linux/include/linux/kvm_host.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2#ifndef __KVM_HOST_H
   3#define __KVM_HOST_H
   4
   5
   6#include <linux/types.h>
   7#include <linux/hardirq.h>
   8#include <linux/list.h>
   9#include <linux/mutex.h>
  10#include <linux/spinlock.h>
  11#include <linux/signal.h>
  12#include <linux/sched.h>
  13#include <linux/bug.h>
  14#include <linux/mm.h>
  15#include <linux/mmu_notifier.h>
  16#include <linux/preempt.h>
  17#include <linux/msi.h>
  18#include <linux/slab.h>
  19#include <linux/vmalloc.h>
  20#include <linux/rcupdate.h>
  21#include <linux/ratelimit.h>
  22#include <linux/err.h>
  23#include <linux/irqflags.h>
  24#include <linux/context_tracking.h>
  25#include <linux/irqbypass.h>
  26#include <linux/rcuwait.h>
  27#include <linux/refcount.h>
  28#include <linux/nospec.h>
  29#include <asm/signal.h>
  30
  31#include <linux/kvm.h>
  32#include <linux/kvm_para.h>
  33
  34#include <linux/kvm_types.h>
  35
  36#include <asm/kvm_host.h>
  37
  38#ifndef KVM_MAX_VCPU_ID
  39#define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
  40#endif
  41
  42/*
  43 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
  44 * in kvm, other bits are visible for userspace which are defined in
  45 * include/linux/kvm_h.
  46 */
  47#define KVM_MEMSLOT_INVALID     (1UL << 16)
  48
  49/*
  50 * Bit 63 of the memslot generation number is an "update in-progress flag",
  51 * e.g. is temporarily set for the duration of install_new_memslots().
  52 * This flag effectively creates a unique generation number that is used to
  53 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
  54 * i.e. may (or may not) have come from the previous memslots generation.
  55 *
  56 * This is necessary because the actual memslots update is not atomic with
  57 * respect to the generation number update.  Updating the generation number
  58 * first would allow a vCPU to cache a spte from the old memslots using the
  59 * new generation number, and updating the generation number after switching
  60 * to the new memslots would allow cache hits using the old generation number
  61 * to reference the defunct memslots.
  62 *
  63 * This mechanism is used to prevent getting hits in KVM's caches while a
  64 * memslot update is in-progress, and to prevent cache hits *after* updating
  65 * the actual generation number against accesses that were inserted into the
  66 * cache *before* the memslots were updated.
  67 */
  68#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS      BIT_ULL(63)
  69
  70/* Two fragments for cross MMIO pages. */
  71#define KVM_MAX_MMIO_FRAGMENTS  2
  72
  73#ifndef KVM_ADDRESS_SPACE_NUM
  74#define KVM_ADDRESS_SPACE_NUM   1
  75#endif
  76
  77/*
  78 * For the normal pfn, the highest 12 bits should be zero,
  79 * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
  80 * mask bit 63 to indicate the noslot pfn.
  81 */
  82#define KVM_PFN_ERR_MASK        (0x7ffULL << 52)
  83#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
  84#define KVM_PFN_NOSLOT          (0x1ULL << 63)
  85
  86#define KVM_PFN_ERR_FAULT       (KVM_PFN_ERR_MASK)
  87#define KVM_PFN_ERR_HWPOISON    (KVM_PFN_ERR_MASK + 1)
  88#define KVM_PFN_ERR_RO_FAULT    (KVM_PFN_ERR_MASK + 2)
  89
  90/*
  91 * error pfns indicate that the gfn is in slot but faild to
  92 * translate it to pfn on host.
  93 */
  94static inline bool is_error_pfn(kvm_pfn_t pfn)
  95{
  96        return !!(pfn & KVM_PFN_ERR_MASK);
  97}
  98
  99/*
 100 * error_noslot pfns indicate that the gfn can not be
 101 * translated to pfn - it is not in slot or failed to
 102 * translate it to pfn.
 103 */
 104static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
 105{
 106        return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
 107}
 108
 109/* noslot pfn indicates that the gfn is not in slot. */
 110static inline bool is_noslot_pfn(kvm_pfn_t pfn)
 111{
 112        return pfn == KVM_PFN_NOSLOT;
 113}
 114
 115/*
 116 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
 117 * provide own defines and kvm_is_error_hva
 118 */
 119#ifndef KVM_HVA_ERR_BAD
 120
 121#define KVM_HVA_ERR_BAD         (PAGE_OFFSET)
 122#define KVM_HVA_ERR_RO_BAD      (PAGE_OFFSET + PAGE_SIZE)
 123
 124static inline bool kvm_is_error_hva(unsigned long addr)
 125{
 126        return addr >= PAGE_OFFSET;
 127}
 128
 129#endif
 130
 131#define KVM_ERR_PTR_BAD_PAGE    (ERR_PTR(-ENOENT))
 132
 133static inline bool is_error_page(struct page *page)
 134{
 135        return IS_ERR(page);
 136}
 137
 138#define KVM_REQUEST_MASK           GENMASK(7,0)
 139#define KVM_REQUEST_NO_WAKEUP      BIT(8)
 140#define KVM_REQUEST_WAIT           BIT(9)
 141/*
 142 * Architecture-independent vcpu->requests bit members
 143 * Bits 4-7 are reserved for more arch-independent bits.
 144 */
 145#define KVM_REQ_TLB_FLUSH         (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
 146#define KVM_REQ_MMU_RELOAD        (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
 147#define KVM_REQ_PENDING_TIMER     2
 148#define KVM_REQ_UNHALT            3
 149#define KVM_REQUEST_ARCH_BASE     8
 150
 151#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
 152        BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
 153        (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
 154})
 155#define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
 156
 157#define KVM_USERSPACE_IRQ_SOURCE_ID             0
 158#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID        1
 159
 160extern struct mutex kvm_lock;
 161extern struct list_head vm_list;
 162
 163struct kvm_io_range {
 164        gpa_t addr;
 165        int len;
 166        struct kvm_io_device *dev;
 167};
 168
 169#define NR_IOBUS_DEVS 1000
 170
 171struct kvm_io_bus {
 172        int dev_count;
 173        int ioeventfd_count;
 174        struct kvm_io_range range[];
 175};
 176
 177enum kvm_bus {
 178        KVM_MMIO_BUS,
 179        KVM_PIO_BUS,
 180        KVM_VIRTIO_CCW_NOTIFY_BUS,
 181        KVM_FAST_MMIO_BUS,
 182        KVM_NR_BUSES
 183};
 184
 185int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
 186                     int len, const void *val);
 187int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
 188                            gpa_t addr, int len, const void *val, long cookie);
 189int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
 190                    int len, void *val);
 191int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
 192                            int len, struct kvm_io_device *dev);
 193void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
 194                               struct kvm_io_device *dev);
 195struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
 196                                         gpa_t addr);
 197
 198#ifdef CONFIG_KVM_ASYNC_PF
 199struct kvm_async_pf {
 200        struct work_struct work;
 201        struct list_head link;
 202        struct list_head queue;
 203        struct kvm_vcpu *vcpu;
 204        struct mm_struct *mm;
 205        gpa_t cr2_or_gpa;
 206        unsigned long addr;
 207        struct kvm_arch_async_pf arch;
 208        bool   wakeup_all;
 209        bool notpresent_injected;
 210};
 211
 212void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
 213void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
 214bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
 215                        unsigned long hva, struct kvm_arch_async_pf *arch);
 216int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
 217#endif
 218
 219enum {
 220        OUTSIDE_GUEST_MODE,
 221        IN_GUEST_MODE,
 222        EXITING_GUEST_MODE,
 223        READING_SHADOW_PAGE_TABLES,
 224};
 225
 226#define KVM_UNMAPPED_PAGE       ((void *) 0x500 + POISON_POINTER_DELTA)
 227
 228struct kvm_host_map {
 229        /*
 230         * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
 231         * a 'struct page' for it. When using mem= kernel parameter some memory
 232         * can be used as guest memory but they are not managed by host
 233         * kernel).
 234         * If 'pfn' is not managed by the host kernel, this field is
 235         * initialized to KVM_UNMAPPED_PAGE.
 236         */
 237        struct page *page;
 238        void *hva;
 239        kvm_pfn_t pfn;
 240        kvm_pfn_t gfn;
 241};
 242
 243/*
 244 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
 245 * directly to check for that.
 246 */
 247static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
 248{
 249        return !!map->hva;
 250}
 251
 252/*
 253 * Sometimes a large or cross-page mmio needs to be broken up into separate
 254 * exits for userspace servicing.
 255 */
 256struct kvm_mmio_fragment {
 257        gpa_t gpa;
 258        void *data;
 259        unsigned len;
 260};
 261
 262struct kvm_vcpu {
 263        struct kvm *kvm;
 264#ifdef CONFIG_PREEMPT_NOTIFIERS
 265        struct preempt_notifier preempt_notifier;
 266#endif
 267        int cpu;
 268        int vcpu_id; /* id given by userspace at creation */
 269        int vcpu_idx; /* index in kvm->vcpus array */
 270        int srcu_idx;
 271        int mode;
 272        u64 requests;
 273        unsigned long guest_debug;
 274
 275        int pre_pcpu;
 276        struct list_head blocked_vcpu_list;
 277
 278        struct mutex mutex;
 279        struct kvm_run *run;
 280
 281        struct rcuwait wait;
 282        struct pid __rcu *pid;
 283        int sigset_active;
 284        sigset_t sigset;
 285        struct kvm_vcpu_stat stat;
 286        unsigned int halt_poll_ns;
 287        bool valid_wakeup;
 288
 289#ifdef CONFIG_HAS_IOMEM
 290        int mmio_needed;
 291        int mmio_read_completed;
 292        int mmio_is_write;
 293        int mmio_cur_fragment;
 294        int mmio_nr_fragments;
 295        struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
 296#endif
 297
 298#ifdef CONFIG_KVM_ASYNC_PF
 299        struct {
 300                u32 queued;
 301                struct list_head queue;
 302                struct list_head done;
 303                spinlock_t lock;
 304        } async_pf;
 305#endif
 306
 307#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
 308        /*
 309         * Cpu relax intercept or pause loop exit optimization
 310         * in_spin_loop: set when a vcpu does a pause loop exit
 311         *  or cpu relax intercepted.
 312         * dy_eligible: indicates whether vcpu is eligible for directed yield.
 313         */
 314        struct {
 315                bool in_spin_loop;
 316                bool dy_eligible;
 317        } spin_loop;
 318#endif
 319        bool preempted;
 320        bool ready;
 321        struct kvm_vcpu_arch arch;
 322};
 323
 324static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
 325{
 326        /*
 327         * The memory barrier ensures a previous write to vcpu->requests cannot
 328         * be reordered with the read of vcpu->mode.  It pairs with the general
 329         * memory barrier following the write of vcpu->mode in VCPU RUN.
 330         */
 331        smp_mb__before_atomic();
 332        return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
 333}
 334
 335/*
 336 * Some of the bitops functions do not support too long bitmaps.
 337 * This number must be determined not to exceed such limits.
 338 */
 339#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
 340
 341struct kvm_memory_slot {
 342        gfn_t base_gfn;
 343        unsigned long npages;
 344        unsigned long *dirty_bitmap;
 345        struct kvm_arch_memory_slot arch;
 346        unsigned long userspace_addr;
 347        u32 flags;
 348        short id;
 349        u16 as_id;
 350};
 351
 352static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
 353{
 354        return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
 355}
 356
 357static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
 358{
 359        unsigned long len = kvm_dirty_bitmap_bytes(memslot);
 360
 361        return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
 362}
 363
 364#ifndef KVM_DIRTY_LOG_MANUAL_CAPS
 365#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
 366#endif
 367
 368struct kvm_s390_adapter_int {
 369        u64 ind_addr;
 370        u64 summary_addr;
 371        u64 ind_offset;
 372        u32 summary_offset;
 373        u32 adapter_id;
 374};
 375
 376struct kvm_hv_sint {
 377        u32 vcpu;
 378        u32 sint;
 379};
 380
 381struct kvm_kernel_irq_routing_entry {
 382        u32 gsi;
 383        u32 type;
 384        int (*set)(struct kvm_kernel_irq_routing_entry *e,
 385                   struct kvm *kvm, int irq_source_id, int level,
 386                   bool line_status);
 387        union {
 388                struct {
 389                        unsigned irqchip;
 390                        unsigned pin;
 391                } irqchip;
 392                struct {
 393                        u32 address_lo;
 394                        u32 address_hi;
 395                        u32 data;
 396                        u32 flags;
 397                        u32 devid;
 398                } msi;
 399                struct kvm_s390_adapter_int adapter;
 400                struct kvm_hv_sint hv_sint;
 401        };
 402        struct hlist_node link;
 403};
 404
 405#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
 406struct kvm_irq_routing_table {
 407        int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
 408        u32 nr_rt_entries;
 409        /*
 410         * Array indexed by gsi. Each entry contains list of irq chips
 411         * the gsi is connected to.
 412         */
 413        struct hlist_head map[];
 414};
 415#endif
 416
 417#ifndef KVM_PRIVATE_MEM_SLOTS
 418#define KVM_PRIVATE_MEM_SLOTS 0
 419#endif
 420
 421#ifndef KVM_MEM_SLOTS_NUM
 422#define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
 423#endif
 424
 425#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
 426static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
 427{
 428        return 0;
 429}
 430#endif
 431
 432/*
 433 * Note:
 434 * memslots are not sorted by id anymore, please use id_to_memslot()
 435 * to get the memslot by its id.
 436 */
 437struct kvm_memslots {
 438        u64 generation;
 439        /* The mapping table from slot id to the index in memslots[]. */
 440        short id_to_index[KVM_MEM_SLOTS_NUM];
 441        atomic_t lru_slot;
 442        int used_slots;
 443        struct kvm_memory_slot memslots[];
 444};
 445
 446struct kvm {
 447        spinlock_t mmu_lock;
 448        struct mutex slots_lock;
 449        struct mm_struct *mm; /* userspace tied to this vm */
 450        struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
 451        struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
 452
 453        /*
 454         * created_vcpus is protected by kvm->lock, and is incremented
 455         * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
 456         * incremented after storing the kvm_vcpu pointer in vcpus,
 457         * and is accessed atomically.
 458         */
 459        atomic_t online_vcpus;
 460        int created_vcpus;
 461        int last_boosted_vcpu;
 462        struct list_head vm_list;
 463        struct mutex lock;
 464        struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
 465#ifdef CONFIG_HAVE_KVM_EVENTFD
 466        struct {
 467                spinlock_t        lock;
 468                struct list_head  items;
 469                struct list_head  resampler_list;
 470                struct mutex      resampler_lock;
 471        } irqfds;
 472        struct list_head ioeventfds;
 473#endif
 474        struct kvm_vm_stat stat;
 475        struct kvm_arch arch;
 476        refcount_t users_count;
 477#ifdef CONFIG_KVM_MMIO
 478        struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
 479        spinlock_t ring_lock;
 480        struct list_head coalesced_zones;
 481#endif
 482
 483        struct mutex irq_lock;
 484#ifdef CONFIG_HAVE_KVM_IRQCHIP
 485        /*
 486         * Update side is protected by irq_lock.
 487         */
 488        struct kvm_irq_routing_table __rcu *irq_routing;
 489#endif
 490#ifdef CONFIG_HAVE_KVM_IRQFD
 491        struct hlist_head irq_ack_notifier_list;
 492#endif
 493
 494#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 495        struct mmu_notifier mmu_notifier;
 496        unsigned long mmu_notifier_seq;
 497        long mmu_notifier_count;
 498#endif
 499        long tlbs_dirty;
 500        struct list_head devices;
 501        u64 manual_dirty_log_protect;
 502        struct dentry *debugfs_dentry;
 503        struct kvm_stat_data **debugfs_stat_data;
 504        struct srcu_struct srcu;
 505        struct srcu_struct irq_srcu;
 506        pid_t userspace_pid;
 507        unsigned int max_halt_poll_ns;
 508};
 509
 510#define kvm_err(fmt, ...) \
 511        pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
 512#define kvm_info(fmt, ...) \
 513        pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
 514#define kvm_debug(fmt, ...) \
 515        pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
 516#define kvm_debug_ratelimited(fmt, ...) \
 517        pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
 518                             ## __VA_ARGS__)
 519#define kvm_pr_unimpl(fmt, ...) \
 520        pr_err_ratelimited("kvm [%i]: " fmt, \
 521                           task_tgid_nr(current), ## __VA_ARGS__)
 522
 523/* The guest did something we don't support. */
 524#define vcpu_unimpl(vcpu, fmt, ...)                                     \
 525        kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,                  \
 526                        (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
 527
 528#define vcpu_debug(vcpu, fmt, ...)                                      \
 529        kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
 530#define vcpu_debug_ratelimited(vcpu, fmt, ...)                          \
 531        kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
 532                              ## __VA_ARGS__)
 533#define vcpu_err(vcpu, fmt, ...)                                        \
 534        kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
 535
 536static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
 537{
 538        return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
 539}
 540
 541static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
 542{
 543        return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
 544                                      lockdep_is_held(&kvm->slots_lock) ||
 545                                      !refcount_read(&kvm->users_count));
 546}
 547
 548static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
 549{
 550        int num_vcpus = atomic_read(&kvm->online_vcpus);
 551        i = array_index_nospec(i, num_vcpus);
 552
 553        /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
 554        smp_rmb();
 555        return kvm->vcpus[i];
 556}
 557
 558#define kvm_for_each_vcpu(idx, vcpup, kvm) \
 559        for (idx = 0; \
 560             idx < atomic_read(&kvm->online_vcpus) && \
 561             (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
 562             idx++)
 563
 564static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
 565{
 566        struct kvm_vcpu *vcpu = NULL;
 567        int i;
 568
 569        if (id < 0)
 570                return NULL;
 571        if (id < KVM_MAX_VCPUS)
 572                vcpu = kvm_get_vcpu(kvm, id);
 573        if (vcpu && vcpu->vcpu_id == id)
 574                return vcpu;
 575        kvm_for_each_vcpu(i, vcpu, kvm)
 576                if (vcpu->vcpu_id == id)
 577                        return vcpu;
 578        return NULL;
 579}
 580
 581static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
 582{
 583        return vcpu->vcpu_idx;
 584}
 585
 586#define kvm_for_each_memslot(memslot, slots)                            \
 587        for (memslot = &slots->memslots[0];                             \
 588             memslot < slots->memslots + slots->used_slots; memslot++)  \
 589                if (WARN_ON_ONCE(!memslot->npages)) {                   \
 590                } else
 591
 592void kvm_vcpu_destroy(struct kvm_vcpu *vcpu);
 593
 594void vcpu_load(struct kvm_vcpu *vcpu);
 595void vcpu_put(struct kvm_vcpu *vcpu);
 596
 597#ifdef __KVM_HAVE_IOAPIC
 598void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
 599void kvm_arch_post_irq_routing_update(struct kvm *kvm);
 600#else
 601static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
 602{
 603}
 604static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
 605{
 606}
 607#endif
 608
 609#ifdef CONFIG_HAVE_KVM_IRQFD
 610int kvm_irqfd_init(void);
 611void kvm_irqfd_exit(void);
 612#else
 613static inline int kvm_irqfd_init(void)
 614{
 615        return 0;
 616}
 617
 618static inline void kvm_irqfd_exit(void)
 619{
 620}
 621#endif
 622int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
 623                  struct module *module);
 624void kvm_exit(void);
 625
 626void kvm_get_kvm(struct kvm *kvm);
 627void kvm_put_kvm(struct kvm *kvm);
 628void kvm_put_kvm_no_destroy(struct kvm *kvm);
 629
 630static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
 631{
 632        as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
 633        return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
 634                        lockdep_is_held(&kvm->slots_lock) ||
 635                        !refcount_read(&kvm->users_count));
 636}
 637
 638static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
 639{
 640        return __kvm_memslots(kvm, 0);
 641}
 642
 643static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
 644{
 645        int as_id = kvm_arch_vcpu_memslots_id(vcpu);
 646
 647        return __kvm_memslots(vcpu->kvm, as_id);
 648}
 649
 650static inline
 651struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
 652{
 653        int index = slots->id_to_index[id];
 654        struct kvm_memory_slot *slot;
 655
 656        if (index < 0)
 657                return NULL;
 658
 659        slot = &slots->memslots[index];
 660
 661        WARN_ON(slot->id != id);
 662        return slot;
 663}
 664
 665/*
 666 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
 667 * - create a new memory slot
 668 * - delete an existing memory slot
 669 * - modify an existing memory slot
 670 *   -- move it in the guest physical memory space
 671 *   -- just change its flags
 672 *
 673 * Since flags can be changed by some of these operations, the following
 674 * differentiation is the best we can do for __kvm_set_memory_region():
 675 */
 676enum kvm_mr_change {
 677        KVM_MR_CREATE,
 678        KVM_MR_DELETE,
 679        KVM_MR_MOVE,
 680        KVM_MR_FLAGS_ONLY,
 681};
 682
 683int kvm_set_memory_region(struct kvm *kvm,
 684                          const struct kvm_userspace_memory_region *mem);
 685int __kvm_set_memory_region(struct kvm *kvm,
 686                            const struct kvm_userspace_memory_region *mem);
 687void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
 688void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
 689int kvm_arch_prepare_memory_region(struct kvm *kvm,
 690                                struct kvm_memory_slot *memslot,
 691                                const struct kvm_userspace_memory_region *mem,
 692                                enum kvm_mr_change change);
 693void kvm_arch_commit_memory_region(struct kvm *kvm,
 694                                const struct kvm_userspace_memory_region *mem,
 695                                struct kvm_memory_slot *old,
 696                                const struct kvm_memory_slot *new,
 697                                enum kvm_mr_change change);
 698/* flush all memory translations */
 699void kvm_arch_flush_shadow_all(struct kvm *kvm);
 700/* flush memory translations pointing to 'slot' */
 701void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
 702                                   struct kvm_memory_slot *slot);
 703
 704int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
 705                            struct page **pages, int nr_pages);
 706
 707struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
 708unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
 709unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
 710unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
 711unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
 712                                      bool *writable);
 713void kvm_release_page_clean(struct page *page);
 714void kvm_release_page_dirty(struct page *page);
 715void kvm_set_page_accessed(struct page *page);
 716
 717kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
 718kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
 719                      bool *writable);
 720kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
 721kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
 722kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
 723                               bool atomic, bool *async, bool write_fault,
 724                               bool *writable);
 725
 726void kvm_release_pfn_clean(kvm_pfn_t pfn);
 727void kvm_release_pfn_dirty(kvm_pfn_t pfn);
 728void kvm_set_pfn_dirty(kvm_pfn_t pfn);
 729void kvm_set_pfn_accessed(kvm_pfn_t pfn);
 730void kvm_get_pfn(kvm_pfn_t pfn);
 731
 732void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache);
 733int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
 734                        int len);
 735int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
 736int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
 737                           void *data, unsigned long len);
 738int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
 739                                 void *data, unsigned int offset,
 740                                 unsigned long len);
 741int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
 742                         int offset, int len);
 743int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
 744                    unsigned long len);
 745int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
 746                           void *data, unsigned long len);
 747int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
 748                                  void *data, unsigned int offset,
 749                                  unsigned long len);
 750int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
 751                              gpa_t gpa, unsigned long len);
 752
 753#define __kvm_get_guest(kvm, gfn, offset, v)                            \
 754({                                                                      \
 755        unsigned long __addr = gfn_to_hva(kvm, gfn);                    \
 756        typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
 757        int __ret = -EFAULT;                                            \
 758                                                                        \
 759        if (!kvm_is_error_hva(__addr))                                  \
 760                __ret = get_user(v, __uaddr);                           \
 761        __ret;                                                          \
 762})
 763
 764#define kvm_get_guest(kvm, gpa, v)                                      \
 765({                                                                      \
 766        gpa_t __gpa = gpa;                                              \
 767        struct kvm *__kvm = kvm;                                        \
 768                                                                        \
 769        __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,                     \
 770                        offset_in_page(__gpa), v);                      \
 771})
 772
 773#define __kvm_put_guest(kvm, gfn, offset, v)                            \
 774({                                                                      \
 775        unsigned long __addr = gfn_to_hva(kvm, gfn);                    \
 776        typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
 777        int __ret = -EFAULT;                                            \
 778                                                                        \
 779        if (!kvm_is_error_hva(__addr))                                  \
 780                __ret = put_user(v, __uaddr);                           \
 781        if (!__ret)                                                     \
 782                mark_page_dirty(kvm, gfn);                              \
 783        __ret;                                                          \
 784})
 785
 786#define kvm_put_guest(kvm, gpa, v)                                      \
 787({                                                                      \
 788        gpa_t __gpa = gpa;                                              \
 789        struct kvm *__kvm = kvm;                                        \
 790                                                                        \
 791        __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,                     \
 792                        offset_in_page(__gpa), v);                      \
 793})
 794
 795int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len);
 796int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
 797struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
 798bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
 799bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
 800unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
 801void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
 802void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
 803
 804struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
 805struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
 806kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
 807kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
 808int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
 809int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
 810                struct gfn_to_pfn_cache *cache, bool atomic);
 811struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
 812void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
 813int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
 814                  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic);
 815unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
 816unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
 817int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
 818                             int len);
 819int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
 820                               unsigned long len);
 821int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
 822                        unsigned long len);
 823int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
 824                              int offset, int len);
 825int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
 826                         unsigned long len);
 827void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
 828
 829void kvm_sigset_activate(struct kvm_vcpu *vcpu);
 830void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
 831
 832void kvm_vcpu_block(struct kvm_vcpu *vcpu);
 833void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
 834void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
 835bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
 836void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
 837int kvm_vcpu_yield_to(struct kvm_vcpu *target);
 838void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
 839
 840void kvm_flush_remote_tlbs(struct kvm *kvm);
 841void kvm_reload_remote_mmus(struct kvm *kvm);
 842
 843#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
 844int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
 845int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
 846void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
 847void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
 848#endif
 849
 850bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
 851                                 struct kvm_vcpu *except,
 852                                 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
 853bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
 854bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
 855                                      struct kvm_vcpu *except);
 856bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
 857                                unsigned long *vcpu_bitmap);
 858
 859long kvm_arch_dev_ioctl(struct file *filp,
 860                        unsigned int ioctl, unsigned long arg);
 861long kvm_arch_vcpu_ioctl(struct file *filp,
 862                         unsigned int ioctl, unsigned long arg);
 863vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
 864
 865int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
 866
 867void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
 868                                        struct kvm_memory_slot *slot,
 869                                        gfn_t gfn_offset,
 870                                        unsigned long mask);
 871void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
 872
 873#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
 874void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
 875                                        struct kvm_memory_slot *memslot);
 876#else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
 877int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
 878int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
 879                      int *is_dirty, struct kvm_memory_slot **memslot);
 880#endif
 881
 882int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
 883                        bool line_status);
 884int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
 885                            struct kvm_enable_cap *cap);
 886long kvm_arch_vm_ioctl(struct file *filp,
 887                       unsigned int ioctl, unsigned long arg);
 888
 889int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
 890int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
 891
 892int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
 893                                    struct kvm_translation *tr);
 894
 895int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
 896int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
 897int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
 898                                  struct kvm_sregs *sregs);
 899int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
 900                                  struct kvm_sregs *sregs);
 901int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
 902                                    struct kvm_mp_state *mp_state);
 903int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
 904                                    struct kvm_mp_state *mp_state);
 905int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
 906                                        struct kvm_guest_debug *dbg);
 907int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
 908
 909int kvm_arch_init(void *opaque);
 910void kvm_arch_exit(void);
 911
 912void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
 913
 914void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
 915void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
 916int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
 917int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
 918void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
 919void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
 920
 921#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
 922void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
 923#endif
 924
 925int kvm_arch_hardware_enable(void);
 926void kvm_arch_hardware_disable(void);
 927int kvm_arch_hardware_setup(void *opaque);
 928void kvm_arch_hardware_unsetup(void);
 929int kvm_arch_check_processor_compat(void *opaque);
 930int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
 931bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
 932int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
 933bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
 934int kvm_arch_post_init_vm(struct kvm *kvm);
 935void kvm_arch_pre_destroy_vm(struct kvm *kvm);
 936
 937#ifndef __KVM_HAVE_ARCH_VM_ALLOC
 938/*
 939 * All architectures that want to use vzalloc currently also
 940 * need their own kvm_arch_alloc_vm implementation.
 941 */
 942static inline struct kvm *kvm_arch_alloc_vm(void)
 943{
 944        return kzalloc(sizeof(struct kvm), GFP_KERNEL);
 945}
 946
 947static inline void kvm_arch_free_vm(struct kvm *kvm)
 948{
 949        kfree(kvm);
 950}
 951#endif
 952
 953#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
 954static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
 955{
 956        return -ENOTSUPP;
 957}
 958#endif
 959
 960#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
 961void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
 962void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
 963bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
 964#else
 965static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
 966{
 967}
 968
 969static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
 970{
 971}
 972
 973static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
 974{
 975        return false;
 976}
 977#endif
 978#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
 979void kvm_arch_start_assignment(struct kvm *kvm);
 980void kvm_arch_end_assignment(struct kvm *kvm);
 981bool kvm_arch_has_assigned_device(struct kvm *kvm);
 982#else
 983static inline void kvm_arch_start_assignment(struct kvm *kvm)
 984{
 985}
 986
 987static inline void kvm_arch_end_assignment(struct kvm *kvm)
 988{
 989}
 990
 991static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
 992{
 993        return false;
 994}
 995#endif
 996
 997static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
 998{
 999#ifdef __KVM_HAVE_ARCH_WQP
1000        return vcpu->arch.waitp;
1001#else
1002        return &vcpu->wait;
1003#endif
1004}
1005
1006#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1007/*
1008 * returns true if the virtual interrupt controller is initialized and
1009 * ready to accept virtual IRQ. On some architectures the virtual interrupt
1010 * controller is dynamically instantiated and this is not always true.
1011 */
1012bool kvm_arch_intc_initialized(struct kvm *kvm);
1013#else
1014static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1015{
1016        return true;
1017}
1018#endif
1019
1020int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1021void kvm_arch_destroy_vm(struct kvm *kvm);
1022void kvm_arch_sync_events(struct kvm *kvm);
1023
1024int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1025
1026bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
1027bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
1028bool kvm_is_transparent_hugepage(kvm_pfn_t pfn);
1029
1030struct kvm_irq_ack_notifier {
1031        struct hlist_node link;
1032        unsigned gsi;
1033        void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1034};
1035
1036int kvm_irq_map_gsi(struct kvm *kvm,
1037                    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1038int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1039
1040int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1041                bool line_status);
1042int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1043                int irq_source_id, int level, bool line_status);
1044int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1045                               struct kvm *kvm, int irq_source_id,
1046                               int level, bool line_status);
1047bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1048void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1049void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1050void kvm_register_irq_ack_notifier(struct kvm *kvm,
1051                                   struct kvm_irq_ack_notifier *kian);
1052void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1053                                   struct kvm_irq_ack_notifier *kian);
1054int kvm_request_irq_source_id(struct kvm *kvm);
1055void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1056bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1057
1058/*
1059 * search_memslots() and __gfn_to_memslot() are here because they are
1060 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
1061 * gfn_to_memslot() itself isn't here as an inline because that would
1062 * bloat other code too much.
1063 *
1064 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!
1065 */
1066static inline struct kvm_memory_slot *
1067search_memslots(struct kvm_memslots *slots, gfn_t gfn)
1068{
1069        int start = 0, end = slots->used_slots;
1070        int slot = atomic_read(&slots->lru_slot);
1071        struct kvm_memory_slot *memslots = slots->memslots;
1072
1073        if (unlikely(!slots->used_slots))
1074                return NULL;
1075
1076        if (gfn >= memslots[slot].base_gfn &&
1077            gfn < memslots[slot].base_gfn + memslots[slot].npages)
1078                return &memslots[slot];
1079
1080        while (start < end) {
1081                slot = start + (end - start) / 2;
1082
1083                if (gfn >= memslots[slot].base_gfn)
1084                        end = slot;
1085                else
1086                        start = slot + 1;
1087        }
1088
1089        if (start < slots->used_slots && gfn >= memslots[start].base_gfn &&
1090            gfn < memslots[start].base_gfn + memslots[start].npages) {
1091                atomic_set(&slots->lru_slot, start);
1092                return &memslots[start];
1093        }
1094
1095        return NULL;
1096}
1097
1098static inline struct kvm_memory_slot *
1099__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1100{
1101        return search_memslots(slots, gfn);
1102}
1103
1104static inline unsigned long
1105__gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1106{
1107        return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
1108}
1109
1110static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1111{
1112        return gfn_to_memslot(kvm, gfn)->id;
1113}
1114
1115static inline gfn_t
1116hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1117{
1118        gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1119
1120        return slot->base_gfn + gfn_offset;
1121}
1122
1123static inline gpa_t gfn_to_gpa(gfn_t gfn)
1124{
1125        return (gpa_t)gfn << PAGE_SHIFT;
1126}
1127
1128static inline gfn_t gpa_to_gfn(gpa_t gpa)
1129{
1130        return (gfn_t)(gpa >> PAGE_SHIFT);
1131}
1132
1133static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1134{
1135        return (hpa_t)pfn << PAGE_SHIFT;
1136}
1137
1138static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1139                                                gpa_t gpa)
1140{
1141        return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1142}
1143
1144static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1145{
1146        unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1147
1148        return kvm_is_error_hva(hva);
1149}
1150
1151enum kvm_stat_kind {
1152        KVM_STAT_VM,
1153        KVM_STAT_VCPU,
1154};
1155
1156struct kvm_stat_data {
1157        struct kvm *kvm;
1158        struct kvm_stats_debugfs_item *dbgfs_item;
1159};
1160
1161struct kvm_stats_debugfs_item {
1162        const char *name;
1163        int offset;
1164        enum kvm_stat_kind kind;
1165        int mode;
1166};
1167
1168#define KVM_DBGFS_GET_MODE(dbgfs_item)                                         \
1169        ((dbgfs_item)->mode ? (dbgfs_item)->mode : 0644)
1170
1171#define VM_STAT(n, x, ...)                                                      \
1172        { n, offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__ }
1173#define VCPU_STAT(n, x, ...)                                                    \
1174        { n, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__ }
1175
1176extern struct kvm_stats_debugfs_item debugfs_entries[];
1177extern struct dentry *kvm_debugfs_dir;
1178
1179#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1180static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1181{
1182        if (unlikely(kvm->mmu_notifier_count))
1183                return 1;
1184        /*
1185         * Ensure the read of mmu_notifier_count happens before the read
1186         * of mmu_notifier_seq.  This interacts with the smp_wmb() in
1187         * mmu_notifier_invalidate_range_end to make sure that the caller
1188         * either sees the old (non-zero) value of mmu_notifier_count or
1189         * the new (incremented) value of mmu_notifier_seq.
1190         * PowerPC Book3s HV KVM calls this under a per-page lock
1191         * rather than under kvm->mmu_lock, for scalability, so
1192         * can't rely on kvm->mmu_lock to keep things ordered.
1193         */
1194        smp_rmb();
1195        if (kvm->mmu_notifier_seq != mmu_seq)
1196                return 1;
1197        return 0;
1198}
1199#endif
1200
1201#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1202
1203#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1204
1205bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1206int kvm_set_irq_routing(struct kvm *kvm,
1207                        const struct kvm_irq_routing_entry *entries,
1208                        unsigned nr,
1209                        unsigned flags);
1210int kvm_set_routing_entry(struct kvm *kvm,
1211                          struct kvm_kernel_irq_routing_entry *e,
1212                          const struct kvm_irq_routing_entry *ue);
1213void kvm_free_irq_routing(struct kvm *kvm);
1214
1215#else
1216
1217static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1218
1219#endif
1220
1221int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1222
1223#ifdef CONFIG_HAVE_KVM_EVENTFD
1224
1225void kvm_eventfd_init(struct kvm *kvm);
1226int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1227
1228#ifdef CONFIG_HAVE_KVM_IRQFD
1229int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1230void kvm_irqfd_release(struct kvm *kvm);
1231void kvm_irq_routing_update(struct kvm *);
1232#else
1233static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1234{
1235        return -EINVAL;
1236}
1237
1238static inline void kvm_irqfd_release(struct kvm *kvm) {}
1239#endif
1240
1241#else
1242
1243static inline void kvm_eventfd_init(struct kvm *kvm) {}
1244
1245static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1246{
1247        return -EINVAL;
1248}
1249
1250static inline void kvm_irqfd_release(struct kvm *kvm) {}
1251
1252#ifdef CONFIG_HAVE_KVM_IRQCHIP
1253static inline void kvm_irq_routing_update(struct kvm *kvm)
1254{
1255}
1256#endif
1257
1258static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1259{
1260        return -ENOSYS;
1261}
1262
1263#endif /* CONFIG_HAVE_KVM_EVENTFD */
1264
1265void kvm_arch_irq_routing_update(struct kvm *kvm);
1266
1267static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1268{
1269        /*
1270         * Ensure the rest of the request is published to kvm_check_request's
1271         * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
1272         */
1273        smp_wmb();
1274        set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1275}
1276
1277static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1278{
1279        return READ_ONCE(vcpu->requests);
1280}
1281
1282static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1283{
1284        return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1285}
1286
1287static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1288{
1289        clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1290}
1291
1292static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1293{
1294        if (kvm_test_request(req, vcpu)) {
1295                kvm_clear_request(req, vcpu);
1296
1297                /*
1298                 * Ensure the rest of the request is visible to kvm_check_request's
1299                 * caller.  Paired with the smp_wmb in kvm_make_request.
1300                 */
1301                smp_mb__after_atomic();
1302                return true;
1303        } else {
1304                return false;
1305        }
1306}
1307
1308extern bool kvm_rebooting;
1309
1310extern unsigned int halt_poll_ns;
1311extern unsigned int halt_poll_ns_grow;
1312extern unsigned int halt_poll_ns_grow_start;
1313extern unsigned int halt_poll_ns_shrink;
1314
1315struct kvm_device {
1316        const struct kvm_device_ops *ops;
1317        struct kvm *kvm;
1318        void *private;
1319        struct list_head vm_node;
1320};
1321
1322/* create, destroy, and name are mandatory */
1323struct kvm_device_ops {
1324        const char *name;
1325
1326        /*
1327         * create is called holding kvm->lock and any operations not suitable
1328         * to do while holding the lock should be deferred to init (see
1329         * below).
1330         */
1331        int (*create)(struct kvm_device *dev, u32 type);
1332
1333        /*
1334         * init is called after create if create is successful and is called
1335         * outside of holding kvm->lock.
1336         */
1337        void (*init)(struct kvm_device *dev);
1338
1339        /*
1340         * Destroy is responsible for freeing dev.
1341         *
1342         * Destroy may be called before or after destructors are called
1343         * on emulated I/O regions, depending on whether a reference is
1344         * held by a vcpu or other kvm component that gets destroyed
1345         * after the emulated I/O.
1346         */
1347        void (*destroy)(struct kvm_device *dev);
1348
1349        /*
1350         * Release is an alternative method to free the device. It is
1351         * called when the device file descriptor is closed. Once
1352         * release is called, the destroy method will not be called
1353         * anymore as the device is removed from the device list of
1354         * the VM. kvm->lock is held.
1355         */
1356        void (*release)(struct kvm_device *dev);
1357
1358        int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1359        int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1360        int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1361        long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1362                      unsigned long arg);
1363        int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1364};
1365
1366void kvm_device_get(struct kvm_device *dev);
1367void kvm_device_put(struct kvm_device *dev);
1368struct kvm_device *kvm_device_from_filp(struct file *filp);
1369int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
1370void kvm_unregister_device_ops(u32 type);
1371
1372extern struct kvm_device_ops kvm_mpic_ops;
1373extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1374extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1375
1376#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1377
1378static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1379{
1380        vcpu->spin_loop.in_spin_loop = val;
1381}
1382static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1383{
1384        vcpu->spin_loop.dy_eligible = val;
1385}
1386
1387#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1388
1389static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1390{
1391}
1392
1393static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1394{
1395}
1396#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1397
1398static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
1399{
1400        return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
1401                !(memslot->flags & KVM_MEMSLOT_INVALID));
1402}
1403
1404struct kvm_vcpu *kvm_get_running_vcpu(void);
1405struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
1406
1407#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1408bool kvm_arch_has_irq_bypass(void);
1409int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1410                           struct irq_bypass_producer *);
1411void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1412                           struct irq_bypass_producer *);
1413void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1414void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1415int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1416                                  uint32_t guest_irq, bool set);
1417#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1418
1419#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1420/* If we wakeup during the poll time, was it a sucessful poll? */
1421static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1422{
1423        return vcpu->valid_wakeup;
1424}
1425
1426#else
1427static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1428{
1429        return true;
1430}
1431#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1432
1433#ifdef CONFIG_HAVE_KVM_NO_POLL
1434/* Callback that tells if we must not poll */
1435bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1436#else
1437static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1438{
1439        return false;
1440}
1441#endif /* CONFIG_HAVE_KVM_NO_POLL */
1442
1443#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1444long kvm_arch_vcpu_async_ioctl(struct file *filp,
1445                               unsigned int ioctl, unsigned long arg);
1446#else
1447static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1448                                             unsigned int ioctl,
1449                                             unsigned long arg)
1450{
1451        return -ENOIOCTLCMD;
1452}
1453#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1454
1455void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1456                                            unsigned long start, unsigned long end);
1457
1458#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1459int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1460#else
1461static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1462{
1463        return 0;
1464}
1465#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1466
1467typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
1468
1469int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
1470                                uintptr_t data, const char *name,
1471                                struct task_struct **thread_ptr);
1472
1473#ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
1474static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
1475{
1476        vcpu->run->exit_reason = KVM_EXIT_INTR;
1477        vcpu->stat.signal_exits++;
1478}
1479#endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
1480
1481#endif
1482