing delayed inode workers still running
4076                 * and holding an empty delayed inode item. We must wait for
4077                 * them to complete first because they can create a transaction.
4078                 * This happens when someone calls btrfs_balance_delayed_items()
4079                 * and then a transaction commit runs the same delayed nodes
4080                 * before any delayed worker has done something with the nodes.
4081                 * We must wait for any worker here and not at transaction
4082                 * commit time since that could cause a deadlock.
4083                 * This is a very rare case.
4084                 */
4085                btrfs_flush_workqueue(fs_info->delayed_workers);
4086
4087                ret = btrfs_commit_super(fs_info);
4088                if (ret)
4089                        btrfs_err(fs_info, "commit super ret %d", ret);
4090        }
4091
4092        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4093            test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4094                btrfs_error_commit_super(fs_info);
4095
4096        kthread_stop(fs_info->transaction_kthread);
4097        kthread_stop(fs_info->cleaner_kthread);
4098
4099        ASSERT(list_empty(&fs_info->delayed_iputs));
4100        set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4101
4102        if (btrfs_check_quota_leak(fs_info)) {
4103                WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4104                btrfs_err(fs_info, "qgroup reserved space leaked");
4105        }
4106
4107        btrfs_free_qgroup_config(fs_info);
4108        ASSERT(list_empty(&fs_info->delalloc_roots));
4109
4110        if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4111                btrfs_info(fs_info, "at unmount delalloc count %lld",
4112                       percpu_counter_sum(&fs_info->delalloc_bytes));
4113        }
4114
4115        if (percpu_counter_sum(&fs_info->dio_bytes))
4116                btrfs_info(fs_info, "at unmount dio bytes count %lld",
4117                           percpu_counter_sum(&fs_info->dio_bytes));
4118
4119        btrfs_sysfs_remove_mounted(fs_info);
4120        btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4121
4122        btrfs_put_block_group_cache(fs_info);
4123
4124        /*
4125         * we must make sure there is not any read request to
4126         * submit after we stopping all workers.
4127         */
4128        invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4129        btrfs_stop_all_workers(fs_info);
4130
4131        clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4132        free_root_pointers(fs_info, true);
4133        btrfs_free_fs_roots(fs_info);
4134
4135        /*
4136         * We must free the block groups after dropping the fs_roots as we could
4137         * have had an IO error and have left over tree log blocks that aren't
4138         * cleaned up until the fs roots are freed.  This makes the block group
4139         * accounting appear to be wrong because there's pending reserved bytes,
4140         * so make sure we do the block group cleanup afterwards.
4141         */
4142        btrfs_free_block_groups(fs_info);
4143
4144        iput(fs_info->btree_inode);
4145
4146#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4147        if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4148                btrfsic_unmount(fs_info->fs_devices);
4149#endif
4150
4151        btrfs_mapping_tree_free(&fs_info->mapping_tree);
4152        btrfs_close_devices(fs_info->fs_devices);
4153}
4154
4155int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4156                          int atomic)
4157{
4158        int ret;
4159        struct inode *btree_inode = buf->pages[0]->mapping->host;
4160
4161        ret = extent_buffer_uptodate(buf);
4162        if (!ret)
4163                return ret;
4164
4165        ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4166                                    parent_transid, atomic);
4167        if (ret == -EAGAIN)
4168                return ret;
4169        return !ret;
4170}
4171
4172void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4173{
4174        struct btrfs_fs_info *fs_info;
4175        struct btrfs_root *root;
4176        u64 transid = btrfs_header_generation(buf);
4177        int was_dirty;
4178
4179#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4180        /*
4181         * This is a fast path so only do this check if we have sanity tests
4182         * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4183         * outside of the sanity tests.
4184         */
4185        if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4186                return;
4187#endif
4188        root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4189        fs_info = root->fs_info;
4190        btrfs_assert_tree_locked(buf);
4191        if (transid != fs_info->generation)
4192                WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4193                        buf->start, transid, fs_info->generation);
4194        was_dirty = set_extent_buffer_dirty(buf);
4195        if (!was_dirty)
4196                percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4197                                         buf->len,
4198                                         fs_info->dirty_metadata_batch);
4199#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4200        /*
4201         * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4202         * but item data not updated.
4203         * So here we should only check item pointers, not item data.
4204         */
4205        if (btrfs_header_level(buf) == 0 &&
4206            btrfs_check_leaf_relaxed(buf)) {
4207                btrfs_print_leaf(buf);
4208                ASSERT(0);
4209        }
4210#endif
4211}
4212
4213static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4214                                        int flush_delayed)
4215{
4216        /*
4217         * looks as though older kernels can get into trouble with
4218         * this code, they end up stuck in balance_dirty_pages forever
4219         */
4220        int ret;
4221
4222        if (current->flags & PF_MEMALLOC)
4223                return;
4224
4225        if (flush_delayed)
4226                btrfs_balance_delayed_items(fs_info);
4227
4228        ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4229                                     BTRFS_DIRTY_METADATA_THRESH,
4230                                     fs_info->dirty_metadata_batch);
4231        if (ret > 0) {
4232                balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4233        }
4234}
4235
4236void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4237{
4238        __btrfs_btree_balance_dirty(fs_info, 1);
4239}
4240
4241void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4242{
4243        __btrfs_btree_balance_dirty(fs_info, 0);
4244}
4245
4246int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4247                      struct btrfs_key *first_key)
4248{
4249        return btree_read_extent_buffer_pages(buf, parent_transid,
4250                                              level, first_key);
4251}
4252
4253static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4254{
4255        /* cleanup FS via transaction */
4256        btrfs_cleanup_transaction(fs_info);
4257
4258        mutex_lock(&fs_info->cleaner_mutex);
4259        btrfs_run_delayed_iputs(fs_info);
4260        mutex_unlock(&fs_info->cleaner_mutex);
4261
4262        down_write(&fs_info->cleanup_work_sem);
4263        up_write(&fs_info->cleanup_work_sem);
4264}
4265
4266static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4267{
4268        struct btrfs_root *gang[8];
4269        u64 root_objectid = 0;
4270        int ret;
4271
4272        spin_lock(&fs_info->fs_roots_radix_lock);
4273        while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4274                                             (void **)gang, root_objectid,
4275                                             ARRAY_SIZE(gang))) != 0) {
4276                int i;
4277
4278                for (i = 0; i < ret; i++)
4279                        gang[i] = btrfs_grab_root(gang[i]);
4280                spin_unlock(&fs_info->fs_roots_radix_lock);
4281
4282                for (i = 0; i < ret; i++) {
4283                        if (!gang[i])
4284                                continue;
4285                        root_objectid = gang[i]->root_key.objectid;
4286                        btrfs_free_log(NULL, gang[i]);
4287                        btrfs_put_root(gang[i]);
4288                }
4289                root_objectid++;
4290                spin_lock(&fs_info->fs_roots_radix_lock);
4291        }
4292        spin_unlock(&fs_info->fs_roots_radix_lock);
4293        btrfs_free_log_root_tree(NULL, fs_info);
4294}
4295
4296static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4297{
4298        struct btrfs_ordered_extent *ordered;
4299
4300        spin_lock(&root->ordered_extent_lock);
4301        /*
4302         * This will just short circuit the ordered completion stuff which will
4303         * make sure the ordered extent gets properly cleaned up.
4304         */
4305        list_for_each_entry(ordered, &root->ordered_extents,
4306                            root_extent_list)
4307                set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4308        spin_unlock(&root->ordered_extent_lock);
4309}
4310
4311static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4312{
4313        struct btrfs_root *root;
4314        struct list_head splice;
4315
4316        INIT_LIST_HEAD(&splice);
4317
4318        spin_lock(&fs_info->ordered_root_lock);
4319        list_splice_init(&fs_info->ordered_roots, &splice);
4320        while (!list_empty(&splice)) {
4321                root = list_first_entry(&splice, struct btrfs_root,
4322                                        ordered_root);
4323                list_move_tail(&root->ordered_root,
4324                               &fs_info->ordered_roots);
4325
4326                spin_unlock(&fs_info->ordered_root_lock);
4327                btrfs_destroy_ordered_extents(root);
4328
4329                cond_resched();
4330                spin_lock(&fs_info->ordered_root_lock);
4331        }
4332        spin_unlock(&fs_info->ordered_root_lock);
4333
4334        /*
4335         * We need this here because if we've been flipped read-only we won't
4336         * get sync() from the umount, so we need to make sure any ordered
4337         * extents that haven't had their dirty pages IO start writeout yet
4338         * actually get run and error out properly.
4339         */
4340        btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4341}
4342
4343static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4344                                      struct btrfs_fs_info *fs_info)
4345{
4346        struct rb_node *node;
4347        struct btrfs_delayed_ref_root *delayed_refs;
4348        struct btrfs_delayed_ref_node *ref;
4349        int ret = 0;
4350
4351        delayed_refs = &trans->delayed_refs;
4352
4353        spin_lock(&delayed_refs->lock);
4354        if (atomic_read(&delayed_refs->num_entries) == 0) {
4355                spin_unlock(&delayed_refs->lock);
4356                btrfs_debug(fs_info, "delayed_refs has NO entry");
4357                return ret;
4358        }
4359
4360        while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4361                struct btrfs_delayed_ref_head *head;
4362                struct rb_node *n;
4363                bool pin_bytes = false;
4364
4365                head = rb_entry(node, struct btrfs_delayed_ref_head,
4366                                href_node);
4367                if (btrfs_delayed_ref_lock(delayed_refs, head))
4368                        continue;
4369
4370                spin_lock(&head->lock);
4371                while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4372                        ref = rb_entry(n, struct btrfs_delayed_ref_node,
4373                                       ref_node);
4374                        ref->in_tree = 0;
4375                        rb_erase_cached(&ref->ref_node, &head->ref_tree);
4376                        RB_CLEAR_NODE(&ref->ref_node);
4377                        if (!list_empty(&ref->add_list))
4378                                list_del(&ref->add_list);
4379                        atomic_dec(&delayed_refs->num_entries);
4380                        btrfs_put_delayed_ref(ref);
4381                }
4382                if (head->must_insert_reserved)
4383                        pin_bytes = true;
4384                btrfs_free_delayed_extent_op(head->extent_op);
4385                btrfs_delete_ref_head(delayed_refs, head);
4386                spin_unlock(&head->lock);
4387                spin_unlock(&delayed_refs->lock);
4388                mutex_unlock(&head->mutex);
4389
4390                if (pin_bytes) {
4391                        struct btrfs_block_group *cache;
4392
4393                        cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4394                        BUG_ON(!cache);
4395
4396                        spin_lock(&cache->space_info->lock);
4397                        spin_lock(&cache->lock);
4398                        cache->pinned += head->num_bytes;
4399                        btrfs_space_info_update_bytes_pinned(fs_info,
4400                                cache->space_info, head->num_bytes);
4401                        cache->reserved -= head->num_bytes;
4402                        cache->space_info->bytes_reserved -= head->num_bytes;
4403                        spin_unlock(&cache->lock);
4404                        spin_unlock(&cache->space_info->lock);
4405                        percpu_counter_add_batch(
4406                                &cache->space_info->total_bytes_pinned,
4407                                head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4408
4409                        btrfs_put_block_group(cache);
4410
4411                        btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4412                                head->bytenr + head->num_bytes - 1);
4413                }
4414                btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4415                btrfs_put_delayed_ref_head(head);
4416                cond_resched();
4417                spin_lock(&delayed_refs->lock);
4418        }
4419        btrfs_qgroup_destroy_extent_records(trans);
4420
4421        spin_unlock(&delayed_refs->lock);
4422
4423        return ret;
4424}
4425
4426static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4427{
4428        struct btrfs_inode *btrfs_inode;
4429        struct list_head splice;
4430
4431        INIT_LIST_HEAD(&splice);
4432
4433        spin_lock(&root->delalloc_lock);
4434        list_splice_init(&root->delalloc_inodes, &splice);
4435
4436        while (!list_empty(&splice)) {
4437                struct inode *inode = NULL;
4438                btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4439                                               delalloc_inodes);
4440                __btrfs_del_delalloc_inode(root, btrfs_inode);
4441                spin_unlock(&root->delalloc_lock);
4442
4443                /*
4444                 * Make sure we get a live inode and that it'll not disappear
4445                 * meanwhile.
4446                 */
4447                inode = igrab(&btrfs_inode->vfs_inode);
4448                if (inode) {
4449                        invalidate_inode_pages2(inode->i_mapping);
4450                        iput(inode);
4451                }
4452                spin_lock(&root->delalloc_lock);
4453        }
4454        spin_unlock(&root->delalloc_lock);
4455}
4456
4457static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4458{
4459        struct btrfs_root *root;
4460        struct list_head splice;
4461
4462        INIT_LIST_HEAD(&splice);
4463
4464        spin_lock(&fs_info->delalloc_root_lock);
4465        list_splice_init(&fs_info->delalloc_roots, &splice);
4466        while (!list_empty(&splice)) {
4467                root = list_first_entry(&splice, struct btrfs_root,
4468                                         delalloc_root);
4469                root = btrfs_grab_root(root);
4470                BUG_ON(!root);
4471                spin_unlock(&fs_info->delalloc_root_lock);
4472
4473                btrfs_destroy_delalloc_inodes(root);
4474                btrfs_put_root(root);
4475
4476                spin_lock(&fs_info->delalloc_root_lock);
4477        }
4478        spin_unlock(&fs_info->delalloc_root_lock);
4479}
4480
4481static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4482                                        struct extent_io_tree *dirty_pages,
4483                                        int mark)
4484{
4485        int ret;
4486        struct extent_buffer *eb;
4487        u64 start = 0;
4488        u64 end;
4489
4490        while (1) {
4491                ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4492                                            mark, NULL);
4493                if (ret)
4494                        break;
4495
4496                clear_extent_bits(dirty_pages, start, end, mark);
4497                while (start <= end) {
4498                        eb = find_extent_buffer(fs_info, start);
4499                        start += fs_info->nodesize;
4500                        if (!eb)
4501                                continue;
4502                        wait_on_extent_buffer_writeback(eb);
4503
4504                        if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4505                                               &eb->bflags))
4506                                clear_extent_buffer_dirty(eb);
4507                        free_extent_buffer_stale(eb);
4508                }
4509        }
4510
4511        return ret;
4512}
4513
4514static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4515                                       struct extent_io_tree *unpin)
4516{
4517        u64 start;
4518        u64 end;
4519        int ret;
4520
4521        while (1) {
4522                struct extent_state *cached_state = NULL;
4523
4524                /*
4525                 * The btrfs_finish_extent_commit() may get the same range as
4526                 * ours between find_first_extent_bit and clear_extent_dirty.
4527                 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4528                 * the same extent range.
4529                 */
4530                mutex_lock(&fs_info->unused_bg_unpin_mutex);
4531                ret = find_first_extent_bit(unpin, 0, &start, &end,
4532                                            EXTENT_DIRTY, &cached_state);
4533                if (ret) {
4534                        mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4535                        break;
4536                }
4537
4538                clear_extent_dirty(unpin, start, end, &cached_state);
4539                free_extent_state(cached_state);
4540                btrfs_error_unpin_extent_range(fs_info, start, end);
4541                mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4542                cond_resched();
4543        }
4544
4545        return 0;
4546}
4547
4548static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4549{
4550        struct inode *inode;
4551
4552        inode = cache->io_ctl.inode;
4553        if (inode) {
4554                invalidate_inode_pages2(inode->i_mapping);
4555                BTRFS_I(inode)->generation = 0;
4556                cache->io_ctl.inode = NULL;
4557                iput(inode);
4558        }
4559        ASSERT(cache->io_ctl.pages == NULL);
4560        btrfs_put_block_group(cache);
4561}
4562
4563void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4564                             struct btrfs_fs_info *fs_info)
4565{
4566        struct btrfs_block_group *cache;
4567
4568        spin_lock(&cur_trans->dirty_bgs_lock);
4569        while (!list_empty(&cur_trans->dirty_bgs)) {
4570                cache = list_first_entry(&cur_trans->dirty_bgs,
4571                                         struct btrfs_block_group,
4572                                         dirty_list);
4573
4574                if (!list_empty(&cache->io_list)) {
4575                        spin_unlock(&cur_trans->dirty_bgs_lock);
4576                        list_del_init(&cache->io_list);
4577                        btrfs_cleanup_bg_io(cache);
4578                        spin_lock(&cur_trans->dirty_bgs_lock);
4579                }
4580
4581                list_del_init(&cache->dirty_list);
4582                spin_lock(&cache->lock);
4583                cache->disk_cache_state = BTRFS_DC_ERROR;
4584                spin_unlock(&cache->lock);
4585
4586                spin_unlock(&cur_trans->dirty_bgs_lock);
4587                btrfs_put_block_group(cache);
4588                btrfs_delayed_refs_rsv_release(fs_info, 1);
4589                spin_lock(&cur_trans->dirty_bgs_lock);
4590        }
4591        spin_unlock(&cur_trans->dirty_bgs_lock);
4592
4593        /*
4594         * Refer to the definition of io_bgs member for details why it's safe
4595         * to use it without any locking
4596         */
4597        while (!list_empty(&cur_trans->io_bgs)) {
4598                cache = list_first_entry(&cur_trans->io_bgs,
4599                                         struct btrfs_block_group,
4600                                         io_list);
4601
4602                list_del_init(&cache->io_list);
4603                spin_lock(&cache->lock);
4604                cache->disk_cache_state = BTRFS_DC_ERROR;
4605                spin_unlock(&cache->lock);
4606                btrfs_cleanup_bg_io(cache);
4607        }
4608}
4609
4610void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4611                                   struct btrfs_fs_info *fs_info)
4612{
4613        struct btrfs_device *dev, *tmp;
4614
4615        btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4616        ASSERT(list_empty(&cur_trans->dirty_bgs));
4617        ASSERT(list_empty(&cur_trans->io_bgs));
4618
4619        list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4620                                 post_commit_list) {
4621                list_del_init(&dev->post_commit_list);
4622        }
4623
4624        btrfs_destroy_delayed_refs(cur_trans, fs_info);
4625
4626        cur_trans->state = TRANS_STATE_COMMIT_START;
4627        wake_up(&fs_info->transaction_blocked_wait);
4628
4629        cur_trans->state = TRANS_STATE_UNBLOCKED;
4630        wake_up(&fs_info->transaction_wait);
4631
4632        btrfs_destroy_delayed_inodes(fs_info);
4633
4634        btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4635                                     EXTENT_DIRTY);
4636        btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4637
4638        cur_trans->state =TRANS_STATE_COMPLETED;
4639        wake_up(&cur_trans->commit_wait);
4640}
4641
4642static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4643{
4644        struct btrfs_transaction *t;
4645
4646        mutex_lock(&fs_info->transaction_kthread_mutex);
4647
4648        spin_lock(&fs_info->trans_lock);
4649        while (!list_empty(&fs_info->trans_list)) {
4650                t = list_first_entry(&fs_info->trans_list,
4651                                     struct btrfs_transaction, list);
4652                if (t->state >= TRANS_STATE_COMMIT_START) {
4653                        refcount_inc(&t->use_count);
4654                        spin_unlock(&fs_info->trans_lock);
4655                        btrfs_wait_for_commit(fs_info, t->transid);
4656                        btrfs_put_transaction(t);
4657                        spin_lock(&fs_info->trans_lock);
4658                        continue;
4659                }
4660                if (t == fs_info->running_transaction) {
4661                        t->state = TRANS_STATE_COMMIT_DOING;
4662                        spin_unlock(&fs_info->trans_lock);
4663                        /*
4664                         * We wait for 0 num_writers since we don't hold a trans
4665                         * handle open currently for this transaction.
4666                         */
4667                        wait_event(t->writer_wait,
4668                                   atomic_read(&t->num_writers) == 0);
4669                } else {
4670                        spin_unlock(&fs_info->trans_lock);
4671                }
4672                btrfs_cleanup_one_transaction(t, fs_info);
4673
4674                spin_lock(&fs_info->trans_lock);
4675                if (t == fs_info->running_transaction)
4676                        fs_info->running_transaction = NULL;
4677                list_del_init(&t->list);
4678                spin_unlock(&fs_info->trans_lock);
4679
4680                btrfs_put_transaction(t);
4681                trace_btrfs_transaction_commit(fs_info->tree_root);
4682                spin_lock(&fs_info->trans_lock);
4683        }
4684        spin_unlock(&fs_info->trans_lock);
4685        btrfs_destroy_all_ordered_extents(fs_info);
4686        btrfs_destroy_delayed_inodes(fs_info);
4687        btrfs_assert_delayed_root_empty(fs_info);
4688        btrfs_destroy_all_delalloc_inodes(fs_info);
4689        btrfs_drop_all_logs(fs_info);
4690        mutex_unlock(&fs_info->transaction_kthread_mutex);
4691
4692        return 0;
4693}
4694