linux/fs/crypto/hooks.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * fs/crypto/hooks.c
   4 *
   5 * Encryption hooks for higher-level filesystem operations.
   6 */
   7
   8#include <linux/key.h>
   9
  10#include "fscrypt_private.h"
  11
  12/**
  13 * fscrypt_file_open() - prepare to open a possibly-encrypted regular file
  14 * @inode: the inode being opened
  15 * @filp: the struct file being set up
  16 *
  17 * Currently, an encrypted regular file can only be opened if its encryption key
  18 * is available; access to the raw encrypted contents is not supported.
  19 * Therefore, we first set up the inode's encryption key (if not already done)
  20 * and return an error if it's unavailable.
  21 *
  22 * We also verify that if the parent directory (from the path via which the file
  23 * is being opened) is encrypted, then the inode being opened uses the same
  24 * encryption policy.  This is needed as part of the enforcement that all files
  25 * in an encrypted directory tree use the same encryption policy, as a
  26 * protection against certain types of offline attacks.  Note that this check is
  27 * needed even when opening an *unencrypted* file, since it's forbidden to have
  28 * an unencrypted file in an encrypted directory.
  29 *
  30 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
  31 */
  32int fscrypt_file_open(struct inode *inode, struct file *filp)
  33{
  34        int err;
  35        struct dentry *dir;
  36
  37        err = fscrypt_require_key(inode);
  38        if (err)
  39                return err;
  40
  41        dir = dget_parent(file_dentry(filp));
  42        if (IS_ENCRYPTED(d_inode(dir)) &&
  43            !fscrypt_has_permitted_context(d_inode(dir), inode)) {
  44                fscrypt_warn(inode,
  45                             "Inconsistent encryption context (parent directory: %lu)",
  46                             d_inode(dir)->i_ino);
  47                err = -EPERM;
  48        }
  49        dput(dir);
  50        return err;
  51}
  52EXPORT_SYMBOL_GPL(fscrypt_file_open);
  53
  54int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
  55                           struct dentry *dentry)
  56{
  57        int err;
  58
  59        err = fscrypt_require_key(dir);
  60        if (err)
  61                return err;
  62
  63        /* ... in case we looked up no-key name before key was added */
  64        if (dentry->d_flags & DCACHE_NOKEY_NAME)
  65                return -ENOKEY;
  66
  67        if (!fscrypt_has_permitted_context(dir, inode))
  68                return -EXDEV;
  69
  70        return 0;
  71}
  72EXPORT_SYMBOL_GPL(__fscrypt_prepare_link);
  73
  74int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
  75                             struct inode *new_dir, struct dentry *new_dentry,
  76                             unsigned int flags)
  77{
  78        int err;
  79
  80        err = fscrypt_require_key(old_dir);
  81        if (err)
  82                return err;
  83
  84        err = fscrypt_require_key(new_dir);
  85        if (err)
  86                return err;
  87
  88        /* ... in case we looked up no-key name(s) before key was added */
  89        if ((old_dentry->d_flags | new_dentry->d_flags) & DCACHE_NOKEY_NAME)
  90                return -ENOKEY;
  91
  92        if (old_dir != new_dir) {
  93                if (IS_ENCRYPTED(new_dir) &&
  94                    !fscrypt_has_permitted_context(new_dir,
  95                                                   d_inode(old_dentry)))
  96                        return -EXDEV;
  97
  98                if ((flags & RENAME_EXCHANGE) &&
  99                    IS_ENCRYPTED(old_dir) &&
 100                    !fscrypt_has_permitted_context(old_dir,
 101                                                   d_inode(new_dentry)))
 102                        return -EXDEV;
 103        }
 104        return 0;
 105}
 106EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename);
 107
 108int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
 109                             struct fscrypt_name *fname)
 110{
 111        int err = fscrypt_setup_filename(dir, &dentry->d_name, 1, fname);
 112
 113        if (err && err != -ENOENT)
 114                return err;
 115
 116        if (fname->is_nokey_name) {
 117                spin_lock(&dentry->d_lock);
 118                dentry->d_flags |= DCACHE_NOKEY_NAME;
 119                spin_unlock(&dentry->d_lock);
 120                d_set_d_op(dentry, &fscrypt_d_ops);
 121        }
 122        return err;
 123}
 124EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);
 125
 126/**
 127 * fscrypt_prepare_setflags() - prepare to change flags with FS_IOC_SETFLAGS
 128 * @inode: the inode on which flags are being changed
 129 * @oldflags: the old flags
 130 * @flags: the new flags
 131 *
 132 * The caller should be holding i_rwsem for write.
 133 *
 134 * Return: 0 on success; -errno if the flags change isn't allowed or if
 135 *         another error occurs.
 136 */
 137int fscrypt_prepare_setflags(struct inode *inode,
 138                             unsigned int oldflags, unsigned int flags)
 139{
 140        struct fscrypt_info *ci;
 141        struct fscrypt_master_key *mk;
 142        int err;
 143
 144        /*
 145         * When the CASEFOLD flag is set on an encrypted directory, we must
 146         * derive the secret key needed for the dirhash.  This is only possible
 147         * if the directory uses a v2 encryption policy.
 148         */
 149        if (IS_ENCRYPTED(inode) && (flags & ~oldflags & FS_CASEFOLD_FL)) {
 150                err = fscrypt_require_key(inode);
 151                if (err)
 152                        return err;
 153                ci = inode->i_crypt_info;
 154                if (ci->ci_policy.version != FSCRYPT_POLICY_V2)
 155                        return -EINVAL;
 156                mk = ci->ci_master_key->payload.data[0];
 157                down_read(&mk->mk_secret_sem);
 158                if (is_master_key_secret_present(&mk->mk_secret))
 159                        err = fscrypt_derive_dirhash_key(ci, mk);
 160                else
 161                        err = -ENOKEY;
 162                up_read(&mk->mk_secret_sem);
 163                return err;
 164        }
 165        return 0;
 166}
 167
 168/**
 169 * fscrypt_prepare_symlink() - prepare to create a possibly-encrypted symlink
 170 * @dir: directory in which the symlink is being created
 171 * @target: plaintext symlink target
 172 * @len: length of @target excluding null terminator
 173 * @max_len: space the filesystem has available to store the symlink target
 174 * @disk_link: (out) the on-disk symlink target being prepared
 175 *
 176 * This function computes the size the symlink target will require on-disk,
 177 * stores it in @disk_link->len, and validates it against @max_len.  An
 178 * encrypted symlink may be longer than the original.
 179 *
 180 * Additionally, @disk_link->name is set to @target if the symlink will be
 181 * unencrypted, but left NULL if the symlink will be encrypted.  For encrypted
 182 * symlinks, the filesystem must call fscrypt_encrypt_symlink() to create the
 183 * on-disk target later.  (The reason for the two-step process is that some
 184 * filesystems need to know the size of the symlink target before creating the
 185 * inode, e.g. to determine whether it will be a "fast" or "slow" symlink.)
 186 *
 187 * Return: 0 on success, -ENAMETOOLONG if the symlink target is too long,
 188 * -ENOKEY if the encryption key is missing, or another -errno code if a problem
 189 * occurred while setting up the encryption key.
 190 */
 191int fscrypt_prepare_symlink(struct inode *dir, const char *target,
 192                            unsigned int len, unsigned int max_len,
 193                            struct fscrypt_str *disk_link)
 194{
 195        const union fscrypt_policy *policy;
 196
 197        /*
 198         * To calculate the size of the encrypted symlink target we need to know
 199         * the amount of NUL padding, which is determined by the flags set in
 200         * the encryption policy which will be inherited from the directory.
 201         */
 202        policy = fscrypt_policy_to_inherit(dir);
 203        if (policy == NULL) {
 204                /* Not encrypted */
 205                disk_link->name = (unsigned char *)target;
 206                disk_link->len = len + 1;
 207                if (disk_link->len > max_len)
 208                        return -ENAMETOOLONG;
 209                return 0;
 210        }
 211        if (IS_ERR(policy))
 212                return PTR_ERR(policy);
 213
 214        /*
 215         * Calculate the size of the encrypted symlink and verify it won't
 216         * exceed max_len.  Note that for historical reasons, encrypted symlink
 217         * targets are prefixed with the ciphertext length, despite this
 218         * actually being redundant with i_size.  This decreases by 2 bytes the
 219         * longest symlink target we can accept.
 220         *
 221         * We could recover 1 byte by not counting a null terminator, but
 222         * counting it (even though it is meaningless for ciphertext) is simpler
 223         * for now since filesystems will assume it is there and subtract it.
 224         */
 225        if (!fscrypt_fname_encrypted_size(policy, len,
 226                                          max_len - sizeof(struct fscrypt_symlink_data),
 227                                          &disk_link->len))
 228                return -ENAMETOOLONG;
 229        disk_link->len += sizeof(struct fscrypt_symlink_data);
 230
 231        disk_link->name = NULL;
 232        return 0;
 233}
 234EXPORT_SYMBOL_GPL(fscrypt_prepare_symlink);
 235
 236int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
 237                              unsigned int len, struct fscrypt_str *disk_link)
 238{
 239        int err;
 240        struct qstr iname = QSTR_INIT(target, len);
 241        struct fscrypt_symlink_data *sd;
 242        unsigned int ciphertext_len;
 243
 244        /*
 245         * fscrypt_prepare_new_inode() should have already set up the new
 246         * symlink inode's encryption key.  We don't wait until now to do it,
 247         * since we may be in a filesystem transaction now.
 248         */
 249        if (WARN_ON_ONCE(!fscrypt_has_encryption_key(inode)))
 250                return -ENOKEY;
 251
 252        if (disk_link->name) {
 253                /* filesystem-provided buffer */
 254                sd = (struct fscrypt_symlink_data *)disk_link->name;
 255        } else {
 256                sd = kmalloc(disk_link->len, GFP_NOFS);
 257                if (!sd)
 258                        return -ENOMEM;
 259        }
 260        ciphertext_len = disk_link->len - sizeof(*sd);
 261        sd->len = cpu_to_le16(ciphertext_len);
 262
 263        err = fscrypt_fname_encrypt(inode, &iname, sd->encrypted_path,
 264                                    ciphertext_len);
 265        if (err)
 266                goto err_free_sd;
 267
 268        /*
 269         * Null-terminating the ciphertext doesn't make sense, but we still
 270         * count the null terminator in the length, so we might as well
 271         * initialize it just in case the filesystem writes it out.
 272         */
 273        sd->encrypted_path[ciphertext_len] = '\0';
 274
 275        /* Cache the plaintext symlink target for later use by get_link() */
 276        err = -ENOMEM;
 277        inode->i_link = kmemdup(target, len + 1, GFP_NOFS);
 278        if (!inode->i_link)
 279                goto err_free_sd;
 280
 281        if (!disk_link->name)
 282                disk_link->name = (unsigned char *)sd;
 283        return 0;
 284
 285err_free_sd:
 286        if (!disk_link->name)
 287                kfree(sd);
 288        return err;
 289}
 290EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink);
 291
 292/**
 293 * fscrypt_get_symlink() - get the target of an encrypted symlink
 294 * @inode: the symlink inode
 295 * @caddr: the on-disk contents of the symlink
 296 * @max_size: size of @caddr buffer
 297 * @done: if successful, will be set up to free the returned target if needed
 298 *
 299 * If the symlink's encryption key is available, we decrypt its target.
 300 * Otherwise, we encode its target for presentation.
 301 *
 302 * This may sleep, so the filesystem must have dropped out of RCU mode already.
 303 *
 304 * Return: the presentable symlink target or an ERR_PTR()
 305 */
 306const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
 307                                unsigned int max_size,
 308                                struct delayed_call *done)
 309{
 310        const struct fscrypt_symlink_data *sd;
 311        struct fscrypt_str cstr, pstr;
 312        bool has_key;
 313        int err;
 314
 315        /* This is for encrypted symlinks only */
 316        if (WARN_ON(!IS_ENCRYPTED(inode)))
 317                return ERR_PTR(-EINVAL);
 318
 319        /* If the decrypted target is already cached, just return it. */
 320        pstr.name = READ_ONCE(inode->i_link);
 321        if (pstr.name)
 322                return pstr.name;
 323
 324        /*
 325         * Try to set up the symlink's encryption key, but we can continue
 326         * regardless of whether the key is available or not.
 327         */
 328        err = fscrypt_get_encryption_info(inode);
 329        if (err)
 330                return ERR_PTR(err);
 331        has_key = fscrypt_has_encryption_key(inode);
 332
 333        /*
 334         * For historical reasons, encrypted symlink targets are prefixed with
 335         * the ciphertext length, even though this is redundant with i_size.
 336         */
 337
 338        if (max_size < sizeof(*sd))
 339                return ERR_PTR(-EUCLEAN);
 340        sd = caddr;
 341        cstr.name = (unsigned char *)sd->encrypted_path;
 342        cstr.len = le16_to_cpu(sd->len);
 343
 344        if (cstr.len == 0)
 345                return ERR_PTR(-EUCLEAN);
 346
 347        if (cstr.len + sizeof(*sd) - 1 > max_size)
 348                return ERR_PTR(-EUCLEAN);
 349
 350        err = fscrypt_fname_alloc_buffer(cstr.len, &pstr);
 351        if (err)
 352                return ERR_PTR(err);
 353
 354        err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
 355        if (err)
 356                goto err_kfree;
 357
 358        err = -EUCLEAN;
 359        if (pstr.name[0] == '\0')
 360                goto err_kfree;
 361
 362        pstr.name[pstr.len] = '\0';
 363
 364        /*
 365         * Cache decrypted symlink targets in i_link for later use.  Don't cache
 366         * symlink targets encoded without the key, since those become outdated
 367         * once the key is added.  This pairs with the READ_ONCE() above and in
 368         * the VFS path lookup code.
 369         */
 370        if (!has_key ||
 371            cmpxchg_release(&inode->i_link, NULL, pstr.name) != NULL)
 372                set_delayed_call(done, kfree_link, pstr.name);
 373
 374        return pstr.name;
 375
 376err_kfree:
 377        kfree(pstr.name);
 378        return ERR_PTR(err);
 379}
 380EXPORT_SYMBOL_GPL(fscrypt_get_symlink);
 381