1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_SEQLOCK_H 3#define __LINUX_SEQLOCK_H 4 5/* 6 * seqcount_t / seqlock_t - a reader-writer consistency mechanism with 7 * lockless readers (read-only retry loops), and no writer starvation. 8 * 9 * See Documentation/locking/seqlock.rst 10 * 11 * Copyrights: 12 * - Based on x86_64 vsyscall gettimeofday: Keith Owens, Andrea Arcangeli 13 * - Sequence counters with associated locks, (C) 2020 Linutronix GmbH 14 */ 15 16#include <linux/compiler.h> 17#include <linux/kcsan-checks.h> 18#include <linux/lockdep.h> 19#include <linux/mutex.h> 20#include <linux/ww_mutex.h> 21#include <linux/preempt.h> 22#include <linux/spinlock.h> 23 24#include <asm/processor.h> 25 26/* 27 * The seqlock seqcount_t interface does not prescribe a precise sequence of 28 * read begin/retry/end. For readers, typically there is a call to 29 * read_seqcount_begin() and read_seqcount_retry(), however, there are more 30 * esoteric cases which do not follow this pattern. 31 * 32 * As a consequence, we take the following best-effort approach for raw usage 33 * via seqcount_t under KCSAN: upon beginning a seq-reader critical section, 34 * pessimistically mark the next KCSAN_SEQLOCK_REGION_MAX memory accesses as 35 * atomics; if there is a matching read_seqcount_retry() call, no following 36 * memory operations are considered atomic. Usage of the seqlock_t interface 37 * is not affected. 38 */ 39#define KCSAN_SEQLOCK_REGION_MAX 1000 40 41/* 42 * Sequence counters (seqcount_t) 43 * 44 * This is the raw counting mechanism, without any writer protection. 45 * 46 * Write side critical sections must be serialized and non-preemptible. 47 * 48 * If readers can be invoked from hardirq or softirq contexts, 49 * interrupts or bottom halves must also be respectively disabled before 50 * entering the write section. 51 * 52 * This mechanism can't be used if the protected data contains pointers, 53 * as the writer can invalidate a pointer that a reader is following. 54 * 55 * If the write serialization mechanism is one of the common kernel 56 * locking primitives, use a sequence counter with associated lock 57 * (seqcount_LOCKNAME_t) instead. 58 * 59 * If it's desired to automatically handle the sequence counter writer 60 * serialization and non-preemptibility requirements, use a sequential 61 * lock (seqlock_t) instead. 62 * 63 * See Documentation/locking/seqlock.rst 64 */ 65typedef struct seqcount { 66 unsigned sequence; 67#ifdef CONFIG_DEBUG_LOCK_ALLOC 68 struct lockdep_map dep_map; 69#endif 70} seqcount_t; 71 72static inline void __seqcount_init(seqcount_t *s, const char *name, 73 struct lock_class_key *key) 74{ 75 /* 76 * Make sure we are not reinitializing a held lock: 77 */ 78 lockdep_init_map(&s->dep_map, name, key, 0); 79 s->sequence = 0; 80} 81 82#ifdef CONFIG_DEBUG_LOCK_ALLOC 83 84# define SEQCOUNT_DEP_MAP_INIT(lockname) \ 85 .dep_map = { .name = #lockname } 86 87/** 88 * seqcount_init() - runtime initializer for seqcount_t 89 * @s: Pointer to the seqcount_t instance 90 */ 91# define seqcount_init(s) \ 92 do { \ 93 static struct lock_class_key __key; \ 94 __seqcount_init((s), #s, &__key); \ 95 } while (0) 96 97static inline void seqcount_lockdep_reader_access(const seqcount_t *s) 98{ 99 seqcount_t *l = (seqcount_t *)s; 100 unsigned long flags; 101 102 local_irq_save(flags); 103 seqcount_acquire_read(&l->dep_map, 0, 0, _RET_IP_); 104 seqcount_release(&l->dep_map, _RET_IP_); 105 local_irq_restore(flags); 106} 107 108#else 109# define SEQCOUNT_DEP_MAP_INIT(lockname) 110# define seqcount_init(s) __seqcount_init(s, NULL, NULL) 111# define seqcount_lockdep_reader_access(x) 112#endif 113 114/** 115 * SEQCNT_ZERO() - static initializer for seqcount_t 116 * @name: Name of the seqcount_t instance 117 */ 118#define SEQCNT_ZERO(name) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(name) } 119 120/* 121 * Sequence counters with associated locks (seqcount_LOCKNAME_t) 122 * 123 * A sequence counter which associates the lock used for writer 124 * serialization at initialization time. This enables lockdep to validate 125 * that the write side critical section is properly serialized. 126 * 127 * For associated locks which do not implicitly disable preemption, 128 * preemption protection is enforced in the write side function. 129 * 130 * Lockdep is never used in any for the raw write variants. 131 * 132 * See Documentation/locking/seqlock.rst 133 */ 134 135/* 136 * For PREEMPT_RT, seqcount_LOCKNAME_t write side critical sections cannot 137 * disable preemption. It can lead to higher latencies, and the write side 138 * sections will not be able to acquire locks which become sleeping locks 139 * (e.g. spinlock_t). 140 * 141 * To remain preemptible while avoiding a possible livelock caused by the 142 * reader preempting the writer, use a different technique: let the reader 143 * detect if a seqcount_LOCKNAME_t writer is in progress. If that is the 144 * case, acquire then release the associated LOCKNAME writer serialization 145 * lock. This will allow any possibly-preempted writer to make progress 146 * until the end of its writer serialization lock critical section. 147 * 148 * This lock-unlock technique must be implemented for all of PREEMPT_RT 149 * sleeping locks. See Documentation/locking/locktypes.rst 150 */ 151#if defined(CONFIG_LOCKDEP) || defined(CONFIG_PREEMPT_RT) 152#define __SEQ_LOCK(expr) expr 153#else 154#define __SEQ_LOCK(expr) 155#endif 156 157/* 158 * typedef seqcount_LOCKNAME_t - sequence counter with LOCKNAME associated 159 * @seqcount: The real sequence counter 160 * @lock: Pointer to the associated lock 161 * 162 * A plain sequence counter with external writer synchronization by 163 * LOCKNAME @lock. The lock is associated to the sequence counter in the 164 * static initializer or init function. This enables lockdep to validate 165 * that the write side critical section is properly serialized. 166 * 167 * LOCKNAME: raw_spinlock, spinlock, rwlock, mutex, or ww_mutex. 168 */ 169 170/* 171 * seqcount_LOCKNAME_init() - runtime initializer for seqcount_LOCKNAME_t 172 * @s: Pointer to the seqcount_LOCKNAME_t instance 173 * @lock: Pointer to the associated lock 174 */ 175 176#define seqcount_LOCKNAME_init(s, _lock, lockname) \ 177 do { \ 178 seqcount_##lockname##_t *____s = (s); \ 179 seqcount_init(&____s->seqcount); \ 180 __SEQ_LOCK(____s->lock = (_lock)); \ 181 } while (0) 182 183#define seqcount_raw_spinlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, raw_spinlock) 184#define seqcount_spinlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, spinlock) 185#define seqcount_rwlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, rwlock); 186#define seqcount_mutex_init(s, lock) seqcount_LOCKNAME_init(s, lock, mutex); 187#define seqcount_ww_mutex_init(s, lock) seqcount_LOCKNAME_init(s, lock, ww_mutex); 188 189/* 190 * SEQCOUNT_LOCKNAME() - Instantiate seqcount_LOCKNAME_t and helpers 191 * seqprop_LOCKNAME_*() - Property accessors for seqcount_LOCKNAME_t 192 * 193 * @lockname: "LOCKNAME" part of seqcount_LOCKNAME_t 194 * @locktype: LOCKNAME canonical C data type 195 * @preemptible: preemptibility of above locktype 196 * @lockmember: argument for lockdep_assert_held() 197 * @lockbase: associated lock release function (prefix only) 198 * @lock_acquire: associated lock acquisition function (full call) 199 */ 200#define SEQCOUNT_LOCKNAME(lockname, locktype, preemptible, lockmember, lockbase, lock_acquire) \ 201typedef struct seqcount_##lockname { \ 202 seqcount_t seqcount; \ 203 __SEQ_LOCK(locktype *lock); \ 204} seqcount_##lockname##_t; \ 205 \ 206static __always_inline seqcount_t * \ 207__seqprop_##lockname##_ptr(seqcount_##lockname##_t *s) \ 208{ \ 209 return &s->seqcount; \ 210} \ 211 \ 212static __always_inline unsigned \ 213__seqprop_##lockname##_sequence(const seqcount_##lockname##_t *s) \ 214{ \ 215 unsigned seq = READ_ONCE(s->seqcount.sequence); \ 216 \ 217 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ 218 return seq; \ 219 \ 220 if (preemptible && unlikely(seq & 1)) { \ 221 __SEQ_LOCK(lock_acquire); \ 222 __SEQ_LOCK(lockbase##_unlock(s->lock)); \ 223 \ 224 /* \ 225 * Re-read the sequence counter since the (possibly \ 226 * preempted) writer made progress. \ 227 */ \ 228 seq = READ_ONCE(s->seqcount.sequence); \ 229 } \ 230 \ 231 return seq; \ 232} \ 233 \ 234static __always_inline bool \ 235__seqprop_##lockname##_preemptible(const seqcount_##lockname##_t *s) \ 236{ \ 237 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ 238 return preemptible; \ 239 \ 240 /* PREEMPT_RT relies on the above LOCK+UNLOCK */ \ 241 return false; \ 242} \ 243 \ 244static __always_inline void \ 245__seqprop_##lockname##_assert(const seqcount_##lockname##_t *s) \ 246{ \ 247 __SEQ_LOCK(lockdep_assert_held(lockmember)); \ 248} 249 250/* 251 * __seqprop() for seqcount_t 252 */ 253 254static inline seqcount_t *__seqprop_ptr(seqcount_t *s) 255{ 256 return s; 257} 258 259static inline unsigned __seqprop_sequence(const seqcount_t *s) 260{ 261 return READ_ONCE(s->sequence); 262} 263 264static inline bool __seqprop_preemptible(const seqcount_t *s) 265{ 266 return false; 267} 268 269static inline void __seqprop_assert(const seqcount_t *s) 270{ 271 lockdep_assert_preemption_disabled(); 272} 273 274#define __SEQ_RT IS_ENABLED(CONFIG_PREEMPT_RT) 275 276SEQCOUNT_LOCKNAME(raw_spinlock, raw_spinlock_t, false, s->lock, raw_spin, raw_spin_lock(s->lock)) 277SEQCOUNT_LOCKNAME(spinlock, spinlock_t, __SEQ_RT, s->lock, spin, spin_lock(s->lock)) 278SEQCOUNT_LOCKNAME(rwlock, rwlock_t, __SEQ_RT, s->lock, read, read_lock(s->lock)) 279SEQCOUNT_LOCKNAME(mutex, struct mutex, true, s->lock, mutex, mutex_lock(s->lock)) 280SEQCOUNT_LOCKNAME(ww_mutex, struct ww_mutex, true, &s->lock->base, ww_mutex, ww_mutex_lock(s->lock, NULL)) 281 282/* 283 * SEQCNT_LOCKNAME_ZERO - static initializer for seqcount_LOCKNAME_t 284 * @name: Name of the seqcount_LOCKNAME_t instance 285 * @lock: Pointer to the associated LOCKNAME 286 */ 287 288#define SEQCOUNT_LOCKNAME_ZERO(seq_name, assoc_lock) { \ 289 .seqcount = SEQCNT_ZERO(seq_name.seqcount), \ 290 __SEQ_LOCK(.lock = (assoc_lock)) \ 291} 292 293#define SEQCNT_RAW_SPINLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) 294#define SEQCNT_SPINLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) 295#define SEQCNT_RWLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) 296#define SEQCNT_MUTEX_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) 297#define SEQCNT_WW_MUTEX_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) 298 299#define __seqprop_case(s, lockname, prop) \ 300 seqcount_##lockname##_t: __seqprop_##lockname##_##prop((void *)(s)) 301 302#define __seqprop(s, prop) _Generic(*(s), \ 303 seqcount_t: __seqprop_##prop((void *)(s)), \ 304 __seqprop_case((s), raw_spinlock, prop), \ 305 __seqprop_case((s), spinlock, prop), \ 306 __seqprop_case((s), rwlock, prop), \ 307 __seqprop_case((s), mutex, prop), \ 308 __seqprop_case((s), ww_mutex, prop)) 309 310#define __seqcount_ptr(s) __seqprop(s, ptr) 311#define __seqcount_sequence(s) __seqprop(s, sequence) 312#define __seqcount_lock_preemptible(s) __seqprop(s, preemptible) 313#define __seqcount_assert_lock_held(s) __seqprop(s, assert) 314 315/** 316 * __read_seqcount_begin() - begin a seqcount_t read section w/o barrier 317 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 318 * 319 * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb() 320 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is 321 * provided before actually loading any of the variables that are to be 322 * protected in this critical section. 323 * 324 * Use carefully, only in critical code, and comment how the barrier is 325 * provided. 326 * 327 * Return: count to be passed to read_seqcount_retry() 328 */ 329#define __read_seqcount_begin(s) \ 330({ \ 331 unsigned seq; \ 332 \ 333 while ((seq = __seqcount_sequence(s)) & 1) \ 334 cpu_relax(); \ 335 \ 336 kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX); \ 337 seq; \ 338}) 339 340/** 341 * raw_read_seqcount_begin() - begin a seqcount_t read section w/o lockdep 342 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 343 * 344 * Return: count to be passed to read_seqcount_retry() 345 */ 346#define raw_read_seqcount_begin(s) \ 347({ \ 348 unsigned seq = __read_seqcount_begin(s); \ 349 \ 350 smp_rmb(); \ 351 seq; \ 352}) 353 354/** 355 * read_seqcount_begin() - begin a seqcount_t read critical section 356 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 357 * 358 * Return: count to be passed to read_seqcount_retry() 359 */ 360#define read_seqcount_begin(s) \ 361({ \ 362 seqcount_lockdep_reader_access(__seqcount_ptr(s)); \ 363 raw_read_seqcount_begin(s); \ 364}) 365 366/** 367 * raw_read_seqcount() - read the raw seqcount_t counter value 368 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 369 * 370 * raw_read_seqcount opens a read critical section of the given 371 * seqcount_t, without any lockdep checking, and without checking or 372 * masking the sequence counter LSB. Calling code is responsible for 373 * handling that. 374 * 375 * Return: count to be passed to read_seqcount_retry() 376 */ 377#define raw_read_seqcount(s) \ 378({ \ 379 unsigned seq = __seqcount_sequence(s); \ 380 \ 381 smp_rmb(); \ 382 kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX); \ 383 seq; \ 384}) 385 386/** 387 * raw_seqcount_begin() - begin a seqcount_t read critical section w/o 388 * lockdep and w/o counter stabilization 389 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 390 * 391 * raw_seqcount_begin opens a read critical section of the given 392 * seqcount_t. Unlike read_seqcount_begin(), this function will not wait 393 * for the count to stabilize. If a writer is active when it begins, it 394 * will fail the read_seqcount_retry() at the end of the read critical 395 * section instead of stabilizing at the beginning of it. 396 * 397 * Use this only in special kernel hot paths where the read section is 398 * small and has a high probability of success through other external 399 * means. It will save a single branching instruction. 400 * 401 * Return: count to be passed to read_seqcount_retry() 402 */ 403#define raw_seqcount_begin(s) \ 404({ \ 405 /* \ 406 * If the counter is odd, let read_seqcount_retry() fail \ 407 * by decrementing the counter. \ 408 */ \ 409 raw_read_seqcount(s) & ~1; \ 410}) 411 412/** 413 * __read_seqcount_retry() - end a seqcount_t read section w/o barrier 414 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 415 * @start: count, from read_seqcount_begin() 416 * 417 * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb() 418 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is 419 * provided before actually loading any of the variables that are to be 420 * protected in this critical section. 421 * 422 * Use carefully, only in critical code, and comment how the barrier is 423 * provided. 424 * 425 * Return: true if a read section retry is required, else false 426 */ 427#define __read_seqcount_retry(s, start) \ 428 __read_seqcount_t_retry(__seqcount_ptr(s), start) 429 430static inline int __read_seqcount_t_retry(const seqcount_t *s, unsigned start) 431{ 432 kcsan_atomic_next(0); 433 return unlikely(READ_ONCE(s->sequence) != start); 434} 435 436/** 437 * read_seqcount_retry() - end a seqcount_t read critical section 438 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 439 * @start: count, from read_seqcount_begin() 440 * 441 * read_seqcount_retry closes the read critical section of given 442 * seqcount_t. If the critical section was invalid, it must be ignored 443 * (and typically retried). 444 * 445 * Return: true if a read section retry is required, else false 446 */ 447#define read_seqcount_retry(s, start) \ 448 read_seqcount_t_retry(__seqcount_ptr(s), start) 449 450static inline int read_seqcount_t_retry(const seqcount_t *s, unsigned start) 451{ 452 smp_rmb(); 453 return __read_seqcount_t_retry(s, start); 454} 455 456/** 457 * raw_write_seqcount_begin() - start a seqcount_t write section w/o lockdep 458 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 459 */ 460#define raw_write_seqcount_begin(s) \ 461do { \ 462 if (__seqcount_lock_preemptible(s)) \ 463 preempt_disable(); \ 464 \ 465 raw_write_seqcount_t_begin(__seqcount_ptr(s)); \ 466} while (0) 467 468static inline void raw_write_seqcount_t_begin(seqcount_t *s) 469{ 470 kcsan_nestable_atomic_begin(); 471 s->sequence++; 472 smp_wmb(); 473} 474 475/** 476 * raw_write_seqcount_end() - end a seqcount_t write section w/o lockdep 477 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 478 */ 479#define raw_write_seqcount_end(s) \ 480do { \ 481 raw_write_seqcount_t_end(__seqcount_ptr(s)); \ 482 \ 483 if (__seqcount_lock_preemptible(s)) \ 484 preempt_enable(); \ 485} while (0) 486 487static inline void raw_write_seqcount_t_end(seqcount_t *s) 488{ 489 smp_wmb(); 490 s->sequence++; 491 kcsan_nestable_atomic_end(); 492} 493 494/** 495 * write_seqcount_begin_nested() - start a seqcount_t write section with 496 * custom lockdep nesting level 497 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 498 * @subclass: lockdep nesting level 499 * 500 * See Documentation/locking/lockdep-design.rst 501 */ 502#define write_seqcount_begin_nested(s, subclass) \ 503do { \ 504 __seqcount_assert_lock_held(s); \ 505 \ 506 if (__seqcount_lock_preemptible(s)) \ 507 preempt_disable(); \ 508 \ 509 write_seqcount_t_begin_nested(__seqcount_ptr(s), subclass); \ 510} while (0) 511 512static inline void write_seqcount_t_begin_nested(seqcount_t *s, int subclass) 513{ 514 raw_write_seqcount_t_begin(s); 515 seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_); 516} 517 518/** 519 * write_seqcount_begin() - start a seqcount_t write side critical section 520 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 521 * 522 * write_seqcount_begin opens a write side critical section of the given 523 * seqcount_t. 524 * 525 * Context: seqcount_t write side critical sections must be serialized and 526 * non-preemptible. If readers can be invoked from hardirq or softirq 527 * context, interrupts or bottom halves must be respectively disabled. 528 */ 529#define write_seqcount_begin(s) \ 530do { \ 531 __seqcount_assert_lock_held(s); \ 532 \ 533 if (__seqcount_lock_preemptible(s)) \ 534 preempt_disable(); \ 535 \ 536 write_seqcount_t_begin(__seqcount_ptr(s)); \ 537} while (0) 538 539static inline void write_seqcount_t_begin(seqcount_t *s) 540{ 541 write_seqcount_t_begin_nested(s, 0); 542} 543 544/** 545 * write_seqcount_end() - end a seqcount_t write side critical section 546 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 547 * 548 * The write section must've been opened with write_seqcount_begin(). 549 */ 550#define write_seqcount_end(s) \ 551do { \ 552 write_seqcount_t_end(__seqcount_ptr(s)); \ 553 \ 554 if (__seqcount_lock_preemptible(s)) \ 555 preempt_enable(); \ 556} while (0) 557 558static inline void write_seqcount_t_end(seqcount_t *s) 559{ 560 seqcount_release(&s->dep_map, _RET_IP_); 561 raw_write_seqcount_t_end(s); 562} 563 564/** 565 * raw_write_seqcount_barrier() - do a seqcount_t write barrier 566 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 567 * 568 * This can be used to provide an ordering guarantee instead of the usual 569 * consistency guarantee. It is one wmb cheaper, because it can collapse 570 * the two back-to-back wmb()s. 571 * 572 * Note that writes surrounding the barrier should be declared atomic (e.g. 573 * via WRITE_ONCE): a) to ensure the writes become visible to other threads 574 * atomically, avoiding compiler optimizations; b) to document which writes are 575 * meant to propagate to the reader critical section. This is necessary because 576 * neither writes before and after the barrier are enclosed in a seq-writer 577 * critical section that would ensure readers are aware of ongoing writes:: 578 * 579 * seqcount_t seq; 580 * bool X = true, Y = false; 581 * 582 * void read(void) 583 * { 584 * bool x, y; 585 * 586 * do { 587 * int s = read_seqcount_begin(&seq); 588 * 589 * x = X; y = Y; 590 * 591 * } while (read_seqcount_retry(&seq, s)); 592 * 593 * BUG_ON(!x && !y); 594 * } 595 * 596 * void write(void) 597 * { 598 * WRITE_ONCE(Y, true); 599 * 600 * raw_write_seqcount_barrier(seq); 601 * 602 * WRITE_ONCE(X, false); 603 * } 604 */ 605#define raw_write_seqcount_barrier(s) \ 606 raw_write_seqcount_t_barrier(__seqcount_ptr(s)) 607 608static inline void raw_write_seqcount_t_barrier(seqcount_t *s) 609{ 610 kcsan_nestable_atomic_begin(); 611 s->sequence++; 612 smp_wmb(); 613 s->sequence++; 614 kcsan_nestable_atomic_end(); 615} 616 617/** 618 * write_seqcount_invalidate() - invalidate in-progress seqcount_t read 619 * side operations 620 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 621 * 622 * After write_seqcount_invalidate, no seqcount_t read side operations 623 * will complete successfully and see data older than this. 624 */ 625#define write_seqcount_invalidate(s) \ 626 write_seqcount_t_invalidate(__seqcount_ptr(s)) 627 628static inline void write_seqcount_t_invalidate(seqcount_t *s) 629{ 630 smp_wmb(); 631 kcsan_nestable_atomic_begin(); 632 s->sequence+=2; 633 kcsan_nestable_atomic_end(); 634} 635 636/* 637 * Latch sequence counters (seqcount_latch_t) 638 * 639 * A sequence counter variant where the counter even/odd value is used to 640 * switch between two copies of protected data. This allows the read path, 641 * typically NMIs, to safely interrupt the write side critical section. 642 * 643 * As the write sections are fully preemptible, no special handling for 644 * PREEMPT_RT is needed. 645 */ 646typedef struct { 647 seqcount_t seqcount; 648} seqcount_latch_t; 649 650/** 651 * SEQCNT_LATCH_ZERO() - static initializer for seqcount_latch_t 652 * @seq_name: Name of the seqcount_latch_t instance 653 */ 654#define SEQCNT_LATCH_ZERO(seq_name) { \ 655 .seqcount = SEQCNT_ZERO(seq_name.seqcount), \ 656} 657 658/** 659 * seqcount_latch_init() - runtime initializer for seqcount_latch_t 660 * @s: Pointer to the seqcount_latch_t instance 661 */ 662static inline void seqcount_latch_init(seqcount_latch_t *s) 663{ 664 seqcount_init(&s->seqcount); 665} 666 667/** 668 * raw_read_seqcount_latch() - pick even/odd latch data copy 669 * @s: Pointer to seqcount_latch_t 670 * 671 * See raw_write_seqcount_latch() for details and a full reader/writer 672 * usage example. 673 * 674 * Return: sequence counter raw value. Use the lowest bit as an index for 675 * picking which data copy to read. The full counter must then be checked 676 * with read_seqcount_latch_retry(). 677 */ 678static inline unsigned raw_read_seqcount_latch(const seqcount_latch_t *s) 679{ 680 /* 681 * Pairs with the first smp_wmb() in raw_write_seqcount_latch(). 682 * Due to the dependent load, a full smp_rmb() is not needed. 683 */ 684 return READ_ONCE(s->seqcount.sequence); 685} 686 687/** 688 * read_seqcount_latch_retry() - end a seqcount_latch_t read section 689 * @s: Pointer to seqcount_latch_t 690 * @start: count, from raw_read_seqcount_latch() 691 * 692 * Return: true if a read section retry is required, else false 693 */ 694static inline int 695read_seqcount_latch_retry(const seqcount_latch_t *s, unsigned start) 696{ 697 return read_seqcount_retry(&s->seqcount, start); 698} 699 700/** 701 * raw_write_seqcount_latch() - redirect latch readers to even/odd copy 702 * @s: Pointer to seqcount_latch_t 703 * 704 * The latch technique is a multiversion concurrency control method that allows 705 * queries during non-atomic modifications. If you can guarantee queries never 706 * interrupt the modification -- e.g. the concurrency is strictly between CPUs 707 * -- you most likely do not need this. 708 * 709 * Where the traditional RCU/lockless data structures rely on atomic 710 * modifications to ensure queries observe either the old or the new state the 711 * latch allows the same for non-atomic updates. The trade-off is doubling the 712 * cost of storage; we have to maintain two copies of the entire data 713 * structure. 714 * 715 * Very simply put: we first modify one copy and then the other. This ensures 716 * there is always one copy in a stable state, ready to give us an answer. 717 * 718 * The basic form is a data structure like:: 719 * 720 * struct latch_struct { 721 * seqcount_latch_t seq; 722 * struct data_struct data[2]; 723 * }; 724 * 725 * Where a modification, which is assumed to be externally serialized, does the 726 * following:: 727 * 728 * void latch_modify(struct latch_struct *latch, ...) 729 * { 730 * smp_wmb(); // Ensure that the last data[1] update is visible 731 * latch->seq.sequence++; 732 * smp_wmb(); // Ensure that the seqcount update is visible 733 * 734 * modify(latch->data[0], ...); 735 * 736 * smp_wmb(); // Ensure that the data[0] update is visible 737 * latch->seq.sequence++; 738 * smp_wmb(); // Ensure that the seqcount update is visible 739 * 740 * modify(latch->data[1], ...); 741 * } 742 * 743 * The query will have a form like:: 744 * 745 * struct entry *latch_query(struct latch_struct *latch, ...) 746 * { 747 * struct entry *entry; 748 * unsigned seq, idx; 749 * 750 * do { 751 * seq = raw_read_seqcount_latch(&latch->seq); 752 * 753 * idx = seq & 0x01; 754 * entry = data_query(latch->data[idx], ...); 755 * 756 * // This includes needed smp_rmb() 757 * } while (read_seqcount_latch_retry(&latch->seq, seq)); 758 * 759 * return entry; 760 * } 761 * 762 * So during the modification, queries are first redirected to data[1]. Then we 763 * modify data[0]. When that is complete, we redirect queries back to data[0] 764 * and we can modify data[1]. 765 * 766 * NOTE: 767 * 768 * The non-requirement for atomic modifications does _NOT_ include 769 * the publishing of new entries in the case where data is a dynamic 770 * data structure. 771 * 772 * An iteration might start in data[0] and get suspended long enough 773 * to miss an entire modification sequence, once it resumes it might 774 * observe the new entry. 775 * 776 * NOTE2: 777 * 778 * When data is a dynamic data structure; one should use regular RCU 779 * patterns to manage the lifetimes of the objects within. 780 */ 781static inline void raw_write_seqcount_latch(seqcount_latch_t *s) 782{ 783 smp_wmb(); /* prior stores before incrementing "sequence" */ 784 s->seqcount.sequence++; 785 smp_wmb(); /* increment "sequence" before following stores */ 786} 787 788/* 789 * Sequential locks (seqlock_t) 790 * 791 * Sequence counters with an embedded spinlock for writer serialization 792 * and non-preemptibility. 793 * 794 * For more info, see: 795 * - Comments on top of seqcount_t 796 * - Documentation/locking/seqlock.rst 797 */ 798typedef struct { 799 /* 800 * Make sure that readers don't starve writers on PREEMPT_RT: use 801 * seqcount_spinlock_t instead of seqcount_t. Check __SEQ_LOCK(). 802 */ 803 seqcount_spinlock_t seqcount; 804 spinlock_t lock; 805} seqlock_t; 806 807#define __SEQLOCK_UNLOCKED(lockname) \ 808 { \ 809 .seqcount = SEQCNT_SPINLOCK_ZERO(lockname, &(lockname).lock), \ 810 .lock = __SPIN_LOCK_UNLOCKED(lockname) \ 811 } 812 813/** 814 * seqlock_init() - dynamic initializer for seqlock_t 815 * @sl: Pointer to the seqlock_t instance 816 */ 817#define seqlock_init(sl) \ 818 do { \ 819 spin_lock_init(&(sl)->lock); \ 820 seqcount_spinlock_init(&(sl)->seqcount, &(sl)->lock); \ 821 } while (0) 822 823/** 824 * DEFINE_SEQLOCK(sl) - Define a statically allocated seqlock_t 825 * @sl: Name of the seqlock_t instance 826 */ 827#define DEFINE_SEQLOCK(sl) \ 828 seqlock_t sl = __SEQLOCK_UNLOCKED(sl) 829 830/** 831 * read_seqbegin() - start a seqlock_t read side critical section 832 * @sl: Pointer to seqlock_t 833 * 834 * Return: count, to be passed to read_seqretry() 835 */ 836static inline unsigned read_seqbegin(const seqlock_t *sl) 837{ 838 unsigned ret = read_seqcount_begin(&sl->seqcount); 839 840 kcsan_atomic_next(0); /* non-raw usage, assume closing read_seqretry() */ 841 kcsan_flat_atomic_begin(); 842 return ret; 843} 844 845/** 846 * read_seqretry() - end a seqlock_t read side section 847 * @sl: Pointer to seqlock_t 848 * @start: count, from read_seqbegin() 849 * 850 * read_seqretry closes the read side critical section of given seqlock_t. 851 * If the critical section was invalid, it must be ignored (and typically 852 * retried). 853 * 854 * Return: true if a read section retry is required, else false 855 */ 856static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start) 857{ 858 /* 859 * Assume not nested: read_seqretry() may be called multiple times when 860 * completing read critical section. 861 */ 862 kcsan_flat_atomic_end(); 863 864 return read_seqcount_retry(&sl->seqcount, start); 865} 866 867/* 868 * For all seqlock_t write side functions, use write_seqcount_*t*_begin() 869 * instead of the generic write_seqcount_begin(). This way, no redundant 870 * lockdep_assert_held() checks are added. 871 */ 872 873/** 874 * write_seqlock() - start a seqlock_t write side critical section 875 * @sl: Pointer to seqlock_t 876 * 877 * write_seqlock opens a write side critical section for the given 878 * seqlock_t. It also implicitly acquires the spinlock_t embedded inside 879 * that sequential lock. All seqlock_t write side sections are thus 880 * automatically serialized and non-preemptible. 881 * 882 * Context: if the seqlock_t read section, or other write side critical 883 * sections, can be invoked from hardirq or softirq contexts, use the 884 * _irqsave or _bh variants of this function instead. 885 */ 886static inline void write_seqlock(seqlock_t *sl) 887{ 888 spin_lock(&sl->lock); 889 write_seqcount_t_begin(&sl->seqcount.seqcount); 890} 891 892/** 893 * write_sequnlock() - end a seqlock_t write side critical section 894 * @sl: Pointer to seqlock_t 895 * 896 * write_sequnlock closes the (serialized and non-preemptible) write side 897 * critical section of given seqlock_t. 898 */ 899static inline void write_sequnlock(seqlock_t *sl) 900{ 901 write_seqcount_t_end(&sl->seqcount.seqcount); 902 spin_unlock(&sl->lock); 903} 904 905/** 906 * write_seqlock_bh() - start a softirqs-disabled seqlock_t write section 907 * @sl: Pointer to seqlock_t 908 * 909 * _bh variant of write_seqlock(). Use only if the read side section, or 910 * other write side sections, can be invoked from softirq contexts. 911 */ 912static inline void write_seqlock_bh(seqlock_t *sl) 913{ 914 spin_lock_bh(&sl->lock); 915 write_seqcount_t_begin(&sl->seqcount.seqcount); 916} 917 918/** 919 * write_sequnlock_bh() - end a softirqs-disabled seqlock_t write section 920 * @sl: Pointer to seqlock_t 921 * 922 * write_sequnlock_bh closes the serialized, non-preemptible, and 923 * softirqs-disabled, seqlock_t write side critical section opened with 924 * write_seqlock_bh(). 925 */ 926static inline void write_sequnlock_bh(seqlock_t *sl) 927{ 928 write_seqcount_t_end(&sl->seqcount.seqcount); 929 spin_unlock_bh(&sl->lock); 930} 931 932/** 933 * write_seqlock_irq() - start a non-interruptible seqlock_t write section 934 * @sl: Pointer to seqlock_t 935 * 936 * _irq variant of write_seqlock(). Use only if the read side section, or 937 * other write sections, can be invoked from hardirq contexts. 938 */ 939static inline void write_seqlock_irq(seqlock_t *sl) 940{ 941 spin_lock_irq(&sl->lock); 942 write_seqcount_t_begin(&sl->seqcount.seqcount); 943} 944 945/** 946 * write_sequnlock_irq() - end a non-interruptible seqlock_t write section 947 * @sl: Pointer to seqlock_t 948 * 949 * write_sequnlock_irq closes the serialized and non-interruptible 950 * seqlock_t write side section opened with write_seqlock_irq(). 951 */ 952static inline void write_sequnlock_irq(seqlock_t *sl) 953{ 954 write_seqcount_t_end(&sl->seqcount.seqcount); 955 spin_unlock_irq(&sl->lock); 956} 957 958static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl) 959{ 960 unsigned long flags; 961 962 spin_lock_irqsave(&sl->lock, flags); 963 write_seqcount_t_begin(&sl->seqcount.seqcount); 964 return flags; 965} 966 967/** 968 * write_seqlock_irqsave() - start a non-interruptible seqlock_t write 969 * section 970 * @lock: Pointer to seqlock_t 971 * @flags: Stack-allocated storage for saving caller's local interrupt 972 * state, to be passed to write_sequnlock_irqrestore(). 973 * 974 * _irqsave variant of write_seqlock(). Use it only if the read side 975 * section, or other write sections, can be invoked from hardirq context. 976 */ 977#define write_seqlock_irqsave(lock, flags) \ 978 do { flags = __write_seqlock_irqsave(lock); } while (0) 979 980/** 981 * write_sequnlock_irqrestore() - end non-interruptible seqlock_t write 982 * section 983 * @sl: Pointer to seqlock_t 984 * @flags: Caller's saved interrupt state, from write_seqlock_irqsave() 985 * 986 * write_sequnlock_irqrestore closes the serialized and non-interruptible 987 * seqlock_t write section previously opened with write_seqlock_irqsave(). 988 */ 989static inline void 990write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags) 991{ 992 write_seqcount_t_end(&sl->seqcount.seqcount); 993 spin_unlock_irqrestore(&sl->lock, flags); 994} 995 996/** 997 * read_seqlock_excl() - begin a seqlock_t locking reader section 998 * @sl: Pointer to seqlock_t 999 * 1000 * read_seqlock_excl opens a seqlock_t locking reader critical section. A
1001 * locking reader exclusively locks out *both* other writers *and* other 1002 * locking readers, but it does not update the embedded sequence number. 1003 * 1004 * Locking readers act like a normal spin_lock()/spin_unlock(). 1005 * 1006 * Context: if the seqlock_t write section, *or other read sections*, can 1007 * be invoked from hardirq or softirq contexts, use the _irqsave or _bh 1008 * variant of this function instead. 1009 * 1010 * The opened read section must be closed with read_sequnlock_excl(). 1011 */ 1012static inline void read_seqlock_excl(seqlock_t *sl) 1013{ 1014 spin_lock(&sl->lock); 1015} 1016 1017/** 1018 * read_sequnlock_excl() - end a seqlock_t locking reader critical section 1019 * @sl: Pointer to seqlock_t 1020 */ 1021static inline void read_sequnlock_excl(seqlock_t *sl) 1022{ 1023 spin_unlock(&sl->lock); 1024} 1025 1026/** 1027 * read_seqlock_excl_bh() - start a seqlock_t locking reader section with 1028 * softirqs disabled 1029 * @sl: Pointer to seqlock_t 1030 * 1031 * _bh variant of read_seqlock_excl(). Use this variant only if the 1032 * seqlock_t write side section, *or other read sections*, can be invoked 1033 * from softirq contexts. 1034 */ 1035static inline void read_seqlock_excl_bh(seqlock_t *sl) 1036{ 1037 spin_lock_bh(&sl->lock); 1038} 1039 1040/** 1041 * read_sequnlock_excl_bh() - stop a seqlock_t softirq-disabled locking 1042 * reader section 1043 * @sl: Pointer to seqlock_t 1044 */ 1045static inline void read_sequnlock_excl_bh(seqlock_t *sl) 1046{ 1047 spin_unlock_bh(&sl->lock); 1048} 1049 1050/** 1051 * read_seqlock_excl_irq() - start a non-interruptible seqlock_t locking 1052 * reader section 1053 * @sl: Pointer to seqlock_t 1054 * 1055 * _irq variant of read_seqlock_excl(). Use this only if the seqlock_t 1056 * write side section, *or other read sections*, can be invoked from a 1057 * hardirq context. 1058 */ 1059static inline void read_seqlock_excl_irq(seqlock_t *sl) 1060{ 1061 spin_lock_irq(&sl->lock); 1062} 1063 1064/** 1065 * read_sequnlock_excl_irq() - end an interrupts-disabled seqlock_t 1066 * locking reader section 1067 * @sl: Pointer to seqlock_t 1068 */ 1069static inline void read_sequnlock_excl_irq(seqlock_t *sl) 1070{ 1071 spin_unlock_irq(&sl->lock); 1072} 1073 1074static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl) 1075{ 1076 unsigned long flags; 1077 1078 spin_lock_irqsave(&sl->lock, flags); 1079 return flags; 1080} 1081 1082/** 1083 * read_seqlock_excl_irqsave() - start a non-interruptible seqlock_t 1084 * locking reader section 1085 * @lock: Pointer to seqlock_t 1086 * @flags: Stack-allocated storage for saving caller's local interrupt 1087 * state, to be passed to read_sequnlock_excl_irqrestore(). 1088 * 1089 * _irqsave variant of read_seqlock_excl(). Use this only if the seqlock_t 1090 * write side section, *or other read sections*, can be invoked from a 1091 * hardirq context. 1092 */ 1093#define read_seqlock_excl_irqsave(lock, flags) \ 1094 do { flags = __read_seqlock_excl_irqsave(lock); } while (0) 1095 1096/** 1097 * read_sequnlock_excl_irqrestore() - end non-interruptible seqlock_t 1098 * locking reader section 1099 * @sl: Pointer to seqlock_t 1100 * @flags: Caller saved interrupt state, from read_seqlock_excl_irqsave() 1101 */ 1102static inline void 1103read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags) 1104{ 1105 spin_unlock_irqrestore(&sl->lock, flags); 1106} 1107 1108/** 1109 * read_seqbegin_or_lock() - begin a seqlock_t lockless or locking reader 1110 * @lock: Pointer to seqlock_t 1111 * @seq : Marker and return parameter. If the passed value is even, the 1112 * reader will become a *lockless* seqlock_t reader as in read_seqbegin(). 1113 * If the passed value is odd, the reader will become a *locking* reader 1114 * as in read_seqlock_excl(). In the first call to this function, the 1115 * caller *must* initialize and pass an even value to @seq; this way, a 1116 * lockless read can be optimistically tried first. 1117 * 1118 * read_seqbegin_or_lock is an API designed to optimistically try a normal 1119 * lockless seqlock_t read section first. If an odd counter is found, the 1120 * lockless read trial has failed, and the next read iteration transforms 1121 * itself into a full seqlock_t locking reader. 1122 * 1123 * This is typically used to avoid seqlock_t lockless readers starvation 1124 * (too much retry loops) in the case of a sharp spike in write side 1125 * activity. 1126 * 1127 * Context: if the seqlock_t write section, *or other read sections*, can 1128 * be invoked from hardirq or softirq contexts, use the _irqsave or _bh 1129 * variant of this function instead. 1130 * 1131 * Check Documentation/locking/seqlock.rst for template example code. 1132 * 1133 * Return: the encountered sequence counter value, through the @seq 1134 * parameter, which is overloaded as a return parameter. This returned 1135 * value must be checked with need_seqretry(). If the read section need to 1136 * be retried, this returned value must also be passed as the @seq 1137 * parameter of the next read_seqbegin_or_lock() iteration. 1138 */ 1139static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq) 1140{ 1141 if (!(*seq & 1)) /* Even */ 1142 *seq = read_seqbegin(lock); 1143 else /* Odd */ 1144 read_seqlock_excl(lock); 1145} 1146 1147/** 1148 * need_seqretry() - validate seqlock_t "locking or lockless" read section 1149 * @lock: Pointer to seqlock_t 1150 * @seq: sequence count, from read_seqbegin_or_lock() 1151 * 1152 * Return: true if a read section retry is required, false otherwise 1153 */ 1154static inline int need_seqretry(seqlock_t *lock, int seq) 1155{ 1156 return !(seq & 1) && read_seqretry(lock, seq); 1157} 1158 1159/** 1160 * done_seqretry() - end seqlock_t "locking or lockless" reader section 1161 * @lock: Pointer to seqlock_t 1162 * @seq: count, from read_seqbegin_or_lock() 1163 * 1164 * done_seqretry finishes the seqlock_t read side critical section started 1165 * with read_seqbegin_or_lock() and validated by need_seqretry(). 1166 */ 1167static inline void done_seqretry(seqlock_t *lock, int seq) 1168{ 1169 if (seq & 1) 1170 read_sequnlock_excl(lock); 1171} 1172 1173/** 1174 * read_seqbegin_or_lock_irqsave() - begin a seqlock_t lockless reader, or 1175 * a non-interruptible locking reader 1176 * @lock: Pointer to seqlock_t 1177 * @seq: Marker and return parameter. Check read_seqbegin_or_lock(). 1178 * 1179 * This is the _irqsave variant of read_seqbegin_or_lock(). Use it only if 1180 * the seqlock_t write section, *or other read sections*, can be invoked 1181 * from hardirq context. 1182 * 1183 * Note: Interrupts will be disabled only for "locking reader" mode. 1184 * 1185 * Return: 1186 * 1187 * 1. The saved local interrupts state in case of a locking reader, to 1188 * be passed to done_seqretry_irqrestore(). 1189 * 1190 * 2. The encountered sequence counter value, returned through @seq 1191 * overloaded as a return parameter. Check read_seqbegin_or_lock(). 1192 */ 1193static inline unsigned long 1194read_seqbegin_or_lock_irqsave(seqlock_t *lock, int *seq) 1195{ 1196 unsigned long flags = 0; 1197 1198 if (!(*seq & 1)) /* Even */ 1199 *seq = read_seqbegin(lock); 1200 else /* Odd */ 1201 read_seqlock_excl_irqsave(lock, flags); 1202 1203 return flags; 1204} 1205 1206/** 1207 * done_seqretry_irqrestore() - end a seqlock_t lockless reader, or a 1208 * non-interruptible locking reader section 1209 * @lock: Pointer to seqlock_t 1210 * @seq: Count, from read_seqbegin_or_lock_irqsave() 1211 * @flags: Caller's saved local interrupt state in case of a locking 1212 * reader, also from read_seqbegin_or_lock_irqsave() 1213 * 1214 * This is the _irqrestore variant of done_seqretry(). The read section 1215 * must've been opened with read_seqbegin_or_lock_irqsave(), and validated 1216 * by need_seqretry(). 1217 */ 1218static inline void 1219done_seqretry_irqrestore(seqlock_t *lock, int seq, unsigned long flags) 1220{ 1221 if (seq & 1) 1222 read_sequnlock_excl_irqrestore(lock, flags); 1223} 1224#endif /* __LINUX_SEQLOCK_H */ 1225