linux/include/linux/memcontrol.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/* memcontrol.h - Memory Controller
   3 *
   4 * Copyright IBM Corporation, 2007
   5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   6 *
   7 * Copyright 2007 OpenVZ SWsoft Inc
   8 * Author: Pavel Emelianov <xemul@openvz.org>
   9 */
  10
  11#ifndef _LINUX_MEMCONTROL_H
  12#define _LINUX_MEMCONTROL_H
  13#include <linux/cgroup.h>
  14#include <linux/vm_event_item.h>
  15#include <linux/hardirq.h>
  16#include <linux/jump_label.h>
  17#include <linux/page_counter.h>
  18#include <linux/vmpressure.h>
  19#include <linux/eventfd.h>
  20#include <linux/mm.h>
  21#include <linux/vmstat.h>
  22#include <linux/writeback.h>
  23#include <linux/page-flags.h>
  24
  25struct mem_cgroup;
  26struct obj_cgroup;
  27struct page;
  28struct mm_struct;
  29struct kmem_cache;
  30
  31/* Cgroup-specific page state, on top of universal node page state */
  32enum memcg_stat_item {
  33        MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
  34        MEMCG_SOCK,
  35        MEMCG_PERCPU_B,
  36        MEMCG_NR_STAT,
  37};
  38
  39enum memcg_memory_event {
  40        MEMCG_LOW,
  41        MEMCG_HIGH,
  42        MEMCG_MAX,
  43        MEMCG_OOM,
  44        MEMCG_OOM_KILL,
  45        MEMCG_SWAP_HIGH,
  46        MEMCG_SWAP_MAX,
  47        MEMCG_SWAP_FAIL,
  48        MEMCG_NR_MEMORY_EVENTS,
  49};
  50
  51struct mem_cgroup_reclaim_cookie {
  52        pg_data_t *pgdat;
  53        unsigned int generation;
  54};
  55
  56#ifdef CONFIG_MEMCG
  57
  58#define MEM_CGROUP_ID_SHIFT     16
  59#define MEM_CGROUP_ID_MAX       USHRT_MAX
  60
  61struct mem_cgroup_id {
  62        int id;
  63        refcount_t ref;
  64};
  65
  66/*
  67 * Per memcg event counter is incremented at every pagein/pageout. With THP,
  68 * it will be incremented by the number of pages. This counter is used
  69 * to trigger some periodic events. This is straightforward and better
  70 * than using jiffies etc. to handle periodic memcg event.
  71 */
  72enum mem_cgroup_events_target {
  73        MEM_CGROUP_TARGET_THRESH,
  74        MEM_CGROUP_TARGET_SOFTLIMIT,
  75        MEM_CGROUP_NTARGETS,
  76};
  77
  78struct memcg_vmstats_percpu {
  79        long stat[MEMCG_NR_STAT];
  80        unsigned long events[NR_VM_EVENT_ITEMS];
  81        unsigned long nr_page_events;
  82        unsigned long targets[MEM_CGROUP_NTARGETS];
  83};
  84
  85struct mem_cgroup_reclaim_iter {
  86        struct mem_cgroup *position;
  87        /* scan generation, increased every round-trip */
  88        unsigned int generation;
  89};
  90
  91struct lruvec_stat {
  92        long count[NR_VM_NODE_STAT_ITEMS];
  93};
  94
  95/*
  96 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
  97 * which have elements charged to this memcg.
  98 */
  99struct memcg_shrinker_map {
 100        struct rcu_head rcu;
 101        unsigned long map[];
 102};
 103
 104/*
 105 * per-node information in memory controller.
 106 */
 107struct mem_cgroup_per_node {
 108        struct lruvec           lruvec;
 109
 110        /* Legacy local VM stats */
 111        struct lruvec_stat __percpu *lruvec_stat_local;
 112
 113        /* Subtree VM stats (batched updates) */
 114        struct lruvec_stat __percpu *lruvec_stat_cpu;
 115        atomic_long_t           lruvec_stat[NR_VM_NODE_STAT_ITEMS];
 116
 117        unsigned long           lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
 118
 119        struct mem_cgroup_reclaim_iter  iter;
 120
 121        struct memcg_shrinker_map __rcu *shrinker_map;
 122
 123        struct rb_node          tree_node;      /* RB tree node */
 124        unsigned long           usage_in_excess;/* Set to the value by which */
 125                                                /* the soft limit is exceeded*/
 126        bool                    on_tree;
 127        struct mem_cgroup       *memcg;         /* Back pointer, we cannot */
 128                                                /* use container_of        */
 129};
 130
 131struct mem_cgroup_threshold {
 132        struct eventfd_ctx *eventfd;
 133        unsigned long threshold;
 134};
 135
 136/* For threshold */
 137struct mem_cgroup_threshold_ary {
 138        /* An array index points to threshold just below or equal to usage. */
 139        int current_threshold;
 140        /* Size of entries[] */
 141        unsigned int size;
 142        /* Array of thresholds */
 143        struct mem_cgroup_threshold entries[];
 144};
 145
 146struct mem_cgroup_thresholds {
 147        /* Primary thresholds array */
 148        struct mem_cgroup_threshold_ary *primary;
 149        /*
 150         * Spare threshold array.
 151         * This is needed to make mem_cgroup_unregister_event() "never fail".
 152         * It must be able to store at least primary->size - 1 entries.
 153         */
 154        struct mem_cgroup_threshold_ary *spare;
 155};
 156
 157enum memcg_kmem_state {
 158        KMEM_NONE,
 159        KMEM_ALLOCATED,
 160        KMEM_ONLINE,
 161};
 162
 163#if defined(CONFIG_SMP)
 164struct memcg_padding {
 165        char x[0];
 166} ____cacheline_internodealigned_in_smp;
 167#define MEMCG_PADDING(name)      struct memcg_padding name;
 168#else
 169#define MEMCG_PADDING(name)
 170#endif
 171
 172/*
 173 * Remember four most recent foreign writebacks with dirty pages in this
 174 * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
 175 * one in a given round, we're likely to catch it later if it keeps
 176 * foreign-dirtying, so a fairly low count should be enough.
 177 *
 178 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
 179 */
 180#define MEMCG_CGWB_FRN_CNT      4
 181
 182struct memcg_cgwb_frn {
 183        u64 bdi_id;                     /* bdi->id of the foreign inode */
 184        int memcg_id;                   /* memcg->css.id of foreign inode */
 185        u64 at;                         /* jiffies_64 at the time of dirtying */
 186        struct wb_completion done;      /* tracks in-flight foreign writebacks */
 187};
 188
 189/*
 190 * Bucket for arbitrarily byte-sized objects charged to a memory
 191 * cgroup. The bucket can be reparented in one piece when the cgroup
 192 * is destroyed, without having to round up the individual references
 193 * of all live memory objects in the wild.
 194 */
 195struct obj_cgroup {
 196        struct percpu_ref refcnt;
 197        struct mem_cgroup *memcg;
 198        atomic_t nr_charged_bytes;
 199        union {
 200                struct list_head list;
 201                struct rcu_head rcu;
 202        };
 203};
 204
 205/*
 206 * The memory controller data structure. The memory controller controls both
 207 * page cache and RSS per cgroup. We would eventually like to provide
 208 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 209 * to help the administrator determine what knobs to tune.
 210 */
 211struct mem_cgroup {
 212        struct cgroup_subsys_state css;
 213
 214        /* Private memcg ID. Used to ID objects that outlive the cgroup */
 215        struct mem_cgroup_id id;
 216
 217        /* Accounted resources */
 218        struct page_counter memory;             /* Both v1 & v2 */
 219
 220        union {
 221                struct page_counter swap;       /* v2 only */
 222                struct page_counter memsw;      /* v1 only */
 223        };
 224
 225        /* Legacy consumer-oriented counters */
 226        struct page_counter kmem;               /* v1 only */
 227        struct page_counter tcpmem;             /* v1 only */
 228
 229        /* Range enforcement for interrupt charges */
 230        struct work_struct high_work;
 231
 232        unsigned long soft_limit;
 233
 234        /* vmpressure notifications */
 235        struct vmpressure vmpressure;
 236
 237        /*
 238         * Should the accounting and control be hierarchical, per subtree?
 239         */
 240        bool use_hierarchy;
 241
 242        /*
 243         * Should the OOM killer kill all belonging tasks, had it kill one?
 244         */
 245        bool oom_group;
 246
 247        /* protected by memcg_oom_lock */
 248        bool            oom_lock;
 249        int             under_oom;
 250
 251        int     swappiness;
 252        /* OOM-Killer disable */
 253        int             oom_kill_disable;
 254
 255        /* memory.events and memory.events.local */
 256        struct cgroup_file events_file;
 257        struct cgroup_file events_local_file;
 258
 259        /* handle for "memory.swap.events" */
 260        struct cgroup_file swap_events_file;
 261
 262        /* protect arrays of thresholds */
 263        struct mutex thresholds_lock;
 264
 265        /* thresholds for memory usage. RCU-protected */
 266        struct mem_cgroup_thresholds thresholds;
 267
 268        /* thresholds for mem+swap usage. RCU-protected */
 269        struct mem_cgroup_thresholds memsw_thresholds;
 270
 271        /* For oom notifier event fd */
 272        struct list_head oom_notify;
 273
 274        /*
 275         * Should we move charges of a task when a task is moved into this
 276         * mem_cgroup ? And what type of charges should we move ?
 277         */
 278        unsigned long move_charge_at_immigrate;
 279        /* taken only while moving_account > 0 */
 280        spinlock_t              move_lock;
 281        unsigned long           move_lock_flags;
 282
 283        MEMCG_PADDING(_pad1_);
 284
 285        atomic_long_t           vmstats[MEMCG_NR_STAT];
 286        atomic_long_t           vmevents[NR_VM_EVENT_ITEMS];
 287
 288        /* memory.events */
 289        atomic_long_t           memory_events[MEMCG_NR_MEMORY_EVENTS];
 290        atomic_long_t           memory_events_local[MEMCG_NR_MEMORY_EVENTS];
 291
 292        unsigned long           socket_pressure;
 293
 294        /* Legacy tcp memory accounting */
 295        bool                    tcpmem_active;
 296        int                     tcpmem_pressure;
 297
 298#ifdef CONFIG_MEMCG_KMEM
 299        /* Index in the kmem_cache->memcg_params.memcg_caches array */
 300        int kmemcg_id;
 301        enum memcg_kmem_state kmem_state;
 302        struct obj_cgroup __rcu *objcg;
 303        struct list_head objcg_list; /* list of inherited objcgs */
 304#endif
 305
 306        MEMCG_PADDING(_pad2_);
 307
 308        /*
 309         * set > 0 if pages under this cgroup are moving to other cgroup.
 310         */
 311        atomic_t                moving_account;
 312        struct task_struct      *move_lock_task;
 313
 314        /* Legacy local VM stats and events */
 315        struct memcg_vmstats_percpu __percpu *vmstats_local;
 316
 317        /* Subtree VM stats and events (batched updates) */
 318        struct memcg_vmstats_percpu __percpu *vmstats_percpu;
 319
 320#ifdef CONFIG_CGROUP_WRITEBACK
 321        struct list_head cgwb_list;
 322        struct wb_domain cgwb_domain;
 323        struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
 324#endif
 325
 326        /* List of events which userspace want to receive */
 327        struct list_head event_list;
 328        spinlock_t event_list_lock;
 329
 330#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 331        struct deferred_split deferred_split_queue;
 332#endif
 333
 334        struct mem_cgroup_per_node *nodeinfo[0];
 335        /* WARNING: nodeinfo must be the last member here */
 336};
 337
 338/*
 339 * size of first charge trial. "32" comes from vmscan.c's magic value.
 340 * TODO: maybe necessary to use big numbers in big irons.
 341 */
 342#define MEMCG_CHARGE_BATCH 32U
 343
 344extern struct mem_cgroup *root_mem_cgroup;
 345
 346static __always_inline bool memcg_stat_item_in_bytes(int idx)
 347{
 348        if (idx == MEMCG_PERCPU_B)
 349                return true;
 350        return vmstat_item_in_bytes(idx);
 351}
 352
 353static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
 354{
 355        return (memcg == root_mem_cgroup);
 356}
 357
 358static inline bool mem_cgroup_disabled(void)
 359{
 360        return !cgroup_subsys_enabled(memory_cgrp_subsys);
 361}
 362
 363static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
 364                                                  struct mem_cgroup *memcg,
 365                                                  bool in_low_reclaim)
 366{
 367        if (mem_cgroup_disabled())
 368                return 0;
 369
 370        /*
 371         * There is no reclaim protection applied to a targeted reclaim.
 372         * We are special casing this specific case here because
 373         * mem_cgroup_protected calculation is not robust enough to keep
 374         * the protection invariant for calculated effective values for
 375         * parallel reclaimers with different reclaim target. This is
 376         * especially a problem for tail memcgs (as they have pages on LRU)
 377         * which would want to have effective values 0 for targeted reclaim
 378         * but a different value for external reclaim.
 379         *
 380         * Example
 381         * Let's have global and A's reclaim in parallel:
 382         *  |
 383         *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
 384         *  |\
 385         *  | C (low = 1G, usage = 2.5G)
 386         *  B (low = 1G, usage = 0.5G)
 387         *
 388         * For the global reclaim
 389         * A.elow = A.low
 390         * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
 391         * C.elow = min(C.usage, C.low)
 392         *
 393         * With the effective values resetting we have A reclaim
 394         * A.elow = 0
 395         * B.elow = B.low
 396         * C.elow = C.low
 397         *
 398         * If the global reclaim races with A's reclaim then
 399         * B.elow = C.elow = 0 because children_low_usage > A.elow)
 400         * is possible and reclaiming B would be violating the protection.
 401         *
 402         */
 403        if (root == memcg)
 404                return 0;
 405
 406        if (in_low_reclaim)
 407                return READ_ONCE(memcg->memory.emin);
 408
 409        return max(READ_ONCE(memcg->memory.emin),
 410                   READ_ONCE(memcg->memory.elow));
 411}
 412
 413void mem_cgroup_calculate_protection(struct mem_cgroup *root,
 414                                     struct mem_cgroup *memcg);
 415
 416static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
 417{
 418        /*
 419         * The root memcg doesn't account charges, and doesn't support
 420         * protection.
 421         */
 422        return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
 423
 424}
 425
 426static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
 427{
 428        if (!mem_cgroup_supports_protection(memcg))
 429                return false;
 430
 431        return READ_ONCE(memcg->memory.elow) >=
 432                page_counter_read(&memcg->memory);
 433}
 434
 435static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
 436{
 437        if (!mem_cgroup_supports_protection(memcg))
 438                return false;
 439
 440        return READ_ONCE(memcg->memory.emin) >=
 441                page_counter_read(&memcg->memory);
 442}
 443
 444int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask);
 445
 446void mem_cgroup_uncharge(struct page *page);
 447void mem_cgroup_uncharge_list(struct list_head *page_list);
 448
 449void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
 450
 451static struct mem_cgroup_per_node *
 452mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
 453{
 454        return memcg->nodeinfo[nid];
 455}
 456
 457/**
 458 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
 459 * @memcg: memcg of the wanted lruvec
 460 *
 461 * Returns the lru list vector holding pages for a given @memcg &
 462 * @node combination. This can be the node lruvec, if the memory
 463 * controller is disabled.
 464 */
 465static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
 466                                               struct pglist_data *pgdat)
 467{
 468        struct mem_cgroup_per_node *mz;
 469        struct lruvec *lruvec;
 470
 471        if (mem_cgroup_disabled()) {
 472                lruvec = &pgdat->__lruvec;
 473                goto out;
 474        }
 475
 476        if (!memcg)
 477                memcg = root_mem_cgroup;
 478
 479        mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
 480        lruvec = &mz->lruvec;
 481out:
 482        /*
 483         * Since a node can be onlined after the mem_cgroup was created,
 484         * we have to be prepared to initialize lruvec->pgdat here;
 485         * and if offlined then reonlined, we need to reinitialize it.
 486         */
 487        if (unlikely(lruvec->pgdat != pgdat))
 488                lruvec->pgdat = pgdat;
 489        return lruvec;
 490}
 491
 492struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *);
 493
 494struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
 495
 496struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
 497
 498struct mem_cgroup *get_mem_cgroup_from_page(struct page *page);
 499
 500static inline
 501struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
 502        return css ? container_of(css, struct mem_cgroup, css) : NULL;
 503}
 504
 505static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
 506{
 507        return percpu_ref_tryget(&objcg->refcnt);
 508}
 509
 510static inline void obj_cgroup_get(struct obj_cgroup *objcg)
 511{
 512        percpu_ref_get(&objcg->refcnt);
 513}
 514
 515static inline void obj_cgroup_put(struct obj_cgroup *objcg)
 516{
 517        percpu_ref_put(&objcg->refcnt);
 518}
 519
 520/*
 521 * After the initialization objcg->memcg is always pointing at
 522 * a valid memcg, but can be atomically swapped to the parent memcg.
 523 *
 524 * The caller must ensure that the returned memcg won't be released:
 525 * e.g. acquire the rcu_read_lock or css_set_lock.
 526 */
 527static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
 528{
 529        return READ_ONCE(objcg->memcg);
 530}
 531
 532static inline void mem_cgroup_put(struct mem_cgroup *memcg)
 533{
 534        if (memcg)
 535                css_put(&memcg->css);
 536}
 537
 538#define mem_cgroup_from_counter(counter, member)        \
 539        container_of(counter, struct mem_cgroup, member)
 540
 541struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
 542                                   struct mem_cgroup *,
 543                                   struct mem_cgroup_reclaim_cookie *);
 544void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
 545int mem_cgroup_scan_tasks(struct mem_cgroup *,
 546                          int (*)(struct task_struct *, void *), void *);
 547
 548static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
 549{
 550        if (mem_cgroup_disabled())
 551                return 0;
 552
 553        return memcg->id.id;
 554}
 555struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
 556
 557static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
 558{
 559        return mem_cgroup_from_css(seq_css(m));
 560}
 561
 562static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
 563{
 564        struct mem_cgroup_per_node *mz;
 565
 566        if (mem_cgroup_disabled())
 567                return NULL;
 568
 569        mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 570        return mz->memcg;
 571}
 572
 573/**
 574 * parent_mem_cgroup - find the accounting parent of a memcg
 575 * @memcg: memcg whose parent to find
 576 *
 577 * Returns the parent memcg, or NULL if this is the root or the memory
 578 * controller is in legacy no-hierarchy mode.
 579 */
 580static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
 581{
 582        if (!memcg->memory.parent)
 583                return NULL;
 584        return mem_cgroup_from_counter(memcg->memory.parent, memory);
 585}
 586
 587static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
 588                              struct mem_cgroup *root)
 589{
 590        if (root == memcg)
 591                return true;
 592        if (!root->use_hierarchy)
 593                return false;
 594        return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
 595}
 596
 597static inline bool mm_match_cgroup(struct mm_struct *mm,
 598                                   struct mem_cgroup *memcg)
 599{
 600        struct mem_cgroup *task_memcg;
 601        bool match = false;
 602
 603        rcu_read_lock();
 604        task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 605        if (task_memcg)
 606                match = mem_cgroup_is_descendant(task_memcg, memcg);
 607        rcu_read_unlock();
 608        return match;
 609}
 610
 611struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
 612ino_t page_cgroup_ino(struct page *page);
 613
 614static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
 615{
 616        if (mem_cgroup_disabled())
 617                return true;
 618        return !!(memcg->css.flags & CSS_ONLINE);
 619}
 620
 621/*
 622 * For memory reclaim.
 623 */
 624int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
 625
 626void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
 627                int zid, int nr_pages);
 628
 629static inline
 630unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
 631                enum lru_list lru, int zone_idx)
 632{
 633        struct mem_cgroup_per_node *mz;
 634
 635        mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 636        return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
 637}
 638
 639void mem_cgroup_handle_over_high(void);
 640
 641unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
 642
 643unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
 644
 645void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
 646                                struct task_struct *p);
 647
 648void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
 649
 650static inline void mem_cgroup_enter_user_fault(void)
 651{
 652        WARN_ON(current->in_user_fault);
 653        current->in_user_fault = 1;
 654}
 655
 656static inline void mem_cgroup_exit_user_fault(void)
 657{
 658        WARN_ON(!current->in_user_fault);
 659        current->in_user_fault = 0;
 660}
 661
 662static inline bool task_in_memcg_oom(struct task_struct *p)
 663{
 664        return p->memcg_in_oom;
 665}
 666
 667bool mem_cgroup_oom_synchronize(bool wait);
 668struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
 669                                            struct mem_cgroup *oom_domain);
 670void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
 671
 672#ifdef CONFIG_MEMCG_SWAP
 673extern bool cgroup_memory_noswap;
 674#endif
 675
 676struct mem_cgroup *lock_page_memcg(struct page *page);
 677void __unlock_page_memcg(struct mem_cgroup *memcg);
 678void unlock_page_memcg(struct page *page);
 679
 680/*
 681 * idx can be of type enum memcg_stat_item or node_stat_item.
 682 * Keep in sync with memcg_exact_page_state().
 683 */
 684static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
 685{
 686        long x = atomic_long_read(&memcg->vmstats[idx]);
 687#ifdef CONFIG_SMP
 688        if (x < 0)
 689                x = 0;
 690#endif
 691        return x;
 692}
 693
 694/*
 695 * idx can be of type enum memcg_stat_item or node_stat_item.
 696 * Keep in sync with memcg_exact_page_state().
 697 */
 698static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
 699                                                   int idx)
 700{
 701        long x = 0;
 702        int cpu;
 703
 704        for_each_possible_cpu(cpu)
 705                x += per_cpu(memcg->vmstats_local->stat[idx], cpu);
 706#ifdef CONFIG_SMP
 707        if (x < 0)
 708                x = 0;
 709#endif
 710        return x;
 711}
 712
 713void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
 714
 715/* idx can be of type enum memcg_stat_item or node_stat_item */
 716static inline void mod_memcg_state(struct mem_cgroup *memcg,
 717                                   int idx, int val)
 718{
 719        unsigned long flags;
 720
 721        local_irq_save(flags);
 722        __mod_memcg_state(memcg, idx, val);
 723        local_irq_restore(flags);
 724}
 725
 726/**
 727 * mod_memcg_page_state - update page state statistics
 728 * @page: the page
 729 * @idx: page state item to account
 730 * @val: number of pages (positive or negative)
 731 *
 732 * The @page must be locked or the caller must use lock_page_memcg()
 733 * to prevent double accounting when the page is concurrently being
 734 * moved to another memcg:
 735 *
 736 *   lock_page(page) or lock_page_memcg(page)
 737 *   if (TestClearPageState(page))
 738 *     mod_memcg_page_state(page, state, -1);
 739 *   unlock_page(page) or unlock_page_memcg(page)
 740 *
 741 * Kernel pages are an exception to this, since they'll never move.
 742 */
 743static inline void __mod_memcg_page_state(struct page *page,
 744                                          int idx, int val)
 745{
 746        if (page->mem_cgroup)
 747                __mod_memcg_state(page->mem_cgroup, idx, val);
 748}
 749
 750static inline void mod_memcg_page_state(struct page *page,
 751                                        int idx, int val)
 752{
 753        if (page->mem_cgroup)
 754                mod_memcg_state(page->mem_cgroup, idx, val);
 755}
 756
 757static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
 758                                              enum node_stat_item idx)
 759{
 760        struct mem_cgroup_per_node *pn;
 761        long x;
 762
 763        if (mem_cgroup_disabled())
 764                return node_page_state(lruvec_pgdat(lruvec), idx);
 765
 766        pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 767        x = atomic_long_read(&pn->lruvec_stat[idx]);
 768#ifdef CONFIG_SMP
 769        if (x < 0)
 770                x = 0;
 771#endif
 772        return x;
 773}
 774
 775static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
 776                                                    enum node_stat_item idx)
 777{
 778        struct mem_cgroup_per_node *pn;
 779        long x = 0;
 780        int cpu;
 781
 782        if (mem_cgroup_disabled())
 783                return node_page_state(lruvec_pgdat(lruvec), idx);
 784
 785        pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 786        for_each_possible_cpu(cpu)
 787                x += per_cpu(pn->lruvec_stat_local->count[idx], cpu);
 788#ifdef CONFIG_SMP
 789        if (x < 0)
 790                x = 0;
 791#endif
 792        return x;
 793}
 794
 795void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
 796                              int val);
 797void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
 798                        int val);
 799void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val);
 800
 801void mod_memcg_obj_state(void *p, int idx, int val);
 802
 803static inline void mod_lruvec_slab_state(void *p, enum node_stat_item idx,
 804                                         int val)
 805{
 806        unsigned long flags;
 807
 808        local_irq_save(flags);
 809        __mod_lruvec_slab_state(p, idx, val);
 810        local_irq_restore(flags);
 811}
 812
 813static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
 814                                          enum node_stat_item idx, int val)
 815{
 816        unsigned long flags;
 817
 818        local_irq_save(flags);
 819        __mod_memcg_lruvec_state(lruvec, idx, val);
 820        local_irq_restore(flags);
 821}
 822
 823static inline void mod_lruvec_state(struct lruvec *lruvec,
 824                                    enum node_stat_item idx, int val)
 825{
 826        unsigned long flags;
 827
 828        local_irq_save(flags);
 829        __mod_lruvec_state(lruvec, idx, val);
 830        local_irq_restore(flags);
 831}
 832
 833static inline void __mod_lruvec_page_state(struct page *page,
 834                                           enum node_stat_item idx, int val)
 835{
 836        struct page *head = compound_head(page); /* rmap on tail pages */
 837        pg_data_t *pgdat = page_pgdat(page);
 838        struct lruvec *lruvec;
 839
 840        /* Untracked pages have no memcg, no lruvec. Update only the node */
 841        if (!head->mem_cgroup) {
 842                __mod_node_page_state(pgdat, idx, val);
 843                return;
 844        }
 845
 846        lruvec = mem_cgroup_lruvec(head->mem_cgroup, pgdat);
 847        __mod_lruvec_state(lruvec, idx, val);
 848}
 849
 850static inline void mod_lruvec_page_state(struct page *page,
 851                                         enum node_stat_item idx, int val)
 852{
 853        unsigned long flags;
 854
 855        local_irq_save(flags);
 856        __mod_lruvec_page_state(page, idx, val);
 857        local_irq_restore(flags);
 858}
 859
 860unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
 861                                                gfp_t gfp_mask,
 862                                                unsigned long *total_scanned);
 863
 864void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
 865                          unsigned long count);
 866
 867static inline void count_memcg_events(struct mem_cgroup *memcg,
 868                                      enum vm_event_item idx,
 869                                      unsigned long count)
 870{
 871        unsigned long flags;
 872
 873        local_irq_save(flags);
 874        __count_memcg_events(memcg, idx, count);
 875        local_irq_restore(flags);
 876}
 877
 878static inline void count_memcg_page_event(struct page *page,
 879                                          enum vm_event_item idx)
 880{
 881        if (page->mem_cgroup)
 882                count_memcg_events(page->mem_cgroup, idx, 1);
 883}
 884
 885static inline void count_memcg_event_mm(struct mm_struct *mm,
 886                                        enum vm_event_item idx)
 887{
 888        struct mem_cgroup *memcg;
 889
 890        if (mem_cgroup_disabled())
 891                return;
 892
 893        rcu_read_lock();
 894        memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 895        if (likely(memcg))
 896                count_memcg_events(memcg, idx, 1);
 897        rcu_read_unlock();
 898}
 899
 900static inline void memcg_memory_event(struct mem_cgroup *memcg,
 901                                      enum memcg_memory_event event)
 902{
 903        bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
 904                          event == MEMCG_SWAP_FAIL;
 905
 906        atomic_long_inc(&memcg->memory_events_local[event]);
 907        if (!swap_event)
 908                cgroup_file_notify(&memcg->events_local_file);
 909
 910        do {
 911                atomic_long_inc(&memcg->memory_events[event]);
 912                if (swap_event)
 913                        cgroup_file_notify(&memcg->swap_events_file);
 914                else
 915                        cgroup_file_notify(&memcg->events_file);
 916
 917                if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
 918                        break;
 919                if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
 920                        break;
 921        } while ((memcg = parent_mem_cgroup(memcg)) &&
 922                 !mem_cgroup_is_root(memcg));
 923}
 924
 925static inline void memcg_memory_event_mm(struct mm_struct *mm,
 926                                         enum memcg_memory_event event)
 927{
 928        struct mem_cgroup *memcg;
 929
 930        if (mem_cgroup_disabled())
 931                return;
 932
 933        rcu_read_lock();
 934        memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 935        if (likely(memcg))
 936                memcg_memory_event(memcg, event);
 937        rcu_read_unlock();
 938}
 939
 940#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 941void mem_cgroup_split_huge_fixup(struct page *head);
 942#endif
 943
 944#else /* CONFIG_MEMCG */
 945
 946#define MEM_CGROUP_ID_SHIFT     0
 947#define MEM_CGROUP_ID_MAX       0
 948
 949struct mem_cgroup;
 950
 951static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
 952{
 953        return true;
 954}
 955
 956static inline bool mem_cgroup_disabled(void)
 957{
 958        return true;
 959}
 960
 961static inline void memcg_memory_event(struct mem_cgroup *memcg,
 962                                      enum memcg_memory_event event)
 963{
 964}
 965
 966static inline void memcg_memory_event_mm(struct mm_struct *mm,
 967                                         enum memcg_memory_event event)
 968{
 969}
 970
 971static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
 972                                                  struct mem_cgroup *memcg,
 973                                                  bool in_low_reclaim)
 974{
 975        return 0;
 976}
 977
 978static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
 979                                                   struct mem_cgroup *memcg)
 980{
 981}
 982
 983static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
 984{
 985        return false;
 986}
 987
 988static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
 989{
 990        return false;
 991}
 992
 993static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
 994                                    gfp_t gfp_mask)
 995{
 996        return 0;
 997}
 998
 999static inline void mem_cgroup_uncharge(struct page *page)
1000{
1001}
1002
1003static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1004{
1005}
1006
1007static inline void mem_cgroup_migrate(struct page *old, struct page *new)
1008{
1009}
1010
1011static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1012                                               struct pglist_data *pgdat)
1013{
1014        return &pgdat->__lruvec;
1015}
1016
1017static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
1018                                                    struct pglist_data *pgdat)
1019{
1020        return &pgdat->__lruvec;
1021}
1022
1023static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1024{
1025        return NULL;
1026}
1027
1028static inline bool mm_match_cgroup(struct mm_struct *mm,
1029                struct mem_cgroup *memcg)
1030{
1031        return true;
1032}
1033
1034static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1035{
1036        return NULL;
1037}
1038
1039static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1040{
1041        return NULL;
1042}
1043
1044static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1045{
1046}
1047
1048static inline struct mem_cgroup *
1049mem_cgroup_iter(struct mem_cgroup *root,
1050                struct mem_cgroup *prev,
1051                struct mem_cgroup_reclaim_cookie *reclaim)
1052{
1053        return NULL;
1054}
1055
1056static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1057                                         struct mem_cgroup *prev)
1058{
1059}
1060
1061static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1062                int (*fn)(struct task_struct *, void *), void *arg)
1063{
1064        return 0;
1065}
1066
1067static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1068{
1069        return 0;
1070}
1071
1072static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1073{
1074        WARN_ON_ONCE(id);
1075        /* XXX: This should always return root_mem_cgroup */
1076        return NULL;
1077}
1078
1079static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1080{
1081        return NULL;
1082}
1083
1084static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1085{
1086        return NULL;
1087}
1088
1089static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1090{
1091        return true;
1092}
1093
1094static inline
1095unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1096                enum lru_list lru, int zone_idx)
1097{
1098        return 0;
1099}
1100
1101static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1102{
1103        return 0;
1104}
1105
1106static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1107{
1108        return 0;
1109}
1110
1111static inline void
1112mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1113{
1114}
1115
1116static inline void
1117mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1118{
1119}
1120
1121static inline struct mem_cgroup *lock_page_memcg(struct page *page)
1122{
1123        return NULL;
1124}
1125
1126static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
1127{
1128}
1129
1130static inline void unlock_page_memcg(struct page *page)
1131{
1132}
1133
1134static inline void mem_cgroup_handle_over_high(void)
1135{
1136}
1137
1138static inline void mem_cgroup_enter_user_fault(void)
1139{
1140}
1141
1142static inline void mem_cgroup_exit_user_fault(void)
1143{
1144}
1145
1146static inline bool task_in_memcg_oom(struct task_struct *p)
1147{
1148        return false;
1149}
1150
1151static inline bool mem_cgroup_oom_synchronize(bool wait)
1152{
1153        return false;
1154}
1155
1156static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1157        struct task_struct *victim, struct mem_cgroup *oom_domain)
1158{
1159        return NULL;
1160}
1161
1162static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1163{
1164}
1165
1166static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1167{
1168        return 0;
1169}
1170
1171static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
1172                                                   int idx)
1173{
1174        return 0;
1175}
1176
1177static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1178                                     int idx,
1179                                     int nr)
1180{
1181}
1182
1183static inline void mod_memcg_state(struct mem_cgroup *memcg,
1184                                   int idx,
1185                                   int nr)
1186{
1187}
1188
1189static inline void __mod_memcg_page_state(struct page *page,
1190                                          int idx,
1191                                          int nr)
1192{
1193}
1194
1195static inline void mod_memcg_page_state(struct page *page,
1196                                        int idx,
1197                                        int nr)
1198{
1199}
1200
1201static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1202                                              enum node_stat_item idx)
1203{
1204        return node_page_state(lruvec_pgdat(lruvec), idx);
1205}
1206
1207static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1208                                                    enum node_stat_item idx)
1209{
1210        return node_page_state(lruvec_pgdat(lruvec), idx);
1211}
1212
1213static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1214                                            enum node_stat_item idx, int val)
1215{
1216}
1217
1218static inline void __mod_lruvec_state(struct lruvec *lruvec,
1219                                      enum node_stat_item idx, int val)
1220{
1221        __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1222}
1223
1224static inline void mod_lruvec_state(struct lruvec *lruvec,
1225                                    enum node_stat_item idx, int val)
1226{
1227        mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1228}
1229
1230static inline void __mod_lruvec_page_state(struct page *page,
1231                                           enum node_stat_item idx, int val)
1232{
1233        __mod_node_page_state(page_pgdat(page), idx, val);
1234}
1235
1236static inline void mod_lruvec_page_state(struct page *page,
1237                                         enum node_stat_item idx, int val)
1238{
1239        mod_node_page_state(page_pgdat(page), idx, val);
1240}
1241
1242static inline void __mod_lruvec_slab_state(void *p, enum node_stat_item idx,
1243                                           int val)
1244{
1245        struct page *page = virt_to_head_page(p);
1246
1247        __mod_node_page_state(page_pgdat(page), idx, val);
1248}
1249
1250static inline void mod_lruvec_slab_state(void *p, enum node_stat_item idx,
1251                                         int val)
1252{
1253        struct page *page = virt_to_head_page(p);
1254
1255        mod_node_page_state(page_pgdat(page), idx, val);
1256}
1257
1258static inline void mod_memcg_obj_state(void *p, int idx, int val)
1259{
1260}
1261
1262static inline
1263unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1264                                            gfp_t gfp_mask,
1265                                            unsigned long *total_scanned)
1266{
1267        return 0;
1268}
1269
1270static inline void mem_cgroup_split_huge_fixup(struct page *head)
1271{
1272}
1273
1274static inline void count_memcg_events(struct mem_cgroup *memcg,
1275                                      enum vm_event_item idx,
1276                                      unsigned long count)
1277{
1278}
1279
1280static inline void __count_memcg_events(struct mem_cgroup *memcg,
1281                                        enum vm_event_item idx,
1282                                        unsigned long count)
1283{
1284}
1285
1286static inline void count_memcg_page_event(struct page *page,
1287                                          int idx)
1288{
1289}
1290
1291static inline
1292void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1293{
1294}
1295#endif /* CONFIG_MEMCG */
1296
1297/* idx can be of type enum memcg_stat_item or node_stat_item */
1298static inline void __inc_memcg_state(struct mem_cgroup *memcg,
1299                                     int idx)
1300{
1301        __mod_memcg_state(memcg, idx, 1);
1302}
1303
1304/* idx can be of type enum memcg_stat_item or node_stat_item */
1305static inline void __dec_memcg_state(struct mem_cgroup *memcg,
1306                                     int idx)
1307{
1308        __mod_memcg_state(memcg, idx, -1);
1309}
1310
1311/* idx can be of type enum memcg_stat_item or node_stat_item */
1312static inline void __inc_memcg_page_state(struct page *page,
1313                                          int idx)
1314{
1315        __mod_memcg_page_state(page, idx, 1);
1316}
1317
1318/* idx can be of type enum memcg_stat_item or node_stat_item */
1319static inline void __dec_memcg_page_state(struct page *page,
1320                                          int idx)
1321{
1322        __mod_memcg_page_state(page, idx, -1);
1323}
1324
1325static inline void __inc_lruvec_state(struct lruvec *lruvec,
1326                                      enum node_stat_item idx)
1327{
1328        __mod_lruvec_state(lruvec, idx, 1);
1329}
1330
1331static inline void __dec_lruvec_state(struct lruvec *lruvec,
1332                                      enum node_stat_item idx)
1333{
1334        __mod_lruvec_state(lruvec, idx, -1);
1335}
1336
1337static inline void __inc_lruvec_page_state(struct page *page,
1338                                           enum node_stat_item idx)
1339{
1340        __mod_lruvec_page_state(page, idx, 1);
1341}
1342
1343static inline void __dec_lruvec_page_state(struct page *page,
1344                                           enum node_stat_item idx)
1345{
1346        __mod_lruvec_page_state(page, idx, -1);
1347}
1348
1349static inline void __inc_lruvec_slab_state(void *p, enum node_stat_item idx)
1350{
1351        __mod_lruvec_slab_state(p, idx, 1);
1352}
1353
1354static inline void __dec_lruvec_slab_state(void *p, enum node_stat_item idx)
1355{
1356        __mod_lruvec_slab_state(p, idx, -1);
1357}
1358
1359/* idx can be of type enum memcg_stat_item or node_stat_item */
1360static inline void inc_memcg_state(struct mem_cgroup *memcg,
1361                                   int idx)
1362{
1363        mod_memcg_state(memcg, idx, 1);
1364}
1365
1366/* idx can be of type enum memcg_stat_item or node_stat_item */
1367static inline void dec_memcg_state(struct mem_cgroup *memcg,
1368                                   int idx)
1369{
1370        mod_memcg_state(memcg, idx, -1);
1371}
1372
1373/* idx can be of type enum memcg_stat_item or node_stat_item */
1374static inline void inc_memcg_page_state(struct page *page,
1375                                        int idx)
1376{
1377        mod_memcg_page_state(page, idx, 1);
1378}
1379
1380/* idx can be of type enum memcg_stat_item or node_stat_item */
1381static inline void dec_memcg_page_state(struct page *page,
1382                                        int idx)
1383{
1384        mod_memcg_page_state(page, idx, -1);
1385}
1386
1387static inline void inc_lruvec_state(struct lruvec *lruvec,
1388                                    enum node_stat_item idx)
1389{
1390        mod_lruvec_state(lruvec, idx, 1);
1391}
1392
1393static inline void dec_lruvec_state(struct lruvec *lruvec,
1394                                    enum node_stat_item idx)
1395{
1396        mod_lruvec_state(lruvec, idx, -1);
1397}
1398
1399static inline void inc_lruvec_page_state(struct page *page,
1400                                         enum node_stat_item idx)
1401{
1402        mod_lruvec_page_state(page, idx, 1);
1403}
1404
1405static inline void dec_lruvec_page_state(struct page *page,
1406                                         enum node_stat_item idx)
1407{
1408        mod_lruvec_page_state(page, idx, -1);
1409}
1410
1411static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1412{
1413        struct mem_cgroup *memcg;
1414
1415        memcg = lruvec_memcg(lruvec);
1416        if (!memcg)
1417                return NULL;
1418        memcg = parent_mem_cgroup(memcg);
1419        if (!memcg)
1420                return NULL;
1421        return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1422}
1423
1424#ifdef CONFIG_CGROUP_WRITEBACK
1425
1426struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1427void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1428                         unsigned long *pheadroom, unsigned long *pdirty,
1429                         unsigned long *pwriteback);
1430
1431void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
1432                                             struct bdi_writeback *wb);
1433
1434static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1435                                                  struct bdi_writeback *wb)
1436{
1437        if (mem_cgroup_disabled())
1438                return;
1439
1440        if (unlikely(&page->mem_cgroup->css != wb->memcg_css))
1441                mem_cgroup_track_foreign_dirty_slowpath(page, wb);
1442}
1443
1444void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1445
1446#else   /* CONFIG_CGROUP_WRITEBACK */
1447
1448static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1449{
1450        return NULL;
1451}
1452
1453static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1454                                       unsigned long *pfilepages,
1455                                       unsigned long *pheadroom,
1456                                       unsigned long *pdirty,
1457                                       unsigned long *pwriteback)
1458{
1459}
1460
1461static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1462                                                  struct bdi_writeback *wb)
1463{
1464}
1465
1466static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1467{
1468}
1469
1470#endif  /* CONFIG_CGROUP_WRITEBACK */
1471
1472struct sock;
1473bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1474void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1475#ifdef CONFIG_MEMCG
1476extern struct static_key_false memcg_sockets_enabled_key;
1477#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1478void mem_cgroup_sk_alloc(struct sock *sk);
1479void mem_cgroup_sk_free(struct sock *sk);
1480static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1481{
1482        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1483                return true;
1484        do {
1485                if (time_before(jiffies, memcg->socket_pressure))
1486                        return true;
1487        } while ((memcg = parent_mem_cgroup(memcg)));
1488        return false;
1489}
1490
1491extern int memcg_expand_shrinker_maps(int new_id);
1492
1493extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1494                                   int nid, int shrinker_id);
1495#else
1496#define mem_cgroup_sockets_enabled 0
1497static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1498static inline void mem_cgroup_sk_free(struct sock *sk) { };
1499static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1500{
1501        return false;
1502}
1503
1504static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1505                                          int nid, int shrinker_id)
1506{
1507}
1508#endif
1509
1510#ifdef CONFIG_MEMCG_KMEM
1511int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
1512                        unsigned int nr_pages);
1513void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages);
1514int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1515void __memcg_kmem_uncharge_page(struct page *page, int order);
1516
1517struct obj_cgroup *get_obj_cgroup_from_current(void);
1518
1519int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1520void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1521
1522extern struct static_key_false memcg_kmem_enabled_key;
1523
1524extern int memcg_nr_cache_ids;
1525void memcg_get_cache_ids(void);
1526void memcg_put_cache_ids(void);
1527
1528/*
1529 * Helper macro to loop through all memcg-specific caches. Callers must still
1530 * check if the cache is valid (it is either valid or NULL).
1531 * the slab_mutex must be held when looping through those caches
1532 */
1533#define for_each_memcg_cache_index(_idx)        \
1534        for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1535
1536static inline bool memcg_kmem_enabled(void)
1537{
1538        return static_branch_likely(&memcg_kmem_enabled_key);
1539}
1540
1541static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1542                                         int order)
1543{
1544        if (memcg_kmem_enabled())
1545                return __memcg_kmem_charge_page(page, gfp, order);
1546        return 0;
1547}
1548
1549static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1550{
1551        if (memcg_kmem_enabled())
1552                __memcg_kmem_uncharge_page(page, order);
1553}
1554
1555static inline int memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
1556                                    unsigned int nr_pages)
1557{
1558        if (memcg_kmem_enabled())
1559                return __memcg_kmem_charge(memcg, gfp, nr_pages);
1560        return 0;
1561}
1562
1563static inline void memcg_kmem_uncharge(struct mem_cgroup *memcg,
1564                                       unsigned int nr_pages)
1565{
1566        if (memcg_kmem_enabled())
1567                __memcg_kmem_uncharge(memcg, nr_pages);
1568}
1569
1570/*
1571 * helper for accessing a memcg's index. It will be used as an index in the
1572 * child cache array in kmem_cache, and also to derive its name. This function
1573 * will return -1 when this is not a kmem-limited memcg.
1574 */
1575static inline int memcg_cache_id(struct mem_cgroup *memcg)
1576{
1577        return memcg ? memcg->kmemcg_id : -1;
1578}
1579
1580struct mem_cgroup *mem_cgroup_from_obj(void *p);
1581
1582#else
1583
1584static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1585                                         int order)
1586{
1587        return 0;
1588}
1589
1590static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1591{
1592}
1593
1594static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1595                                           int order)
1596{
1597        return 0;
1598}
1599
1600static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1601{
1602}
1603
1604#define for_each_memcg_cache_index(_idx)        \
1605        for (; NULL; )
1606
1607static inline bool memcg_kmem_enabled(void)
1608{
1609        return false;
1610}
1611
1612static inline int memcg_cache_id(struct mem_cgroup *memcg)
1613{
1614        return -1;
1615}
1616
1617static inline void memcg_get_cache_ids(void)
1618{
1619}
1620
1621static inline void memcg_put_cache_ids(void)
1622{
1623}
1624
1625static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1626{
1627       return NULL;
1628}
1629
1630#endif /* CONFIG_MEMCG_KMEM */
1631
1632#endif /* _LINUX_MEMCONTROL_H */
1633