linux/include/linux/list.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_LIST_H
   3#define _LINUX_LIST_H
   4
   5#include <linux/types.h>
   6#include <linux/stddef.h>
   7#include <linux/poison.h>
   8#include <linux/const.h>
   9#include <linux/kernel.h>
  10
  11/*
  12 * Simple doubly linked list implementation.
  13 *
  14 * Some of the internal functions ("__xxx") are useful when
  15 * manipulating whole lists rather than single entries, as
  16 * sometimes we already know the next/prev entries and we can
  17 * generate better code by using them directly rather than
  18 * using the generic single-entry routines.
  19 */
  20
  21#define LIST_HEAD_INIT(name) { &(name), &(name) }
  22
  23#define LIST_HEAD(name) \
  24        struct list_head name = LIST_HEAD_INIT(name)
  25
  26/**
  27 * INIT_LIST_HEAD - Initialize a list_head structure
  28 * @list: list_head structure to be initialized.
  29 *
  30 * Initializes the list_head to point to itself.  If it is a list header,
  31 * the result is an empty list.
  32 */
  33static inline void INIT_LIST_HEAD(struct list_head *list)
  34{
  35        WRITE_ONCE(list->next, list);
  36        list->prev = list;
  37}
  38
  39#ifdef CONFIG_DEBUG_LIST
  40extern bool __list_add_valid(struct list_head *new,
  41                              struct list_head *prev,
  42                              struct list_head *next);
  43extern bool __list_del_entry_valid(struct list_head *entry);
  44#else
  45static inline bool __list_add_valid(struct list_head *new,
  46                                struct list_head *prev,
  47                                struct list_head *next)
  48{
  49        return true;
  50}
  51static inline bool __list_del_entry_valid(struct list_head *entry)
  52{
  53        return true;
  54}
  55#endif
  56
  57/*
  58 * Insert a new entry between two known consecutive entries.
  59 *
  60 * This is only for internal list manipulation where we know
  61 * the prev/next entries already!
  62 */
  63static inline void __list_add(struct list_head *new,
  64                              struct list_head *prev,
  65                              struct list_head *next)
  66{
  67        if (!__list_add_valid(new, prev, next))
  68                return;
  69
  70        next->prev = new;
  71        new->next = next;
  72        new->prev = prev;
  73        WRITE_ONCE(prev->next, new);
  74}
  75
  76/**
  77 * list_add - add a new entry
  78 * @new: new entry to be added
  79 * @head: list head to add it after
  80 *
  81 * Insert a new entry after the specified head.
  82 * This is good for implementing stacks.
  83 */
  84static inline void list_add(struct list_head *new, struct list_head *head)
  85{
  86        __list_add(new, head, head->next);
  87}
  88
  89
  90/**
  91 * list_add_tail - add a new entry
  92 * @new: new entry to be added
  93 * @head: list head to add it before
  94 *
  95 * Insert a new entry before the specified head.
  96 * This is useful for implementing queues.
  97 */
  98static inline void list_add_tail(struct list_head *new, struct list_head *head)
  99{
 100        __list_add(new, head->prev, head);
 101}
 102
 103/*
 104 * Delete a list entry by making the prev/next entries
 105 * point to each other.
 106 *
 107 * This is only for internal list manipulation where we know
 108 * the prev/next entries already!
 109 */
 110static inline void __list_del(struct list_head * prev, struct list_head * next)
 111{
 112        next->prev = prev;
 113        WRITE_ONCE(prev->next, next);
 114}
 115
 116/*
 117 * Delete a list entry and clear the 'prev' pointer.
 118 *
 119 * This is a special-purpose list clearing method used in the networking code
 120 * for lists allocated as per-cpu, where we don't want to incur the extra
 121 * WRITE_ONCE() overhead of a regular list_del_init(). The code that uses this
 122 * needs to check the node 'prev' pointer instead of calling list_empty().
 123 */
 124static inline void __list_del_clearprev(struct list_head *entry)
 125{
 126        __list_del(entry->prev, entry->next);
 127        entry->prev = NULL;
 128}
 129
 130static inline void __list_del_entry(struct list_head *entry)
 131{
 132        if (!__list_del_entry_valid(entry))
 133                return;
 134
 135        __list_del(entry->prev, entry->next);
 136}
 137
 138/**
 139 * list_del - deletes entry from list.
 140 * @entry: the element to delete from the list.
 141 * Note: list_empty() on entry does not return true after this, the entry is
 142 * in an undefined state.
 143 */
 144static inline void list_del(struct list_head *entry)
 145{
 146        __list_del_entry(entry);
 147        entry->next = LIST_POISON1;
 148        entry->prev = LIST_POISON2;
 149}
 150
 151/**
 152 * list_replace - replace old entry by new one
 153 * @old : the element to be replaced
 154 * @new : the new element to insert
 155 *
 156 * If @old was empty, it will be overwritten.
 157 */
 158static inline void list_replace(struct list_head *old,
 159                                struct list_head *new)
 160{
 161        new->next = old->next;
 162        new->next->prev = new;
 163        new->prev = old->prev;
 164        new->prev->next = new;
 165}
 166
 167/**
 168 * list_replace_init - replace old entry by new one and initialize the old one
 169 * @old : the element to be replaced
 170 * @new : the new element to insert
 171 *
 172 * If @old was empty, it will be overwritten.
 173 */
 174static inline void list_replace_init(struct list_head *old,
 175                                     struct list_head *new)
 176{
 177        list_replace(old, new);
 178        INIT_LIST_HEAD(old);
 179}
 180
 181/**
 182 * list_swap - replace entry1 with entry2 and re-add entry1 at entry2's position
 183 * @entry1: the location to place entry2
 184 * @entry2: the location to place entry1
 185 */
 186static inline void list_swap(struct list_head *entry1,
 187                             struct list_head *entry2)
 188{
 189        struct list_head *pos = entry2->prev;
 190
 191        list_del(entry2);
 192        list_replace(entry1, entry2);
 193        if (pos == entry1)
 194                pos = entry2;
 195        list_add(entry1, pos);
 196}
 197
 198/**
 199 * list_del_init - deletes entry from list and reinitialize it.
 200 * @entry: the element to delete from the list.
 201 */
 202static inline void list_del_init(struct list_head *entry)
 203{
 204        __list_del_entry(entry);
 205        INIT_LIST_HEAD(entry);
 206}
 207
 208/**
 209 * list_move - delete from one list and add as another's head
 210 * @list: the entry to move
 211 * @head: the head that will precede our entry
 212 */
 213static inline void list_move(struct list_head *list, struct list_head *head)
 214{
 215        __list_del_entry(list);
 216        list_add(list, head);
 217}
 218
 219/**
 220 * list_move_tail - delete from one list and add as another's tail
 221 * @list: the entry to move
 222 * @head: the head that will follow our entry
 223 */
 224static inline void list_move_tail(struct list_head *list,
 225                                  struct list_head *head)
 226{
 227        __list_del_entry(list);
 228        list_add_tail(list, head);
 229}
 230
 231/**
 232 * list_bulk_move_tail - move a subsection of a list to its tail
 233 * @head: the head that will follow our entry
 234 * @first: first entry to move
 235 * @last: last entry to move, can be the same as first
 236 *
 237 * Move all entries between @first and including @last before @head.
 238 * All three entries must belong to the same linked list.
 239 */
 240static inline void list_bulk_move_tail(struct list_head *head,
 241                                       struct list_head *first,
 242                                       struct list_head *last)
 243{
 244        first->prev->next = last->next;
 245        last->next->prev = first->prev;
 246
 247        head->prev->next = first;
 248        first->prev = head->prev;
 249
 250        last->next = head;
 251        head->prev = last;
 252}
 253
 254/**
 255 * list_is_first -- tests whether @list is the first entry in list @head
 256 * @list: the entry to test
 257 * @head: the head of the list
 258 */
 259static inline int list_is_first(const struct list_head *list,
 260                                        const struct list_head *head)
 261{
 262        return list->prev == head;
 263}
 264
 265/**
 266 * list_is_last - tests whether @list is the last entry in list @head
 267 * @list: the entry to test
 268 * @head: the head of the list
 269 */
 270static inline int list_is_last(const struct list_head *list,
 271                                const struct list_head *head)
 272{
 273        return list->next == head;
 274}
 275
 276/**
 277 * list_empty - tests whether a list is empty
 278 * @head: the list to test.
 279 */
 280static inline int list_empty(const struct list_head *head)
 281{
 282        return READ_ONCE(head->next) == head;
 283}
 284
 285/**
 286 * list_empty_careful - tests whether a list is empty and not being modified
 287 * @head: the list to test
 288 *
 289 * Description:
 290 * tests whether a list is empty _and_ checks that no other CPU might be
 291 * in the process of modifying either member (next or prev)
 292 *
 293 * NOTE: using list_empty_careful() without synchronization
 294 * can only be safe if the only activity that can happen
 295 * to the list entry is list_del_init(). Eg. it cannot be used
 296 * if another CPU could re-list_add() it.
 297 */
 298static inline int list_empty_careful(const struct list_head *head)
 299{
 300        struct list_head *next = head->next;
 301        return (next == head) && (next == head->prev);
 302}
 303
 304/**
 305 * list_rotate_left - rotate the list to the left
 306 * @head: the head of the list
 307 */
 308static inline void list_rotate_left(struct list_head *head)
 309{
 310        struct list_head *first;
 311
 312        if (!list_empty(head)) {
 313                first = head->next;
 314                list_move_tail(first, head);
 315        }
 316}
 317
 318/**
 319 * list_rotate_to_front() - Rotate list to specific item.
 320 * @list: The desired new front of the list.
 321 * @head: The head of the list.
 322 *
 323 * Rotates list so that @list becomes the new front of the list.
 324 */
 325static inline void list_rotate_to_front(struct list_head *list,
 326                                        struct list_head *head)
 327{
 328        /*
 329         * Deletes the list head from the list denoted by @head and
 330         * places it as the tail of @list, this effectively rotates the
 331         * list so that @list is at the front.
 332         */
 333        list_move_tail(head, list);
 334}
 335
 336/**
 337 * list_is_singular - tests whether a list has just one entry.
 338 * @head: the list to test.
 339 */
 340static inline int list_is_singular(const struct list_head *head)
 341{
 342        return !list_empty(head) && (head->next == head->prev);
 343}
 344
 345static inline void __list_cut_position(struct list_head *list,
 346                struct list_head *head, struct list_head *entry)
 347{
 348        struct list_head *new_first = entry->next;
 349        list->next = head->next;
 350        list->next->prev = list;
 351        list->prev = entry;
 352        entry->next = list;
 353        head->next = new_first;
 354        new_first->prev = head;
 355}
 356
 357/**
 358 * list_cut_position - cut a list into two
 359 * @list: a new list to add all removed entries
 360 * @head: a list with entries
 361 * @entry: an entry within head, could be the head itself
 362 *      and if so we won't cut the list
 363 *
 364 * This helper moves the initial part of @head, up to and
 365 * including @entry, from @head to @list. You should
 366 * pass on @entry an element you know is on @head. @list
 367 * should be an empty list or a list you do not care about
 368 * losing its data.
 369 *
 370 */
 371static inline void list_cut_position(struct list_head *list,
 372                struct list_head *head, struct list_head *entry)
 373{
 374        if (list_empty(head))
 375                return;
 376        if (list_is_singular(head) &&
 377                (head->next != entry && head != entry))
 378                return;
 379        if (entry == head)
 380                INIT_LIST_HEAD(list);
 381        else
 382                __list_cut_position(list, head, entry);
 383}
 384
 385/**
 386 * list_cut_before - cut a list into two, before given entry
 387 * @list: a new list to add all removed entries
 388 * @head: a list with entries
 389 * @entry: an entry within head, could be the head itself
 390 *
 391 * This helper moves the initial part of @head, up to but
 392 * excluding @entry, from @head to @list.  You should pass
 393 * in @entry an element you know is on @head.  @list should
 394 * be an empty list or a list you do not care about losing
 395 * its data.
 396 * If @entry == @head, all entries on @head are moved to
 397 * @list.
 398 */
 399static inline void list_cut_before(struct list_head *list,
 400                                   struct list_head *head,
 401                                   struct list_head *entry)
 402{
 403        if (head->next == entry) {
 404                INIT_LIST_HEAD(list);
 405                return;
 406        }
 407        list->next = head->next;
 408        list->next->prev = list;
 409        list->prev = entry->prev;
 410        list->prev->next = list;
 411        head->next = entry;
 412        entry->prev = head;
 413}
 414
 415static inline void __list_splice(const struct list_head *list,
 416                                 struct list_head *prev,
 417                                 struct list_head *next)
 418{
 419        struct list_head *first = list->next;
 420        struct list_head *last = list->prev;
 421
 422        first->prev = prev;
 423        prev->next = first;
 424
 425        last->next = next;
 426        next->prev = last;
 427}
 428
 429/**
 430 * list_splice - join two lists, this is designed for stacks
 431 * @list: the new list to add.
 432 * @head: the place to add it in the first list.
 433 */
 434static inline void list_splice(const struct list_head *list,
 435                                struct list_head *head)
 436{
 437        if (!list_empty(list))
 438                __list_splice(list, head, head->next);
 439}
 440
 441/**
 442 * list_splice_tail - join two lists, each list being a queue
 443 * @list: the new list to add.
 444 * @head: the place to add it in the first list.
 445 */
 446static inline void list_splice_tail(struct list_head *list,
 447                                struct list_head *head)
 448{
 449        if (!list_empty(list))
 450                __list_splice(list, head->prev, head);
 451}
 452
 453/**
 454 * list_splice_init - join two lists and reinitialise the emptied list.
 455 * @list: the new list to add.
 456 * @head: the place to add it in the first list.
 457 *
 458 * The list at @list is reinitialised
 459 */
 460static inline void list_splice_init(struct list_head *list,
 461                                    struct list_head *head)
 462{
 463        if (!list_empty(list)) {
 464                __list_splice(list, head, head->next);
 465                INIT_LIST_HEAD(list);
 466        }
 467}
 468
 469/**
 470 * list_splice_tail_init - join two lists and reinitialise the emptied list
 471 * @list: the new list to add.
 472 * @head: the place to add it in the first list.
 473 *
 474 * Each of the lists is a queue.
 475 * The list at @list is reinitialised
 476 */
 477static inline void list_splice_tail_init(struct list_head *list,
 478                                         struct list_head *head)
 479{
 480        if (!list_empty(list)) {
 481                __list_splice(list, head->prev, head);
 482                INIT_LIST_HEAD(list);
 483        }
 484}
 485
 486/**
 487 * list_entry - get the struct for this entry
 488 * @ptr:        the &struct list_head pointer.
 489 * @type:       the type of the struct this is embedded in.
 490 * @member:     the name of the list_head within the struct.
 491 */
 492#define list_entry(ptr, type, member) \
 493        container_of(ptr, type, member)
 494
 495/**
 496 * list_first_entry - get the first element from a list
 497 * @ptr:        the list head to take the element from.
 498 * @type:       the type of the struct this is embedded in.
 499 * @member:     the name of the list_head within the struct.
 500 *
 501 * Note, that list is expected to be not empty.
 502 */
 503#define list_first_entry(ptr, type, member) \
 504        list_entry((ptr)->next, type, member)
 505
 506/**
 507 * list_last_entry - get the last element from a list
 508 * @ptr:        the list head to take the element from.
 509 * @type:       the type of the struct this is embedded in.
 510 * @member:     the name of the list_head within the struct.
 511 *
 512 * Note, that list is expected to be not empty.
 513 */
 514#define list_last_entry(ptr, type, member) \
 515        list_entry((ptr)->prev, type, member)
 516
 517/**
 518 * list_first_entry_or_null - get the first element from a list
 519 * @ptr:        the list head to take the element from.
 520 * @type:       the type of the struct this is embedded in.
 521 * @member:     the name of the list_head within the struct.
 522 *
 523 * Note that if the list is empty, it returns NULL.
 524 */
 525#define list_first_entry_or_null(ptr, type, member) ({ \
 526        struct list_head *head__ = (ptr); \
 527        struct list_head *pos__ = READ_ONCE(head__->next); \
 528        pos__ != head__ ? list_entry(pos__, type, member) : NULL; \
 529})
 530
 531/**
 532 * list_next_entry - get the next element in list
 533 * @pos:        the type * to cursor
 534 * @member:     the name of the list_head within the struct.
 535 */
 536#define list_next_entry(pos, member) \
 537        list_entry((pos)->member.next, typeof(*(pos)), member)
 538
 539/**
 540 * list_prev_entry - get the prev element in list
 541 * @pos:        the type * to cursor
 542 * @member:     the name of the list_head within the struct.
 543 */
 544#define list_prev_entry(pos, member) \
 545        list_entry((pos)->member.prev, typeof(*(pos)), member)
 546
 547/**
 548 * list_for_each        -       iterate over a list
 549 * @pos:        the &struct list_head to use as a loop cursor.
 550 * @head:       the head for your list.
 551 */
 552#define list_for_each(pos, head) \
 553        for (pos = (head)->next; pos != (head); pos = pos->next)
 554
 555/**
 556 * list_for_each_continue - continue iteration over a list
 557 * @pos:        the &struct list_head to use as a loop cursor.
 558 * @head:       the head for your list.
 559 *
 560 * Continue to iterate over a list, continuing after the current position.
 561 */
 562#define list_for_each_continue(pos, head) \
 563        for (pos = pos->next; pos != (head); pos = pos->next)
 564
 565/**
 566 * list_for_each_prev   -       iterate over a list backwards
 567 * @pos:        the &struct list_head to use as a loop cursor.
 568 * @head:       the head for your list.
 569 */
 570#define list_for_each_prev(pos, head) \
 571        for (pos = (head)->prev; pos != (head); pos = pos->prev)
 572
 573/**
 574 * list_for_each_safe - iterate over a list safe against removal of list entry
 575 * @pos:        the &struct list_head to use as a loop cursor.
 576 * @n:          another &struct list_head to use as temporary storage
 577 * @head:       the head for your list.
 578 */
 579#define list_for_each_safe(pos, n, head) \
 580        for (pos = (head)->next, n = pos->next; pos != (head); \
 581                pos = n, n = pos->next)
 582
 583/**
 584 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
 585 * @pos:        the &struct list_head to use as a loop cursor.
 586 * @n:          another &struct list_head to use as temporary storage
 587 * @head:       the head for your list.
 588 */
 589#define list_for_each_prev_safe(pos, n, head) \
 590        for (pos = (head)->prev, n = pos->prev; \
 591             pos != (head); \
 592             pos = n, n = pos->prev)
 593
 594/**
 595 * list_entry_is_head - test if the entry points to the head of the list
 596 * @pos:        the type * to cursor
 597 * @head:       the head for your list.
 598 * @member:     the name of the list_head within the struct.
 599 */
 600#define list_entry_is_head(pos, head, member)                           \
 601        (&pos->member == (head))
 602
 603/**
 604 * list_for_each_entry  -       iterate over list of given type
 605 * @pos:        the type * to use as a loop cursor.
 606 * @head:       the head for your list.
 607 * @member:     the name of the list_head within the struct.
 608 */
 609#define list_for_each_entry(pos, head, member)                          \
 610        for (pos = list_first_entry(head, typeof(*pos), member);        \
 611             !list_entry_is_head(pos, head, member);                    \
 612             pos = list_next_entry(pos, member))
 613
 614/**
 615 * list_for_each_entry_reverse - iterate backwards over list of given type.
 616 * @pos:        the type * to use as a loop cursor.
 617 * @head:       the head for your list.
 618 * @member:     the name of the list_head within the struct.
 619 */
 620#define list_for_each_entry_reverse(pos, head, member)                  \
 621        for (pos = list_last_entry(head, typeof(*pos), member);         \
 622             !list_entry_is_head(pos, head, member);                    \
 623             pos = list_prev_entry(pos, member))
 624
 625/**
 626 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
 627 * @pos:        the type * to use as a start point
 628 * @head:       the head of the list
 629 * @member:     the name of the list_head within the struct.
 630 *
 631 * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
 632 */
 633#define list_prepare_entry(pos, head, member) \
 634        ((pos) ? : list_entry(head, typeof(*pos), member))
 635
 636/**
 637 * list_for_each_entry_continue - continue iteration over list of given type
 638 * @pos:        the type * to use as a loop cursor.
 639 * @head:       the head for your list.
 640 * @member:     the name of the list_head within the struct.
 641 *
 642 * Continue to iterate over list of given type, continuing after
 643 * the current position.
 644 */
 645#define list_for_each_entry_continue(pos, head, member)                 \
 646        for (pos = list_next_entry(pos, member);                        \
 647             !list_entry_is_head(pos, head, member);                    \
 648             pos = list_next_entry(pos, member))
 649
 650/**
 651 * list_for_each_entry_continue_reverse - iterate backwards from the given point
 652 * @pos:        the type * to use as a loop cursor.
 653 * @head:       the head for your list.
 654 * @member:     the name of the list_head within the struct.
 655 *
 656 * Start to iterate over list of given type backwards, continuing after
 657 * the current position.
 658 */
 659#define list_for_each_entry_continue_reverse(pos, head, member)         \
 660        for (pos = list_prev_entry(pos, member);                        \
 661             !list_entry_is_head(pos, head, member);                    \
 662             pos = list_prev_entry(pos, member))
 663
 664/**
 665 * list_for_each_entry_from - iterate over list of given type from the current point
 666 * @pos:        the type * to use as a loop cursor.
 667 * @head:       the head for your list.
 668 * @member:     the name of the list_head within the struct.
 669 *
 670 * Iterate over list of given type, continuing from current position.
 671 */
 672#define list_for_each_entry_from(pos, head, member)                     \
 673        for (; !list_entry_is_head(pos, head, member);                  \
 674             pos = list_next_entry(pos, member))
 675
 676/**
 677 * list_for_each_entry_from_reverse - iterate backwards over list of given type
 678 *                                    from the current point
 679 * @pos:        the type * to use as a loop cursor.
 680 * @head:       the head for your list.
 681 * @member:     the name of the list_head within the struct.
 682 *
 683 * Iterate backwards over list of given type, continuing from current position.
 684 */
 685#define list_for_each_entry_from_reverse(pos, head, member)             \
 686        for (; !list_entry_is_head(pos, head, member);                  \
 687             pos = list_prev_entry(pos, member))
 688
 689/**
 690 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
 691 * @pos:        the type * to use as a loop cursor.
 692 * @n:          another type * to use as temporary storage
 693 * @head:       the head for your list.
 694 * @member:     the name of the list_head within the struct.
 695 */
 696#define list_for_each_entry_safe(pos, n, head, member)                  \
 697        for (pos = list_first_entry(head, typeof(*pos), member),        \
 698                n = list_next_entry(pos, member);                       \
 699             !list_entry_is_head(pos, head, member);                    \
 700             pos = n, n = list_next_entry(n, member))
 701
 702/**
 703 * list_for_each_entry_safe_continue - continue list iteration safe against removal
 704 * @pos:        the type * to use as a loop cursor.
 705 * @n:          another type * to use as temporary storage
 706 * @head:       the head for your list.
 707 * @member:     the name of the list_head within the struct.
 708 *
 709 * Iterate over list of given type, continuing after current point,
 710 * safe against removal of list entry.
 711 */
 712#define list_for_each_entry_safe_continue(pos, n, head, member)                 \
 713        for (pos = list_next_entry(pos, member),                                \
 714                n = list_next_entry(pos, member);                               \
 715             !list_entry_is_head(pos, head, member);                            \
 716             pos = n, n = list_next_entry(n, member))
 717
 718/**
 719 * list_for_each_entry_safe_from - iterate over list from current point safe against removal
 720 * @pos:        the type * to use as a loop cursor.
 721 * @n:          another type * to use as temporary storage
 722 * @head:       the head for your list.
 723 * @member:     the name of the list_head within the struct.
 724 *
 725 * Iterate over list of given type from current point, safe against
 726 * removal of list entry.
 727 */
 728#define list_for_each_entry_safe_from(pos, n, head, member)                     \
 729        for (n = list_next_entry(pos, member);                                  \
 730             !list_entry_is_head(pos, head, member);                            \
 731             pos = n, n = list_next_entry(n, member))
 732
 733/**
 734 * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
 735 * @pos:        the type * to use as a loop cursor.
 736 * @n:          another type * to use as temporary storage
 737 * @head:       the head for your list.
 738 * @member:     the name of the list_head within the struct.
 739 *
 740 * Iterate backwards over list of given type, safe against removal
 741 * of list entry.
 742 */
 743#define list_for_each_entry_safe_reverse(pos, n, head, member)          \
 744        for (pos = list_last_entry(head, typeof(*pos), member),         \
 745                n = list_prev_entry(pos, member);                       \
 746             !list_entry_is_head(pos, head, member);                    \
 747             pos = n, n = list_prev_entry(n, member))
 748
 749/**
 750 * list_safe_reset_next - reset a stale list_for_each_entry_safe loop
 751 * @pos:        the loop cursor used in the list_for_each_entry_safe loop
 752 * @n:          temporary storage used in list_for_each_entry_safe
 753 * @member:     the name of the list_head within the struct.
 754 *
 755 * list_safe_reset_next is not safe to use in general if the list may be
 756 * modified concurrently (eg. the lock is dropped in the loop body). An
 757 * exception to this is if the cursor element (pos) is pinned in the list,
 758 * and list_safe_reset_next is called after re-taking the lock and before
 759 * completing the current iteration of the loop body.
 760 */
 761#define list_safe_reset_next(pos, n, member)                            \
 762        n = list_next_entry(pos, member)
 763
 764/*
 765 * Double linked lists with a single pointer list head.
 766 * Mostly useful for hash tables where the two pointer list head is
 767 * too wasteful.
 768 * You lose the ability to access the tail in O(1).
 769 */
 770
 771#define HLIST_HEAD_INIT { .first = NULL }
 772#define HLIST_HEAD(name) struct hlist_head name = {  .first = NULL }
 773#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
 774static inline void INIT_HLIST_NODE(struct hlist_node *h)
 775{
 776        h->next = NULL;
 777        h->pprev = NULL;
 778}
 779
 780/**
 781 * hlist_unhashed - Has node been removed from list and reinitialized?
 782 * @h: Node to be checked
 783 *
 784 * Not that not all removal functions will leave a node in unhashed
 785 * state.  For example, hlist_nulls_del_init_rcu() does leave the
 786 * node in unhashed state, but hlist_nulls_del() does not.
 787 */
 788static inline int hlist_unhashed(const struct hlist_node *h)
 789{
 790        return !h->pprev;
 791}
 792
 793/**
 794 * hlist_unhashed_lockless - Version of hlist_unhashed for lockless use
 795 * @h: Node to be checked
 796 *
 797 * This variant of hlist_unhashed() must be used in lockless contexts
 798 * to avoid potential load-tearing.  The READ_ONCE() is paired with the
 799 * various WRITE_ONCE() in hlist helpers that are defined below.
 800 */
 801static inline int hlist_unhashed_lockless(const struct hlist_node *h)
 802{
 803        return !READ_ONCE(h->pprev);
 804}
 805
 806/**
 807 * hlist_empty - Is the specified hlist_head structure an empty hlist?
 808 * @h: Structure to check.
 809 */
 810static inline int hlist_empty(const struct hlist_head *h)
 811{
 812        return !READ_ONCE(h->first);
 813}
 814
 815static inline void __hlist_del(struct hlist_node *n)
 816{
 817        struct hlist_node *next = n->next;
 818        struct hlist_node **pprev = n->pprev;
 819
 820        WRITE_ONCE(*pprev, next);
 821        if (next)
 822                WRITE_ONCE(next->pprev, pprev);
 823}
 824
 825/**
 826 * hlist_del - Delete the specified hlist_node from its list
 827 * @n: Node to delete.
 828 *
 829 * Note that this function leaves the node in hashed state.  Use
 830 * hlist_del_init() or similar instead to unhash @n.
 831 */
 832static inline void hlist_del(struct hlist_node *n)
 833{
 834        __hlist_del(n);
 835        n->next = LIST_POISON1;
 836        n->pprev = LIST_POISON2;
 837}
 838
 839/**
 840 * hlist_del_init - Delete the specified hlist_node from its list and initialize
 841 * @n: Node to delete.
 842 *
 843 * Note that this function leaves the node in unhashed state.
 844 */
 845static inline void hlist_del_init(struct hlist_node *n)
 846{
 847        if (!hlist_unhashed(n)) {
 848                __hlist_del(n);
 849                INIT_HLIST_NODE(n);
 850        }
 851}
 852
 853/**
 854 * hlist_add_head - add a new entry at the beginning of the hlist
 855 * @n: new entry to be added
 856 * @h: hlist head to add it after
 857 *
 858 * Insert a new entry after the specified head.
 859 * This is good for implementing stacks.
 860 */
 861static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
 862{
 863        struct hlist_node *first = h->first;
 864        WRITE_ONCE(n->next, first);
 865        if (first)
 866                WRITE_ONCE(first->pprev, &n->next);
 867        WRITE_ONCE(h->first, n);
 868        WRITE_ONCE(n->pprev, &h->first);
 869}
 870
 871/**
 872 * hlist_add_before - add a new entry before the one specified
 873 * @n: new entry to be added
 874 * @next: hlist node to add it before, which must be non-NULL
 875 */
 876static inline void hlist_add_before(struct hlist_node *n,
 877                                    struct hlist_node *next)
 878{
 879        WRITE_ONCE(n->pprev, next->pprev);
 880        WRITE_ONCE(n->next, next);
 881        WRITE_ONCE(next->pprev, &n->next);
 882        WRITE_ONCE(*(n->pprev), n);
 883}
 884
 885/**
 886 * hlist_add_behing - add a new entry after the one specified
 887 * @n: new entry to be added
 888 * @prev: hlist node to add it after, which must be non-NULL
 889 */
 890static inline void hlist_add_behind(struct hlist_node *n,
 891                                    struct hlist_node *prev)
 892{
 893        WRITE_ONCE(n->next, prev->next);
 894        WRITE_ONCE(prev->next, n);
 895        WRITE_ONCE(n->pprev, &prev->next);
 896
 897        if (n->next)
 898                WRITE_ONCE(n->next->pprev, &n->next);
 899}
 900
 901/**
 902 * hlist_add_fake - create a fake hlist consisting of a single headless node
 903 * @n: Node to make a fake list out of
 904 *
 905 * This makes @n appear to be its own predecessor on a headless hlist.
 906 * The point of this is to allow things like hlist_del() to work correctly
 907 * in cases where there is no list.
 908 */
 909static inline void hlist_add_fake(struct hlist_node *n)
 910{
 911        n->pprev = &n->next;
 912}
 913
 914/**
 915 * hlist_fake: Is this node a fake hlist?
 916 * @h: Node to check for being a self-referential fake hlist.
 917 */
 918static inline bool hlist_fake(struct hlist_node *h)
 919{
 920        return h->pprev == &h->next;
 921}
 922
 923/**
 924 * hlist_is_singular_node - is node the only element of the specified hlist?
 925 * @n: Node to check for singularity.
 926 * @h: Header for potentially singular list.
 927 *
 928 * Check whether the node is the only node of the head without
 929 * accessing head, thus avoiding unnecessary cache misses.
 930 */
 931static inline bool
 932hlist_is_singular_node(struct hlist_node *n, struct hlist_head *h)
 933{
 934        return !n->next && n->pprev == &h->first;
 935}
 936
 937/**
 938 * hlist_move_list - Move an hlist
 939 * @old: hlist_head for old list.
 940 * @new: hlist_head for new list.
 941 *
 942 * Move a list from one list head to another. Fixup the pprev
 943 * reference of the first entry if it exists.
 944 */
 945static inline void hlist_move_list(struct hlist_head *old,
 946                                   struct hlist_head *new)
 947{
 948        new->first = old->first;
 949        if (new->first)
 950                new->first->pprev = &new->first;
 951        old->first = NULL;
 952}
 953
 954#define hlist_entry(ptr, type, member) container_of(ptr,type,member)
 955
 956#define hlist_for_each(pos, head) \
 957        for (pos = (head)->first; pos ; pos = pos->next)
 958
 959#define hlist_for_each_safe(pos, n, head) \
 960        for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
 961             pos = n)
 962
 963#define hlist_entry_safe(ptr, type, member) \
 964        ({ typeof(ptr) ____ptr = (ptr); \
 965           ____ptr ? hlist_entry(____ptr, type, member) : NULL; \
 966        })
 967
 968/**
 969 * hlist_for_each_entry - iterate over list of given type
 970 * @pos:        the type * to use as a loop cursor.
 971 * @head:       the head for your list.
 972 * @member:     the name of the hlist_node within the struct.
 973 */
 974#define hlist_for_each_entry(pos, head, member)                         \
 975        for (pos = hlist_entry_safe((head)->first, typeof(*(pos)), member);\
 976             pos;                                                       \
 977             pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
 978
 979/**
 980 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
 981 * @pos:        the type * to use as a loop cursor.
 982 * @member:     the name of the hlist_node within the struct.
 983 */
 984#define hlist_for_each_entry_continue(pos, member)                      \
 985        for (pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member);\
 986             pos;                                                       \
 987             pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
 988
 989/**
 990 * hlist_for_each_entry_from - iterate over a hlist continuing from current point
 991 * @pos:        the type * to use as a loop cursor.
 992 * @member:     the name of the hlist_node within the struct.
 993 */
 994#define hlist_for_each_entry_from(pos, member)                          \
 995        for (; pos;                                                     \
 996             pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
 997
 998/**
 999 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
1000 * @pos:        the type * to use as a loop cursor.
1001 * @n:          a &struct hlist_node to use as temporary storage
1002 * @head:       the head for your list.
1003 * @member:     the name of the hlist_node within the struct.
1004 */
1005#define hlist_for_each_entry_safe(pos, n, head, member)                 \
1006        for (pos = hlist_entry_safe((head)->first, typeof(*pos), member);\
1007             pos && ({ n = pos->member.next; 1; });                     \
1008             pos = hlist_entry_safe(n, typeof(*pos), member))
1009
1010#endif
1011