1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_RCULIST_H 3#define _LINUX_RCULIST_H 4 5#ifdef __KERNEL__ 6 7/* 8 * RCU-protected list version 9 */ 10#include <linux/list.h> 11#include <linux/rcupdate.h> 12 13/* 14 * Why is there no list_empty_rcu()? Because list_empty() serves this 15 * purpose. The list_empty() function fetches the RCU-protected pointer 16 * and compares it to the address of the list head, but neither dereferences 17 * this pointer itself nor provides this pointer to the caller. Therefore, 18 * it is not necessary to use rcu_dereference(), so that list_empty() can 19 * be used anywhere you would want to use a list_empty_rcu(). 20 */ 21 22/* 23 * INIT_LIST_HEAD_RCU - Initialize a list_head visible to RCU readers 24 * @list: list to be initialized 25 * 26 * You should instead use INIT_LIST_HEAD() for normal initialization and 27 * cleanup tasks, when readers have no access to the list being initialized. 28 * However, if the list being initialized is visible to readers, you 29 * need to keep the compiler from being too mischievous. 30 */ 31static inline void INIT_LIST_HEAD_RCU(struct list_head *list) 32{ 33 WRITE_ONCE(list->next, list); 34 WRITE_ONCE(list->prev, list); 35} 36 37/* 38 * return the ->next pointer of a list_head in an rcu safe 39 * way, we must not access it directly 40 */ 41#define list_next_rcu(list) (*((struct list_head __rcu **)(&(list)->next))) 42 43/** 44 * list_tail_rcu - returns the prev pointer of the head of the list 45 * @head: the head of the list 46 * 47 * Note: This should only be used with the list header, and even then 48 * only if list_del() and similar primitives are not also used on the 49 * list header. 50 */ 51#define list_tail_rcu(head) (*((struct list_head __rcu **)(&(head)->prev))) 52 53/* 54 * Check during list traversal that we are within an RCU reader 55 */ 56 57#define check_arg_count_one(dummy) 58 59#ifdef CONFIG_PROVE_RCU_LIST 60#define __list_check_rcu(dummy, cond, extra...) \ 61 ({ \ 62 check_arg_count_one(extra); \ 63 RCU_LOCKDEP_WARN(!(cond) && !rcu_read_lock_any_held(), \ 64 "RCU-list traversed in non-reader section!"); \ 65 }) 66 67#define __list_check_srcu(cond) \ 68 ({ \ 69 RCU_LOCKDEP_WARN(!(cond), \ 70 "RCU-list traversed without holding the required lock!");\ 71 }) 72#else 73#define __list_check_rcu(dummy, cond, extra...) \ 74 ({ check_arg_count_one(extra); }) 75 76#define __list_check_srcu(cond) ({ }) 77#endif 78 79/* 80 * Insert a new entry between two known consecutive entries. 81 * 82 * This is only for internal list manipulation where we know 83 * the prev/next entries already! 84 */ 85static inline void __list_add_rcu(struct list_head *new, 86 struct list_head *prev, struct list_head *next) 87{ 88 if (!__list_add_valid(new, prev, next)) 89 return; 90 91 new->next = next; 92 new->prev = prev; 93 rcu_assign_pointer(list_next_rcu(prev), new); 94 next->prev = new; 95} 96 97/** 98 * list_add_rcu - add a new entry to rcu-protected list 99 * @new: new entry to be added 100 * @head: list head to add it after 101 * 102 * Insert a new entry after the specified head. 103 * This is good for implementing stacks. 104 * 105 * The caller must take whatever precautions are necessary 106 * (such as holding appropriate locks) to avoid racing 107 * with another list-mutation primitive, such as list_add_rcu() 108 * or list_del_rcu(), running on this same list. 109 * However, it is perfectly legal to run concurrently with 110 * the _rcu list-traversal primitives, such as 111 * list_for_each_entry_rcu(). 112 */ 113static inline void list_add_rcu(struct list_head *new, struct list_head *head) 114{ 115 __list_add_rcu(new, head, head->next); 116} 117 118/** 119 * list_add_tail_rcu - add a new entry to rcu-protected list 120 * @new: new entry to be added 121 * @head: list head to add it before 122 * 123 * Insert a new entry before the specified head. 124 * This is useful for implementing queues. 125 * 126 * The caller must take whatever precautions are necessary 127 * (such as holding appropriate locks) to avoid racing 128 * with another list-mutation primitive, such as list_add_tail_rcu() 129 * or list_del_rcu(), running on this same list. 130 * However, it is perfectly legal to run concurrently with 131 * the _rcu list-traversal primitives, such as 132 * list_for_each_entry_rcu(). 133 */ 134static inline void list_add_tail_rcu(struct list_head *new, 135 struct list_head *head) 136{ 137 __list_add_rcu(new, head->prev, head); 138} 139 140/** 141 * list_del_rcu - deletes entry from list without re-initialization 142 * @entry: the element to delete from the list. 143 * 144 * Note: list_empty() on entry does not return true after this, 145 * the entry is in an undefined state. It is useful for RCU based 146 * lockfree traversal. 147 * 148 * In particular, it means that we can not poison the forward 149 * pointers that may still be used for walking the list. 150 * 151 * The caller must take whatever precautions are necessary 152 * (such as holding appropriate locks) to avoid racing 153 * with another list-mutation primitive, such as list_del_rcu() 154 * or list_add_rcu(), running on this same list. 155 * However, it is perfectly legal to run concurrently with 156 * the _rcu list-traversal primitives, such as 157 * list_for_each_entry_rcu(). 158 * 159 * Note that the caller is not permitted to immediately free 160 * the newly deleted entry. Instead, either synchronize_rcu() 161 * or call_rcu() must be used to defer freeing until an RCU 162 * grace period has elapsed. 163 */ 164static inline void list_del_rcu(struct list_head *entry) 165{ 166 __list_del_entry(entry); 167 entry->prev = LIST_POISON2; 168} 169 170/** 171 * hlist_del_init_rcu - deletes entry from hash list with re-initialization 172 * @n: the element to delete from the hash list. 173 * 174 * Note: list_unhashed() on the node return true after this. It is 175 * useful for RCU based read lockfree traversal if the writer side 176 * must know if the list entry is still hashed or already unhashed. 177 * 178 * In particular, it means that we can not poison the forward pointers 179 * that may still be used for walking the hash list and we can only 180 * zero the pprev pointer so list_unhashed() will return true after 181 * this. 182 * 183 * The caller must take whatever precautions are necessary (such as 184 * holding appropriate locks) to avoid racing with another 185 * list-mutation primitive, such as hlist_add_head_rcu() or 186 * hlist_del_rcu(), running on this same list. However, it is 187 * perfectly legal to run concurrently with the _rcu list-traversal 188 * primitives, such as hlist_for_each_entry_rcu(). 189 */ 190static inline void hlist_del_init_rcu(struct hlist_node *n) 191{ 192 if (!hlist_unhashed(n)) { 193 __hlist_del(n); 194 WRITE_ONCE(n->pprev, NULL); 195 } 196} 197 198/** 199 * list_replace_rcu - replace old entry by new one 200 * @old : the element to be replaced 201 * @new : the new element to insert 202 * 203 * The @old entry will be replaced with the @new entry atomically. 204 * Note: @old should not be empty. 205 */ 206static inline void list_replace_rcu(struct list_head *old, 207 struct list_head *new) 208{ 209 new->next = old->next; 210 new->prev = old->prev; 211 rcu_assign_pointer(list_next_rcu(new->prev), new); 212 new->next->prev = new; 213 old->prev = LIST_POISON2; 214} 215 216/** 217 * __list_splice_init_rcu - join an RCU-protected list into an existing list. 218 * @list: the RCU-protected list to splice 219 * @prev: points to the last element of the existing list 220 * @next: points to the first element of the existing list 221 * @sync: synchronize_rcu, synchronize_rcu_expedited, ... 222 * 223 * The list pointed to by @prev and @next can be RCU-read traversed 224 * concurrently with this function. 225 * 226 * Note that this function blocks. 227 * 228 * Important note: the caller must take whatever action is necessary to prevent 229 * any other updates to the existing list. In principle, it is possible to 230 * modify the list as soon as sync() begins execution. If this sort of thing 231 * becomes necessary, an alternative version based on call_rcu() could be 232 * created. But only if -really- needed -- there is no shortage of RCU API 233 * members. 234 */ 235static inline void __list_splice_init_rcu(struct list_head *list, 236 struct list_head *prev, 237 struct list_head *next, 238 void (*sync)(void)) 239{ 240 struct list_head *first = list->next; 241 struct list_head *last = list->prev; 242 243 /* 244 * "first" and "last" tracking list, so initialize it. RCU readers 245 * have access to this list, so we must use INIT_LIST_HEAD_RCU() 246 * instead of INIT_LIST_HEAD(). 247 */ 248 249 INIT_LIST_HEAD_RCU(list); 250 251 /* 252 * At this point, the list body still points to the source list. 253 * Wait for any readers to finish using the list before splicing 254 * the list body into the new list. Any new readers will see 255 * an empty list. 256 */ 257 258 sync(); 259 ASSERT_EXCLUSIVE_ACCESS(*first); 260 ASSERT_EXCLUSIVE_ACCESS(*last); 261 262 /* 263 * Readers are finished with the source list, so perform splice. 264 * The order is important if the new list is global and accessible 265 * to concurrent RCU readers. Note that RCU readers are not 266 * permitted to traverse the prev pointers without excluding 267 * this function. 268 */ 269 270 last->next = next; 271 rcu_assign_pointer(list_next_rcu(prev), first); 272 first->prev = prev; 273 next->prev = last; 274} 275 276/** 277 * list_splice_init_rcu - splice an RCU-protected list into an existing list, 278 * designed for stacks. 279 * @list: the RCU-protected list to splice 280 * @head: the place in the existing list to splice the first list into 281 * @sync: synchronize_rcu, synchronize_rcu_expedited, ... 282 */ 283static inline void list_splice_init_rcu(struct list_head *list, 284 struct list_head *head, 285 void (*sync)(void)) 286{ 287 if (!list_empty(list)) 288 __list_splice_init_rcu(list, head, head->next, sync); 289} 290 291/** 292 * list_splice_tail_init_rcu - splice an RCU-protected list into an existing 293 * list, designed for queues. 294 * @list: the RCU-protected list to splice 295 * @head: the place in the existing list to splice the first list into 296 * @sync: synchronize_rcu, synchronize_rcu_expedited, ... 297 */ 298static inline void list_splice_tail_init_rcu(struct list_head *list, 299 struct list_head *head, 300 void (*sync)(void)) 301{ 302 if (!list_empty(list)) 303 __list_splice_init_rcu(list, head->prev, head, sync); 304} 305 306/** 307 * list_entry_rcu - get the struct for this entry 308 * @ptr: the &struct list_head pointer. 309 * @type: the type of the struct this is embedded in. 310 * @member: the name of the list_head within the struct. 311 * 312 * This primitive may safely run concurrently with the _rcu list-mutation 313 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock(). 314 */ 315#define list_entry_rcu(ptr, type, member) \ 316 container_of(READ_ONCE(ptr), type, member) 317 318/* 319 * Where are list_empty_rcu() and list_first_entry_rcu()? 320 * 321 * Implementing those functions following their counterparts list_empty() and 322 * list_first_entry() is not advisable because they lead to subtle race 323 * conditions as the following snippet shows: 324 * 325 * if (!list_empty_rcu(mylist)) { 326 * struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member); 327 * do_something(bar); 328 * } 329 * 330 * The list may not be empty when list_empty_rcu checks it, but it may be when 331 * list_first_entry_rcu rereads the ->next pointer. 332 * 333 * Rereading the ->next pointer is not a problem for list_empty() and 334 * list_first_entry() because they would be protected by a lock that blocks 335 * writers. 336 * 337 * See list_first_or_null_rcu for an alternative. 338 */ 339 340/** 341 * list_first_or_null_rcu - get the first element from a list 342 * @ptr: the list head to take the element from. 343 * @type: the type of the struct this is embedded in. 344 * @member: the name of the list_head within the struct. 345 * 346 * Note that if the list is empty, it returns NULL. 347 * 348 * This primitive may safely run concurrently with the _rcu list-mutation 349 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock(). 350 */ 351#define list_first_or_null_rcu(ptr, type, member) \ 352({ \ 353 struct list_head *__ptr = (ptr); \ 354 struct list_head *__next = READ_ONCE(__ptr->next); \ 355 likely(__ptr != __next) ? list_entry_rcu(__next, type, member) : NULL; \ 356}) 357 358/** 359 * list_next_or_null_rcu - get the first element from a list 360 * @head: the head for the list. 361 * @ptr: the list head to take the next element from. 362 * @type: the type of the struct this is embedded in. 363 * @member: the name of the list_head within the struct. 364 * 365 * Note that if the ptr is at the end of the list, NULL is returned. 366 * 367 * This primitive may safely run concurrently with the _rcu list-mutation 368 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock(). 369 */ 370#define list_next_or_null_rcu(head, ptr, type, member) \ 371({ \ 372 struct list_head *__head = (head); \ 373 struct list_head *__ptr = (ptr); \ 374 struct list_head *__next = READ_ONCE(__ptr->next); \ 375 likely(__next != __head) ? list_entry_rcu(__next, type, \ 376 member) : NULL; \ 377}) 378 379/** 380 * list_for_each_entry_rcu - iterate over rcu list of given type 381 * @pos: the type * to use as a loop cursor. 382 * @head: the head for your list. 383 * @member: the name of the list_head within the struct. 384 * @cond: optional lockdep expression if called from non-RCU protection. 385 * 386 * This list-traversal primitive may safely run concurrently with 387 * the _rcu list-mutation primitives such as list_add_rcu() 388 * as long as the traversal is guarded by rcu_read_lock(). 389 */ 390#define list_for_each_entry_rcu(pos, head, member, cond...) \ 391 for (__list_check_rcu(dummy, ## cond, 0), \ 392 pos = list_entry_rcu((head)->next, typeof(*pos), member); \ 393 &pos->member != (head); \ 394 pos = list_entry_rcu(pos->member.next, typeof(*pos), member)) 395 396/** 397 * list_for_each_entry_srcu - iterate over rcu list of given type 398 * @pos: the type * to use as a loop cursor. 399 * @head: the head for your list. 400 * @member: the name of the list_head within the struct. 401 * @cond: lockdep expression for the lock required to traverse the list. 402 * 403 * This list-traversal primitive may safely run concurrently with 404 * the _rcu list-mutation primitives such as list_add_rcu() 405 * as long as the traversal is guarded by srcu_read_lock(). 406 * The lockdep expression srcu_read_lock_held() can be passed as the 407 * cond argument from read side. 408 */ 409#define list_for_each_entry_srcu(pos, head, member, cond) \ 410 for (__list_check_srcu(cond), \ 411 pos = list_entry_rcu((head)->next, typeof(*pos), member); \ 412 &pos->member != (head); \ 413 pos = list_entry_rcu(pos->member.next, typeof(*pos), member)) 414 415/** 416 * list_entry_lockless - get the struct for this entry 417 * @ptr: the &struct list_head pointer. 418 * @type: the type of the struct this is embedded in. 419 * @member: the name of the list_head within the struct. 420 * 421 * This primitive may safely run concurrently with the _rcu 422 * list-mutation primitives such as list_add_rcu(), but requires some 423 * implicit RCU read-side guarding. One example is running within a special 424 * exception-time environment where preemption is disabled and where lockdep 425 * cannot be invoked. Another example is when items are added to the list, 426 * but never deleted. 427 */ 428#define list_entry_lockless(ptr, type, member) \ 429 container_of((typeof(ptr))READ_ONCE(ptr), type, member) 430 431/** 432 * list_for_each_entry_lockless - iterate over rcu list of given type 433 * @pos: the type * to use as a loop cursor. 434 * @head: the head for your list. 435 * @member: the name of the list_struct within the struct. 436 * 437 * This primitive may safely run concurrently with the _rcu 438 * list-mutation primitives such as list_add_rcu(), but requires some 439 * implicit RCU read-side guarding. One example is running within a special 440 * exception-time environment where preemption is disabled and where lockdep 441 * cannot be invoked. Another example is when items are added to the list, 442 * but never deleted. 443 */ 444#define list_for_each_entry_lockless(pos, head, member) \ 445 for (pos = list_entry_lockless((head)->next, typeof(*pos), member); \ 446 &pos->member != (head); \ 447 pos = list_entry_lockless(pos->member.next, typeof(*pos), member)) 448 449/** 450 * list_for_each_entry_continue_rcu - continue iteration over list of given type 451 * @pos: the type * to use as a loop cursor. 452 * @head: the head for your list. 453 * @member: the name of the list_head within the struct. 454 * 455 * Continue to iterate over list of given type, continuing after 456 * the current position which must have been in the list when the RCU read 457 * lock was taken. 458 * This would typically require either that you obtained the node from a 459 * previous walk of the list in the same RCU read-side critical section, or 460 * that you held some sort of non-RCU reference (such as a reference count) 461 * to keep the node alive *and* in the list. 462 * 463 * This iterator is similar to list_for_each_entry_from_rcu() except 464 * this starts after the given position and that one starts at the given 465 * position. 466 */ 467#define list_for_each_entry_continue_rcu(pos, head, member) \ 468 for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \ 469 &pos->member != (head); \ 470 pos = list_entry_rcu(pos->member.next, typeof(*pos), member)) 471 472/** 473 * list_for_each_entry_from_rcu - iterate over a list from current point 474 * @pos: the type * to use as a loop cursor. 475 * @head: the head for your list. 476 * @member: the name of the list_node within the struct. 477 * 478 * Iterate over the tail of a list starting from a given position, 479 * which must have been in the list when the RCU read lock was taken. 480 * This would typically require either that you obtained the node from a 481 * previous walk of the list in the same RCU read-side critical section, or 482 * that you held some sort of non-RCU reference (such as a reference count) 483 * to keep the node alive *and* in the list. 484 * 485 * This iterator is similar to list_for_each_entry_continue_rcu() except 486 * this starts from the given position and that one starts from the position 487 * after the given position. 488 */ 489#define list_for_each_entry_from_rcu(pos, head, member) \ 490 for (; &(pos)->member != (head); \ 491 pos = list_entry_rcu(pos->member.next, typeof(*(pos)), member)) 492 493/** 494 * hlist_del_rcu - deletes entry from hash list without re-initialization 495 * @n: the element to delete from the hash list. 496 * 497 * Note: list_unhashed() on entry does not return true after this, 498 * the entry is in an undefined state. It is useful for RCU based 499 * lockfree traversal. 500 * 501 * In particular, it means that we can not poison the forward 502 * pointers that may still be used for walking the hash list. 503 * 504 * The caller must take whatever precautions are necessary 505 * (such as holding appropriate locks) to avoid racing 506 * with another list-mutation primitive, such as hlist_add_head_rcu() 507 * or hlist_del_rcu(), running on this same list. 508 * However, it is perfectly legal to run concurrently with 509 * the _rcu list-traversal primitives, such as 510 * hlist_for_each_entry(). 511 */ 512static inline void hlist_del_rcu(struct hlist_node *n) 513{ 514 __hlist_del(n); 515 WRITE_ONCE(n->pprev, LIST_POISON2); 516} 517 518/** 519 * hlist_replace_rcu - replace old entry by new one 520 * @old : the element to be replaced 521 * @new : the new element to insert 522 * 523 * The @old entry will be replaced with the @new entry atomically. 524 */ 525static inline void hlist_replace_rcu(struct hlist_node *old, 526 struct hlist_node *new) 527{ 528 struct hlist_node *next = old->next; 529 530 new->next = next; 531 WRITE_ONCE(new->pprev, old->pprev); 532 rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new); 533 if (next) 534 WRITE_ONCE(new->next->pprev, &new->next); 535 WRITE_ONCE(old->pprev, LIST_POISON2); 536} 537 538/** 539 * hlists_swap_heads_rcu - swap the lists the hlist heads point to 540 * @left: The hlist head on the left 541 * @right: The hlist head on the right 542 * 543 * The lists start out as [@left ][node1 ... ] and 544 * [@right ][node2 ... ] 545 * The lists end up as [@left ][node2 ... ] 546 * [@right ][node1 ... ] 547 */ 548static inline void hlists_swap_heads_rcu(struct hlist_head *left, struct hlist_head *right) 549{ 550 struct hlist_node *node1 = left->first; 551 struct hlist_node *node2 = right->first; 552 553 rcu_assign_pointer(left->first, node2); 554 rcu_assign_pointer(right->first, node1); 555 WRITE_ONCE(node2->pprev, &left->first); 556 WRITE_ONCE(node1->pprev, &right->first); 557} 558 559/* 560 * return the first or the next element in an RCU protected hlist 561 */ 562#define hlist_first_rcu(head) (*((struct hlist_node __rcu **)(&(head)->first))) 563#define hlist_next_rcu(node) (*((struct hlist_node __rcu **)(&(node)->next))) 564#define hlist_pprev_rcu(node) (*((struct hlist_node __rcu **)((node)->pprev))) 565 566/** 567 * hlist_add_head_rcu 568 * @n: the element to add to the hash list. 569 * @h: the list to add to. 570 * 571 * Description: 572 * Adds the specified element to the specified hlist, 573 * while permitting racing traversals. 574 * 575 * The caller must take whatever precautions are necessary 576 * (such as holding appropriate locks) to avoid racing 577 * with another list-mutation primitive, such as hlist_add_head_rcu() 578 * or hlist_del_rcu(), running on this same list. 579 * However, it is perfectly legal to run concurrently with 580 * the _rcu list-traversal primitives, such as 581 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 582 * problems on Alpha CPUs. Regardless of the type of CPU, the 583 * list-traversal primitive must be guarded by rcu_read_lock(). 584 */ 585static inline void hlist_add_head_rcu(struct hlist_node *n, 586 struct hlist_head *h) 587{ 588 struct hlist_node *first = h->first; 589 590 n->next = first; 591 WRITE_ONCE(n->pprev, &h->first); 592 rcu_assign_pointer(hlist_first_rcu(h), n); 593 if (first) 594 WRITE_ONCE(first->pprev, &n->next); 595} 596 597/** 598 * hlist_add_tail_rcu 599 * @n: the element to add to the hash list. 600 * @h: the list to add to. 601 * 602 * Description: 603 * Adds the specified element to the specified hlist, 604 * while permitting racing traversals. 605 * 606 * The caller must take whatever precautions are necessary 607 * (such as holding appropriate locks) to avoid racing 608 * with another list-mutation primitive, such as hlist_add_head_rcu() 609 * or hlist_del_rcu(), running on this same list. 610 * However, it is perfectly legal to run concurrently with 611 * the _rcu list-traversal primitives, such as 612 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 613 * problems on Alpha CPUs. Regardless of the type of CPU, the 614 * list-traversal primitive must be guarded by rcu_read_lock(). 615 */ 616static inline void hlist_add_tail_rcu(struct hlist_node *n, 617 struct hlist_head *h) 618{ 619 struct hlist_node *i, *last = NULL; 620 621 /* Note: write side code, so rcu accessors are not needed. */ 622 for (i = h->first; i; i = i->next) 623 last = i; 624 625 if (last) { 626 n->next = last->next; 627 WRITE_ONCE(n->pprev, &last->next); 628 rcu_assign_pointer(hlist_next_rcu(last), n); 629 } else { 630 hlist_add_head_rcu(n, h); 631 } 632} 633 634/** 635 * hlist_add_before_rcu 636 * @n: the new element to add to the hash list. 637 * @next: the existing element to add the new element before. 638 * 639 * Description: 640 * Adds the specified element to the specified hlist 641 * before the specified node while permitting racing traversals. 642 * 643 * The caller must take whatever precautions are necessary 644 * (such as holding appropriate locks) to avoid racing 645 * with another list-mutation primitive, such as hlist_add_head_rcu() 646 * or hlist_del_rcu(), running on this same list. 647 * However, it is perfectly legal to run concurrently with 648 * the _rcu list-traversal primitives, such as 649 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 650 * problems on Alpha CPUs. 651 */ 652static inline void hlist_add_before_rcu(struct hlist_node *n, 653 struct hlist_node *next) 654{ 655 WRITE_ONCE(n->pprev, next->pprev); 656 n->next = next; 657 rcu_assign_pointer(hlist_pprev_rcu(n), n); 658 WRITE_ONCE(next->pprev, &n->next); 659} 660 661/** 662 * hlist_add_behind_rcu 663 * @n: the new element to add to the hash list. 664 * @prev: the existing element to add the new element after. 665 * 666 * Description: 667 * Adds the specified element to the specified hlist 668 * after the specified node while permitting racing traversals. 669 * 670 * The caller must take whatever precautions are necessary 671 * (such as holding appropriate locks) to avoid racing 672 * with another list-mutation primitive, such as hlist_add_head_rcu() 673 * or hlist_del_rcu(), running on this same list. 674 * However, it is perfectly legal to run concurrently with 675 * the _rcu list-traversal primitives, such as 676 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 677 * problems on Alpha CPUs. 678 */ 679static inline void hlist_add_behind_rcu(struct hlist_node *n, 680 struct hlist_node *prev) 681{ 682 n->next = prev->next; 683 WRITE_ONCE(n->pprev, &prev->next); 684 rcu_assign_pointer(hlist_next_rcu(prev), n); 685 if (n->next) 686 WRITE_ONCE(n->next->pprev, &n->next); 687} 688 689#define __hlist_for_each_rcu(pos, head) \ 690 for (pos = rcu_dereference(hlist_first_rcu(head)); \ 691 pos; \ 692 pos = rcu_dereference(hlist_next_rcu(pos))) 693 694/** 695 * hlist_for_each_entry_rcu - iterate over rcu list of given type 696 * @pos: the type * to use as a loop cursor. 697 * @head: the head for your list. 698 * @member: the name of the hlist_node within the struct. 699 * @cond: optional lockdep expression if called from non-RCU protection. 700 * 701 * This list-traversal primitive may safely run concurrently with 702 * the _rcu list-mutation primitives such as hlist_add_head_rcu() 703 * as long as the traversal is guarded by rcu_read_lock(). 704 */ 705#define hlist_for_each_entry_rcu(pos, head, member, cond...) \ 706 for (__list_check_rcu(dummy, ## cond, 0), \ 707 pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\ 708 typeof(*(pos)), member); \ 709 pos; \ 710 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\ 711 &(pos)->member)), typeof(*(pos)), member)) 712 713/** 714 * hlist_for_each_entry_srcu - iterate over rcu list of given type 715 * @pos: the type * to use as a loop cursor. 716 * @head: the head for your list. 717 * @member: the name of the hlist_node within the struct. 718 * @cond: lockdep expression for the lock required to traverse the list. 719 * 720 * This list-traversal primitive may safely run concurrently with 721 * the _rcu list-mutation primitives such as hlist_add_head_rcu() 722 * as long as the traversal is guarded by srcu_read_lock(). 723 * The lockdep expression srcu_read_lock_held() can be passed as the 724 * cond argument from read side. 725 */ 726#define hlist_for_each_entry_srcu(pos, head, member, cond) \ 727 for (__list_check_srcu(cond), \ 728 pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\ 729 typeof(*(pos)), member); \ 730 pos; \ 731 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\ 732 &(pos)->member)), typeof(*(pos)), member)) 733 734/** 735 * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing) 736 * @pos: the type * to use as a loop cursor. 737 * @head: the head for your list. 738 * @member: the name of the hlist_node within the struct. 739 * 740 * This list-traversal primitive may safely run concurrently with 741 * the _rcu list-mutation primitives such as hlist_add_head_rcu() 742 * as long as the traversal is guarded by rcu_read_lock(). 743 * 744 * This is the same as hlist_for_each_entry_rcu() except that it does 745 * not do any RCU debugging or tracing. 746 */ 747#define hlist_for_each_entry_rcu_notrace(pos, head, member) \ 748 for (pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_first_rcu(head)),\ 749 typeof(*(pos)), member); \ 750 pos; \ 751 pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_next_rcu(\ 752 &(pos)->member)), typeof(*(pos)), member)) 753 754/** 755 * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type 756 * @pos: the type * to use as a loop cursor. 757 * @head: the head for your list. 758 * @member: the name of the hlist_node within the struct. 759 * 760 * This list-traversal primitive may safely run concurrently with 761 * the _rcu list-mutation primitives such as hlist_add_head_rcu() 762 * as long as the traversal is guarded by rcu_read_lock(). 763 */ 764#define hlist_for_each_entry_rcu_bh(pos, head, member) \ 765 for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\ 766 typeof(*(pos)), member); \ 767 pos; \ 768 pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\ 769 &(pos)->member)), typeof(*(pos)), member)) 770 771/** 772 * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point 773 * @pos: the type * to use as a loop cursor. 774 * @member: the name of the hlist_node within the struct. 775 */ 776#define hlist_for_each_entry_continue_rcu(pos, member) \ 777 for (pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \ 778 &(pos)->member)), typeof(*(pos)), member); \ 779 pos; \ 780 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \ 781 &(pos)->member)), typeof(*(pos)), member)) 782 783/** 784 * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point 785 * @pos: the type * to use as a loop cursor. 786 * @member: the name of the hlist_node within the struct. 787 */ 788#define hlist_for_each_entry_continue_rcu_bh(pos, member) \ 789 for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu( \ 790 &(pos)->member)), typeof(*(pos)), member); \ 791 pos; \ 792 pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu( \ 793 &(pos)->member)), typeof(*(pos)), member)) 794 795/** 796 * hlist_for_each_entry_from_rcu - iterate over a hlist continuing from current point 797 * @pos: the type * to use as a loop cursor. 798 * @member: the name of the hlist_node within the struct. 799 */ 800#define hlist_for_each_entry_from_rcu(pos, member) \ 801 for (; pos; \ 802 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \ 803 &(pos)->member)), typeof(*(pos)), member)) 804 805#endif /* __KERNEL__ */ 806#endif 807