linux/include/linux/mm_types.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_MM_TYPES_H
   3#define _LINUX_MM_TYPES_H
   4
   5#include <linux/mm_types_task.h>
   6
   7#include <linux/auxvec.h>
   8#include <linux/list.h>
   9#include <linux/spinlock.h>
  10#include <linux/rbtree.h>
  11#include <linux/rwsem.h>
  12#include <linux/completion.h>
  13#include <linux/cpumask.h>
  14#include <linux/uprobes.h>
  15#include <linux/page-flags-layout.h>
  16#include <linux/workqueue.h>
  17
  18#include <asm/mmu.h>
  19
  20#ifndef AT_VECTOR_SIZE_ARCH
  21#define AT_VECTOR_SIZE_ARCH 0
  22#endif
  23#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
  24
  25
  26struct address_space;
  27struct mem_cgroup;
  28
  29/*
  30 * Each physical page in the system has a struct page associated with
  31 * it to keep track of whatever it is we are using the page for at the
  32 * moment. Note that we have no way to track which tasks are using
  33 * a page, though if it is a pagecache page, rmap structures can tell us
  34 * who is mapping it.
  35 *
  36 * If you allocate the page using alloc_pages(), you can use some of the
  37 * space in struct page for your own purposes.  The five words in the main
  38 * union are available, except for bit 0 of the first word which must be
  39 * kept clear.  Many users use this word to store a pointer to an object
  40 * which is guaranteed to be aligned.  If you use the same storage as
  41 * page->mapping, you must restore it to NULL before freeing the page.
  42 *
  43 * If your page will not be mapped to userspace, you can also use the four
  44 * bytes in the mapcount union, but you must call page_mapcount_reset()
  45 * before freeing it.
  46 *
  47 * If you want to use the refcount field, it must be used in such a way
  48 * that other CPUs temporarily incrementing and then decrementing the
  49 * refcount does not cause problems.  On receiving the page from
  50 * alloc_pages(), the refcount will be positive.
  51 *
  52 * If you allocate pages of order > 0, you can use some of the fields
  53 * in each subpage, but you may need to restore some of their values
  54 * afterwards.
  55 *
  56 * SLUB uses cmpxchg_double() to atomically update its freelist and
  57 * counters.  That requires that freelist & counters be adjacent and
  58 * double-word aligned.  We align all struct pages to double-word
  59 * boundaries, and ensure that 'freelist' is aligned within the
  60 * struct.
  61 */
  62#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
  63#define _struct_page_alignment  __aligned(2 * sizeof(unsigned long))
  64#else
  65#define _struct_page_alignment
  66#endif
  67
  68struct page {
  69        unsigned long flags;            /* Atomic flags, some possibly
  70                                         * updated asynchronously */
  71        /*
  72         * Five words (20/40 bytes) are available in this union.
  73         * WARNING: bit 0 of the first word is used for PageTail(). That
  74         * means the other users of this union MUST NOT use the bit to
  75         * avoid collision and false-positive PageTail().
  76         */
  77        union {
  78                struct {        /* Page cache and anonymous pages */
  79                        /**
  80                         * @lru: Pageout list, eg. active_list protected by
  81                         * pgdat->lru_lock.  Sometimes used as a generic list
  82                         * by the page owner.
  83                         */
  84                        struct list_head lru;
  85                        /* See page-flags.h for PAGE_MAPPING_FLAGS */
  86                        struct address_space *mapping;
  87                        pgoff_t index;          /* Our offset within mapping. */
  88                        /**
  89                         * @private: Mapping-private opaque data.
  90                         * Usually used for buffer_heads if PagePrivate.
  91                         * Used for swp_entry_t if PageSwapCache.
  92                         * Indicates order in the buddy system if PageBuddy.
  93                         */
  94                        unsigned long private;
  95                };
  96                struct {        /* page_pool used by netstack */
  97                        /**
  98                         * @dma_addr: might require a 64-bit value even on
  99                         * 32-bit architectures.
 100                         */
 101                        dma_addr_t dma_addr;
 102                };
 103                struct {        /* slab, slob and slub */
 104                        union {
 105                                struct list_head slab_list;
 106                                struct {        /* Partial pages */
 107                                        struct page *next;
 108#ifdef CONFIG_64BIT
 109                                        int pages;      /* Nr of pages left */
 110                                        int pobjects;   /* Approximate count */
 111#else
 112                                        short int pages;
 113                                        short int pobjects;
 114#endif
 115                                };
 116                        };
 117                        struct kmem_cache *slab_cache; /* not slob */
 118                        /* Double-word boundary */
 119                        void *freelist;         /* first free object */
 120                        union {
 121                                void *s_mem;    /* slab: first object */
 122                                unsigned long counters;         /* SLUB */
 123                                struct {                        /* SLUB */
 124                                        unsigned inuse:16;
 125                                        unsigned objects:15;
 126                                        unsigned frozen:1;
 127                                };
 128                        };
 129                };
 130                struct {        /* Tail pages of compound page */
 131                        unsigned long compound_head;    /* Bit zero is set */
 132
 133                        /* First tail page only */
 134                        unsigned char compound_dtor;
 135                        unsigned char compound_order;
 136                        atomic_t compound_mapcount;
 137                        unsigned int compound_nr; /* 1 << compound_order */
 138                };
 139                struct {        /* Second tail page of compound page */
 140                        unsigned long _compound_pad_1;  /* compound_head */
 141                        atomic_t hpage_pinned_refcount;
 142                        /* For both global and memcg */
 143                        struct list_head deferred_list;
 144                };
 145                struct {        /* Page table pages */
 146                        unsigned long _pt_pad_1;        /* compound_head */
 147                        pgtable_t pmd_huge_pte; /* protected by page->ptl */
 148                        unsigned long _pt_pad_2;        /* mapping */
 149                        union {
 150                                struct mm_struct *pt_mm; /* x86 pgds only */
 151                                atomic_t pt_frag_refcount; /* powerpc */
 152                        };
 153#if ALLOC_SPLIT_PTLOCKS
 154                        spinlock_t *ptl;
 155#else
 156                        spinlock_t ptl;
 157#endif
 158                };
 159                struct {        /* ZONE_DEVICE pages */
 160                        /** @pgmap: Points to the hosting device page map. */
 161                        struct dev_pagemap *pgmap;
 162                        void *zone_device_data;
 163                        /*
 164                         * ZONE_DEVICE private pages are counted as being
 165                         * mapped so the next 3 words hold the mapping, index,
 166                         * and private fields from the source anonymous or
 167                         * page cache page while the page is migrated to device
 168                         * private memory.
 169                         * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
 170                         * use the mapping, index, and private fields when
 171                         * pmem backed DAX files are mapped.
 172                         */
 173                };
 174
 175                /** @rcu_head: You can use this to free a page by RCU. */
 176                struct rcu_head rcu_head;
 177        };
 178
 179        union {         /* This union is 4 bytes in size. */
 180                /*
 181                 * If the page can be mapped to userspace, encodes the number
 182                 * of times this page is referenced by a page table.
 183                 */
 184                atomic_t _mapcount;
 185
 186                /*
 187                 * If the page is neither PageSlab nor mappable to userspace,
 188                 * the value stored here may help determine what this page
 189                 * is used for.  See page-flags.h for a list of page types
 190                 * which are currently stored here.
 191                 */
 192                unsigned int page_type;
 193
 194                unsigned int active;            /* SLAB */
 195                int units;                      /* SLOB */
 196        };
 197
 198        /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
 199        atomic_t _refcount;
 200
 201#ifdef CONFIG_MEMCG
 202        union {
 203                struct mem_cgroup *mem_cgroup;
 204                struct obj_cgroup **obj_cgroups;
 205        };
 206#endif
 207
 208        /*
 209         * On machines where all RAM is mapped into kernel address space,
 210         * we can simply calculate the virtual address. On machines with
 211         * highmem some memory is mapped into kernel virtual memory
 212         * dynamically, so we need a place to store that address.
 213         * Note that this field could be 16 bits on x86 ... ;)
 214         *
 215         * Architectures with slow multiplication can define
 216         * WANT_PAGE_VIRTUAL in asm/page.h
 217         */
 218#if defined(WANT_PAGE_VIRTUAL)
 219        void *virtual;                  /* Kernel virtual address (NULL if
 220                                           not kmapped, ie. highmem) */
 221#endif /* WANT_PAGE_VIRTUAL */
 222
 223#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
 224        int _last_cpupid;
 225#endif
 226} _struct_page_alignment;
 227
 228static inline atomic_t *compound_mapcount_ptr(struct page *page)
 229{
 230        return &page[1].compound_mapcount;
 231}
 232
 233static inline atomic_t *compound_pincount_ptr(struct page *page)
 234{
 235        return &page[2].hpage_pinned_refcount;
 236}
 237
 238/*
 239 * Used for sizing the vmemmap region on some architectures
 240 */
 241#define STRUCT_PAGE_MAX_SHIFT   (order_base_2(sizeof(struct page)))
 242
 243#define PAGE_FRAG_CACHE_MAX_SIZE        __ALIGN_MASK(32768, ~PAGE_MASK)
 244#define PAGE_FRAG_CACHE_MAX_ORDER       get_order(PAGE_FRAG_CACHE_MAX_SIZE)
 245
 246#define page_private(page)              ((page)->private)
 247
 248static inline void set_page_private(struct page *page, unsigned long private)
 249{
 250        page->private = private;
 251}
 252
 253struct page_frag_cache {
 254        void * va;
 255#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
 256        __u16 offset;
 257        __u16 size;
 258#else
 259        __u32 offset;
 260#endif
 261        /* we maintain a pagecount bias, so that we dont dirty cache line
 262         * containing page->_refcount every time we allocate a fragment.
 263         */
 264        unsigned int            pagecnt_bias;
 265        bool pfmemalloc;
 266};
 267
 268typedef unsigned long vm_flags_t;
 269
 270/*
 271 * A region containing a mapping of a non-memory backed file under NOMMU
 272 * conditions.  These are held in a global tree and are pinned by the VMAs that
 273 * map parts of them.
 274 */
 275struct vm_region {
 276        struct rb_node  vm_rb;          /* link in global region tree */
 277        vm_flags_t      vm_flags;       /* VMA vm_flags */
 278        unsigned long   vm_start;       /* start address of region */
 279        unsigned long   vm_end;         /* region initialised to here */
 280        unsigned long   vm_top;         /* region allocated to here */
 281        unsigned long   vm_pgoff;       /* the offset in vm_file corresponding to vm_start */
 282        struct file     *vm_file;       /* the backing file or NULL */
 283
 284        int             vm_usage;       /* region usage count (access under nommu_region_sem) */
 285        bool            vm_icache_flushed : 1; /* true if the icache has been flushed for
 286                                                * this region */
 287};
 288
 289#ifdef CONFIG_USERFAULTFD
 290#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
 291struct vm_userfaultfd_ctx {
 292        struct userfaultfd_ctx *ctx;
 293};
 294#else /* CONFIG_USERFAULTFD */
 295#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
 296struct vm_userfaultfd_ctx {};
 297#endif /* CONFIG_USERFAULTFD */
 298
 299/*
 300 * This struct describes a virtual memory area. There is one of these
 301 * per VM-area/task. A VM area is any part of the process virtual memory
 302 * space that has a special rule for the page-fault handlers (ie a shared
 303 * library, the executable area etc).
 304 */
 305struct vm_area_struct {
 306        /* The first cache line has the info for VMA tree walking. */
 307
 308        unsigned long vm_start;         /* Our start address within vm_mm. */
 309        unsigned long vm_end;           /* The first byte after our end address
 310                                           within vm_mm. */
 311
 312        /* linked list of VM areas per task, sorted by address */
 313        struct vm_area_struct *vm_next, *vm_prev;
 314
 315        struct rb_node vm_rb;
 316
 317        /*
 318         * Largest free memory gap in bytes to the left of this VMA.
 319         * Either between this VMA and vma->vm_prev, or between one of the
 320         * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
 321         * get_unmapped_area find a free area of the right size.
 322         */
 323        unsigned long rb_subtree_gap;
 324
 325        /* Second cache line starts here. */
 326
 327        struct mm_struct *vm_mm;        /* The address space we belong to. */
 328
 329        /*
 330         * Access permissions of this VMA.
 331         * See vmf_insert_mixed_prot() for discussion.
 332         */
 333        pgprot_t vm_page_prot;
 334        unsigned long vm_flags;         /* Flags, see mm.h. */
 335
 336        /*
 337         * For areas with an address space and backing store,
 338         * linkage into the address_space->i_mmap interval tree.
 339         */
 340        struct {
 341                struct rb_node rb;
 342                unsigned long rb_subtree_last;
 343        } shared;
 344
 345        /*
 346         * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
 347         * list, after a COW of one of the file pages.  A MAP_SHARED vma
 348         * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
 349         * or brk vma (with NULL file) can only be in an anon_vma list.
 350         */
 351        struct list_head anon_vma_chain; /* Serialized by mmap_lock &
 352                                          * page_table_lock */
 353        struct anon_vma *anon_vma;      /* Serialized by page_table_lock */
 354
 355        /* Function pointers to deal with this struct. */
 356        const struct vm_operations_struct *vm_ops;
 357
 358        /* Information about our backing store: */
 359        unsigned long vm_pgoff;         /* Offset (within vm_file) in PAGE_SIZE
 360                                           units */
 361        struct file * vm_file;          /* File we map to (can be NULL). */
 362        void * vm_private_data;         /* was vm_pte (shared mem) */
 363
 364#ifdef CONFIG_SWAP
 365        atomic_long_t swap_readahead_info;
 366#endif
 367#ifndef CONFIG_MMU
 368        struct vm_region *vm_region;    /* NOMMU mapping region */
 369#endif
 370#ifdef CONFIG_NUMA
 371        struct mempolicy *vm_policy;    /* NUMA policy for the VMA */
 372#endif
 373        struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
 374} __randomize_layout;
 375
 376struct core_thread {
 377        struct task_struct *task;
 378        struct core_thread *next;
 379};
 380
 381struct core_state {
 382        atomic_t nr_threads;
 383        struct core_thread dumper;
 384        struct completion startup;
 385};
 386
 387struct kioctx_table;
 388struct mm_struct {
 389        struct {
 390                struct vm_area_struct *mmap;            /* list of VMAs */
 391                struct rb_root mm_rb;
 392                u64 vmacache_seqnum;                   /* per-thread vmacache */
 393#ifdef CONFIG_MMU
 394                unsigned long (*get_unmapped_area) (struct file *filp,
 395                                unsigned long addr, unsigned long len,
 396                                unsigned long pgoff, unsigned long flags);
 397#endif
 398                unsigned long mmap_base;        /* base of mmap area */
 399                unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */
 400#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
 401                /* Base adresses for compatible mmap() */
 402                unsigned long mmap_compat_base;
 403                unsigned long mmap_compat_legacy_base;
 404#endif
 405                unsigned long task_size;        /* size of task vm space */
 406                unsigned long highest_vm_end;   /* highest vma end address */
 407                pgd_t * pgd;
 408
 409#ifdef CONFIG_MEMBARRIER
 410                /**
 411                 * @membarrier_state: Flags controlling membarrier behavior.
 412                 *
 413                 * This field is close to @pgd to hopefully fit in the same
 414                 * cache-line, which needs to be touched by switch_mm().
 415                 */
 416                atomic_t membarrier_state;
 417#endif
 418
 419                /**
 420                 * @mm_users: The number of users including userspace.
 421                 *
 422                 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
 423                 * drops to 0 (i.e. when the task exits and there are no other
 424                 * temporary reference holders), we also release a reference on
 425                 * @mm_count (which may then free the &struct mm_struct if
 426                 * @mm_count also drops to 0).
 427                 */
 428                atomic_t mm_users;
 429
 430                /**
 431                 * @mm_count: The number of references to &struct mm_struct
 432                 * (@mm_users count as 1).
 433                 *
 434                 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the
 435                 * &struct mm_struct is freed.
 436                 */
 437                atomic_t mm_count;
 438
 439                /**
 440                 * @has_pinned: Whether this mm has pinned any pages.  This can
 441                 * be either replaced in the future by @pinned_vm when it
 442                 * becomes stable, or grow into a counter on its own. We're
 443                 * aggresive on this bit now - even if the pinned pages were
 444                 * unpinned later on, we'll still keep this bit set for the
 445                 * lifecycle of this mm just for simplicity.
 446                 */
 447                atomic_t has_pinned;
 448
 449#ifdef CONFIG_MMU
 450                atomic_long_t pgtables_bytes;   /* PTE page table pages */
 451#endif
 452                int map_count;                  /* number of VMAs */
 453
 454                spinlock_t page_table_lock; /* Protects page tables and some
 455                                             * counters
 456                                             */
 457                struct rw_semaphore mmap_lock;
 458
 459                struct list_head mmlist; /* List of maybe swapped mm's. These
 460                                          * are globally strung together off
 461                                          * init_mm.mmlist, and are protected
 462                                          * by mmlist_lock
 463                                          */
 464
 465
 466                unsigned long hiwater_rss; /* High-watermark of RSS usage */
 467                unsigned long hiwater_vm;  /* High-water virtual memory usage */
 468
 469                unsigned long total_vm;    /* Total pages mapped */
 470                unsigned long locked_vm;   /* Pages that have PG_mlocked set */
 471                atomic64_t    pinned_vm;   /* Refcount permanently increased */
 472                unsigned long data_vm;     /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
 473                unsigned long exec_vm;     /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
 474                unsigned long stack_vm;    /* VM_STACK */
 475                unsigned long def_flags;
 476
 477                spinlock_t arg_lock; /* protect the below fields */
 478                unsigned long start_code, end_code, start_data, end_data;
 479                unsigned long start_brk, brk, start_stack;
 480                unsigned long arg_start, arg_end, env_start, env_end;
 481
 482                unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
 483
 484                /*
 485                 * Special counters, in some configurations protected by the
 486                 * page_table_lock, in other configurations by being atomic.
 487                 */
 488                struct mm_rss_stat rss_stat;
 489
 490                struct linux_binfmt *binfmt;
 491
 492                /* Architecture-specific MM context */
 493                mm_context_t context;
 494
 495                unsigned long flags; /* Must use atomic bitops to access */
 496
 497                struct core_state *core_state; /* coredumping support */
 498
 499#ifdef CONFIG_AIO
 500                spinlock_t                      ioctx_lock;
 501                struct kioctx_table __rcu       *ioctx_table;
 502#endif
 503#ifdef CONFIG_MEMCG
 504                /*
 505                 * "owner" points to a task that is regarded as the canonical
 506                 * user/owner of this mm. All of the following must be true in
 507                 * order for it to be changed:
 508                 *
 509                 * current == mm->owner
 510                 * current->mm != mm
 511                 * new_owner->mm == mm
 512                 * new_owner->alloc_lock is held
 513                 */
 514                struct task_struct __rcu *owner;
 515#endif
 516                struct user_namespace *user_ns;
 517
 518                /* store ref to file /proc/<pid>/exe symlink points to */
 519                struct file __rcu *exe_file;
 520#ifdef CONFIG_MMU_NOTIFIER
 521                struct mmu_notifier_subscriptions *notifier_subscriptions;
 522#endif
 523#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 524                pgtable_t pmd_huge_pte; /* protected by page_table_lock */
 525#endif
 526#ifdef CONFIG_NUMA_BALANCING
 527                /*
 528                 * numa_next_scan is the next time that the PTEs will be marked
 529                 * pte_numa. NUMA hinting faults will gather statistics and
 530                 * migrate pages to new nodes if necessary.
 531                 */
 532                unsigned long numa_next_scan;
 533
 534                /* Restart point for scanning and setting pte_numa */
 535                unsigned long numa_scan_offset;
 536
 537                /* numa_scan_seq prevents two threads setting pte_numa */
 538                int numa_scan_seq;
 539#endif
 540                /*
 541                 * An operation with batched TLB flushing is going on. Anything
 542                 * that can move process memory needs to flush the TLB when
 543                 * moving a PROT_NONE or PROT_NUMA mapped page.
 544                 */
 545                atomic_t tlb_flush_pending;
 546#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
 547                /* See flush_tlb_batched_pending() */
 548                bool tlb_flush_batched;
 549#endif
 550                struct uprobes_state uprobes_state;
 551#ifdef CONFIG_HUGETLB_PAGE
 552                atomic_long_t hugetlb_usage;
 553#endif
 554                struct work_struct async_put_work;
 555
 556#ifdef CONFIG_IOMMU_SUPPORT
 557                u32 pasid;
 558#endif
 559        } __randomize_layout;
 560
 561        /*
 562         * The mm_cpumask needs to be at the end of mm_struct, because it
 563         * is dynamically sized based on nr_cpu_ids.
 564         */
 565        unsigned long cpu_bitmap[];
 566};
 567
 568extern struct mm_struct init_mm;
 569
 570/* Pointer magic because the dynamic array size confuses some compilers. */
 571static inline void mm_init_cpumask(struct mm_struct *mm)
 572{
 573        unsigned long cpu_bitmap = (unsigned long)mm;
 574
 575        cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
 576        cpumask_clear((struct cpumask *)cpu_bitmap);
 577}
 578
 579/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
 580static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
 581{
 582        return (struct cpumask *)&mm->cpu_bitmap;
 583}
 584
 585struct mmu_gather;
 586extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
 587                                unsigned long start, unsigned long end);
 588extern void tlb_finish_mmu(struct mmu_gather *tlb,
 589                                unsigned long start, unsigned long end);
 590
 591static inline void init_tlb_flush_pending(struct mm_struct *mm)
 592{
 593        atomic_set(&mm->tlb_flush_pending, 0);
 594}
 595
 596static inline void inc_tlb_flush_pending(struct mm_struct *mm)
 597{
 598        atomic_inc(&mm->tlb_flush_pending);
 599        /*
 600         * The only time this value is relevant is when there are indeed pages
 601         * to flush. And we'll only flush pages after changing them, which
 602         * requires the PTL.
 603         *
 604         * So the ordering here is:
 605         *
 606         *      atomic_inc(&mm->tlb_flush_pending);
 607         *      spin_lock(&ptl);
 608         *      ...
 609         *      set_pte_at();
 610         *      spin_unlock(&ptl);
 611         *
 612         *                              spin_lock(&ptl)
 613         *                              mm_tlb_flush_pending();
 614         *                              ....
 615         *                              spin_unlock(&ptl);
 616         *
 617         *      flush_tlb_range();
 618         *      atomic_dec(&mm->tlb_flush_pending);
 619         *
 620         * Where the increment if constrained by the PTL unlock, it thus
 621         * ensures that the increment is visible if the PTE modification is
 622         * visible. After all, if there is no PTE modification, nobody cares
 623         * about TLB flushes either.
 624         *
 625         * This very much relies on users (mm_tlb_flush_pending() and
 626         * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and
 627         * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc
 628         * locks (PPC) the unlock of one doesn't order against the lock of
 629         * another PTL.
 630         *
 631         * The decrement is ordered by the flush_tlb_range(), such that
 632         * mm_tlb_flush_pending() will not return false unless all flushes have
 633         * completed.
 634         */
 635}
 636
 637static inline void dec_tlb_flush_pending(struct mm_struct *mm)
 638{
 639        /*
 640         * See inc_tlb_flush_pending().
 641         *
 642         * This cannot be smp_mb__before_atomic() because smp_mb() simply does
 643         * not order against TLB invalidate completion, which is what we need.
 644         *
 645         * Therefore we must rely on tlb_flush_*() to guarantee order.
 646         */
 647        atomic_dec(&mm->tlb_flush_pending);
 648}
 649
 650static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
 651{
 652        /*
 653         * Must be called after having acquired the PTL; orders against that
 654         * PTLs release and therefore ensures that if we observe the modified
 655         * PTE we must also observe the increment from inc_tlb_flush_pending().
 656         *
 657         * That is, it only guarantees to return true if there is a flush
 658         * pending for _this_ PTL.
 659         */
 660        return atomic_read(&mm->tlb_flush_pending);
 661}
 662
 663static inline bool mm_tlb_flush_nested(struct mm_struct *mm)
 664{
 665        /*
 666         * Similar to mm_tlb_flush_pending(), we must have acquired the PTL
 667         * for which there is a TLB flush pending in order to guarantee
 668         * we've seen both that PTE modification and the increment.
 669         *
 670         * (no requirement on actually still holding the PTL, that is irrelevant)
 671         */
 672        return atomic_read(&mm->tlb_flush_pending) > 1;
 673}
 674
 675struct vm_fault;
 676
 677/**
 678 * typedef vm_fault_t - Return type for page fault handlers.
 679 *
 680 * Page fault handlers return a bitmask of %VM_FAULT values.
 681 */
 682typedef __bitwise unsigned int vm_fault_t;
 683
 684/**
 685 * enum vm_fault_reason - Page fault handlers return a bitmask of
 686 * these values to tell the core VM what happened when handling the
 687 * fault. Used to decide whether a process gets delivered SIGBUS or
 688 * just gets major/minor fault counters bumped up.
 689 *
 690 * @VM_FAULT_OOM:               Out Of Memory
 691 * @VM_FAULT_SIGBUS:            Bad access
 692 * @VM_FAULT_MAJOR:             Page read from storage
 693 * @VM_FAULT_WRITE:             Special case for get_user_pages
 694 * @VM_FAULT_HWPOISON:          Hit poisoned small page
 695 * @VM_FAULT_HWPOISON_LARGE:    Hit poisoned large page. Index encoded
 696 *                              in upper bits
 697 * @VM_FAULT_SIGSEGV:           segmentation fault
 698 * @VM_FAULT_NOPAGE:            ->fault installed the pte, not return page
 699 * @VM_FAULT_LOCKED:            ->fault locked the returned page
 700 * @VM_FAULT_RETRY:             ->fault blocked, must retry
 701 * @VM_FAULT_FALLBACK:          huge page fault failed, fall back to small
 702 * @VM_FAULT_DONE_COW:          ->fault has fully handled COW
 703 * @VM_FAULT_NEEDDSYNC:         ->fault did not modify page tables and needs
 704 *                              fsync() to complete (for synchronous page faults
 705 *                              in DAX)
 706 * @VM_FAULT_HINDEX_MASK:       mask HINDEX value
 707 *
 708 */
 709enum vm_fault_reason {
 710        VM_FAULT_OOM            = (__force vm_fault_t)0x000001,
 711        VM_FAULT_SIGBUS         = (__force vm_fault_t)0x000002,
 712        VM_FAULT_MAJOR          = (__force vm_fault_t)0x000004,
 713        VM_FAULT_WRITE          = (__force vm_fault_t)0x000008,
 714        VM_FAULT_HWPOISON       = (__force vm_fault_t)0x000010,
 715        VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
 716        VM_FAULT_SIGSEGV        = (__force vm_fault_t)0x000040,
 717        VM_FAULT_NOPAGE         = (__force vm_fault_t)0x000100,
 718        VM_FAULT_LOCKED         = (__force vm_fault_t)0x000200,
 719        VM_FAULT_RETRY          = (__force vm_fault_t)0x000400,
 720        VM_FAULT_FALLBACK       = (__force vm_fault_t)0x000800,
 721        VM_FAULT_DONE_COW       = (__force vm_fault_t)0x001000,
 722        VM_FAULT_NEEDDSYNC      = (__force vm_fault_t)0x002000,
 723        VM_FAULT_HINDEX_MASK    = (__force vm_fault_t)0x0f0000,
 724};
 725
 726/* Encode hstate index for a hwpoisoned large page */
 727#define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
 728#define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
 729
 730#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS |        \
 731                        VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON |  \
 732                        VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
 733
 734#define VM_FAULT_RESULT_TRACE \
 735        { VM_FAULT_OOM,                 "OOM" },        \
 736        { VM_FAULT_SIGBUS,              "SIGBUS" },     \
 737        { VM_FAULT_MAJOR,               "MAJOR" },      \
 738        { VM_FAULT_WRITE,               "WRITE" },      \
 739        { VM_FAULT_HWPOISON,            "HWPOISON" },   \
 740        { VM_FAULT_HWPOISON_LARGE,      "HWPOISON_LARGE" },     \
 741        { VM_FAULT_SIGSEGV,             "SIGSEGV" },    \
 742        { VM_FAULT_NOPAGE,              "NOPAGE" },     \
 743        { VM_FAULT_LOCKED,              "LOCKED" },     \
 744        { VM_FAULT_RETRY,               "RETRY" },      \
 745        { VM_FAULT_FALLBACK,            "FALLBACK" },   \
 746        { VM_FAULT_DONE_COW,            "DONE_COW" },   \
 747        { VM_FAULT_NEEDDSYNC,           "NEEDDSYNC" }
 748
 749struct vm_special_mapping {
 750        const char *name;       /* The name, e.g. "[vdso]". */
 751
 752        /*
 753         * If .fault is not provided, this points to a
 754         * NULL-terminated array of pages that back the special mapping.
 755         *
 756         * This must not be NULL unless .fault is provided.
 757         */
 758        struct page **pages;
 759
 760        /*
 761         * If non-NULL, then this is called to resolve page faults
 762         * on the special mapping.  If used, .pages is not checked.
 763         */
 764        vm_fault_t (*fault)(const struct vm_special_mapping *sm,
 765                                struct vm_area_struct *vma,
 766                                struct vm_fault *vmf);
 767
 768        int (*mremap)(const struct vm_special_mapping *sm,
 769                     struct vm_area_struct *new_vma);
 770};
 771
 772enum tlb_flush_reason {
 773        TLB_FLUSH_ON_TASK_SWITCH,
 774        TLB_REMOTE_SHOOTDOWN,
 775        TLB_LOCAL_SHOOTDOWN,
 776        TLB_LOCAL_MM_SHOOTDOWN,
 777        TLB_REMOTE_SEND_IPI,
 778        NR_TLB_FLUSH_REASONS,
 779};
 780
 781 /*
 782  * A swap entry has to fit into a "unsigned long", as the entry is hidden
 783  * in the "index" field of the swapper address space.
 784  */
 785typedef struct {
 786        unsigned long val;
 787} swp_entry_t;
 788
 789#endif /* _LINUX_MM_TYPES_H */
 790