linux/include/linux/pgtable.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_PGTABLE_H
   3#define _LINUX_PGTABLE_H
   4
   5#include <linux/pfn.h>
   6#include <asm/pgtable.h>
   7
   8#ifndef __ASSEMBLY__
   9#ifdef CONFIG_MMU
  10
  11#include <linux/mm_types.h>
  12#include <linux/bug.h>
  13#include <linux/errno.h>
  14#include <asm-generic/pgtable_uffd.h>
  15
  16#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
  17        defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
  18#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
  19#endif
  20
  21/*
  22 * On almost all architectures and configurations, 0 can be used as the
  23 * upper ceiling to free_pgtables(): on many architectures it has the same
  24 * effect as using TASK_SIZE.  However, there is one configuration which
  25 * must impose a more careful limit, to avoid freeing kernel pgtables.
  26 */
  27#ifndef USER_PGTABLES_CEILING
  28#define USER_PGTABLES_CEILING   0UL
  29#endif
  30
  31/*
  32 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
  33 *
  34 * The pXx_index() functions return the index of the entry in the page
  35 * table page which would control the given virtual address
  36 *
  37 * As these functions may be used by the same code for different levels of
  38 * the page table folding, they are always available, regardless of
  39 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
  40 * because in such cases PTRS_PER_PxD equals 1.
  41 */
  42
  43static inline unsigned long pte_index(unsigned long address)
  44{
  45        return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
  46}
  47
  48#ifndef pmd_index
  49static inline unsigned long pmd_index(unsigned long address)
  50{
  51        return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
  52}
  53#define pmd_index pmd_index
  54#endif
  55
  56#ifndef pud_index
  57static inline unsigned long pud_index(unsigned long address)
  58{
  59        return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
  60}
  61#define pud_index pud_index
  62#endif
  63
  64#ifndef pgd_index
  65/* Must be a compile-time constant, so implement it as a macro */
  66#define pgd_index(a)  (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
  67#endif
  68
  69#ifndef pte_offset_kernel
  70static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
  71{
  72        return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
  73}
  74#define pte_offset_kernel pte_offset_kernel
  75#endif
  76
  77#if defined(CONFIG_HIGHPTE)
  78#define pte_offset_map(dir, address)                            \
  79        ((pte_t *)kmap_atomic(pmd_page(*(dir))) +               \
  80         pte_index((address)))
  81#define pte_unmap(pte) kunmap_atomic((pte))
  82#else
  83#define pte_offset_map(dir, address)    pte_offset_kernel((dir), (address))
  84#define pte_unmap(pte) ((void)(pte))    /* NOP */
  85#endif
  86
  87/* Find an entry in the second-level page table.. */
  88#ifndef pmd_offset
  89static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
  90{
  91        return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
  92}
  93#define pmd_offset pmd_offset
  94#endif
  95
  96#ifndef pud_offset
  97static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
  98{
  99        return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address);
 100}
 101#define pud_offset pud_offset
 102#endif
 103
 104static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
 105{
 106        return (pgd + pgd_index(address));
 107};
 108
 109/*
 110 * a shortcut to get a pgd_t in a given mm
 111 */
 112#ifndef pgd_offset
 113#define pgd_offset(mm, address)         pgd_offset_pgd((mm)->pgd, (address))
 114#endif
 115
 116/*
 117 * a shortcut which implies the use of the kernel's pgd, instead
 118 * of a process's
 119 */
 120#ifndef pgd_offset_k
 121#define pgd_offset_k(address)           pgd_offset(&init_mm, (address))
 122#endif
 123
 124/*
 125 * In many cases it is known that a virtual address is mapped at PMD or PTE
 126 * level, so instead of traversing all the page table levels, we can get a
 127 * pointer to the PMD entry in user or kernel page table or translate a virtual
 128 * address to the pointer in the PTE in the kernel page tables with simple
 129 * helpers.
 130 */
 131static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
 132{
 133        return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
 134}
 135
 136static inline pmd_t *pmd_off_k(unsigned long va)
 137{
 138        return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
 139}
 140
 141static inline pte_t *virt_to_kpte(unsigned long vaddr)
 142{
 143        pmd_t *pmd = pmd_off_k(vaddr);
 144
 145        return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
 146}
 147
 148#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
 149extern int ptep_set_access_flags(struct vm_area_struct *vma,
 150                                 unsigned long address, pte_t *ptep,
 151                                 pte_t entry, int dirty);
 152#endif
 153
 154#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
 155#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 156extern int pmdp_set_access_flags(struct vm_area_struct *vma,
 157                                 unsigned long address, pmd_t *pmdp,
 158                                 pmd_t entry, int dirty);
 159extern int pudp_set_access_flags(struct vm_area_struct *vma,
 160                                 unsigned long address, pud_t *pudp,
 161                                 pud_t entry, int dirty);
 162#else
 163static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
 164                                        unsigned long address, pmd_t *pmdp,
 165                                        pmd_t entry, int dirty)
 166{
 167        BUILD_BUG();
 168        return 0;
 169}
 170static inline int pudp_set_access_flags(struct vm_area_struct *vma,
 171                                        unsigned long address, pud_t *pudp,
 172                                        pud_t entry, int dirty)
 173{
 174        BUILD_BUG();
 175        return 0;
 176}
 177#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 178#endif
 179
 180#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 181static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
 182                                            unsigned long address,
 183                                            pte_t *ptep)
 184{
 185        pte_t pte = *ptep;
 186        int r = 1;
 187        if (!pte_young(pte))
 188                r = 0;
 189        else
 190                set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
 191        return r;
 192}
 193#endif
 194
 195#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
 196#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 197static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
 198                                            unsigned long address,
 199                                            pmd_t *pmdp)
 200{
 201        pmd_t pmd = *pmdp;
 202        int r = 1;
 203        if (!pmd_young(pmd))
 204                r = 0;
 205        else
 206                set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
 207        return r;
 208}
 209#else
 210static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
 211                                            unsigned long address,
 212                                            pmd_t *pmdp)
 213{
 214        BUILD_BUG();
 215        return 0;
 216}
 217#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 218#endif
 219
 220#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
 221int ptep_clear_flush_young(struct vm_area_struct *vma,
 222                           unsigned long address, pte_t *ptep);
 223#endif
 224
 225#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
 226#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 227extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
 228                                  unsigned long address, pmd_t *pmdp);
 229#else
 230/*
 231 * Despite relevant to THP only, this API is called from generic rmap code
 232 * under PageTransHuge(), hence needs a dummy implementation for !THP
 233 */
 234static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
 235                                         unsigned long address, pmd_t *pmdp)
 236{
 237        BUILD_BUG();
 238        return 0;
 239}
 240#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 241#endif
 242
 243#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
 244static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
 245                                       unsigned long address,
 246                                       pte_t *ptep)
 247{
 248        pte_t pte = *ptep;
 249        pte_clear(mm, address, ptep);
 250        return pte;
 251}
 252#endif
 253
 254#ifndef __HAVE_ARCH_PTEP_GET
 255static inline pte_t ptep_get(pte_t *ptep)
 256{
 257        return READ_ONCE(*ptep);
 258}
 259#endif
 260
 261#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 262#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
 263static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
 264                                            unsigned long address,
 265                                            pmd_t *pmdp)
 266{
 267        pmd_t pmd = *pmdp;
 268        pmd_clear(pmdp);
 269        return pmd;
 270}
 271#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
 272#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
 273static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
 274                                            unsigned long address,
 275                                            pud_t *pudp)
 276{
 277        pud_t pud = *pudp;
 278
 279        pud_clear(pudp);
 280        return pud;
 281}
 282#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
 283#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 284
 285#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 286#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
 287static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
 288                                            unsigned long address, pmd_t *pmdp,
 289                                            int full)
 290{
 291        return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
 292}
 293#endif
 294
 295#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
 296static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
 297                                            unsigned long address, pud_t *pudp,
 298                                            int full)
 299{
 300        return pudp_huge_get_and_clear(mm, address, pudp);
 301}
 302#endif
 303#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 304
 305#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
 306static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
 307                                            unsigned long address, pte_t *ptep,
 308                                            int full)
 309{
 310        pte_t pte;
 311        pte = ptep_get_and_clear(mm, address, ptep);
 312        return pte;
 313}
 314#endif
 315
 316
 317/*
 318 * If two threads concurrently fault at the same page, the thread that
 319 * won the race updates the PTE and its local TLB/Cache. The other thread
 320 * gives up, simply does nothing, and continues; on architectures where
 321 * software can update TLB,  local TLB can be updated here to avoid next page
 322 * fault. This function updates TLB only, do nothing with cache or others.
 323 * It is the difference with function update_mmu_cache.
 324 */
 325#ifndef __HAVE_ARCH_UPDATE_MMU_TLB
 326static inline void update_mmu_tlb(struct vm_area_struct *vma,
 327                                unsigned long address, pte_t *ptep)
 328{
 329}
 330#define __HAVE_ARCH_UPDATE_MMU_TLB
 331#endif
 332
 333/*
 334 * Some architectures may be able to avoid expensive synchronization
 335 * primitives when modifications are made to PTE's which are already
 336 * not present, or in the process of an address space destruction.
 337 */
 338#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
 339static inline void pte_clear_not_present_full(struct mm_struct *mm,
 340                                              unsigned long address,
 341                                              pte_t *ptep,
 342                                              int full)
 343{
 344        pte_clear(mm, address, ptep);
 345}
 346#endif
 347
 348#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
 349extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
 350                              unsigned long address,
 351                              pte_t *ptep);
 352#endif
 353
 354#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
 355extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
 356                              unsigned long address,
 357                              pmd_t *pmdp);
 358extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
 359                              unsigned long address,
 360                              pud_t *pudp);
 361#endif
 362
 363#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
 364struct mm_struct;
 365static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
 366{
 367        pte_t old_pte = *ptep;
 368        set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
 369}
 370#endif
 371
 372/*
 373 * On some architectures hardware does not set page access bit when accessing
 374 * memory page, it is responsibilty of software setting this bit. It brings
 375 * out extra page fault penalty to track page access bit. For optimization page
 376 * access bit can be set during all page fault flow on these arches.
 377 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
 378 * where software maintains page access bit.
 379 */
 380#ifndef pte_sw_mkyoung
 381static inline pte_t pte_sw_mkyoung(pte_t pte)
 382{
 383        return pte;
 384}
 385#define pte_sw_mkyoung  pte_sw_mkyoung
 386#endif
 387
 388#ifndef pte_savedwrite
 389#define pte_savedwrite pte_write
 390#endif
 391
 392#ifndef pte_mk_savedwrite
 393#define pte_mk_savedwrite pte_mkwrite
 394#endif
 395
 396#ifndef pte_clear_savedwrite
 397#define pte_clear_savedwrite pte_wrprotect
 398#endif
 399
 400#ifndef pmd_savedwrite
 401#define pmd_savedwrite pmd_write
 402#endif
 403
 404#ifndef pmd_mk_savedwrite
 405#define pmd_mk_savedwrite pmd_mkwrite
 406#endif
 407
 408#ifndef pmd_clear_savedwrite
 409#define pmd_clear_savedwrite pmd_wrprotect
 410#endif
 411
 412#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
 413#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 414static inline void pmdp_set_wrprotect(struct mm_struct *mm,
 415                                      unsigned long address, pmd_t *pmdp)
 416{
 417        pmd_t old_pmd = *pmdp;
 418        set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
 419}
 420#else
 421static inline void pmdp_set_wrprotect(struct mm_struct *mm,
 422                                      unsigned long address, pmd_t *pmdp)
 423{
 424        BUILD_BUG();
 425}
 426#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 427#endif
 428#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
 429#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 430static inline void pudp_set_wrprotect(struct mm_struct *mm,
 431                                      unsigned long address, pud_t *pudp)
 432{
 433        pud_t old_pud = *pudp;
 434
 435        set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
 436}
 437#else
 438static inline void pudp_set_wrprotect(struct mm_struct *mm,
 439                                      unsigned long address, pud_t *pudp)
 440{
 441        BUILD_BUG();
 442}
 443#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
 444#endif
 445
 446#ifndef pmdp_collapse_flush
 447#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 448extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
 449                                 unsigned long address, pmd_t *pmdp);
 450#else
 451static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
 452                                        unsigned long address,
 453                                        pmd_t *pmdp)
 454{
 455        BUILD_BUG();
 456        return *pmdp;
 457}
 458#define pmdp_collapse_flush pmdp_collapse_flush
 459#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 460#endif
 461
 462#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
 463extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
 464                                       pgtable_t pgtable);
 465#endif
 466
 467#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
 468extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
 469#endif
 470
 471#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 472/*
 473 * This is an implementation of pmdp_establish() that is only suitable for an
 474 * architecture that doesn't have hardware dirty/accessed bits. In this case we
 475 * can't race with CPU which sets these bits and non-atomic aproach is fine.
 476 */
 477static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
 478                unsigned long address, pmd_t *pmdp, pmd_t pmd)
 479{
 480        pmd_t old_pmd = *pmdp;
 481        set_pmd_at(vma->vm_mm, address, pmdp, pmd);
 482        return old_pmd;
 483}
 484#endif
 485
 486#ifndef __HAVE_ARCH_PMDP_INVALIDATE
 487extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
 488                            pmd_t *pmdp);
 489#endif
 490
 491#ifndef __HAVE_ARCH_PTE_SAME
 492static inline int pte_same(pte_t pte_a, pte_t pte_b)
 493{
 494        return pte_val(pte_a) == pte_val(pte_b);
 495}
 496#endif
 497
 498#ifndef __HAVE_ARCH_PTE_UNUSED
 499/*
 500 * Some architectures provide facilities to virtualization guests
 501 * so that they can flag allocated pages as unused. This allows the
 502 * host to transparently reclaim unused pages. This function returns
 503 * whether the pte's page is unused.
 504 */
 505static inline int pte_unused(pte_t pte)
 506{
 507        return 0;
 508}
 509#endif
 510
 511#ifndef pte_access_permitted
 512#define pte_access_permitted(pte, write) \
 513        (pte_present(pte) && (!(write) || pte_write(pte)))
 514#endif
 515
 516#ifndef pmd_access_permitted
 517#define pmd_access_permitted(pmd, write) \
 518        (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
 519#endif
 520
 521#ifndef pud_access_permitted
 522#define pud_access_permitted(pud, write) \
 523        (pud_present(pud) && (!(write) || pud_write(pud)))
 524#endif
 525
 526#ifndef p4d_access_permitted
 527#define p4d_access_permitted(p4d, write) \
 528        (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
 529#endif
 530
 531#ifndef pgd_access_permitted
 532#define pgd_access_permitted(pgd, write) \
 533        (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
 534#endif
 535
 536#ifndef __HAVE_ARCH_PMD_SAME
 537static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
 538{
 539        return pmd_val(pmd_a) == pmd_val(pmd_b);
 540}
 541
 542static inline int pud_same(pud_t pud_a, pud_t pud_b)
 543{
 544        return pud_val(pud_a) == pud_val(pud_b);
 545}
 546#endif
 547
 548#ifndef __HAVE_ARCH_P4D_SAME
 549static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
 550{
 551        return p4d_val(p4d_a) == p4d_val(p4d_b);
 552}
 553#endif
 554
 555#ifndef __HAVE_ARCH_PGD_SAME
 556static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
 557{
 558        return pgd_val(pgd_a) == pgd_val(pgd_b);
 559}
 560#endif
 561
 562/*
 563 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
 564 * TLB flush will be required as a result of the "set". For example, use
 565 * in scenarios where it is known ahead of time that the routine is
 566 * setting non-present entries, or re-setting an existing entry to the
 567 * same value. Otherwise, use the typical "set" helpers and flush the
 568 * TLB.
 569 */
 570#define set_pte_safe(ptep, pte) \
 571({ \
 572        WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
 573        set_pte(ptep, pte); \
 574})
 575
 576#define set_pmd_safe(pmdp, pmd) \
 577({ \
 578        WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
 579        set_pmd(pmdp, pmd); \
 580})
 581
 582#define set_pud_safe(pudp, pud) \
 583({ \
 584        WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
 585        set_pud(pudp, pud); \
 586})
 587
 588#define set_p4d_safe(p4dp, p4d) \
 589({ \
 590        WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
 591        set_p4d(p4dp, p4d); \
 592})
 593
 594#define set_pgd_safe(pgdp, pgd) \
 595({ \
 596        WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
 597        set_pgd(pgdp, pgd); \
 598})
 599
 600#ifndef __HAVE_ARCH_DO_SWAP_PAGE
 601/*
 602 * Some architectures support metadata associated with a page. When a
 603 * page is being swapped out, this metadata must be saved so it can be
 604 * restored when the page is swapped back in. SPARC M7 and newer
 605 * processors support an ADI (Application Data Integrity) tag for the
 606 * page as metadata for the page. arch_do_swap_page() can restore this
 607 * metadata when a page is swapped back in.
 608 */
 609static inline void arch_do_swap_page(struct mm_struct *mm,
 610                                     struct vm_area_struct *vma,
 611                                     unsigned long addr,
 612                                     pte_t pte, pte_t oldpte)
 613{
 614
 615}
 616#endif
 617
 618#ifndef __HAVE_ARCH_UNMAP_ONE
 619/*
 620 * Some architectures support metadata associated with a page. When a
 621 * page is being swapped out, this metadata must be saved so it can be
 622 * restored when the page is swapped back in. SPARC M7 and newer
 623 * processors support an ADI (Application Data Integrity) tag for the
 624 * page as metadata for the page. arch_unmap_one() can save this
 625 * metadata on a swap-out of a page.
 626 */
 627static inline int arch_unmap_one(struct mm_struct *mm,
 628                                  struct vm_area_struct *vma,
 629                                  unsigned long addr,
 630                                  pte_t orig_pte)
 631{
 632        return 0;
 633}
 634#endif
 635
 636/*
 637 * Allow architectures to preserve additional metadata associated with
 638 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
 639 * prototypes must be defined in the arch-specific asm/pgtable.h file.
 640 */
 641#ifndef __HAVE_ARCH_PREPARE_TO_SWAP
 642static inline int arch_prepare_to_swap(struct page *page)
 643{
 644        return 0;
 645}
 646#endif
 647
 648#ifndef __HAVE_ARCH_SWAP_INVALIDATE
 649static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
 650{
 651}
 652
 653static inline void arch_swap_invalidate_area(int type)
 654{
 655}
 656#endif
 657
 658#ifndef __HAVE_ARCH_SWAP_RESTORE
 659static inline void arch_swap_restore(swp_entry_t entry, struct page *page)
 660{
 661}
 662#endif
 663
 664#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
 665#define pgd_offset_gate(mm, addr)       pgd_offset(mm, addr)
 666#endif
 667
 668#ifndef __HAVE_ARCH_MOVE_PTE
 669#define move_pte(pte, prot, old_addr, new_addr) (pte)
 670#endif
 671
 672#ifndef pte_accessible
 673# define pte_accessible(mm, pte)        ((void)(pte), 1)
 674#endif
 675
 676#ifndef flush_tlb_fix_spurious_fault
 677#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
 678#endif
 679
 680/*
 681 * When walking page tables, get the address of the next boundary,
 682 * or the end address of the range if that comes earlier.  Although no
 683 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
 684 */
 685
 686#define pgd_addr_end(addr, end)                                         \
 687({      unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;  \
 688        (__boundary - 1 < (end) - 1)? __boundary: (end);                \
 689})
 690
 691#ifndef p4d_addr_end
 692#define p4d_addr_end(addr, end)                                         \
 693({      unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;      \
 694        (__boundary - 1 < (end) - 1)? __boundary: (end);                \
 695})
 696#endif
 697
 698#ifndef pud_addr_end
 699#define pud_addr_end(addr, end)                                         \
 700({      unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;      \
 701        (__boundary - 1 < (end) - 1)? __boundary: (end);                \
 702})
 703#endif
 704
 705#ifndef pmd_addr_end
 706#define pmd_addr_end(addr, end)                                         \
 707({      unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;      \
 708        (__boundary - 1 < (end) - 1)? __boundary: (end);                \
 709})
 710#endif
 711
 712/*
 713 * When walking page tables, we usually want to skip any p?d_none entries;
 714 * and any p?d_bad entries - reporting the error before resetting to none.
 715 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
 716 */
 717void pgd_clear_bad(pgd_t *);
 718
 719#ifndef __PAGETABLE_P4D_FOLDED
 720void p4d_clear_bad(p4d_t *);
 721#else
 722#define p4d_clear_bad(p4d)        do { } while (0)
 723#endif
 724
 725#ifndef __PAGETABLE_PUD_FOLDED
 726void pud_clear_bad(pud_t *);
 727#else
 728#define pud_clear_bad(p4d)        do { } while (0)
 729#endif
 730
 731void pmd_clear_bad(pmd_t *);
 732
 733static inline int pgd_none_or_clear_bad(pgd_t *pgd)
 734{
 735        if (pgd_none(*pgd))
 736                return 1;
 737        if (unlikely(pgd_bad(*pgd))) {
 738                pgd_clear_bad(pgd);
 739                return 1;
 740        }
 741        return 0;
 742}
 743
 744static inline int p4d_none_or_clear_bad(p4d_t *p4d)
 745{
 746        if (p4d_none(*p4d))
 747                return 1;
 748        if (unlikely(p4d_bad(*p4d))) {
 749                p4d_clear_bad(p4d);
 750                return 1;
 751        }
 752        return 0;
 753}
 754
 755static inline int pud_none_or_clear_bad(pud_t *pud)
 756{
 757        if (pud_none(*pud))
 758                return 1;
 759        if (unlikely(pud_bad(*pud))) {
 760                pud_clear_bad(pud);
 761                return 1;
 762        }
 763        return 0;
 764}
 765
 766static inline int pmd_none_or_clear_bad(pmd_t *pmd)
 767{
 768        if (pmd_none(*pmd))
 769                return 1;
 770        if (unlikely(pmd_bad(*pmd))) {
 771                pmd_clear_bad(pmd);
 772                return 1;
 773        }
 774        return 0;
 775}
 776
 777static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
 778                                             unsigned long addr,
 779                                             pte_t *ptep)
 780{
 781        /*
 782         * Get the current pte state, but zero it out to make it
 783         * non-present, preventing the hardware from asynchronously
 784         * updating it.
 785         */
 786        return ptep_get_and_clear(vma->vm_mm, addr, ptep);
 787}
 788
 789static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
 790                                             unsigned long addr,
 791                                             pte_t *ptep, pte_t pte)
 792{
 793        /*
 794         * The pte is non-present, so there's no hardware state to
 795         * preserve.
 796         */
 797        set_pte_at(vma->vm_mm, addr, ptep, pte);
 798}
 799
 800#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
 801/*
 802 * Start a pte protection read-modify-write transaction, which
 803 * protects against asynchronous hardware modifications to the pte.
 804 * The intention is not to prevent the hardware from making pte
 805 * updates, but to prevent any updates it may make from being lost.
 806 *
 807 * This does not protect against other software modifications of the
 808 * pte; the appropriate pte lock must be held over the transation.
 809 *
 810 * Note that this interface is intended to be batchable, meaning that
 811 * ptep_modify_prot_commit may not actually update the pte, but merely
 812 * queue the update to be done at some later time.  The update must be
 813 * actually committed before the pte lock is released, however.
 814 */
 815static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
 816                                           unsigned long addr,
 817                                           pte_t *ptep)
 818{
 819        return __ptep_modify_prot_start(vma, addr, ptep);
 820}
 821
 822/*
 823 * Commit an update to a pte, leaving any hardware-controlled bits in
 824 * the PTE unmodified.
 825 */
 826static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
 827                                           unsigned long addr,
 828                                           pte_t *ptep, pte_t old_pte, pte_t pte)
 829{
 830        __ptep_modify_prot_commit(vma, addr, ptep, pte);
 831}
 832#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
 833#endif /* CONFIG_MMU */
 834
 835/*
 836 * No-op macros that just return the current protection value. Defined here
 837 * because these macros can be used even if CONFIG_MMU is not defined.
 838 */
 839
 840#ifndef pgprot_nx
 841#define pgprot_nx(prot) (prot)
 842#endif
 843
 844#ifndef pgprot_noncached
 845#define pgprot_noncached(prot)  (prot)
 846#endif
 847
 848#ifndef pgprot_writecombine
 849#define pgprot_writecombine pgprot_noncached
 850#endif
 851
 852#ifndef pgprot_writethrough
 853#define pgprot_writethrough pgprot_noncached
 854#endif
 855
 856#ifndef pgprot_device
 857#define pgprot_device pgprot_noncached
 858#endif
 859
 860#ifdef CONFIG_MMU
 861#ifndef pgprot_modify
 862#define pgprot_modify pgprot_modify
 863static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
 864{
 865        if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
 866                newprot = pgprot_noncached(newprot);
 867        if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
 868                newprot = pgprot_writecombine(newprot);
 869        if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
 870                newprot = pgprot_device(newprot);
 871        return newprot;
 872}
 873#endif
 874#endif /* CONFIG_MMU */
 875
 876#ifndef pgprot_encrypted
 877#define pgprot_encrypted(prot)  (prot)
 878#endif
 879
 880#ifndef pgprot_decrypted
 881#define pgprot_decrypted(prot)  (prot)
 882#endif
 883
 884/*
 885 * A facility to provide lazy MMU batching.  This allows PTE updates and
 886 * page invalidations to be delayed until a call to leave lazy MMU mode
 887 * is issued.  Some architectures may benefit from doing this, and it is
 888 * beneficial for both shadow and direct mode hypervisors, which may batch
 889 * the PTE updates which happen during this window.  Note that using this
 890 * interface requires that read hazards be removed from the code.  A read
 891 * hazard could result in the direct mode hypervisor case, since the actual
 892 * write to the page tables may not yet have taken place, so reads though
 893 * a raw PTE pointer after it has been modified are not guaranteed to be
 894 * up to date.  This mode can only be entered and left under the protection of
 895 * the page table locks for all page tables which may be modified.  In the UP
 896 * case, this is required so that preemption is disabled, and in the SMP case,
 897 * it must synchronize the delayed page table writes properly on other CPUs.
 898 */
 899#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
 900#define arch_enter_lazy_mmu_mode()      do {} while (0)
 901#define arch_leave_lazy_mmu_mode()      do {} while (0)
 902#define arch_flush_lazy_mmu_mode()      do {} while (0)
 903#endif
 904
 905/*
 906 * A facility to provide batching of the reload of page tables and
 907 * other process state with the actual context switch code for
 908 * paravirtualized guests.  By convention, only one of the batched
 909 * update (lazy) modes (CPU, MMU) should be active at any given time,
 910 * entry should never be nested, and entry and exits should always be
 911 * paired.  This is for sanity of maintaining and reasoning about the
 912 * kernel code.  In this case, the exit (end of the context switch) is
 913 * in architecture-specific code, and so doesn't need a generic
 914 * definition.
 915 */
 916#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
 917#define arch_start_context_switch(prev) do {} while (0)
 918#endif
 919
 920#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
 921#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
 922static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
 923{
 924        return pmd;
 925}
 926
 927static inline int pmd_swp_soft_dirty(pmd_t pmd)
 928{
 929        return 0;
 930}
 931
 932static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
 933{
 934        return pmd;
 935}
 936#endif
 937#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
 938static inline int pte_soft_dirty(pte_t pte)
 939{
 940        return 0;
 941}
 942
 943static inline int pmd_soft_dirty(pmd_t pmd)
 944{
 945        return 0;
 946}
 947
 948static inline pte_t pte_mksoft_dirty(pte_t pte)
 949{
 950        return pte;
 951}
 952
 953static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
 954{
 955        return pmd;
 956}
 957
 958static inline pte_t pte_clear_soft_dirty(pte_t pte)
 959{
 960        return pte;
 961}
 962
 963static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
 964{
 965        return pmd;
 966}
 967
 968static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
 969{
 970        return pte;
 971}
 972
 973static inline int pte_swp_soft_dirty(pte_t pte)
 974{
 975        return 0;
 976}
 977
 978static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
 979{
 980        return pte;
 981}
 982
 983static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
 984{
 985        return pmd;
 986}
 987
 988static inline int pmd_swp_soft_dirty(pmd_t pmd)
 989{
 990        return 0;
 991}
 992
 993static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
 994{
 995        return pmd;
 996}
 997#endif
 998
 999#ifndef __HAVE_PFNMAP_TRACKING
1000/*
1001 * Interfaces that can be used by architecture code to keep track of
1002 * memory type of pfn mappings specified by the remap_pfn_range,
1003 * vmf_insert_pfn.
1004 */
1005
1006/*
1007 * track_pfn_remap is called when a _new_ pfn mapping is being established
1008 * by remap_pfn_range() for physical range indicated by pfn and size.
1009 */
1010static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1011                                  unsigned long pfn, unsigned long addr,
1012                                  unsigned long size)
1013{
1014        return 0;
1015}
1016
1017/*
1018 * track_pfn_insert is called when a _new_ single pfn is established
1019 * by vmf_insert_pfn().
1020 */
1021static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1022                                    pfn_t pfn)
1023{
1024}
1025
1026/*
1027 * track_pfn_copy is called when vma that is covering the pfnmap gets
1028 * copied through copy_page_range().
1029 */
1030static inline int track_pfn_copy(struct vm_area_struct *vma)
1031{
1032        return 0;
1033}
1034
1035/*
1036 * untrack_pfn is called while unmapping a pfnmap for a region.
1037 * untrack can be called for a specific region indicated by pfn and size or
1038 * can be for the entire vma (in which case pfn, size are zero).
1039 */
1040static inline void untrack_pfn(struct vm_area_struct *vma,
1041                               unsigned long pfn, unsigned long size)
1042{
1043}
1044
1045/*
1046 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
1047 */
1048static inline void untrack_pfn_moved(struct vm_area_struct *vma)
1049{
1050}
1051#else
1052extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1053                           unsigned long pfn, unsigned long addr,
1054                           unsigned long size);
1055extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1056                             pfn_t pfn);
1057extern int track_pfn_copy(struct vm_area_struct *vma);
1058extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1059                        unsigned long size);
1060extern void untrack_pfn_moved(struct vm_area_struct *vma);
1061#endif
1062
1063#ifdef __HAVE_COLOR_ZERO_PAGE
1064static inline int is_zero_pfn(unsigned long pfn)
1065{
1066        extern unsigned long zero_pfn;
1067        unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1068        return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1069}
1070
1071#define my_zero_pfn(addr)       page_to_pfn(ZERO_PAGE(addr))
1072
1073#else
1074static inline int is_zero_pfn(unsigned long pfn)
1075{
1076        extern unsigned long zero_pfn;
1077        return pfn == zero_pfn;
1078}
1079
1080static inline unsigned long my_zero_pfn(unsigned long addr)
1081{
1082        extern unsigned long zero_pfn;
1083        return zero_pfn;
1084}
1085#endif
1086
1087#ifdef CONFIG_MMU
1088
1089#ifndef CONFIG_TRANSPARENT_HUGEPAGE
1090static inline int pmd_trans_huge(pmd_t pmd)
1091{
1092        return 0;
1093}
1094#ifndef pmd_write
1095static inline int pmd_write(pmd_t pmd)
1096{
1097        BUG();
1098        return 0;
1099}
1100#endif /* pmd_write */
1101#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1102
1103#ifndef pud_write
1104static inline int pud_write(pud_t pud)
1105{
1106        BUG();
1107        return 0;
1108}
1109#endif /* pud_write */
1110
1111#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1112static inline int pmd_devmap(pmd_t pmd)
1113{
1114        return 0;
1115}
1116static inline int pud_devmap(pud_t pud)
1117{
1118        return 0;
1119}
1120static inline int pgd_devmap(pgd_t pgd)
1121{
1122        return 0;
1123}
1124#endif
1125
1126#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1127        (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1128         !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
1129static inline int pud_trans_huge(pud_t pud)
1130{
1131        return 0;
1132}
1133#endif
1134
1135/* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
1136static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
1137{
1138        pud_t pudval = READ_ONCE(*pud);
1139
1140        if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1141                return 1;
1142        if (unlikely(pud_bad(pudval))) {
1143                pud_clear_bad(pud);
1144                return 1;
1145        }
1146        return 0;
1147}
1148
1149/* See pmd_trans_unstable for discussion. */
1150static inline int pud_trans_unstable(pud_t *pud)
1151{
1152#if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
1153        defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1154        return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
1155#else
1156        return 0;
1157#endif
1158}
1159
1160#ifndef pmd_read_atomic
1161static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
1162{
1163        /*
1164         * Depend on compiler for an atomic pmd read. NOTE: this is
1165         * only going to work, if the pmdval_t isn't larger than
1166         * an unsigned long.
1167         */
1168        return *pmdp;
1169}
1170#endif
1171
1172#ifndef arch_needs_pgtable_deposit
1173#define arch_needs_pgtable_deposit() (false)
1174#endif
1175/*
1176 * This function is meant to be used by sites walking pagetables with
1177 * the mmap_lock held in read mode to protect against MADV_DONTNEED and
1178 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
1179 * into a null pmd and the transhuge page fault can convert a null pmd
1180 * into an hugepmd or into a regular pmd (if the hugepage allocation
1181 * fails). While holding the mmap_lock in read mode the pmd becomes
1182 * stable and stops changing under us only if it's not null and not a
1183 * transhuge pmd. When those races occurs and this function makes a
1184 * difference vs the standard pmd_none_or_clear_bad, the result is
1185 * undefined so behaving like if the pmd was none is safe (because it
1186 * can return none anyway). The compiler level barrier() is critically
1187 * important to compute the two checks atomically on the same pmdval.
1188 *
1189 * For 32bit kernels with a 64bit large pmd_t this automatically takes
1190 * care of reading the pmd atomically to avoid SMP race conditions
1191 * against pmd_populate() when the mmap_lock is hold for reading by the
1192 * caller (a special atomic read not done by "gcc" as in the generic
1193 * version above, is also needed when THP is disabled because the page
1194 * fault can populate the pmd from under us).
1195 */
1196static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
1197{
1198        pmd_t pmdval = pmd_read_atomic(pmd);
1199        /*
1200         * The barrier will stabilize the pmdval in a register or on
1201         * the stack so that it will stop changing under the code.
1202         *
1203         * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
1204         * pmd_read_atomic is allowed to return a not atomic pmdval
1205         * (for example pointing to an hugepage that has never been
1206         * mapped in the pmd). The below checks will only care about
1207         * the low part of the pmd with 32bit PAE x86 anyway, with the
1208         * exception of pmd_none(). So the important thing is that if
1209         * the low part of the pmd is found null, the high part will
1210         * be also null or the pmd_none() check below would be
1211         * confused.
1212         */
1213#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1214        barrier();
1215#endif
1216        /*
1217         * !pmd_present() checks for pmd migration entries
1218         *
1219         * The complete check uses is_pmd_migration_entry() in linux/swapops.h
1220         * But using that requires moving current function and pmd_trans_unstable()
1221         * to linux/swapops.h to resovle dependency, which is too much code move.
1222         *
1223         * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
1224         * because !pmd_present() pages can only be under migration not swapped
1225         * out.
1226         *
1227         * pmd_none() is preseved for future condition checks on pmd migration
1228         * entries and not confusing with this function name, although it is
1229         * redundant with !pmd_present().
1230         */
1231        if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
1232                (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
1233                return 1;
1234        if (unlikely(pmd_bad(pmdval))) {
1235                pmd_clear_bad(pmd);
1236                return 1;
1237        }
1238        return 0;
1239}
1240
1241/*
1242 * This is a noop if Transparent Hugepage Support is not built into
1243 * the kernel. Otherwise it is equivalent to
1244 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1245 * places that already verified the pmd is not none and they want to
1246 * walk ptes while holding the mmap sem in read mode (write mode don't
1247 * need this). If THP is not enabled, the pmd can't go away under the
1248 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1249 * run a pmd_trans_unstable before walking the ptes after
1250 * split_huge_pmd returns (because it may have run when the pmd become
1251 * null, but then a page fault can map in a THP and not a regular page).
1252 */
1253static inline int pmd_trans_unstable(pmd_t *pmd)
1254{
1255#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1256        return pmd_none_or_trans_huge_or_clear_bad(pmd);
1257#else
1258        return 0;
1259#endif
1260}
1261
1262#ifndef CONFIG_NUMA_BALANCING
1263/*
1264 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1265 * the only case the kernel cares is for NUMA balancing and is only ever set
1266 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1267 * _PAGE_PROTNONE so by default, implement the helper as "always no". It
1268 * is the responsibility of the caller to distinguish between PROT_NONE
1269 * protections and NUMA hinting fault protections.
1270 */
1271static inline int pte_protnone(pte_t pte)
1272{
1273        return 0;
1274}
1275
1276static inline int pmd_protnone(pmd_t pmd)
1277{
1278        return 0;
1279}
1280#endif /* CONFIG_NUMA_BALANCING */
1281
1282#endif /* CONFIG_MMU */
1283
1284#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1285
1286#ifndef __PAGETABLE_P4D_FOLDED
1287int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1288int p4d_clear_huge(p4d_t *p4d);
1289#else
1290static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1291{
1292        return 0;
1293}
1294static inline int p4d_clear_huge(p4d_t *p4d)
1295{
1296        return 0;
1297}
1298#endif /* !__PAGETABLE_P4D_FOLDED */
1299
1300int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1301int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1302int pud_clear_huge(pud_t *pud);
1303int pmd_clear_huge(pmd_t *pmd);
1304int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1305int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1306int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1307#else   /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1308static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1309{
1310        return 0;
1311}
1312static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1313{
1314        return 0;
1315}
1316static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1317{
1318        return 0;
1319}
1320static inline int p4d_clear_huge(p4d_t *p4d)
1321{
1322        return 0;
1323}
1324static inline int pud_clear_huge(pud_t *pud)
1325{
1326        return 0;
1327}
1328static inline int pmd_clear_huge(pmd_t *pmd)
1329{
1330        return 0;
1331}
1332static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1333{
1334        return 0;
1335}
1336static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1337{
1338        return 0;
1339}
1340static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1341{
1342        return 0;
1343}
1344#endif  /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1345
1346#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1347#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1348/*
1349 * ARCHes with special requirements for evicting THP backing TLB entries can
1350 * implement this. Otherwise also, it can help optimize normal TLB flush in
1351 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1352 * entire TLB if flush span is greater than a threshold, which will
1353 * likely be true for a single huge page. Thus a single THP flush will
1354 * invalidate the entire TLB which is not desirable.
1355 * e.g. see arch/arc: flush_pmd_tlb_range
1356 */
1357#define flush_pmd_tlb_range(vma, addr, end)     flush_tlb_range(vma, addr, end)
1358#define flush_pud_tlb_range(vma, addr, end)     flush_tlb_range(vma, addr, end)
1359#else
1360#define flush_pmd_tlb_range(vma, addr, end)     BUILD_BUG()
1361#define flush_pud_tlb_range(vma, addr, end)     BUILD_BUG()
1362#endif
1363#endif
1364
1365struct file;
1366int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1367                        unsigned long size, pgprot_t *vma_prot);
1368
1369#ifndef CONFIG_X86_ESPFIX64
1370static inline void init_espfix_bsp(void) { }
1371#endif
1372
1373extern void __init pgtable_cache_init(void);
1374
1375#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1376static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1377{
1378        return true;
1379}
1380
1381static inline bool arch_has_pfn_modify_check(void)
1382{
1383        return false;
1384}
1385#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1386
1387/*
1388 * Architecture PAGE_KERNEL_* fallbacks
1389 *
1390 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1391 * because they really don't support them, or the port needs to be updated to
1392 * reflect the required functionality. Below are a set of relatively safe
1393 * fallbacks, as best effort, which we can count on in lieu of the architectures
1394 * not defining them on their own yet.
1395 */
1396
1397#ifndef PAGE_KERNEL_RO
1398# define PAGE_KERNEL_RO PAGE_KERNEL
1399#endif
1400
1401#ifndef PAGE_KERNEL_EXEC
1402# define PAGE_KERNEL_EXEC PAGE_KERNEL
1403#endif
1404
1405/*
1406 * Page Table Modification bits for pgtbl_mod_mask.
1407 *
1408 * These are used by the p?d_alloc_track*() set of functions an in the generic
1409 * vmalloc/ioremap code to track at which page-table levels entries have been
1410 * modified. Based on that the code can better decide when vmalloc and ioremap
1411 * mapping changes need to be synchronized to other page-tables in the system.
1412 */
1413#define         __PGTBL_PGD_MODIFIED    0
1414#define         __PGTBL_P4D_MODIFIED    1
1415#define         __PGTBL_PUD_MODIFIED    2
1416#define         __PGTBL_PMD_MODIFIED    3
1417#define         __PGTBL_PTE_MODIFIED    4
1418
1419#define         PGTBL_PGD_MODIFIED      BIT(__PGTBL_PGD_MODIFIED)
1420#define         PGTBL_P4D_MODIFIED      BIT(__PGTBL_P4D_MODIFIED)
1421#define         PGTBL_PUD_MODIFIED      BIT(__PGTBL_PUD_MODIFIED)
1422#define         PGTBL_PMD_MODIFIED      BIT(__PGTBL_PMD_MODIFIED)
1423#define         PGTBL_PTE_MODIFIED      BIT(__PGTBL_PTE_MODIFIED)
1424
1425/* Page-Table Modification Mask */
1426typedef unsigned int pgtbl_mod_mask;
1427
1428#endif /* !__ASSEMBLY__ */
1429
1430#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1431#ifdef CONFIG_PHYS_ADDR_T_64BIT
1432/*
1433 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1434 * with physical address space extension, but falls back to
1435 * BITS_PER_LONG otherwise.
1436 */
1437#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1438#else
1439#define MAX_POSSIBLE_PHYSMEM_BITS 32
1440#endif
1441#endif
1442
1443#ifndef has_transparent_hugepage
1444#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1445#define has_transparent_hugepage() 1
1446#else
1447#define has_transparent_hugepage() 0
1448#endif
1449#endif
1450
1451/*
1452 * On some architectures it depends on the mm if the p4d/pud or pmd
1453 * layer of the page table hierarchy is folded or not.
1454 */
1455#ifndef mm_p4d_folded
1456#define mm_p4d_folded(mm)       __is_defined(__PAGETABLE_P4D_FOLDED)
1457#endif
1458
1459#ifndef mm_pud_folded
1460#define mm_pud_folded(mm)       __is_defined(__PAGETABLE_PUD_FOLDED)
1461#endif
1462
1463#ifndef mm_pmd_folded
1464#define mm_pmd_folded(mm)       __is_defined(__PAGETABLE_PMD_FOLDED)
1465#endif
1466
1467#ifndef p4d_offset_lockless
1468#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1469#endif
1470#ifndef pud_offset_lockless
1471#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1472#endif
1473#ifndef pmd_offset_lockless
1474#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1475#endif
1476
1477/*
1478 * p?d_leaf() - true if this entry is a final mapping to a physical address.
1479 * This differs from p?d_huge() by the fact that they are always available (if
1480 * the architecture supports large pages at the appropriate level) even
1481 * if CONFIG_HUGETLB_PAGE is not defined.
1482 * Only meaningful when called on a valid entry.
1483 */
1484#ifndef pgd_leaf
1485#define pgd_leaf(x)     0
1486#endif
1487#ifndef p4d_leaf
1488#define p4d_leaf(x)     0
1489#endif
1490#ifndef pud_leaf
1491#define pud_leaf(x)     0
1492#endif
1493#ifndef pmd_leaf
1494#define pmd_leaf(x)     0
1495#endif
1496
1497#endif /* _LINUX_PGTABLE_H */
1498