linux/fs/inode.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * (C) 1997 Linus Torvalds
   4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
   5 */
   6#include <linux/export.h>
   7#include <linux/fs.h>
   8#include <linux/mm.h>
   9#include <linux/backing-dev.h>
  10#include <linux/hash.h>
  11#include <linux/swap.h>
  12#include <linux/security.h>
  13#include <linux/cdev.h>
  14#include <linux/memblock.h>
  15#include <linux/fscrypt.h>
  16#include <linux/fsnotify.h>
  17#include <linux/mount.h>
  18#include <linux/posix_acl.h>
  19#include <linux/prefetch.h>
  20#include <linux/buffer_head.h> /* for inode_has_buffers */
  21#include <linux/ratelimit.h>
  22#include <linux/list_lru.h>
  23#include <linux/iversion.h>
  24#include <trace/events/writeback.h>
  25#include "internal.h"
  26
  27/*
  28 * Inode locking rules:
  29 *
  30 * inode->i_lock protects:
  31 *   inode->i_state, inode->i_hash, __iget()
  32 * Inode LRU list locks protect:
  33 *   inode->i_sb->s_inode_lru, inode->i_lru
  34 * inode->i_sb->s_inode_list_lock protects:
  35 *   inode->i_sb->s_inodes, inode->i_sb_list
  36 * bdi->wb.list_lock protects:
  37 *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
  38 * inode_hash_lock protects:
  39 *   inode_hashtable, inode->i_hash
  40 *
  41 * Lock ordering:
  42 *
  43 * inode->i_sb->s_inode_list_lock
  44 *   inode->i_lock
  45 *     Inode LRU list locks
  46 *
  47 * bdi->wb.list_lock
  48 *   inode->i_lock
  49 *
  50 * inode_hash_lock
  51 *   inode->i_sb->s_inode_list_lock
  52 *   inode->i_lock
  53 *
  54 * iunique_lock
  55 *   inode_hash_lock
  56 */
  57
  58static unsigned int i_hash_mask __read_mostly;
  59static unsigned int i_hash_shift __read_mostly;
  60static struct hlist_head *inode_hashtable __read_mostly;
  61static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
  62
  63/*
  64 * Empty aops. Can be used for the cases where the user does not
  65 * define any of the address_space operations.
  66 */
  67const struct address_space_operations empty_aops = {
  68};
  69EXPORT_SYMBOL(empty_aops);
  70
  71/*
  72 * Statistics gathering..
  73 */
  74struct inodes_stat_t inodes_stat;
  75
  76static DEFINE_PER_CPU(unsigned long, nr_inodes);
  77static DEFINE_PER_CPU(unsigned long, nr_unused);
  78
  79static struct kmem_cache *inode_cachep __read_mostly;
  80
  81static long get_nr_inodes(void)
  82{
  83        int i;
  84        long sum = 0;
  85        for_each_possible_cpu(i)
  86                sum += per_cpu(nr_inodes, i);
  87        return sum < 0 ? 0 : sum;
  88}
  89
  90static inline long get_nr_inodes_unused(void)
  91{
  92        int i;
  93        long sum = 0;
  94        for_each_possible_cpu(i)
  95                sum += per_cpu(nr_unused, i);
  96        return sum < 0 ? 0 : sum;
  97}
  98
  99long get_nr_dirty_inodes(void)
 100{
 101        /* not actually dirty inodes, but a wild approximation */
 102        long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
 103        return nr_dirty > 0 ? nr_dirty : 0;
 104}
 105
 106/*
 107 * Handle nr_inode sysctl
 108 */
 109#ifdef CONFIG_SYSCTL
 110int proc_nr_inodes(struct ctl_table *table, int write,
 111                   void *buffer, size_t *lenp, loff_t *ppos)
 112{
 113        inodes_stat.nr_inodes = get_nr_inodes();
 114        inodes_stat.nr_unused = get_nr_inodes_unused();
 115        return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 116}
 117#endif
 118
 119static int no_open(struct inode *inode, struct file *file)
 120{
 121        return -ENXIO;
 122}
 123
 124/**
 125 * inode_init_always - perform inode structure initialisation
 126 * @sb: superblock inode belongs to
 127 * @inode: inode to initialise
 128 *
 129 * These are initializations that need to be done on every inode
 130 * allocation as the fields are not initialised by slab allocation.
 131 */
 132int inode_init_always(struct super_block *sb, struct inode *inode)
 133{
 134        static const struct inode_operations empty_iops;
 135        static const struct file_operations no_open_fops = {.open = no_open};
 136        struct address_space *const mapping = &inode->i_data;
 137
 138        inode->i_sb = sb;
 139        inode->i_blkbits = sb->s_blocksize_bits;
 140        inode->i_flags = 0;
 141        atomic64_set(&inode->i_sequence, 0);
 142        atomic_set(&inode->i_count, 1);
 143        inode->i_op = &empty_iops;
 144        inode->i_fop = &no_open_fops;
 145        inode->__i_nlink = 1;
 146        inode->i_opflags = 0;
 147        if (sb->s_xattr)
 148                inode->i_opflags |= IOP_XATTR;
 149        i_uid_write(inode, 0);
 150        i_gid_write(inode, 0);
 151        atomic_set(&inode->i_writecount, 0);
 152        inode->i_size = 0;
 153        inode->i_write_hint = WRITE_LIFE_NOT_SET;
 154        inode->i_blocks = 0;
 155        inode->i_bytes = 0;
 156        inode->i_generation = 0;
 157        inode->i_pipe = NULL;
 158        inode->i_bdev = NULL;
 159        inode->i_cdev = NULL;
 160        inode->i_link = NULL;
 161        inode->i_dir_seq = 0;
 162        inode->i_rdev = 0;
 163        inode->dirtied_when = 0;
 164
 165#ifdef CONFIG_CGROUP_WRITEBACK
 166        inode->i_wb_frn_winner = 0;
 167        inode->i_wb_frn_avg_time = 0;
 168        inode->i_wb_frn_history = 0;
 169#endif
 170
 171        if (security_inode_alloc(inode))
 172                goto out;
 173        spin_lock_init(&inode->i_lock);
 174        lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
 175
 176        init_rwsem(&inode->i_rwsem);
 177        lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
 178
 179        atomic_set(&inode->i_dio_count, 0);
 180
 181        mapping->a_ops = &empty_aops;
 182        mapping->host = inode;
 183        mapping->flags = 0;
 184        if (sb->s_type->fs_flags & FS_THP_SUPPORT)
 185                __set_bit(AS_THP_SUPPORT, &mapping->flags);
 186        mapping->wb_err = 0;
 187        atomic_set(&mapping->i_mmap_writable, 0);
 188#ifdef CONFIG_READ_ONLY_THP_FOR_FS
 189        atomic_set(&mapping->nr_thps, 0);
 190#endif
 191        mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
 192        mapping->private_data = NULL;
 193        mapping->writeback_index = 0;
 194        inode->i_private = NULL;
 195        inode->i_mapping = mapping;
 196        INIT_HLIST_HEAD(&inode->i_dentry);      /* buggered by rcu freeing */
 197#ifdef CONFIG_FS_POSIX_ACL
 198        inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
 199#endif
 200
 201#ifdef CONFIG_FSNOTIFY
 202        inode->i_fsnotify_mask = 0;
 203#endif
 204        inode->i_flctx = NULL;
 205        this_cpu_inc(nr_inodes);
 206
 207        return 0;
 208out:
 209        return -ENOMEM;
 210}
 211EXPORT_SYMBOL(inode_init_always);
 212
 213void free_inode_nonrcu(struct inode *inode)
 214{
 215        kmem_cache_free(inode_cachep, inode);
 216}
 217EXPORT_SYMBOL(free_inode_nonrcu);
 218
 219static void i_callback(struct rcu_head *head)
 220{
 221        struct inode *inode = container_of(head, struct inode, i_rcu);
 222        if (inode->free_inode)
 223                inode->free_inode(inode);
 224        else
 225                free_inode_nonrcu(inode);
 226}
 227
 228static struct inode *alloc_inode(struct super_block *sb)
 229{
 230        const struct super_operations *ops = sb->s_op;
 231        struct inode *inode;
 232
 233        if (ops->alloc_inode)
 234                inode = ops->alloc_inode(sb);
 235        else
 236                inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
 237
 238        if (!inode)
 239                return NULL;
 240
 241        if (unlikely(inode_init_always(sb, inode))) {
 242                if (ops->destroy_inode) {
 243                        ops->destroy_inode(inode);
 244                        if (!ops->free_inode)
 245                                return NULL;
 246                }
 247                inode->free_inode = ops->free_inode;
 248                i_callback(&inode->i_rcu);
 249                return NULL;
 250        }
 251
 252        return inode;
 253}
 254
 255void __destroy_inode(struct inode *inode)
 256{
 257        BUG_ON(inode_has_buffers(inode));
 258        inode_detach_wb(inode);
 259        security_inode_free(inode);
 260        fsnotify_inode_delete(inode);
 261        locks_free_lock_context(inode);
 262        if (!inode->i_nlink) {
 263                WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
 264                atomic_long_dec(&inode->i_sb->s_remove_count);
 265        }
 266
 267#ifdef CONFIG_FS_POSIX_ACL
 268        if (inode->i_acl && !is_uncached_acl(inode->i_acl))
 269                posix_acl_release(inode->i_acl);
 270        if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
 271                posix_acl_release(inode->i_default_acl);
 272#endif
 273        this_cpu_dec(nr_inodes);
 274}
 275EXPORT_SYMBOL(__destroy_inode);
 276
 277static void destroy_inode(struct inode *inode)
 278{
 279        const struct super_operations *ops = inode->i_sb->s_op;
 280
 281        BUG_ON(!list_empty(&inode->i_lru));
 282        __destroy_inode(inode);
 283        if (ops->destroy_inode) {
 284                ops->destroy_inode(inode);
 285                if (!ops->free_inode)
 286                        return;
 287        }
 288        inode->free_inode = ops->free_inode;
 289        call_rcu(&inode->i_rcu, i_callback);
 290}
 291
 292/**
 293 * drop_nlink - directly drop an inode's link count
 294 * @inode: inode
 295 *
 296 * This is a low-level filesystem helper to replace any
 297 * direct filesystem manipulation of i_nlink.  In cases
 298 * where we are attempting to track writes to the
 299 * filesystem, a decrement to zero means an imminent
 300 * write when the file is truncated and actually unlinked
 301 * on the filesystem.
 302 */
 303void drop_nlink(struct inode *inode)
 304{
 305        WARN_ON(inode->i_nlink == 0);
 306        inode->__i_nlink--;
 307        if (!inode->i_nlink)
 308                atomic_long_inc(&inode->i_sb->s_remove_count);
 309}
 310EXPORT_SYMBOL(drop_nlink);
 311
 312/**
 313 * clear_nlink - directly zero an inode's link count
 314 * @inode: inode
 315 *
 316 * This is a low-level filesystem helper to replace any
 317 * direct filesystem manipulation of i_nlink.  See
 318 * drop_nlink() for why we care about i_nlink hitting zero.
 319 */
 320void clear_nlink(struct inode *inode)
 321{
 322        if (inode->i_nlink) {
 323                inode->__i_nlink = 0;
 324                atomic_long_inc(&inode->i_sb->s_remove_count);
 325        }
 326}
 327EXPORT_SYMBOL(clear_nlink);
 328
 329/**
 330 * set_nlink - directly set an inode's link count
 331 * @inode: inode
 332 * @nlink: new nlink (should be non-zero)
 333 *
 334 * This is a low-level filesystem helper to replace any
 335 * direct filesystem manipulation of i_nlink.
 336 */
 337void set_nlink(struct inode *inode, unsigned int nlink)
 338{
 339        if (!nlink) {
 340                clear_nlink(inode);
 341        } else {
 342                /* Yes, some filesystems do change nlink from zero to one */
 343                if (inode->i_nlink == 0)
 344                        atomic_long_dec(&inode->i_sb->s_remove_count);
 345
 346                inode->__i_nlink = nlink;
 347        }
 348}
 349EXPORT_SYMBOL(set_nlink);
 350
 351/**
 352 * inc_nlink - directly increment an inode's link count
 353 * @inode: inode
 354 *
 355 * This is a low-level filesystem helper to replace any
 356 * direct filesystem manipulation of i_nlink.  Currently,
 357 * it is only here for parity with dec_nlink().
 358 */
 359void inc_nlink(struct inode *inode)
 360{
 361        if (unlikely(inode->i_nlink == 0)) {
 362                WARN_ON(!(inode->i_state & I_LINKABLE));
 363                atomic_long_dec(&inode->i_sb->s_remove_count);
 364        }
 365
 366        inode->__i_nlink++;
 367}
 368EXPORT_SYMBOL(inc_nlink);
 369
 370static void __address_space_init_once(struct address_space *mapping)
 371{
 372        xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
 373        init_rwsem(&mapping->i_mmap_rwsem);
 374        INIT_LIST_HEAD(&mapping->private_list);
 375        spin_lock_init(&mapping->private_lock);
 376        mapping->i_mmap = RB_ROOT_CACHED;
 377}
 378
 379void address_space_init_once(struct address_space *mapping)
 380{
 381        memset(mapping, 0, sizeof(*mapping));
 382        __address_space_init_once(mapping);
 383}
 384EXPORT_SYMBOL(address_space_init_once);
 385
 386/*
 387 * These are initializations that only need to be done
 388 * once, because the fields are idempotent across use
 389 * of the inode, so let the slab aware of that.
 390 */
 391void inode_init_once(struct inode *inode)
 392{
 393        memset(inode, 0, sizeof(*inode));
 394        INIT_HLIST_NODE(&inode->i_hash);
 395        INIT_LIST_HEAD(&inode->i_devices);
 396        INIT_LIST_HEAD(&inode->i_io_list);
 397        INIT_LIST_HEAD(&inode->i_wb_list);
 398        INIT_LIST_HEAD(&inode->i_lru);
 399        __address_space_init_once(&inode->i_data);
 400        i_size_ordered_init(inode);
 401}
 402EXPORT_SYMBOL(inode_init_once);
 403
 404static void init_once(void *foo)
 405{
 406        struct inode *inode = (struct inode *) foo;
 407
 408        inode_init_once(inode);
 409}
 410
 411/*
 412 * inode->i_lock must be held
 413 */
 414void __iget(struct inode *inode)
 415{
 416        atomic_inc(&inode->i_count);
 417}
 418
 419/*
 420 * get additional reference to inode; caller must already hold one.
 421 */
 422void ihold(struct inode *inode)
 423{
 424        WARN_ON(atomic_inc_return(&inode->i_count) < 2);
 425}
 426EXPORT_SYMBOL(ihold);
 427
 428static void inode_lru_list_add(struct inode *inode)
 429{
 430        if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
 431                this_cpu_inc(nr_unused);
 432        else
 433                inode->i_state |= I_REFERENCED;
 434}
 435
 436/*
 437 * Add inode to LRU if needed (inode is unused and clean).
 438 *
 439 * Needs inode->i_lock held.
 440 */
 441void inode_add_lru(struct inode *inode)
 442{
 443        if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
 444                                I_FREEING | I_WILL_FREE)) &&
 445            !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
 446                inode_lru_list_add(inode);
 447}
 448
 449
 450static void inode_lru_list_del(struct inode *inode)
 451{
 452
 453        if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
 454                this_cpu_dec(nr_unused);
 455}
 456
 457/**
 458 * inode_sb_list_add - add inode to the superblock list of inodes
 459 * @inode: inode to add
 460 */
 461void inode_sb_list_add(struct inode *inode)
 462{
 463        spin_lock(&inode->i_sb->s_inode_list_lock);
 464        list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
 465        spin_unlock(&inode->i_sb->s_inode_list_lock);
 466}
 467EXPORT_SYMBOL_GPL(inode_sb_list_add);
 468
 469static inline void inode_sb_list_del(struct inode *inode)
 470{
 471        if (!list_empty(&inode->i_sb_list)) {
 472                spin_lock(&inode->i_sb->s_inode_list_lock);
 473                list_del_init(&inode->i_sb_list);
 474                spin_unlock(&inode->i_sb->s_inode_list_lock);
 475        }
 476}
 477
 478static unsigned long hash(struct super_block *sb, unsigned long hashval)
 479{
 480        unsigned long tmp;
 481
 482        tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
 483                        L1_CACHE_BYTES;
 484        tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
 485        return tmp & i_hash_mask;
 486}
 487
 488/**
 489 *      __insert_inode_hash - hash an inode
 490 *      @inode: unhashed inode
 491 *      @hashval: unsigned long value used to locate this object in the
 492 *              inode_hashtable.
 493 *
 494 *      Add an inode to the inode hash for this superblock.
 495 */
 496void __insert_inode_hash(struct inode *inode, unsigned long hashval)
 497{
 498        struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
 499
 500        spin_lock(&inode_hash_lock);
 501        spin_lock(&inode->i_lock);
 502        hlist_add_head_rcu(&inode->i_hash, b);
 503        spin_unlock(&inode->i_lock);
 504        spin_unlock(&inode_hash_lock);
 505}
 506EXPORT_SYMBOL(__insert_inode_hash);
 507
 508/**
 509 *      __remove_inode_hash - remove an inode from the hash
 510 *      @inode: inode to unhash
 511 *
 512 *      Remove an inode from the superblock.
 513 */
 514void __remove_inode_hash(struct inode *inode)
 515{
 516        spin_lock(&inode_hash_lock);
 517        spin_lock(&inode->i_lock);
 518        hlist_del_init_rcu(&inode->i_hash);
 519        spin_unlock(&inode->i_lock);
 520        spin_unlock(&inode_hash_lock);
 521}
 522EXPORT_SYMBOL(__remove_inode_hash);
 523
 524void clear_inode(struct inode *inode)
 525{
 526        /*
 527         * We have to cycle the i_pages lock here because reclaim can be in the
 528         * process of removing the last page (in __delete_from_page_cache())
 529         * and we must not free the mapping under it.
 530         */
 531        xa_lock_irq(&inode->i_data.i_pages);
 532        BUG_ON(inode->i_data.nrpages);
 533        BUG_ON(inode->i_data.nrexceptional);
 534        xa_unlock_irq(&inode->i_data.i_pages);
 535        BUG_ON(!list_empty(&inode->i_data.private_list));
 536        BUG_ON(!(inode->i_state & I_FREEING));
 537        BUG_ON(inode->i_state & I_CLEAR);
 538        BUG_ON(!list_empty(&inode->i_wb_list));
 539        /* don't need i_lock here, no concurrent mods to i_state */
 540        inode->i_state = I_FREEING | I_CLEAR;
 541}
 542EXPORT_SYMBOL(clear_inode);
 543
 544/*
 545 * Free the inode passed in, removing it from the lists it is still connected
 546 * to. We remove any pages still attached to the inode and wait for any IO that
 547 * is still in progress before finally destroying the inode.
 548 *
 549 * An inode must already be marked I_FREEING so that we avoid the inode being
 550 * moved back onto lists if we race with other code that manipulates the lists
 551 * (e.g. writeback_single_inode). The caller is responsible for setting this.
 552 *
 553 * An inode must already be removed from the LRU list before being evicted from
 554 * the cache. This should occur atomically with setting the I_FREEING state
 555 * flag, so no inodes here should ever be on the LRU when being evicted.
 556 */
 557static void evict(struct inode *inode)
 558{
 559        const struct super_operations *op = inode->i_sb->s_op;
 560
 561        BUG_ON(!(inode->i_state & I_FREEING));
 562        BUG_ON(!list_empty(&inode->i_lru));
 563
 564        if (!list_empty(&inode->i_io_list))
 565                inode_io_list_del(inode);
 566
 567        inode_sb_list_del(inode);
 568
 569        /*
 570         * Wait for flusher thread to be done with the inode so that filesystem
 571         * does not start destroying it while writeback is still running. Since
 572         * the inode has I_FREEING set, flusher thread won't start new work on
 573         * the inode.  We just have to wait for running writeback to finish.
 574         */
 575        inode_wait_for_writeback(inode);
 576
 577        if (op->evict_inode) {
 578                op->evict_inode(inode);
 579        } else {
 580                truncate_inode_pages_final(&inode->i_data);
 581                clear_inode(inode);
 582        }
 583        if (S_ISBLK(inode->i_mode) && inode->i_bdev)
 584                bd_forget(inode);
 585        if (S_ISCHR(inode->i_mode) && inode->i_cdev)
 586                cd_forget(inode);
 587
 588        remove_inode_hash(inode);
 589
 590        spin_lock(&inode->i_lock);
 591        wake_up_bit(&inode->i_state, __I_NEW);
 592        BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
 593        spin_unlock(&inode->i_lock);
 594
 595        destroy_inode(inode);
 596}
 597
 598/*
 599 * dispose_list - dispose of the contents of a local list
 600 * @head: the head of the list to free
 601 *
 602 * Dispose-list gets a local list with local inodes in it, so it doesn't
 603 * need to worry about list corruption and SMP locks.
 604 */
 605static void dispose_list(struct list_head *head)
 606{
 607        while (!list_empty(head)) {
 608                struct inode *inode;
 609
 610                inode = list_first_entry(head, struct inode, i_lru);
 611                list_del_init(&inode->i_lru);
 612
 613                evict(inode);
 614                cond_resched();
 615        }
 616}
 617
 618/**
 619 * evict_inodes - evict all evictable inodes for a superblock
 620 * @sb:         superblock to operate on
 621 *
 622 * Make sure that no inodes with zero refcount are retained.  This is
 623 * called by superblock shutdown after having SB_ACTIVE flag removed,
 624 * so any inode reaching zero refcount during or after that call will
 625 * be immediately evicted.
 626 */
 627void evict_inodes(struct super_block *sb)
 628{
 629        struct inode *inode, *next;
 630        LIST_HEAD(dispose);
 631
 632again:
 633        spin_lock(&sb->s_inode_list_lock);
 634        list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 635                if (atomic_read(&inode->i_count))
 636                        continue;
 637
 638                spin_lock(&inode->i_lock);
 639                if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 640                        spin_unlock(&inode->i_lock);
 641                        continue;
 642                }
 643
 644                inode->i_state |= I_FREEING;
 645                inode_lru_list_del(inode);
 646                spin_unlock(&inode->i_lock);
 647                list_add(&inode->i_lru, &dispose);
 648
 649                /*
 650                 * We can have a ton of inodes to evict at unmount time given
 651                 * enough memory, check to see if we need to go to sleep for a
 652                 * bit so we don't livelock.
 653                 */
 654                if (need_resched()) {
 655                        spin_unlock(&sb->s_inode_list_lock);
 656                        cond_resched();
 657                        dispose_list(&dispose);
 658                        goto again;
 659                }
 660        }
 661        spin_unlock(&sb->s_inode_list_lock);
 662
 663        dispose_list(&dispose);
 664}
 665EXPORT_SYMBOL_GPL(evict_inodes);
 666
 667/**
 668 * invalidate_inodes    - attempt to free all inodes on a superblock
 669 * @sb:         superblock to operate on
 670 * @kill_dirty: flag to guide handling of dirty inodes
 671 *
 672 * Attempts to free all inodes for a given superblock.  If there were any
 673 * busy inodes return a non-zero value, else zero.
 674 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
 675 * them as busy.
 676 */
 677int invalidate_inodes(struct super_block *sb, bool kill_dirty)
 678{
 679        int busy = 0;
 680        struct inode *inode, *next;
 681        LIST_HEAD(dispose);
 682
 683again:
 684        spin_lock(&sb->s_inode_list_lock);
 685        list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 686                spin_lock(&inode->i_lock);
 687                if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 688                        spin_unlock(&inode->i_lock);
 689                        continue;
 690                }
 691                if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
 692                        spin_unlock(&inode->i_lock);
 693                        busy = 1;
 694                        continue;
 695                }
 696                if (atomic_read(&inode->i_count)) {
 697                        spin_unlock(&inode->i_lock);
 698                        busy = 1;
 699                        continue;
 700                }
 701
 702                inode->i_state |= I_FREEING;
 703                inode_lru_list_del(inode);
 704                spin_unlock(&inode->i_lock);
 705                list_add(&inode->i_lru, &dispose);
 706                if (need_resched()) {
 707                        spin_unlock(&sb->s_inode_list_lock);
 708                        cond_resched();
 709                        dispose_list(&dispose);
 710                        goto again;
 711                }
 712        }
 713        spin_unlock(&sb->s_inode_list_lock);
 714
 715        dispose_list(&dispose);
 716
 717        return busy;
 718}
 719
 720/*
 721 * Isolate the inode from the LRU in preparation for freeing it.
 722 *
 723 * Any inodes which are pinned purely because of attached pagecache have their
 724 * pagecache removed.  If the inode has metadata buffers attached to
 725 * mapping->private_list then try to remove them.
 726 *
 727 * If the inode has the I_REFERENCED flag set, then it means that it has been
 728 * used recently - the flag is set in iput_final(). When we encounter such an
 729 * inode, clear the flag and move it to the back of the LRU so it gets another
 730 * pass through the LRU before it gets reclaimed. This is necessary because of
 731 * the fact we are doing lazy LRU updates to minimise lock contention so the
 732 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
 733 * with this flag set because they are the inodes that are out of order.
 734 */
 735static enum lru_status inode_lru_isolate(struct list_head *item,
 736                struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
 737{
 738        struct list_head *freeable = arg;
 739        struct inode    *inode = container_of(item, struct inode, i_lru);
 740
 741        /*
 742         * we are inverting the lru lock/inode->i_lock here, so use a trylock.
 743         * If we fail to get the lock, just skip it.
 744         */
 745        if (!spin_trylock(&inode->i_lock))
 746                return LRU_SKIP;
 747
 748        /*
 749         * Referenced or dirty inodes are still in use. Give them another pass
 750         * through the LRU as we canot reclaim them now.
 751         */
 752        if (atomic_read(&inode->i_count) ||
 753            (inode->i_state & ~I_REFERENCED)) {
 754                list_lru_isolate(lru, &inode->i_lru);
 755                spin_unlock(&inode->i_lock);
 756                this_cpu_dec(nr_unused);
 757                return LRU_REMOVED;
 758        }
 759
 760        /* recently referenced inodes get one more pass */
 761        if (inode->i_state & I_REFERENCED) {
 762                inode->i_state &= ~I_REFERENCED;
 763                spin_unlock(&inode->i_lock);
 764                return LRU_ROTATE;
 765        }
 766
 767        if (inode_has_buffers(inode) || inode->i_data.nrpages) {
 768                __iget(inode);
 769                spin_unlock(&inode->i_lock);
 770                spin_unlock(lru_lock);
 771                if (remove_inode_buffers(inode)) {
 772                        unsigned long reap;
 773                        reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
 774                        if (current_is_kswapd())
 775                                __count_vm_events(KSWAPD_INODESTEAL, reap);
 776                        else
 777                                __count_vm_events(PGINODESTEAL, reap);
 778                        if (current->reclaim_state)
 779                                current->reclaim_state->reclaimed_slab += reap;
 780                }
 781                iput(inode);
 782                spin_lock(lru_lock);
 783                return LRU_RETRY;
 784        }
 785
 786        WARN_ON(inode->i_state & I_NEW);
 787        inode->i_state |= I_FREEING;
 788        list_lru_isolate_move(lru, &inode->i_lru, freeable);
 789        spin_unlock(&inode->i_lock);
 790
 791        this_cpu_dec(nr_unused);
 792        return LRU_REMOVED;
 793}
 794
 795/*
 796 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
 797 * This is called from the superblock shrinker function with a number of inodes
 798 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
 799 * then are freed outside inode_lock by dispose_list().
 800 */
 801long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
 802{
 803        LIST_HEAD(freeable);
 804        long freed;
 805
 806        freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
 807                                     inode_lru_isolate, &freeable);
 808        dispose_list(&freeable);
 809        return freed;
 810}
 811
 812static void __wait_on_freeing_inode(struct inode *inode);
 813/*
 814 * Called with the inode lock held.
 815 */
 816static struct inode *find_inode(struct super_block *sb,
 817                                struct hlist_head *head,
 818                                int (*test)(struct inode *, void *),
 819                                void *data)
 820{
 821        struct inode *inode = NULL;
 822
 823repeat:
 824        hlist_for_each_entry(inode, head, i_hash) {
 825                if (inode->i_sb != sb)
 826                        continue;
 827                if (!test(inode, data))
 828                        continue;
 829                spin_lock(&inode->i_lock);
 830                if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 831                        __wait_on_freeing_inode(inode);
 832                        goto repeat;
 833                }
 834                if (unlikely(inode->i_state & I_CREATING)) {
 835                        spin_unlock(&inode->i_lock);
 836                        return ERR_PTR(-ESTALE);
 837                }
 838                __iget(inode);
 839                spin_unlock(&inode->i_lock);
 840                return inode;
 841        }
 842        return NULL;
 843}
 844
 845/*
 846 * find_inode_fast is the fast path version of find_inode, see the comment at
 847 * iget_locked for details.
 848 */
 849static struct inode *find_inode_fast(struct super_block *sb,
 850                                struct hlist_head *head, unsigned long ino)
 851{
 852        struct inode *inode = NULL;
 853
 854repeat:
 855        hlist_for_each_entry(inode, head, i_hash) {
 856                if (inode->i_ino != ino)
 857                        continue;
 858                if (inode->i_sb != sb)
 859                        continue;
 860                spin_lock(&inode->i_lock);
 861                if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 862                        __wait_on_freeing_inode(inode);
 863                        goto repeat;
 864                }
 865                if (unlikely(inode->i_state & I_CREATING)) {
 866                        spin_unlock(&inode->i_lock);
 867                        return ERR_PTR(-ESTALE);
 868                }
 869                __iget(inode);
 870                spin_unlock(&inode->i_lock);
 871                return inode;
 872        }
 873        return NULL;
 874}
 875
 876/*
 877 * Each cpu owns a range of LAST_INO_BATCH numbers.
 878 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
 879 * to renew the exhausted range.
 880 *
 881 * This does not significantly increase overflow rate because every CPU can
 882 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
 883 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
 884 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
 885 * overflow rate by 2x, which does not seem too significant.
 886 *
 887 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
 888 * error if st_ino won't fit in target struct field. Use 32bit counter
 889 * here to attempt to avoid that.
 890 */
 891#define LAST_INO_BATCH 1024
 892static DEFINE_PER_CPU(unsigned int, last_ino);
 893
 894unsigned int get_next_ino(void)
 895{
 896        unsigned int *p = &get_cpu_var(last_ino);
 897        unsigned int res = *p;
 898
 899#ifdef CONFIG_SMP
 900        if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
 901                static atomic_t shared_last_ino;
 902                int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
 903
 904                res = next - LAST_INO_BATCH;
 905        }
 906#endif
 907
 908        res++;
 909        /* get_next_ino should not provide a 0 inode number */
 910        if (unlikely(!res))
 911                res++;
 912        *p = res;
 913        put_cpu_var(last_ino);
 914        return res;
 915}
 916EXPORT_SYMBOL(get_next_ino);
 917
 918/**
 919 *      new_inode_pseudo        - obtain an inode
 920 *      @sb: superblock
 921 *
 922 *      Allocates a new inode for given superblock.
 923 *      Inode wont be chained in superblock s_inodes list
 924 *      This means :
 925 *      - fs can't be unmount
 926 *      - quotas, fsnotify, writeback can't work
 927 */
 928struct inode *new_inode_pseudo(struct super_block *sb)
 929{
 930        struct inode *inode = alloc_inode(sb);
 931
 932        if (inode) {
 933                spin_lock(&inode->i_lock);
 934                inode->i_state = 0;
 935                spin_unlock(&inode->i_lock);
 936                INIT_LIST_HEAD(&inode->i_sb_list);
 937        }
 938        return inode;
 939}
 940
 941/**
 942 *      new_inode       - obtain an inode
 943 *      @sb: superblock
 944 *
 945 *      Allocates a new inode for given superblock. The default gfp_mask
 946 *      for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
 947 *      If HIGHMEM pages are unsuitable or it is known that pages allocated
 948 *      for the page cache are not reclaimable or migratable,
 949 *      mapping_set_gfp_mask() must be called with suitable flags on the
 950 *      newly created inode's mapping
 951 *
 952 */
 953struct inode *new_inode(struct super_block *sb)
 954{
 955        struct inode *inode;
 956
 957        spin_lock_prefetch(&sb->s_inode_list_lock);
 958
 959        inode = new_inode_pseudo(sb);
 960        if (inode)
 961                inode_sb_list_add(inode);
 962        return inode;
 963}
 964EXPORT_SYMBOL(new_inode);
 965
 966#ifdef CONFIG_DEBUG_LOCK_ALLOC
 967void lockdep_annotate_inode_mutex_key(struct inode *inode)
 968{
 969        if (S_ISDIR(inode->i_mode)) {
 970                struct file_system_type *type = inode->i_sb->s_type;
 971
 972                /* Set new key only if filesystem hasn't already changed it */
 973                if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
 974                        /*
 975                         * ensure nobody is actually holding i_mutex
 976                         */
 977                        // mutex_destroy(&inode->i_mutex);
 978                        init_rwsem(&inode->i_rwsem);
 979                        lockdep_set_class(&inode->i_rwsem,
 980                                          &type->i_mutex_dir_key);
 981                }
 982        }
 983}
 984EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
 985#endif
 986
 987/**
 988 * unlock_new_inode - clear the I_NEW state and wake up any waiters
 989 * @inode:      new inode to unlock
 990 *
 991 * Called when the inode is fully initialised to clear the new state of the
 992 * inode and wake up anyone waiting for the inode to finish initialisation.
 993 */
 994void unlock_new_inode(struct inode *inode)
 995{
 996        lockdep_annotate_inode_mutex_key(inode);
 997        spin_lock(&inode->i_lock);
 998        WARN_ON(!(inode->i_state & I_NEW));
 999        inode->i_state &= ~I_NEW & ~I_CREATING;
1000        smp_mb();
1001        wake_up_bit(&inode->i_state, __I_NEW);
1002        spin_unlock(&inode->i_lock);
1003}
1004EXPORT_SYMBOL(unlock_new_inode);
1005
1006void discard_new_inode(struct inode *inode)
1007{
1008        lockdep_annotate_inode_mutex_key(inode);
1009        spin_lock(&inode->i_lock);
1010        WARN_ON(!(inode->i_state & I_NEW));
1011        inode->i_state &= ~I_NEW;
1012        smp_mb();
1013        wake_up_bit(&inode->i_state, __I_NEW);
1014        spin_unlock(&inode->i_lock);
1015        iput(inode);
1016}
1017EXPORT_SYMBOL(discard_new_inode);
1018
1019/**
1020 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1021 *
1022 * Lock any non-NULL argument that is not a directory.
1023 * Zero, one or two objects may be locked by this function.
1024 *
1025 * @inode1: first inode to lock
1026 * @inode2: second inode to lock
1027 */
1028void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1029{
1030        if (inode1 > inode2)
1031                swap(inode1, inode2);
1032
1033        if (inode1 && !S_ISDIR(inode1->i_mode))
1034                inode_lock(inode1);
1035        if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1036                inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1037}
1038EXPORT_SYMBOL(lock_two_nondirectories);
1039
1040/**
1041 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1042 * @inode1: first inode to unlock
1043 * @inode2: second inode to unlock
1044 */
1045void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1046{
1047        if (inode1 && !S_ISDIR(inode1->i_mode))
1048                inode_unlock(inode1);
1049        if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1050                inode_unlock(inode2);
1051}
1052EXPORT_SYMBOL(unlock_two_nondirectories);
1053
1054/**
1055 * inode_insert5 - obtain an inode from a mounted file system
1056 * @inode:      pre-allocated inode to use for insert to cache
1057 * @hashval:    hash value (usually inode number) to get
1058 * @test:       callback used for comparisons between inodes
1059 * @set:        callback used to initialize a new struct inode
1060 * @data:       opaque data pointer to pass to @test and @set
1061 *
1062 * Search for the inode specified by @hashval and @data in the inode cache,
1063 * and if present it is return it with an increased reference count. This is
1064 * a variant of iget5_locked() for callers that don't want to fail on memory
1065 * allocation of inode.
1066 *
1067 * If the inode is not in cache, insert the pre-allocated inode to cache and
1068 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1069 * to fill it in before unlocking it via unlock_new_inode().
1070 *
1071 * Note both @test and @set are called with the inode_hash_lock held, so can't
1072 * sleep.
1073 */
1074struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1075                            int (*test)(struct inode *, void *),
1076                            int (*set)(struct inode *, void *), void *data)
1077{
1078        struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1079        struct inode *old;
1080        bool creating = inode->i_state & I_CREATING;
1081
1082again:
1083        spin_lock(&inode_hash_lock);
1084        old = find_inode(inode->i_sb, head, test, data);
1085        if (unlikely(old)) {
1086                /*
1087                 * Uhhuh, somebody else created the same inode under us.
1088                 * Use the old inode instead of the preallocated one.
1089                 */
1090                spin_unlock(&inode_hash_lock);
1091                if (IS_ERR(old))
1092                        return NULL;
1093                wait_on_inode(old);
1094                if (unlikely(inode_unhashed(old))) {
1095                        iput(old);
1096                        goto again;
1097                }
1098                return old;
1099        }
1100
1101        if (set && unlikely(set(inode, data))) {
1102                inode = NULL;
1103                goto unlock;
1104        }
1105
1106        /*
1107         * Return the locked inode with I_NEW set, the
1108         * caller is responsible for filling in the contents
1109         */
1110        spin_lock(&inode->i_lock);
1111        inode->i_state |= I_NEW;
1112        hlist_add_head_rcu(&inode->i_hash, head);
1113        spin_unlock(&inode->i_lock);
1114        if (!creating)
1115                inode_sb_list_add(inode);
1116unlock:
1117        spin_unlock(&inode_hash_lock);
1118
1119        return inode;
1120}
1121EXPORT_SYMBOL(inode_insert5);
1122
1123/**
1124 * iget5_locked - obtain an inode from a mounted file system
1125 * @sb:         super block of file system
1126 * @hashval:    hash value (usually inode number) to get
1127 * @test:       callback used for comparisons between inodes
1128 * @set:        callback used to initialize a new struct inode
1129 * @data:       opaque data pointer to pass to @test and @set
1130 *
1131 * Search for the inode specified by @hashval and @data in the inode cache,
1132 * and if present it is return it with an increased reference count. This is
1133 * a generalized version of iget_locked() for file systems where the inode
1134 * number is not sufficient for unique identification of an inode.
1135 *
1136 * If the inode is not in cache, allocate a new inode and return it locked,
1137 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1138 * before unlocking it via unlock_new_inode().
1139 *
1140 * Note both @test and @set are called with the inode_hash_lock held, so can't
1141 * sleep.
1142 */
1143struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1144                int (*test)(struct inode *, void *),
1145                int (*set)(struct inode *, void *), void *data)
1146{
1147        struct inode *inode = ilookup5(sb, hashval, test, data);
1148
1149        if (!inode) {
1150                struct inode *new = alloc_inode(sb);
1151
1152                if (new) {
1153                        new->i_state = 0;
1154                        inode = inode_insert5(new, hashval, test, set, data);
1155                        if (unlikely(inode != new))
1156                                destroy_inode(new);
1157                }
1158        }
1159        return inode;
1160}
1161EXPORT_SYMBOL(iget5_locked);
1162
1163/**
1164 * iget_locked - obtain an inode from a mounted file system
1165 * @sb:         super block of file system
1166 * @ino:        inode number to get
1167 *
1168 * Search for the inode specified by @ino in the inode cache and if present
1169 * return it with an increased reference count. This is for file systems
1170 * where the inode number is sufficient for unique identification of an inode.
1171 *
1172 * If the inode is not in cache, allocate a new inode and return it locked,
1173 * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1174 * before unlocking it via unlock_new_inode().
1175 */
1176struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1177{
1178        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1179        struct inode *inode;
1180again:
1181        spin_lock(&inode_hash_lock);
1182        inode = find_inode_fast(sb, head, ino);
1183        spin_unlock(&inode_hash_lock);
1184        if (inode) {
1185                if (IS_ERR(inode))
1186                        return NULL;
1187                wait_on_inode(inode);
1188                if (unlikely(inode_unhashed(inode))) {
1189                        iput(inode);
1190                        goto again;
1191                }
1192                return inode;
1193        }
1194
1195        inode = alloc_inode(sb);
1196        if (inode) {
1197                struct inode *old;
1198
1199                spin_lock(&inode_hash_lock);
1200                /* We released the lock, so.. */
1201                old = find_inode_fast(sb, head, ino);
1202                if (!old) {
1203                        inode->i_ino = ino;
1204                        spin_lock(&inode->i_lock);
1205                        inode->i_state = I_NEW;
1206                        hlist_add_head_rcu(&inode->i_hash, head);
1207                        spin_unlock(&inode->i_lock);
1208                        inode_sb_list_add(inode);
1209                        spin_unlock(&inode_hash_lock);
1210
1211                        /* Return the locked inode with I_NEW set, the
1212                         * caller is responsible for filling in the contents
1213                         */
1214                        return inode;
1215                }
1216
1217                /*
1218                 * Uhhuh, somebody else created the same inode under
1219                 * us. Use the old inode instead of the one we just
1220                 * allocated.
1221                 */
1222                spin_unlock(&inode_hash_lock);
1223                destroy_inode(inode);
1224                if (IS_ERR(old))
1225                        return NULL;
1226                inode = old;
1227                wait_on_inode(inode);
1228                if (unlikely(inode_unhashed(inode))) {
1229                        iput(inode);
1230                        goto again;
1231                }
1232        }
1233        return inode;
1234}
1235EXPORT_SYMBOL(iget_locked);
1236
1237/*
1238 * search the inode cache for a matching inode number.
1239 * If we find one, then the inode number we are trying to
1240 * allocate is not unique and so we should not use it.
1241 *
1242 * Returns 1 if the inode number is unique, 0 if it is not.
1243 */
1244static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1245{
1246        struct hlist_head *b = inode_hashtable + hash(sb, ino);
1247        struct inode *inode;
1248
1249        hlist_for_each_entry_rcu(inode, b, i_hash) {
1250                if (inode->i_ino == ino && inode->i_sb == sb)
1251                        return 0;
1252        }
1253        return 1;
1254}
1255
1256/**
1257 *      iunique - get a unique inode number
1258 *      @sb: superblock
1259 *      @max_reserved: highest reserved inode number
1260 *
1261 *      Obtain an inode number that is unique on the system for a given
1262 *      superblock. This is used by file systems that have no natural
1263 *      permanent inode numbering system. An inode number is returned that
1264 *      is higher than the reserved limit but unique.
1265 *
1266 *      BUGS:
1267 *      With a large number of inodes live on the file system this function
1268 *      currently becomes quite slow.
1269 */
1270ino_t iunique(struct super_block *sb, ino_t max_reserved)
1271{
1272        /*
1273         * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1274         * error if st_ino won't fit in target struct field. Use 32bit counter
1275         * here to attempt to avoid that.
1276         */
1277        static DEFINE_SPINLOCK(iunique_lock);
1278        static unsigned int counter;
1279        ino_t res;
1280
1281        rcu_read_lock();
1282        spin_lock(&iunique_lock);
1283        do {
1284                if (counter <= max_reserved)
1285                        counter = max_reserved + 1;
1286                res = counter++;
1287        } while (!test_inode_iunique(sb, res));
1288        spin_unlock(&iunique_lock);
1289        rcu_read_unlock();
1290
1291        return res;
1292}
1293EXPORT_SYMBOL(iunique);
1294
1295struct inode *igrab(struct inode *inode)
1296{
1297        spin_lock(&inode->i_lock);
1298        if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1299                __iget(inode);
1300                spin_unlock(&inode->i_lock);
1301        } else {
1302                spin_unlock(&inode->i_lock);
1303                /*
1304                 * Handle the case where s_op->clear_inode is not been
1305                 * called yet, and somebody is calling igrab
1306                 * while the inode is getting freed.
1307                 */
1308                inode = NULL;
1309        }
1310        return inode;
1311}
1312EXPORT_SYMBOL(igrab);
1313
1314/**
1315 * ilookup5_nowait - search for an inode in the inode cache
1316 * @sb:         super block of file system to search
1317 * @hashval:    hash value (usually inode number) to search for
1318 * @test:       callback used for comparisons between inodes
1319 * @data:       opaque data pointer to pass to @test
1320 *
1321 * Search for the inode specified by @hashval and @data in the inode cache.
1322 * If the inode is in the cache, the inode is returned with an incremented
1323 * reference count.
1324 *
1325 * Note: I_NEW is not waited upon so you have to be very careful what you do
1326 * with the returned inode.  You probably should be using ilookup5() instead.
1327 *
1328 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1329 */
1330struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1331                int (*test)(struct inode *, void *), void *data)
1332{
1333        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1334        struct inode *inode;
1335
1336        spin_lock(&inode_hash_lock);
1337        inode = find_inode(sb, head, test, data);
1338        spin_unlock(&inode_hash_lock);
1339
1340        return IS_ERR(inode) ? NULL : inode;
1341}
1342EXPORT_SYMBOL(ilookup5_nowait);
1343
1344/**
1345 * ilookup5 - search for an inode in the inode cache
1346 * @sb:         super block of file system to search
1347 * @hashval:    hash value (usually inode number) to search for
1348 * @test:       callback used for comparisons between inodes
1349 * @data:       opaque data pointer to pass to @test
1350 *
1351 * Search for the inode specified by @hashval and @data in the inode cache,
1352 * and if the inode is in the cache, return the inode with an incremented
1353 * reference count.  Waits on I_NEW before returning the inode.
1354 * returned with an incremented reference count.
1355 *
1356 * This is a generalized version of ilookup() for file systems where the
1357 * inode number is not sufficient for unique identification of an inode.
1358 *
1359 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1360 */
1361struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1362                int (*test)(struct inode *, void *), void *data)
1363{
1364        struct inode *inode;
1365again:
1366        inode = ilookup5_nowait(sb, hashval, test, data);
1367        if (inode) {
1368                wait_on_inode(inode);
1369                if (unlikely(inode_unhashed(inode))) {
1370                        iput(inode);
1371                        goto again;
1372                }
1373        }
1374        return inode;
1375}
1376EXPORT_SYMBOL(ilookup5);
1377
1378/**
1379 * ilookup - search for an inode in the inode cache
1380 * @sb:         super block of file system to search
1381 * @ino:        inode number to search for
1382 *
1383 * Search for the inode @ino in the inode cache, and if the inode is in the
1384 * cache, the inode is returned with an incremented reference count.
1385 */
1386struct inode *ilookup(struct super_block *sb, unsigned long ino)
1387{
1388        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1389        struct inode *inode;
1390again:
1391        spin_lock(&inode_hash_lock);
1392        inode = find_inode_fast(sb, head, ino);
1393        spin_unlock(&inode_hash_lock);
1394
1395        if (inode) {
1396                if (IS_ERR(inode))
1397                        return NULL;
1398                wait_on_inode(inode);
1399                if (unlikely(inode_unhashed(inode))) {
1400                        iput(inode);
1401                        goto again;
1402                }
1403        }
1404        return inode;
1405}
1406EXPORT_SYMBOL(ilookup);
1407
1408/**
1409 * find_inode_nowait - find an inode in the inode cache
1410 * @sb:         super block of file system to search
1411 * @hashval:    hash value (usually inode number) to search for
1412 * @match:      callback used for comparisons between inodes
1413 * @data:       opaque data pointer to pass to @match
1414 *
1415 * Search for the inode specified by @hashval and @data in the inode
1416 * cache, where the helper function @match will return 0 if the inode
1417 * does not match, 1 if the inode does match, and -1 if the search
1418 * should be stopped.  The @match function must be responsible for
1419 * taking the i_lock spin_lock and checking i_state for an inode being
1420 * freed or being initialized, and incrementing the reference count
1421 * before returning 1.  It also must not sleep, since it is called with
1422 * the inode_hash_lock spinlock held.
1423 *
1424 * This is a even more generalized version of ilookup5() when the
1425 * function must never block --- find_inode() can block in
1426 * __wait_on_freeing_inode() --- or when the caller can not increment
1427 * the reference count because the resulting iput() might cause an
1428 * inode eviction.  The tradeoff is that the @match funtion must be
1429 * very carefully implemented.
1430 */
1431struct inode *find_inode_nowait(struct super_block *sb,
1432                                unsigned long hashval,
1433                                int (*match)(struct inode *, unsigned long,
1434                                             void *),
1435                                void *data)
1436{
1437        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1438        struct inode *inode, *ret_inode = NULL;
1439        int mval;
1440
1441        spin_lock(&inode_hash_lock);
1442        hlist_for_each_entry(inode, head, i_hash) {
1443                if (inode->i_sb != sb)
1444                        continue;
1445                mval = match(inode, hashval, data);
1446                if (mval == 0)
1447                        continue;
1448                if (mval == 1)
1449                        ret_inode = inode;
1450                goto out;
1451        }
1452out:
1453        spin_unlock(&inode_hash_lock);
1454        return ret_inode;
1455}
1456EXPORT_SYMBOL(find_inode_nowait);
1457
1458/**
1459 * find_inode_rcu - find an inode in the inode cache
1460 * @sb:         Super block of file system to search
1461 * @hashval:    Key to hash
1462 * @test:       Function to test match on an inode
1463 * @data:       Data for test function
1464 *
1465 * Search for the inode specified by @hashval and @data in the inode cache,
1466 * where the helper function @test will return 0 if the inode does not match
1467 * and 1 if it does.  The @test function must be responsible for taking the
1468 * i_lock spin_lock and checking i_state for an inode being freed or being
1469 * initialized.
1470 *
1471 * If successful, this will return the inode for which the @test function
1472 * returned 1 and NULL otherwise.
1473 *
1474 * The @test function is not permitted to take a ref on any inode presented.
1475 * It is also not permitted to sleep.
1476 *
1477 * The caller must hold the RCU read lock.
1478 */
1479struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1480                             int (*test)(struct inode *, void *), void *data)
1481{
1482        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1483        struct inode *inode;
1484
1485        RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1486                         "suspicious find_inode_rcu() usage");
1487
1488        hlist_for_each_entry_rcu(inode, head, i_hash) {
1489                if (inode->i_sb == sb &&
1490                    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1491                    test(inode, data))
1492                        return inode;
1493        }
1494        return NULL;
1495}
1496EXPORT_SYMBOL(find_inode_rcu);
1497
1498/**
1499 * find_inode_by_rcu - Find an inode in the inode cache
1500 * @sb:         Super block of file system to search
1501 * @ino:        The inode number to match
1502 *
1503 * Search for the inode specified by @hashval and @data in the inode cache,
1504 * where the helper function @test will return 0 if the inode does not match
1505 * and 1 if it does.  The @test function must be responsible for taking the
1506 * i_lock spin_lock and checking i_state for an inode being freed or being
1507 * initialized.
1508 *
1509 * If successful, this will return the inode for which the @test function
1510 * returned 1 and NULL otherwise.
1511 *
1512 * The @test function is not permitted to take a ref on any inode presented.
1513 * It is also not permitted to sleep.
1514 *
1515 * The caller must hold the RCU read lock.
1516 */
1517struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1518                                    unsigned long ino)
1519{
1520        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1521        struct inode *inode;
1522
1523        RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1524                         "suspicious find_inode_by_ino_rcu() usage");
1525
1526        hlist_for_each_entry_rcu(inode, head, i_hash) {
1527                if (inode->i_ino == ino &&
1528                    inode->i_sb == sb &&
1529                    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1530                    return inode;
1531        }
1532        return NULL;
1533}
1534EXPORT_SYMBOL(find_inode_by_ino_rcu);
1535
1536int insert_inode_locked(struct inode *inode)
1537{
1538        struct super_block *sb = inode->i_sb;
1539        ino_t ino = inode->i_ino;
1540        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1541
1542        while (1) {
1543                struct inode *old = NULL;
1544                spin_lock(&inode_hash_lock);
1545                hlist_for_each_entry(old, head, i_hash) {
1546                        if (old->i_ino != ino)
1547                                continue;
1548                        if (old->i_sb != sb)
1549                                continue;
1550                        spin_lock(&old->i_lock);
1551                        if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1552                                spin_unlock(&old->i_lock);
1553                                continue;
1554                        }
1555                        break;
1556                }
1557                if (likely(!old)) {
1558                        spin_lock(&inode->i_lock);
1559                        inode->i_state |= I_NEW | I_CREATING;
1560                        hlist_add_head_rcu(&inode->i_hash, head);
1561                        spin_unlock(&inode->i_lock);
1562                        spin_unlock(&inode_hash_lock);
1563                        return 0;
1564                }
1565                if (unlikely(old->i_state & I_CREATING)) {
1566                        spin_unlock(&old->i_lock);
1567                        spin_unlock(&inode_hash_lock);
1568                        return -EBUSY;
1569                }
1570                __iget(old);
1571                spin_unlock(&old->i_lock);
1572                spin_unlock(&inode_hash_lock);
1573                wait_on_inode(old);
1574                if (unlikely(!inode_unhashed(old))) {
1575                        iput(old);
1576                        return -EBUSY;
1577                }
1578                iput(old);
1579        }
1580}
1581EXPORT_SYMBOL(insert_inode_locked);
1582
1583int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1584                int (*test)(struct inode *, void *), void *data)
1585{
1586        struct inode *old;
1587
1588        inode->i_state |= I_CREATING;
1589        old = inode_insert5(inode, hashval, test, NULL, data);
1590
1591        if (old != inode) {
1592                iput(old);
1593                return -EBUSY;
1594        }
1595        return 0;
1596}
1597EXPORT_SYMBOL(insert_inode_locked4);
1598
1599
1600int generic_delete_inode(struct inode *inode)
1601{
1602        return 1;
1603}
1604EXPORT_SYMBOL(generic_delete_inode);
1605
1606/*
1607 * Called when we're dropping the last reference
1608 * to an inode.
1609 *
1610 * Call the FS "drop_inode()" function, defaulting to
1611 * the legacy UNIX filesystem behaviour.  If it tells
1612 * us to evict inode, do so.  Otherwise, retain inode
1613 * in cache if fs is alive, sync and evict if fs is
1614 * shutting down.
1615 */
1616static void iput_final(struct inode *inode)
1617{
1618        struct super_block *sb = inode->i_sb;
1619        const struct super_operations *op = inode->i_sb->s_op;
1620        unsigned long state;
1621        int drop;
1622
1623        WARN_ON(inode->i_state & I_NEW);
1624
1625        if (op->drop_inode)
1626                drop = op->drop_inode(inode);
1627        else
1628                drop = generic_drop_inode(inode);
1629
1630        if (!drop && (sb->s_flags & SB_ACTIVE)) {
1631                inode_add_lru(inode);
1632                spin_unlock(&inode->i_lock);
1633                return;
1634        }
1635
1636        state = inode->i_state;
1637        if (!drop) {
1638                WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1639                spin_unlock(&inode->i_lock);
1640
1641                write_inode_now(inode, 1);
1642
1643                spin_lock(&inode->i_lock);
1644                state = inode->i_state;
1645                WARN_ON(state & I_NEW);
1646                state &= ~I_WILL_FREE;
1647        }
1648
1649        WRITE_ONCE(inode->i_state, state | I_FREEING);
1650        if (!list_empty(&inode->i_lru))
1651                inode_lru_list_del(inode);
1652        spin_unlock(&inode->i_lock);
1653
1654        evict(inode);
1655}
1656
1657/**
1658 *      iput    - put an inode
1659 *      @inode: inode to put
1660 *
1661 *      Puts an inode, dropping its usage count. If the inode use count hits
1662 *      zero, the inode is then freed and may also be destroyed.
1663 *
1664 *      Consequently, iput() can sleep.
1665 */
1666void iput(struct inode *inode)
1667{
1668        if (!inode)
1669                return;
1670        BUG_ON(inode->i_state & I_CLEAR);
1671retry:
1672        if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1673                if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1674                        atomic_inc(&inode->i_count);
1675                        spin_unlock(&inode->i_lock);
1676                        trace_writeback_lazytime_iput(inode);
1677                        mark_inode_dirty_sync(inode);
1678                        goto retry;
1679                }
1680                iput_final(inode);
1681        }
1682}
1683EXPORT_SYMBOL(iput);
1684
1685#ifdef CONFIG_BLOCK
1686/**
1687 *      bmap    - find a block number in a file
1688 *      @inode:  inode owning the block number being requested
1689 *      @block: pointer containing the block to find
1690 *
1691 *      Replaces the value in ``*block`` with the block number on the device holding
1692 *      corresponding to the requested block number in the file.
1693 *      That is, asked for block 4 of inode 1 the function will replace the
1694 *      4 in ``*block``, with disk block relative to the disk start that holds that
1695 *      block of the file.
1696 *
1697 *      Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1698 *      hole, returns 0 and ``*block`` is also set to 0.
1699 */
1700int bmap(struct inode *inode, sector_t *block)
1701{
1702        if (!inode->i_mapping->a_ops->bmap)
1703                return -EINVAL;
1704
1705        *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1706        return 0;
1707}
1708EXPORT_SYMBOL(bmap);
1709#endif
1710
1711/*
1712 * With relative atime, only update atime if the previous atime is
1713 * earlier than either the ctime or mtime or if at least a day has
1714 * passed since the last atime update.
1715 */
1716static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1717                             struct timespec64 now)
1718{
1719
1720        if (!(mnt->mnt_flags & MNT_RELATIME))
1721                return 1;
1722        /*
1723         * Is mtime younger than atime? If yes, update atime:
1724         */
1725        if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1726                return 1;
1727        /*
1728         * Is ctime younger than atime? If yes, update atime:
1729         */
1730        if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1731                return 1;
1732
1733        /*
1734         * Is the previous atime value older than a day? If yes,
1735         * update atime:
1736         */
1737        if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1738                return 1;
1739        /*
1740         * Good, we can skip the atime update:
1741         */
1742        return 0;
1743}
1744
1745int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1746{
1747        int iflags = I_DIRTY_TIME;
1748        bool dirty = false;
1749
1750        if (flags & S_ATIME)
1751                inode->i_atime = *time;
1752        if (flags & S_VERSION)
1753                dirty = inode_maybe_inc_iversion(inode, false);
1754        if (flags & S_CTIME)
1755                inode->i_ctime = *time;
1756        if (flags & S_MTIME)
1757                inode->i_mtime = *time;
1758        if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1759            !(inode->i_sb->s_flags & SB_LAZYTIME))
1760                dirty = true;
1761
1762        if (dirty)
1763                iflags |= I_DIRTY_SYNC;
1764        __mark_inode_dirty(inode, iflags);
1765        return 0;
1766}
1767EXPORT_SYMBOL(generic_update_time);
1768
1769/*
1770 * This does the actual work of updating an inodes time or version.  Must have
1771 * had called mnt_want_write() before calling this.
1772 */
1773static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1774{
1775        if (inode->i_op->update_time)
1776                return inode->i_op->update_time(inode, time, flags);
1777        return generic_update_time(inode, time, flags);
1778}
1779
1780/**
1781 *      touch_atime     -       update the access time
1782 *      @path: the &struct path to update
1783 *      @inode: inode to update
1784 *
1785 *      Update the accessed time on an inode and mark it for writeback.
1786 *      This function automatically handles read only file systems and media,
1787 *      as well as the "noatime" flag and inode specific "noatime" markers.
1788 */
1789bool atime_needs_update(const struct path *path, struct inode *inode)
1790{
1791        struct vfsmount *mnt = path->mnt;
1792        struct timespec64 now;
1793
1794        if (inode->i_flags & S_NOATIME)
1795                return false;
1796
1797        /* Atime updates will likely cause i_uid and i_gid to be written
1798         * back improprely if their true value is unknown to the vfs.
1799         */
1800        if (HAS_UNMAPPED_ID(inode))
1801                return false;
1802
1803        if (IS_NOATIME(inode))
1804                return false;
1805        if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1806                return false;
1807
1808        if (mnt->mnt_flags & MNT_NOATIME)
1809                return false;
1810        if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1811                return false;
1812
1813        now = current_time(inode);
1814
1815        if (!relatime_need_update(mnt, inode, now))
1816                return false;
1817
1818        if (timespec64_equal(&inode->i_atime, &now))
1819                return false;
1820
1821        return true;
1822}
1823
1824void touch_atime(const struct path *path)
1825{
1826        struct vfsmount *mnt = path->mnt;
1827        struct inode *inode = d_inode(path->dentry);
1828        struct timespec64 now;
1829
1830        if (!atime_needs_update(path, inode))
1831                return;
1832
1833        if (!sb_start_write_trylock(inode->i_sb))
1834                return;
1835
1836        if (__mnt_want_write(mnt) != 0)
1837                goto skip_update;
1838        /*
1839         * File systems can error out when updating inodes if they need to
1840         * allocate new space to modify an inode (such is the case for
1841         * Btrfs), but since we touch atime while walking down the path we
1842         * really don't care if we failed to update the atime of the file,
1843         * so just ignore the return value.
1844         * We may also fail on filesystems that have the ability to make parts
1845         * of the fs read only, e.g. subvolumes in Btrfs.
1846         */
1847        now = current_time(inode);
1848        update_time(inode, &now, S_ATIME);
1849        __mnt_drop_write(mnt);
1850skip_update:
1851        sb_end_write(inode->i_sb);
1852}
1853EXPORT_SYMBOL(touch_atime);
1854
1855/*
1856 * The logic we want is
1857 *
1858 *      if suid or (sgid and xgrp)
1859 *              remove privs
1860 */
1861int should_remove_suid(struct dentry *dentry)
1862{
1863        umode_t mode = d_inode(dentry)->i_mode;
1864        int kill = 0;
1865
1866        /* suid always must be killed */
1867        if (unlikely(mode & S_ISUID))
1868                kill = ATTR_KILL_SUID;
1869
1870        /*
1871         * sgid without any exec bits is just a mandatory locking mark; leave
1872         * it alone.  If some exec bits are set, it's a real sgid; kill it.
1873         */
1874        if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1875                kill |= ATTR_KILL_SGID;
1876
1877        if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1878                return kill;
1879
1880        return 0;
1881}
1882EXPORT_SYMBOL(should_remove_suid);
1883
1884/*
1885 * Return mask of changes for notify_change() that need to be done as a
1886 * response to write or truncate. Return 0 if nothing has to be changed.
1887 * Negative value on error (change should be denied).
1888 */
1889int dentry_needs_remove_privs(struct dentry *dentry)
1890{
1891        struct inode *inode = d_inode(dentry);
1892        int mask = 0;
1893        int ret;
1894
1895        if (IS_NOSEC(inode))
1896                return 0;
1897
1898        mask = should_remove_suid(dentry);
1899        ret = security_inode_need_killpriv(dentry);
1900        if (ret < 0)
1901                return ret;
1902        if (ret)
1903                mask |= ATTR_KILL_PRIV;
1904        return mask;
1905}
1906
1907static int __remove_privs(struct dentry *dentry, int kill)
1908{
1909        struct iattr newattrs;
1910
1911        newattrs.ia_valid = ATTR_FORCE | kill;
1912        /*
1913         * Note we call this on write, so notify_change will not
1914         * encounter any conflicting delegations:
1915         */
1916        return notify_change(dentry, &newattrs, NULL);
1917}
1918
1919/*
1920 * Remove special file priviledges (suid, capabilities) when file is written
1921 * to or truncated.
1922 */
1923int file_remove_privs(struct file *file)
1924{
1925        struct dentry *dentry = file_dentry(file);
1926        struct inode *inode = file_inode(file);
1927        int kill;
1928        int error = 0;
1929
1930        /*
1931         * Fast path for nothing security related.
1932         * As well for non-regular files, e.g. blkdev inodes.
1933         * For example, blkdev_write_iter() might get here
1934         * trying to remove privs which it is not allowed to.
1935         */
1936        if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1937                return 0;
1938
1939        kill = dentry_needs_remove_privs(dentry);
1940        if (kill < 0)
1941                return kill;
1942        if (kill)
1943                error = __remove_privs(dentry, kill);
1944        if (!error)
1945                inode_has_no_xattr(inode);
1946
1947        return error;
1948}
1949EXPORT_SYMBOL(file_remove_privs);
1950
1951/**
1952 *      file_update_time        -       update mtime and ctime time
1953 *      @file: file accessed
1954 *
1955 *      Update the mtime and ctime members of an inode and mark the inode
1956 *      for writeback.  Note that this function is meant exclusively for
1957 *      usage in the file write path of filesystems, and filesystems may
1958 *      choose to explicitly ignore update via this function with the
1959 *      S_NOCMTIME inode flag, e.g. for network filesystem where these
1960 *      timestamps are handled by the server.  This can return an error for
1961 *      file systems who need to allocate space in order to update an inode.
1962 */
1963
1964int file_update_time(struct file *file)
1965{
1966        struct inode *inode = file_inode(file);
1967        struct timespec64 now;
1968        int sync_it = 0;
1969        int ret;
1970
1971        /* First try to exhaust all avenues to not sync */
1972        if (IS_NOCMTIME(inode))
1973                return 0;
1974
1975        now = current_time(inode);
1976        if (!timespec64_equal(&inode->i_mtime, &now))
1977                sync_it = S_MTIME;
1978
1979        if (!timespec64_equal(&inode->i_ctime, &now))
1980                sync_it |= S_CTIME;
1981
1982        if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1983                sync_it |= S_VERSION;
1984
1985        if (!sync_it)
1986                return 0;
1987
1988        /* Finally allowed to write? Takes lock. */
1989        if (__mnt_want_write_file(file))
1990                return 0;
1991
1992        ret = update_time(inode, &now, sync_it);
1993        __mnt_drop_write_file(file);
1994
1995        return ret;
1996}
1997EXPORT_SYMBOL(file_update_time);
1998
1999/* Caller must hold the file's inode lock */
2000int file_modified(struct file *file)
2001{
2002        int err;
2003
2004        /*
2005         * Clear the security bits if the process is not being run by root.
2006         * This keeps people from modifying setuid and setgid binaries.
2007         */
2008        err = file_remove_privs(file);
2009        if (err)
2010                return err;
2011
2012        if (unlikely(file->f_mode & FMODE_NOCMTIME))
2013                return 0;
2014
2015        return file_update_time(file);
2016}
2017EXPORT_SYMBOL(file_modified);
2018
2019int inode_needs_sync(struct inode *inode)
2020{
2021        if (IS_SYNC(inode))
2022                return 1;
2023        if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2024                return 1;
2025        return 0;
2026}
2027EXPORT_SYMBOL(inode_needs_sync);
2028
2029/*
2030 * If we try to find an inode in the inode hash while it is being
2031 * deleted, we have to wait until the filesystem completes its
2032 * deletion before reporting that it isn't found.  This function waits
2033 * until the deletion _might_ have completed.  Callers are responsible
2034 * to recheck inode state.
2035 *
2036 * It doesn't matter if I_NEW is not set initially, a call to
2037 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2038 * will DTRT.
2039 */
2040static void __wait_on_freeing_inode(struct inode *inode)
2041{
2042        wait_queue_head_t *wq;
2043        DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2044        wq = bit_waitqueue(&inode->i_state, __I_NEW);
2045        prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2046        spin_unlock(&inode->i_lock);
2047        spin_unlock(&inode_hash_lock);
2048        schedule();
2049        finish_wait(wq, &wait.wq_entry);
2050        spin_lock(&inode_hash_lock);
2051}
2052
2053static __initdata unsigned long ihash_entries;
2054static int __init set_ihash_entries(char *str)
2055{
2056        if (!str)
2057                return 0;
2058        ihash_entries = simple_strtoul(str, &str, 0);
2059        return 1;
2060}
2061__setup("ihash_entries=", set_ihash_entries);
2062
2063/*
2064 * Initialize the waitqueues and inode hash table.
2065 */
2066void __init inode_init_early(void)
2067{
2068        /* If hashes are distributed across NUMA nodes, defer
2069         * hash allocation until vmalloc space is available.
2070         */
2071        if (hashdist)
2072                return;
2073
2074        inode_hashtable =
2075                alloc_large_system_hash("Inode-cache",
2076                                        sizeof(struct hlist_head),
2077                                        ihash_entries,
2078                                        14,
2079                                        HASH_EARLY | HASH_ZERO,
2080                                        &i_hash_shift,
2081                                        &i_hash_mask,
2082                                        0,
2083                                        0);
2084}
2085
2086void __init inode_init(void)
2087{
2088        /* inode slab cache */
2089        inode_cachep = kmem_cache_create("inode_cache",
2090                                         sizeof(struct inode),
2091                                         0,
2092                                         (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2093                                         SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2094                                         init_once);
2095
2096        /* Hash may have been set up in inode_init_early */
2097        if (!hashdist)
2098                return;
2099
2100        inode_hashtable =
2101                alloc_large_system_hash("Inode-cache",
2102                                        sizeof(struct hlist_head),
2103                                        ihash_entries,
2104                                        14,
2105                                        HASH_ZERO,
2106                                        &i_hash_shift,
2107                                        &i_hash_mask,
2108                                        0,
2109                                        0);
2110}
2111
2112void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2113{
2114        inode->i_mode = mode;
2115        if (S_ISCHR(mode)) {
2116                inode->i_fop = &def_chr_fops;
2117                inode->i_rdev = rdev;
2118        } else if (S_ISBLK(mode)) {
2119                inode->i_fop = &def_blk_fops;
2120                inode->i_rdev = rdev;
2121        } else if (S_ISFIFO(mode))
2122                inode->i_fop = &pipefifo_fops;
2123        else if (S_ISSOCK(mode))
2124                ;       /* leave it no_open_fops */
2125        else
2126                printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2127                                  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2128                                  inode->i_ino);
2129}
2130EXPORT_SYMBOL(init_special_inode);
2131
2132/**
2133 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2134 * @inode: New inode
2135 * @dir: Directory inode
2136 * @mode: mode of the new inode
2137 */
2138void inode_init_owner(struct inode *inode, const struct inode *dir,
2139                        umode_t mode)
2140{
2141        inode->i_uid = current_fsuid();
2142        if (dir && dir->i_mode & S_ISGID) {
2143                inode->i_gid = dir->i_gid;
2144
2145                /* Directories are special, and always inherit S_ISGID */
2146                if (S_ISDIR(mode))
2147                        mode |= S_ISGID;
2148                else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2149                         !in_group_p(inode->i_gid) &&
2150                         !capable_wrt_inode_uidgid(dir, CAP_FSETID))
2151                        mode &= ~S_ISGID;
2152        } else
2153                inode->i_gid = current_fsgid();
2154        inode->i_mode = mode;
2155}
2156EXPORT_SYMBOL(inode_init_owner);
2157
2158/**
2159 * inode_owner_or_capable - check current task permissions to inode
2160 * @inode: inode being checked
2161 *
2162 * Return true if current either has CAP_FOWNER in a namespace with the
2163 * inode owner uid mapped, or owns the file.
2164 */
2165bool inode_owner_or_capable(const struct inode *inode)
2166{
2167        struct user_namespace *ns;
2168
2169        if (uid_eq(current_fsuid(), inode->i_uid))
2170                return true;
2171
2172        ns = current_user_ns();
2173        if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2174                return true;
2175        return false;
2176}
2177EXPORT_SYMBOL(inode_owner_or_capable);
2178
2179/*
2180 * Direct i/o helper functions
2181 */
2182static void __inode_dio_wait(struct inode *inode)
2183{
2184        wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2185        DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2186
2187        do {
2188                prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2189                if (atomic_read(&inode->i_dio_count))
2190                        schedule();
2191        } while (atomic_read(&inode->i_dio_count));
2192        finish_wait(wq, &q.wq_entry);
2193}
2194
2195/**
2196 * inode_dio_wait - wait for outstanding DIO requests to finish
2197 * @inode: inode to wait for
2198 *
2199 * Waits for all pending direct I/O requests to finish so that we can
2200 * proceed with a truncate or equivalent operation.
2201 *
2202 * Must be called under a lock that serializes taking new references
2203 * to i_dio_count, usually by inode->i_mutex.
2204 */
2205void inode_dio_wait(struct inode *inode)
2206{
2207        if (atomic_read(&inode->i_dio_count))
2208                __inode_dio_wait(inode);
2209}
2210EXPORT_SYMBOL(inode_dio_wait);
2211
2212/*
2213 * inode_set_flags - atomically set some inode flags
2214 *
2215 * Note: the caller should be holding i_mutex, or else be sure that
2216 * they have exclusive access to the inode structure (i.e., while the
2217 * inode is being instantiated).  The reason for the cmpxchg() loop
2218 * --- which wouldn't be necessary if all code paths which modify
2219 * i_flags actually followed this rule, is that there is at least one
2220 * code path which doesn't today so we use cmpxchg() out of an abundance
2221 * of caution.
2222 *
2223 * In the long run, i_mutex is overkill, and we should probably look
2224 * at using the i_lock spinlock to protect i_flags, and then make sure
2225 * it is so documented in include/linux/fs.h and that all code follows
2226 * the locking convention!!
2227 */
2228void inode_set_flags(struct inode *inode, unsigned int flags,
2229                     unsigned int mask)
2230{
2231        WARN_ON_ONCE(flags & ~mask);
2232        set_mask_bits(&inode->i_flags, mask, flags);
2233}
2234EXPORT_SYMBOL(inode_set_flags);
2235
2236void inode_nohighmem(struct inode *inode)
2237{
2238        mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2239}
2240EXPORT_SYMBOL(inode_nohighmem);
2241
2242/**
2243 * timestamp_truncate - Truncate timespec to a granularity
2244 * @t: Timespec
2245 * @inode: inode being updated
2246 *
2247 * Truncate a timespec to the granularity supported by the fs
2248 * containing the inode. Always rounds down. gran must
2249 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2250 */
2251struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2252{
2253        struct super_block *sb = inode->i_sb;
2254        unsigned int gran = sb->s_time_gran;
2255
2256        t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2257        if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2258                t.tv_nsec = 0;
2259
2260        /* Avoid division in the common cases 1 ns and 1 s. */
2261        if (gran == 1)
2262                ; /* nothing */
2263        else if (gran == NSEC_PER_SEC)
2264                t.tv_nsec = 0;
2265        else if (gran > 1 && gran < NSEC_PER_SEC)
2266                t.tv_nsec -= t.tv_nsec % gran;
2267        else
2268                WARN(1, "invalid file time granularity: %u", gran);
2269        return t;
2270}
2271EXPORT_SYMBOL(timestamp_truncate);
2272
2273/**
2274 * current_time - Return FS time
2275 * @inode: inode.
2276 *
2277 * Return the current time truncated to the time granularity supported by
2278 * the fs.
2279 *
2280 * Note that inode and inode->sb cannot be NULL.
2281 * Otherwise, the function warns and returns time without truncation.
2282 */
2283struct timespec64 current_time(struct inode *inode)
2284{
2285        struct timespec64 now;
2286
2287        ktime_get_coarse_real_ts64(&now);
2288
2289        if (unlikely(!inode->i_sb)) {
2290                WARN(1, "current_time() called with uninitialized super_block in the inode");
2291                return now;
2292        }
2293
2294        return timestamp_truncate(now, inode);
2295}
2296EXPORT_SYMBOL(current_time);
2297
2298/*
2299 * Generic function to check FS_IOC_SETFLAGS values and reject any invalid
2300 * configurations.
2301 *
2302 * Note: the caller should be holding i_mutex, or else be sure that they have
2303 * exclusive access to the inode structure.
2304 */
2305int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags,
2306                             unsigned int flags)
2307{
2308        /*
2309         * The IMMUTABLE and APPEND_ONLY flags can only be changed by
2310         * the relevant capability.
2311         *
2312         * This test looks nicer. Thanks to Pauline Middelink
2313         */
2314        if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) &&
2315            !capable(CAP_LINUX_IMMUTABLE))
2316                return -EPERM;
2317
2318        return fscrypt_prepare_setflags(inode, oldflags, flags);
2319}
2320EXPORT_SYMBOL(vfs_ioc_setflags_prepare);
2321
2322/*
2323 * Generic function to check FS_IOC_FSSETXATTR values and reject any invalid
2324 * configurations.
2325 *
2326 * Note: the caller should be holding i_mutex, or else be sure that they have
2327 * exclusive access to the inode structure.
2328 */
2329int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa,
2330                             struct fsxattr *fa)
2331{
2332        /*
2333         * Can't modify an immutable/append-only file unless we have
2334         * appropriate permission.
2335         */
2336        if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2337                        (FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND) &&
2338            !capable(CAP_LINUX_IMMUTABLE))
2339                return -EPERM;
2340
2341        /*
2342         * Project Quota ID state is only allowed to change from within the init
2343         * namespace. Enforce that restriction only if we are trying to change
2344         * the quota ID state. Everything else is allowed in user namespaces.
2345         */
2346        if (current_user_ns() != &init_user_ns) {
2347                if (old_fa->fsx_projid != fa->fsx_projid)
2348                        return -EINVAL;
2349                if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2350                                FS_XFLAG_PROJINHERIT)
2351                        return -EINVAL;
2352        }
2353
2354        /* Check extent size hints. */
2355        if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(inode->i_mode))
2356                return -EINVAL;
2357
2358        if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) &&
2359                        !S_ISDIR(inode->i_mode))
2360                return -EINVAL;
2361
2362        if ((fa->fsx_xflags & FS_XFLAG_COWEXTSIZE) &&
2363            !S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
2364                return -EINVAL;
2365
2366        /*
2367         * It is only valid to set the DAX flag on regular files and
2368         * directories on filesystems.
2369         */
2370        if ((fa->fsx_xflags & FS_XFLAG_DAX) &&
2371            !(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
2372                return -EINVAL;
2373
2374        /* Extent size hints of zero turn off the flags. */
2375        if (fa->fsx_extsize == 0)
2376                fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT);
2377        if (fa->fsx_cowextsize == 0)
2378                fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE;
2379
2380        return 0;
2381}
2382EXPORT_SYMBOL(vfs_ioc_fssetxattr_check);
2383