linux/fs/xfs/xfs_buf_item_recover.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
  13#include "xfs_mount.h"
  14#include "xfs_trans.h"
  15#include "xfs_buf_item.h"
  16#include "xfs_trans_priv.h"
  17#include "xfs_trace.h"
  18#include "xfs_log.h"
  19#include "xfs_log_priv.h"
  20#include "xfs_log_recover.h"
  21#include "xfs_error.h"
  22#include "xfs_inode.h"
  23#include "xfs_dir2.h"
  24#include "xfs_quota.h"
  25
  26/*
  27 * This structure is used during recovery to record the buf log items which
  28 * have been canceled and should not be replayed.
  29 */
  30struct xfs_buf_cancel {
  31        xfs_daddr_t             bc_blkno;
  32        uint                    bc_len;
  33        int                     bc_refcount;
  34        struct list_head        bc_list;
  35};
  36
  37static struct xfs_buf_cancel *
  38xlog_find_buffer_cancelled(
  39        struct xlog             *log,
  40        xfs_daddr_t             blkno,
  41        uint                    len)
  42{
  43        struct list_head        *bucket;
  44        struct xfs_buf_cancel   *bcp;
  45
  46        if (!log->l_buf_cancel_table)
  47                return NULL;
  48
  49        bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
  50        list_for_each_entry(bcp, bucket, bc_list) {
  51                if (bcp->bc_blkno == blkno && bcp->bc_len == len)
  52                        return bcp;
  53        }
  54
  55        return NULL;
  56}
  57
  58static bool
  59xlog_add_buffer_cancelled(
  60        struct xlog             *log,
  61        xfs_daddr_t             blkno,
  62        uint                    len)
  63{
  64        struct xfs_buf_cancel   *bcp;
  65
  66        /*
  67         * If we find an existing cancel record, this indicates that the buffer
  68         * was cancelled multiple times.  To ensure that during pass 2 we keep
  69         * the record in the table until we reach its last occurrence in the
  70         * log, a reference count is kept to tell how many times we expect to
  71         * see this record during the second pass.
  72         */
  73        bcp = xlog_find_buffer_cancelled(log, blkno, len);
  74        if (bcp) {
  75                bcp->bc_refcount++;
  76                return false;
  77        }
  78
  79        bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), 0);
  80        bcp->bc_blkno = blkno;
  81        bcp->bc_len = len;
  82        bcp->bc_refcount = 1;
  83        list_add_tail(&bcp->bc_list, XLOG_BUF_CANCEL_BUCKET(log, blkno));
  84        return true;
  85}
  86
  87/*
  88 * Check if there is and entry for blkno, len in the buffer cancel record table.
  89 */
  90bool
  91xlog_is_buffer_cancelled(
  92        struct xlog             *log,
  93        xfs_daddr_t             blkno,
  94        uint                    len)
  95{
  96        return xlog_find_buffer_cancelled(log, blkno, len) != NULL;
  97}
  98
  99/*
 100 * Check if there is and entry for blkno, len in the buffer cancel record table,
 101 * and decremented the reference count on it if there is one.
 102 *
 103 * Remove the cancel record once the refcount hits zero, so that if the same
 104 * buffer is re-used again after its last cancellation we actually replay the
 105 * changes made at that point.
 106 */
 107static bool
 108xlog_put_buffer_cancelled(
 109        struct xlog             *log,
 110        xfs_daddr_t             blkno,
 111        uint                    len)
 112{
 113        struct xfs_buf_cancel   *bcp;
 114
 115        bcp = xlog_find_buffer_cancelled(log, blkno, len);
 116        if (!bcp) {
 117                ASSERT(0);
 118                return false;
 119        }
 120
 121        if (--bcp->bc_refcount == 0) {
 122                list_del(&bcp->bc_list);
 123                kmem_free(bcp);
 124        }
 125        return true;
 126}
 127
 128/* log buffer item recovery */
 129
 130/*
 131 * Sort buffer items for log recovery.  Most buffer items should end up on the
 132 * buffer list and are recovered first, with the following exceptions:
 133 *
 134 * 1. XFS_BLF_CANCEL buffers must be processed last because some log items
 135 *    might depend on the incor ecancellation record, and replaying a cancelled
 136 *    buffer item can remove the incore record.
 137 *
 138 * 2. XFS_BLF_INODE_BUF buffers are handled after most regular items so that
 139 *    we replay di_next_unlinked only after flushing the inode 'free' state
 140 *    to the inode buffer.
 141 *
 142 * See xlog_recover_reorder_trans for more details.
 143 */
 144STATIC enum xlog_recover_reorder
 145xlog_recover_buf_reorder(
 146        struct xlog_recover_item        *item)
 147{
 148        struct xfs_buf_log_format       *buf_f = item->ri_buf[0].i_addr;
 149
 150        if (buf_f->blf_flags & XFS_BLF_CANCEL)
 151                return XLOG_REORDER_CANCEL_LIST;
 152        if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
 153                return XLOG_REORDER_INODE_BUFFER_LIST;
 154        return XLOG_REORDER_BUFFER_LIST;
 155}
 156
 157STATIC void
 158xlog_recover_buf_ra_pass2(
 159        struct xlog                     *log,
 160        struct xlog_recover_item        *item)
 161{
 162        struct xfs_buf_log_format       *buf_f = item->ri_buf[0].i_addr;
 163
 164        xlog_buf_readahead(log, buf_f->blf_blkno, buf_f->blf_len, NULL);
 165}
 166
 167/*
 168 * Build up the table of buf cancel records so that we don't replay cancelled
 169 * data in the second pass.
 170 */
 171static int
 172xlog_recover_buf_commit_pass1(
 173        struct xlog                     *log,
 174        struct xlog_recover_item        *item)
 175{
 176        struct xfs_buf_log_format       *bf = item->ri_buf[0].i_addr;
 177
 178        if (!xfs_buf_log_check_iovec(&item->ri_buf[0])) {
 179                xfs_err(log->l_mp, "bad buffer log item size (%d)",
 180                                item->ri_buf[0].i_len);
 181                return -EFSCORRUPTED;
 182        }
 183
 184        if (!(bf->blf_flags & XFS_BLF_CANCEL))
 185                trace_xfs_log_recover_buf_not_cancel(log, bf);
 186        else if (xlog_add_buffer_cancelled(log, bf->blf_blkno, bf->blf_len))
 187                trace_xfs_log_recover_buf_cancel_add(log, bf);
 188        else
 189                trace_xfs_log_recover_buf_cancel_ref_inc(log, bf);
 190        return 0;
 191}
 192
 193/*
 194 * Validate the recovered buffer is of the correct type and attach the
 195 * appropriate buffer operations to them for writeback. Magic numbers are in a
 196 * few places:
 197 *      the first 16 bits of the buffer (inode buffer, dquot buffer),
 198 *      the first 32 bits of the buffer (most blocks),
 199 *      inside a struct xfs_da_blkinfo at the start of the buffer.
 200 */
 201static void
 202xlog_recover_validate_buf_type(
 203        struct xfs_mount                *mp,
 204        struct xfs_buf                  *bp,
 205        struct xfs_buf_log_format       *buf_f,
 206        xfs_lsn_t                       current_lsn)
 207{
 208        struct xfs_da_blkinfo           *info = bp->b_addr;
 209        uint32_t                        magic32;
 210        uint16_t                        magic16;
 211        uint16_t                        magicda;
 212        char                            *warnmsg = NULL;
 213
 214        /*
 215         * We can only do post recovery validation on items on CRC enabled
 216         * fielsystems as we need to know when the buffer was written to be able
 217         * to determine if we should have replayed the item. If we replay old
 218         * metadata over a newer buffer, then it will enter a temporarily
 219         * inconsistent state resulting in verification failures. Hence for now
 220         * just avoid the verification stage for non-crc filesystems
 221         */
 222        if (!xfs_sb_version_hascrc(&mp->m_sb))
 223                return;
 224
 225        magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
 226        magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
 227        magicda = be16_to_cpu(info->magic);
 228        switch (xfs_blft_from_flags(buf_f)) {
 229        case XFS_BLFT_BTREE_BUF:
 230                switch (magic32) {
 231                case XFS_ABTB_CRC_MAGIC:
 232                case XFS_ABTB_MAGIC:
 233                        bp->b_ops = &xfs_bnobt_buf_ops;
 234                        break;
 235                case XFS_ABTC_CRC_MAGIC:
 236                case XFS_ABTC_MAGIC:
 237                        bp->b_ops = &xfs_cntbt_buf_ops;
 238                        break;
 239                case XFS_IBT_CRC_MAGIC:
 240                case XFS_IBT_MAGIC:
 241                        bp->b_ops = &xfs_inobt_buf_ops;
 242                        break;
 243                case XFS_FIBT_CRC_MAGIC:
 244                case XFS_FIBT_MAGIC:
 245                        bp->b_ops = &xfs_finobt_buf_ops;
 246                        break;
 247                case XFS_BMAP_CRC_MAGIC:
 248                case XFS_BMAP_MAGIC:
 249                        bp->b_ops = &xfs_bmbt_buf_ops;
 250                        break;
 251                case XFS_RMAP_CRC_MAGIC:
 252                        bp->b_ops = &xfs_rmapbt_buf_ops;
 253                        break;
 254                case XFS_REFC_CRC_MAGIC:
 255                        bp->b_ops = &xfs_refcountbt_buf_ops;
 256                        break;
 257                default:
 258                        warnmsg = "Bad btree block magic!";
 259                        break;
 260                }
 261                break;
 262        case XFS_BLFT_AGF_BUF:
 263                if (magic32 != XFS_AGF_MAGIC) {
 264                        warnmsg = "Bad AGF block magic!";
 265                        break;
 266                }
 267                bp->b_ops = &xfs_agf_buf_ops;
 268                break;
 269        case XFS_BLFT_AGFL_BUF:
 270                if (magic32 != XFS_AGFL_MAGIC) {
 271                        warnmsg = "Bad AGFL block magic!";
 272                        break;
 273                }
 274                bp->b_ops = &xfs_agfl_buf_ops;
 275                break;
 276        case XFS_BLFT_AGI_BUF:
 277                if (magic32 != XFS_AGI_MAGIC) {
 278                        warnmsg = "Bad AGI block magic!";
 279                        break;
 280                }
 281                bp->b_ops = &xfs_agi_buf_ops;
 282                break;
 283        case XFS_BLFT_UDQUOT_BUF:
 284        case XFS_BLFT_PDQUOT_BUF:
 285        case XFS_BLFT_GDQUOT_BUF:
 286#ifdef CONFIG_XFS_QUOTA
 287                if (magic16 != XFS_DQUOT_MAGIC) {
 288                        warnmsg = "Bad DQUOT block magic!";
 289                        break;
 290                }
 291                bp->b_ops = &xfs_dquot_buf_ops;
 292#else
 293                xfs_alert(mp,
 294        "Trying to recover dquots without QUOTA support built in!");
 295                ASSERT(0);
 296#endif
 297                break;
 298        case XFS_BLFT_DINO_BUF:
 299                if (magic16 != XFS_DINODE_MAGIC) {
 300                        warnmsg = "Bad INODE block magic!";
 301                        break;
 302                }
 303                bp->b_ops = &xfs_inode_buf_ops;
 304                break;
 305        case XFS_BLFT_SYMLINK_BUF:
 306                if (magic32 != XFS_SYMLINK_MAGIC) {
 307                        warnmsg = "Bad symlink block magic!";
 308                        break;
 309                }
 310                bp->b_ops = &xfs_symlink_buf_ops;
 311                break;
 312        case XFS_BLFT_DIR_BLOCK_BUF:
 313                if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
 314                    magic32 != XFS_DIR3_BLOCK_MAGIC) {
 315                        warnmsg = "Bad dir block magic!";
 316                        break;
 317                }
 318                bp->b_ops = &xfs_dir3_block_buf_ops;
 319                break;
 320        case XFS_BLFT_DIR_DATA_BUF:
 321                if (magic32 != XFS_DIR2_DATA_MAGIC &&
 322                    magic32 != XFS_DIR3_DATA_MAGIC) {
 323                        warnmsg = "Bad dir data magic!";
 324                        break;
 325                }
 326                bp->b_ops = &xfs_dir3_data_buf_ops;
 327                break;
 328        case XFS_BLFT_DIR_FREE_BUF:
 329                if (magic32 != XFS_DIR2_FREE_MAGIC &&
 330                    magic32 != XFS_DIR3_FREE_MAGIC) {
 331                        warnmsg = "Bad dir3 free magic!";
 332                        break;
 333                }
 334                bp->b_ops = &xfs_dir3_free_buf_ops;
 335                break;
 336        case XFS_BLFT_DIR_LEAF1_BUF:
 337                if (magicda != XFS_DIR2_LEAF1_MAGIC &&
 338                    magicda != XFS_DIR3_LEAF1_MAGIC) {
 339                        warnmsg = "Bad dir leaf1 magic!";
 340                        break;
 341                }
 342                bp->b_ops = &xfs_dir3_leaf1_buf_ops;
 343                break;
 344        case XFS_BLFT_DIR_LEAFN_BUF:
 345                if (magicda != XFS_DIR2_LEAFN_MAGIC &&
 346                    magicda != XFS_DIR3_LEAFN_MAGIC) {
 347                        warnmsg = "Bad dir leafn magic!";
 348                        break;
 349                }
 350                bp->b_ops = &xfs_dir3_leafn_buf_ops;
 351                break;
 352        case XFS_BLFT_DA_NODE_BUF:
 353                if (magicda != XFS_DA_NODE_MAGIC &&
 354                    magicda != XFS_DA3_NODE_MAGIC) {
 355                        warnmsg = "Bad da node magic!";
 356                        break;
 357                }
 358                bp->b_ops = &xfs_da3_node_buf_ops;
 359                break;
 360        case XFS_BLFT_ATTR_LEAF_BUF:
 361                if (magicda != XFS_ATTR_LEAF_MAGIC &&
 362                    magicda != XFS_ATTR3_LEAF_MAGIC) {
 363                        warnmsg = "Bad attr leaf magic!";
 364                        break;
 365                }
 366                bp->b_ops = &xfs_attr3_leaf_buf_ops;
 367                break;
 368        case XFS_BLFT_ATTR_RMT_BUF:
 369                if (magic32 != XFS_ATTR3_RMT_MAGIC) {
 370                        warnmsg = "Bad attr remote magic!";
 371                        break;
 372                }
 373                bp->b_ops = &xfs_attr3_rmt_buf_ops;
 374                break;
 375        case XFS_BLFT_SB_BUF:
 376                if (magic32 != XFS_SB_MAGIC) {
 377                        warnmsg = "Bad SB block magic!";
 378                        break;
 379                }
 380                bp->b_ops = &xfs_sb_buf_ops;
 381                break;
 382#ifdef CONFIG_XFS_RT
 383        case XFS_BLFT_RTBITMAP_BUF:
 384        case XFS_BLFT_RTSUMMARY_BUF:
 385                /* no magic numbers for verification of RT buffers */
 386                bp->b_ops = &xfs_rtbuf_ops;
 387                break;
 388#endif /* CONFIG_XFS_RT */
 389        default:
 390                xfs_warn(mp, "Unknown buffer type %d!",
 391                         xfs_blft_from_flags(buf_f));
 392                break;
 393        }
 394
 395        /*
 396         * Nothing else to do in the case of a NULL current LSN as this means
 397         * the buffer is more recent than the change in the log and will be
 398         * skipped.
 399         */
 400        if (current_lsn == NULLCOMMITLSN)
 401                return;
 402
 403        if (warnmsg) {
 404                xfs_warn(mp, warnmsg);
 405                ASSERT(0);
 406        }
 407
 408        /*
 409         * We must update the metadata LSN of the buffer as it is written out to
 410         * ensure that older transactions never replay over this one and corrupt
 411         * the buffer. This can occur if log recovery is interrupted at some
 412         * point after the current transaction completes, at which point a
 413         * subsequent mount starts recovery from the beginning.
 414         *
 415         * Write verifiers update the metadata LSN from log items attached to
 416         * the buffer. Therefore, initialize a bli purely to carry the LSN to
 417         * the verifier.
 418         */
 419        if (bp->b_ops) {
 420                struct xfs_buf_log_item *bip;
 421
 422                bp->b_flags |= _XBF_LOGRECOVERY;
 423                xfs_buf_item_init(bp, mp);
 424                bip = bp->b_log_item;
 425                bip->bli_item.li_lsn = current_lsn;
 426        }
 427}
 428
 429/*
 430 * Perform a 'normal' buffer recovery.  Each logged region of the
 431 * buffer should be copied over the corresponding region in the
 432 * given buffer.  The bitmap in the buf log format structure indicates
 433 * where to place the logged data.
 434 */
 435STATIC void
 436xlog_recover_do_reg_buffer(
 437        struct xfs_mount                *mp,
 438        struct xlog_recover_item        *item,
 439        struct xfs_buf                  *bp,
 440        struct xfs_buf_log_format       *buf_f,
 441        xfs_lsn_t                       current_lsn)
 442{
 443        int                     i;
 444        int                     bit;
 445        int                     nbits;
 446        xfs_failaddr_t          fa;
 447        const size_t            size_disk_dquot = sizeof(struct xfs_disk_dquot);
 448
 449        trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
 450
 451        bit = 0;
 452        i = 1;  /* 0 is the buf format structure */
 453        while (1) {
 454                bit = xfs_next_bit(buf_f->blf_data_map,
 455                                   buf_f->blf_map_size, bit);
 456                if (bit == -1)
 457                        break;
 458                nbits = xfs_contig_bits(buf_f->blf_data_map,
 459                                        buf_f->blf_map_size, bit);
 460                ASSERT(nbits > 0);
 461                ASSERT(item->ri_buf[i].i_addr != NULL);
 462                ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
 463                ASSERT(BBTOB(bp->b_length) >=
 464                       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
 465
 466                /*
 467                 * The dirty regions logged in the buffer, even though
 468                 * contiguous, may span multiple chunks. This is because the
 469                 * dirty region may span a physical page boundary in a buffer
 470                 * and hence be split into two separate vectors for writing into
 471                 * the log. Hence we need to trim nbits back to the length of
 472                 * the current region being copied out of the log.
 473                 */
 474                if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
 475                        nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
 476
 477                /*
 478                 * Do a sanity check if this is a dquot buffer. Just checking
 479                 * the first dquot in the buffer should do. XXXThis is
 480                 * probably a good thing to do for other buf types also.
 481                 */
 482                fa = NULL;
 483                if (buf_f->blf_flags &
 484                   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
 485                        if (item->ri_buf[i].i_addr == NULL) {
 486                                xfs_alert(mp,
 487                                        "XFS: NULL dquot in %s.", __func__);
 488                                goto next;
 489                        }
 490                        if (item->ri_buf[i].i_len < size_disk_dquot) {
 491                                xfs_alert(mp,
 492                                        "XFS: dquot too small (%d) in %s.",
 493                                        item->ri_buf[i].i_len, __func__);
 494                                goto next;
 495                        }
 496                        fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr, -1);
 497                        if (fa) {
 498                                xfs_alert(mp,
 499        "dquot corrupt at %pS trying to replay into block 0x%llx",
 500                                        fa, bp->b_bn);
 501                                goto next;
 502                        }
 503                }
 504
 505                memcpy(xfs_buf_offset(bp,
 506                        (uint)bit << XFS_BLF_SHIFT),    /* dest */
 507                        item->ri_buf[i].i_addr,         /* source */
 508                        nbits<<XFS_BLF_SHIFT);          /* length */
 509 next:
 510                i++;
 511                bit += nbits;
 512        }
 513
 514        /* Shouldn't be any more regions */
 515        ASSERT(i == item->ri_total);
 516
 517        xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
 518}
 519
 520/*
 521 * Perform a dquot buffer recovery.
 522 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
 523 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
 524 * Else, treat it as a regular buffer and do recovery.
 525 *
 526 * Return false if the buffer was tossed and true if we recovered the buffer to
 527 * indicate to the caller if the buffer needs writing.
 528 */
 529STATIC bool
 530xlog_recover_do_dquot_buffer(
 531        struct xfs_mount                *mp,
 532        struct xlog                     *log,
 533        struct xlog_recover_item        *item,
 534        struct xfs_buf                  *bp,
 535        struct xfs_buf_log_format       *buf_f)
 536{
 537        uint                    type;
 538
 539        trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
 540
 541        /*
 542         * Filesystems are required to send in quota flags at mount time.
 543         */
 544        if (!mp->m_qflags)
 545                return false;
 546
 547        type = 0;
 548        if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
 549                type |= XFS_DQTYPE_USER;
 550        if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
 551                type |= XFS_DQTYPE_PROJ;
 552        if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
 553                type |= XFS_DQTYPE_GROUP;
 554        /*
 555         * This type of quotas was turned off, so ignore this buffer
 556         */
 557        if (log->l_quotaoffs_flag & type)
 558                return false;
 559
 560        xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
 561        return true;
 562}
 563
 564/*
 565 * Perform recovery for a buffer full of inodes.  In these buffers, the only
 566 * data which should be recovered is that which corresponds to the
 567 * di_next_unlinked pointers in the on disk inode structures.  The rest of the
 568 * data for the inodes is always logged through the inodes themselves rather
 569 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
 570 *
 571 * The only time when buffers full of inodes are fully recovered is when the
 572 * buffer is full of newly allocated inodes.  In this case the buffer will
 573 * not be marked as an inode buffer and so will be sent to
 574 * xlog_recover_do_reg_buffer() below during recovery.
 575 */
 576STATIC int
 577xlog_recover_do_inode_buffer(
 578        struct xfs_mount                *mp,
 579        struct xlog_recover_item        *item,
 580        struct xfs_buf                  *bp,
 581        struct xfs_buf_log_format       *buf_f)
 582{
 583        int                             i;
 584        int                             item_index = 0;
 585        int                             bit = 0;
 586        int                             nbits = 0;
 587        int                             reg_buf_offset = 0;
 588        int                             reg_buf_bytes = 0;
 589        int                             next_unlinked_offset;
 590        int                             inodes_per_buf;
 591        xfs_agino_t                     *logged_nextp;
 592        xfs_agino_t                     *buffer_nextp;
 593
 594        trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
 595
 596        /*
 597         * Post recovery validation only works properly on CRC enabled
 598         * filesystems.
 599         */
 600        if (xfs_sb_version_hascrc(&mp->m_sb))
 601                bp->b_ops = &xfs_inode_buf_ops;
 602
 603        inodes_per_buf = BBTOB(bp->b_length) >> mp->m_sb.sb_inodelog;
 604        for (i = 0; i < inodes_per_buf; i++) {
 605                next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
 606                        offsetof(xfs_dinode_t, di_next_unlinked);
 607
 608                while (next_unlinked_offset >=
 609                       (reg_buf_offset + reg_buf_bytes)) {
 610                        /*
 611                         * The next di_next_unlinked field is beyond
 612                         * the current logged region.  Find the next
 613                         * logged region that contains or is beyond
 614                         * the current di_next_unlinked field.
 615                         */
 616                        bit += nbits;
 617                        bit = xfs_next_bit(buf_f->blf_data_map,
 618                                           buf_f->blf_map_size, bit);
 619
 620                        /*
 621                         * If there are no more logged regions in the
 622                         * buffer, then we're done.
 623                         */
 624                        if (bit == -1)
 625                                return 0;
 626
 627                        nbits = xfs_contig_bits(buf_f->blf_data_map,
 628                                                buf_f->blf_map_size, bit);
 629                        ASSERT(nbits > 0);
 630                        reg_buf_offset = bit << XFS_BLF_SHIFT;
 631                        reg_buf_bytes = nbits << XFS_BLF_SHIFT;
 632                        item_index++;
 633                }
 634
 635                /*
 636                 * If the current logged region starts after the current
 637                 * di_next_unlinked field, then move on to the next
 638                 * di_next_unlinked field.
 639                 */
 640                if (next_unlinked_offset < reg_buf_offset)
 641                        continue;
 642
 643                ASSERT(item->ri_buf[item_index].i_addr != NULL);
 644                ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
 645                ASSERT((reg_buf_offset + reg_buf_bytes) <= BBTOB(bp->b_length));
 646
 647                /*
 648                 * The current logged region contains a copy of the
 649                 * current di_next_unlinked field.  Extract its value
 650                 * and copy it to the buffer copy.
 651                 */
 652                logged_nextp = item->ri_buf[item_index].i_addr +
 653                                next_unlinked_offset - reg_buf_offset;
 654                if (XFS_IS_CORRUPT(mp, *logged_nextp == 0)) {
 655                        xfs_alert(mp,
 656                "Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). "
 657                "Trying to replay bad (0) inode di_next_unlinked field.",
 658                                item, bp);
 659                        return -EFSCORRUPTED;
 660                }
 661
 662                buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
 663                *buffer_nextp = *logged_nextp;
 664
 665                /*
 666                 * If necessary, recalculate the CRC in the on-disk inode. We
 667                 * have to leave the inode in a consistent state for whoever
 668                 * reads it next....
 669                 */
 670                xfs_dinode_calc_crc(mp,
 671                                xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
 672
 673        }
 674
 675        return 0;
 676}
 677
 678/*
 679 * V5 filesystems know the age of the buffer on disk being recovered. We can
 680 * have newer objects on disk than we are replaying, and so for these cases we
 681 * don't want to replay the current change as that will make the buffer contents
 682 * temporarily invalid on disk.
 683 *
 684 * The magic number might not match the buffer type we are going to recover
 685 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags.  Hence
 686 * extract the LSN of the existing object in the buffer based on it's current
 687 * magic number.  If we don't recognise the magic number in the buffer, then
 688 * return a LSN of -1 so that the caller knows it was an unrecognised block and
 689 * so can recover the buffer.
 690 *
 691 * Note: we cannot rely solely on magic number matches to determine that the
 692 * buffer has a valid LSN - we also need to verify that it belongs to this
 693 * filesystem, so we need to extract the object's LSN and compare it to that
 694 * which we read from the superblock. If the UUIDs don't match, then we've got a
 695 * stale metadata block from an old filesystem instance that we need to recover
 696 * over the top of.
 697 */
 698static xfs_lsn_t
 699xlog_recover_get_buf_lsn(
 700        struct xfs_mount        *mp,
 701        struct xfs_buf          *bp)
 702{
 703        uint32_t                magic32;
 704        uint16_t                magic16;
 705        uint16_t                magicda;
 706        void                    *blk = bp->b_addr;
 707        uuid_t                  *uuid;
 708        xfs_lsn_t               lsn = -1;
 709
 710        /* v4 filesystems always recover immediately */
 711        if (!xfs_sb_version_hascrc(&mp->m_sb))
 712                goto recover_immediately;
 713
 714        magic32 = be32_to_cpu(*(__be32 *)blk);
 715        switch (magic32) {
 716        case XFS_ABTB_CRC_MAGIC:
 717        case XFS_ABTC_CRC_MAGIC:
 718        case XFS_ABTB_MAGIC:
 719        case XFS_ABTC_MAGIC:
 720        case XFS_RMAP_CRC_MAGIC:
 721        case XFS_REFC_CRC_MAGIC:
 722        case XFS_FIBT_CRC_MAGIC:
 723        case XFS_FIBT_MAGIC:
 724        case XFS_IBT_CRC_MAGIC:
 725        case XFS_IBT_MAGIC: {
 726                struct xfs_btree_block *btb = blk;
 727
 728                lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
 729                uuid = &btb->bb_u.s.bb_uuid;
 730                break;
 731        }
 732        case XFS_BMAP_CRC_MAGIC:
 733        case XFS_BMAP_MAGIC: {
 734                struct xfs_btree_block *btb = blk;
 735
 736                lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
 737                uuid = &btb->bb_u.l.bb_uuid;
 738                break;
 739        }
 740        case XFS_AGF_MAGIC:
 741                lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
 742                uuid = &((struct xfs_agf *)blk)->agf_uuid;
 743                break;
 744        case XFS_AGFL_MAGIC:
 745                lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
 746                uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
 747                break;
 748        case XFS_AGI_MAGIC:
 749                lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
 750                uuid = &((struct xfs_agi *)blk)->agi_uuid;
 751                break;
 752        case XFS_SYMLINK_MAGIC:
 753                lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
 754                uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
 755                break;
 756        case XFS_DIR3_BLOCK_MAGIC:
 757        case XFS_DIR3_DATA_MAGIC:
 758        case XFS_DIR3_FREE_MAGIC:
 759                lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
 760                uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
 761                break;
 762        case XFS_ATTR3_RMT_MAGIC:
 763                /*
 764                 * Remote attr blocks are written synchronously, rather than
 765                 * being logged. That means they do not contain a valid LSN
 766                 * (i.e. transactionally ordered) in them, and hence any time we
 767                 * see a buffer to replay over the top of a remote attribute
 768                 * block we should simply do so.
 769                 */
 770                goto recover_immediately;
 771        case XFS_SB_MAGIC:
 772                /*
 773                 * superblock uuids are magic. We may or may not have a
 774                 * sb_meta_uuid on disk, but it will be set in the in-core
 775                 * superblock. We set the uuid pointer for verification
 776                 * according to the superblock feature mask to ensure we check
 777                 * the relevant UUID in the superblock.
 778                 */
 779                lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
 780                if (xfs_sb_version_hasmetauuid(&mp->m_sb))
 781                        uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
 782                else
 783                        uuid = &((struct xfs_dsb *)blk)->sb_uuid;
 784                break;
 785        default:
 786                break;
 787        }
 788
 789        if (lsn != (xfs_lsn_t)-1) {
 790                if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
 791                        goto recover_immediately;
 792                return lsn;
 793        }
 794
 795        magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
 796        switch (magicda) {
 797        case XFS_DIR3_LEAF1_MAGIC:
 798        case XFS_DIR3_LEAFN_MAGIC:
 799        case XFS_DA3_NODE_MAGIC:
 800                lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
 801                uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
 802                break;
 803        default:
 804                break;
 805        }
 806
 807        if (lsn != (xfs_lsn_t)-1) {
 808                if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
 809                        goto recover_immediately;
 810                return lsn;
 811        }
 812
 813        /*
 814         * We do individual object checks on dquot and inode buffers as they
 815         * have their own individual LSN records. Also, we could have a stale
 816         * buffer here, so we have to at least recognise these buffer types.
 817         *
 818         * A notd complexity here is inode unlinked list processing - it logs
 819         * the inode directly in the buffer, but we don't know which inodes have
 820         * been modified, and there is no global buffer LSN. Hence we need to
 821         * recover all inode buffer types immediately. This problem will be
 822         * fixed by logical logging of the unlinked list modifications.
 823         */
 824        magic16 = be16_to_cpu(*(__be16 *)blk);
 825        switch (magic16) {
 826        case XFS_DQUOT_MAGIC:
 827        case XFS_DINODE_MAGIC:
 828                goto recover_immediately;
 829        default:
 830                break;
 831        }
 832
 833        /* unknown buffer contents, recover immediately */
 834
 835recover_immediately:
 836        return (xfs_lsn_t)-1;
 837
 838}
 839
 840/*
 841 * This routine replays a modification made to a buffer at runtime.
 842 * There are actually two types of buffer, regular and inode, which
 843 * are handled differently.  Inode buffers are handled differently
 844 * in that we only recover a specific set of data from them, namely
 845 * the inode di_next_unlinked fields.  This is because all other inode
 846 * data is actually logged via inode records and any data we replay
 847 * here which overlaps that may be stale.
 848 *
 849 * When meta-data buffers are freed at run time we log a buffer item
 850 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
 851 * of the buffer in the log should not be replayed at recovery time.
 852 * This is so that if the blocks covered by the buffer are reused for
 853 * file data before we crash we don't end up replaying old, freed
 854 * meta-data into a user's file.
 855 *
 856 * To handle the cancellation of buffer log items, we make two passes
 857 * over the log during recovery.  During the first we build a table of
 858 * those buffers which have been cancelled, and during the second we
 859 * only replay those buffers which do not have corresponding cancel
 860 * records in the table.  See xlog_recover_buf_pass[1,2] above
 861 * for more details on the implementation of the table of cancel records.
 862 */
 863STATIC int
 864xlog_recover_buf_commit_pass2(
 865        struct xlog                     *log,
 866        struct list_head                *buffer_list,
 867        struct xlog_recover_item        *item,
 868        xfs_lsn_t                       current_lsn)
 869{
 870        struct xfs_buf_log_format       *buf_f = item->ri_buf[0].i_addr;
 871        struct xfs_mount                *mp = log->l_mp;
 872        struct xfs_buf                  *bp;
 873        int                             error;
 874        uint                            buf_flags;
 875        xfs_lsn_t                       lsn;
 876
 877        /*
 878         * In this pass we only want to recover all the buffers which have
 879         * not been cancelled and are not cancellation buffers themselves.
 880         */
 881        if (buf_f->blf_flags & XFS_BLF_CANCEL) {
 882                if (xlog_put_buffer_cancelled(log, buf_f->blf_blkno,
 883                                buf_f->blf_len))
 884                        goto cancelled;
 885        } else {
 886
 887                if (xlog_is_buffer_cancelled(log, buf_f->blf_blkno,
 888                                buf_f->blf_len))
 889                        goto cancelled;
 890        }
 891
 892        trace_xfs_log_recover_buf_recover(log, buf_f);
 893
 894        buf_flags = 0;
 895        if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
 896                buf_flags |= XBF_UNMAPPED;
 897
 898        error = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
 899                          buf_flags, &bp, NULL);
 900        if (error)
 901                return error;
 902
 903        /*
 904         * Recover the buffer only if we get an LSN from it and it's less than
 905         * the lsn of the transaction we are replaying.
 906         *
 907         * Note that we have to be extremely careful of readahead here.
 908         * Readahead does not attach verfiers to the buffers so if we don't
 909         * actually do any replay after readahead because of the LSN we found
 910         * in the buffer if more recent than that current transaction then we
 911         * need to attach the verifier directly. Failure to do so can lead to
 912         * future recovery actions (e.g. EFI and unlinked list recovery) can
 913         * operate on the buffers and they won't get the verifier attached. This
 914         * can lead to blocks on disk having the correct content but a stale
 915         * CRC.
 916         *
 917         * It is safe to assume these clean buffers are currently up to date.
 918         * If the buffer is dirtied by a later transaction being replayed, then
 919         * the verifier will be reset to match whatever recover turns that
 920         * buffer into.
 921         */
 922        lsn = xlog_recover_get_buf_lsn(mp, bp);
 923        if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
 924                trace_xfs_log_recover_buf_skip(log, buf_f);
 925                xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
 926                goto out_release;
 927        }
 928
 929        if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
 930                error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
 931                if (error)
 932                        goto out_release;
 933        } else if (buf_f->blf_flags &
 934                  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
 935                bool    dirty;
 936
 937                dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
 938                if (!dirty)
 939                        goto out_release;
 940        } else {
 941                xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
 942        }
 943
 944        /*
 945         * Perform delayed write on the buffer.  Asynchronous writes will be
 946         * slower when taking into account all the buffers to be flushed.
 947         *
 948         * Also make sure that only inode buffers with good sizes stay in
 949         * the buffer cache.  The kernel moves inodes in buffers of 1 block
 950         * or inode_cluster_size bytes, whichever is bigger.  The inode
 951         * buffers in the log can be a different size if the log was generated
 952         * by an older kernel using unclustered inode buffers or a newer kernel
 953         * running with a different inode cluster size.  Regardless, if
 954         * the inode buffer size isn't max(blocksize, inode_cluster_size)
 955         * for *our* value of inode_cluster_size, then we need to keep
 956         * the buffer out of the buffer cache so that the buffer won't
 957         * overlap with future reads of those inodes.
 958         */
 959        if (XFS_DINODE_MAGIC ==
 960            be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
 961            (BBTOB(bp->b_length) != M_IGEO(log->l_mp)->inode_cluster_size)) {
 962                xfs_buf_stale(bp);
 963                error = xfs_bwrite(bp);
 964        } else {
 965                ASSERT(bp->b_mount == mp);
 966                bp->b_flags |= _XBF_LOGRECOVERY;
 967                xfs_buf_delwri_queue(bp, buffer_list);
 968        }
 969
 970out_release:
 971        xfs_buf_relse(bp);
 972        return error;
 973cancelled:
 974        trace_xfs_log_recover_buf_cancel(log, buf_f);
 975        return 0;
 976}
 977
 978const struct xlog_recover_item_ops xlog_buf_item_ops = {
 979        .item_type              = XFS_LI_BUF,
 980        .reorder                = xlog_recover_buf_reorder,
 981        .ra_pass2               = xlog_recover_buf_ra_pass2,
 982        .commit_pass1           = xlog_recover_buf_commit_pass1,
 983        .commit_pass2           = xlog_recover_buf_commit_pass2,
 984};
 985