linux/kernel/bpf/hashtab.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
   3 * Copyright (c) 2016 Facebook
   4 */
   5#include <linux/bpf.h>
   6#include <linux/btf.h>
   7#include <linux/jhash.h>
   8#include <linux/filter.h>
   9#include <linux/rculist_nulls.h>
  10#include <linux/random.h>
  11#include <uapi/linux/btf.h>
  12#include <linux/rcupdate_trace.h>
  13#include "percpu_freelist.h"
  14#include "bpf_lru_list.h"
  15#include "map_in_map.h"
  16
  17#define HTAB_CREATE_FLAG_MASK                                           \
  18        (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE |    \
  19         BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED)
  20
  21#define BATCH_OPS(_name)                        \
  22        .map_lookup_batch =                     \
  23        _name##_map_lookup_batch,               \
  24        .map_lookup_and_delete_batch =          \
  25        _name##_map_lookup_and_delete_batch,    \
  26        .map_update_batch =                     \
  27        generic_map_update_batch,               \
  28        .map_delete_batch =                     \
  29        generic_map_delete_batch
  30
  31/*
  32 * The bucket lock has two protection scopes:
  33 *
  34 * 1) Serializing concurrent operations from BPF programs on differrent
  35 *    CPUs
  36 *
  37 * 2) Serializing concurrent operations from BPF programs and sys_bpf()
  38 *
  39 * BPF programs can execute in any context including perf, kprobes and
  40 * tracing. As there are almost no limits where perf, kprobes and tracing
  41 * can be invoked from the lock operations need to be protected against
  42 * deadlocks. Deadlocks can be caused by recursion and by an invocation in
  43 * the lock held section when functions which acquire this lock are invoked
  44 * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU
  45 * variable bpf_prog_active, which prevents BPF programs attached to perf
  46 * events, kprobes and tracing to be invoked before the prior invocation
  47 * from one of these contexts completed. sys_bpf() uses the same mechanism
  48 * by pinning the task to the current CPU and incrementing the recursion
  49 * protection accross the map operation.
  50 *
  51 * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain
  52 * operations like memory allocations (even with GFP_ATOMIC) from atomic
  53 * contexts. This is required because even with GFP_ATOMIC the memory
  54 * allocator calls into code pathes which acquire locks with long held lock
  55 * sections. To ensure the deterministic behaviour these locks are regular
  56 * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only
  57 * true atomic contexts on an RT kernel are the low level hardware
  58 * handling, scheduling, low level interrupt handling, NMIs etc. None of
  59 * these contexts should ever do memory allocations.
  60 *
  61 * As regular device interrupt handlers and soft interrupts are forced into
  62 * thread context, the existing code which does
  63 *   spin_lock*(); alloc(GPF_ATOMIC); spin_unlock*();
  64 * just works.
  65 *
  66 * In theory the BPF locks could be converted to regular spinlocks as well,
  67 * but the bucket locks and percpu_freelist locks can be taken from
  68 * arbitrary contexts (perf, kprobes, tracepoints) which are required to be
  69 * atomic contexts even on RT. These mechanisms require preallocated maps,
  70 * so there is no need to invoke memory allocations within the lock held
  71 * sections.
  72 *
  73 * BPF maps which need dynamic allocation are only used from (forced)
  74 * thread context on RT and can therefore use regular spinlocks which in
  75 * turn allows to invoke memory allocations from the lock held section.
  76 *
  77 * On a non RT kernel this distinction is neither possible nor required.
  78 * spinlock maps to raw_spinlock and the extra code is optimized out by the
  79 * compiler.
  80 */
  81struct bucket {
  82        struct hlist_nulls_head head;
  83        union {
  84                raw_spinlock_t raw_lock;
  85                spinlock_t     lock;
  86        };
  87};
  88
  89struct bpf_htab {
  90        struct bpf_map map;
  91        struct bucket *buckets;
  92        void *elems;
  93        union {
  94                struct pcpu_freelist freelist;
  95                struct bpf_lru lru;
  96        };
  97        struct htab_elem *__percpu *extra_elems;
  98        atomic_t count; /* number of elements in this hashtable */
  99        u32 n_buckets;  /* number of hash buckets */
 100        u32 elem_size;  /* size of each element in bytes */
 101        u32 hashrnd;
 102};
 103
 104/* each htab element is struct htab_elem + key + value */
 105struct htab_elem {
 106        union {
 107                struct hlist_nulls_node hash_node;
 108                struct {
 109                        void *padding;
 110                        union {
 111                                struct bpf_htab *htab;
 112                                struct pcpu_freelist_node fnode;
 113                                struct htab_elem *batch_flink;
 114                        };
 115                };
 116        };
 117        union {
 118                struct rcu_head rcu;
 119                struct bpf_lru_node lru_node;
 120        };
 121        u32 hash;
 122        char key[] __aligned(8);
 123};
 124
 125static inline bool htab_is_prealloc(const struct bpf_htab *htab)
 126{
 127        return !(htab->map.map_flags & BPF_F_NO_PREALLOC);
 128}
 129
 130static inline bool htab_use_raw_lock(const struct bpf_htab *htab)
 131{
 132        return (!IS_ENABLED(CONFIG_PREEMPT_RT) || htab_is_prealloc(htab));
 133}
 134
 135static void htab_init_buckets(struct bpf_htab *htab)
 136{
 137        unsigned i;
 138
 139        for (i = 0; i < htab->n_buckets; i++) {
 140                INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i);
 141                if (htab_use_raw_lock(htab))
 142                        raw_spin_lock_init(&htab->buckets[i].raw_lock);
 143                else
 144                        spin_lock_init(&htab->buckets[i].lock);
 145        }
 146}
 147
 148static inline unsigned long htab_lock_bucket(const struct bpf_htab *htab,
 149                                             struct bucket *b)
 150{
 151        unsigned long flags;
 152
 153        if (htab_use_raw_lock(htab))
 154                raw_spin_lock_irqsave(&b->raw_lock, flags);
 155        else
 156                spin_lock_irqsave(&b->lock, flags);
 157        return flags;
 158}
 159
 160static inline void htab_unlock_bucket(const struct bpf_htab *htab,
 161                                      struct bucket *b,
 162                                      unsigned long flags)
 163{
 164        if (htab_use_raw_lock(htab))
 165                raw_spin_unlock_irqrestore(&b->raw_lock, flags);
 166        else
 167                spin_unlock_irqrestore(&b->lock, flags);
 168}
 169
 170static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node);
 171
 172static bool htab_is_lru(const struct bpf_htab *htab)
 173{
 174        return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH ||
 175                htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
 176}
 177
 178static bool htab_is_percpu(const struct bpf_htab *htab)
 179{
 180        return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH ||
 181                htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
 182}
 183
 184static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
 185                                     void __percpu *pptr)
 186{
 187        *(void __percpu **)(l->key + key_size) = pptr;
 188}
 189
 190static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
 191{
 192        return *(void __percpu **)(l->key + key_size);
 193}
 194
 195static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l)
 196{
 197        return *(void **)(l->key + roundup(map->key_size, 8));
 198}
 199
 200static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i)
 201{
 202        return (struct htab_elem *) (htab->elems + i * htab->elem_size);
 203}
 204
 205static void htab_free_elems(struct bpf_htab *htab)
 206{
 207        int i;
 208
 209        if (!htab_is_percpu(htab))
 210                goto free_elems;
 211
 212        for (i = 0; i < htab->map.max_entries; i++) {
 213                void __percpu *pptr;
 214
 215                pptr = htab_elem_get_ptr(get_htab_elem(htab, i),
 216                                         htab->map.key_size);
 217                free_percpu(pptr);
 218                cond_resched();
 219        }
 220free_elems:
 221        bpf_map_area_free(htab->elems);
 222}
 223
 224/* The LRU list has a lock (lru_lock). Each htab bucket has a lock
 225 * (bucket_lock). If both locks need to be acquired together, the lock
 226 * order is always lru_lock -> bucket_lock and this only happens in
 227 * bpf_lru_list.c logic. For example, certain code path of
 228 * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(),
 229 * will acquire lru_lock first followed by acquiring bucket_lock.
 230 *
 231 * In hashtab.c, to avoid deadlock, lock acquisition of
 232 * bucket_lock followed by lru_lock is not allowed. In such cases,
 233 * bucket_lock needs to be released first before acquiring lru_lock.
 234 */
 235static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key,
 236                                          u32 hash)
 237{
 238        struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash);
 239        struct htab_elem *l;
 240
 241        if (node) {
 242                l = container_of(node, struct htab_elem, lru_node);
 243                memcpy(l->key, key, htab->map.key_size);
 244                return l;
 245        }
 246
 247        return NULL;
 248}
 249
 250static int prealloc_init(struct bpf_htab *htab)
 251{
 252        u32 num_entries = htab->map.max_entries;
 253        int err = -ENOMEM, i;
 254
 255        if (!htab_is_percpu(htab) && !htab_is_lru(htab))
 256                num_entries += num_possible_cpus();
 257
 258        htab->elems = bpf_map_area_alloc(htab->elem_size * num_entries,
 259                                         htab->map.numa_node);
 260        if (!htab->elems)
 261                return -ENOMEM;
 262
 263        if (!htab_is_percpu(htab))
 264                goto skip_percpu_elems;
 265
 266        for (i = 0; i < num_entries; i++) {
 267                u32 size = round_up(htab->map.value_size, 8);
 268                void __percpu *pptr;
 269
 270                pptr = __alloc_percpu_gfp(size, 8, GFP_USER | __GFP_NOWARN);
 271                if (!pptr)
 272                        goto free_elems;
 273                htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size,
 274                                  pptr);
 275                cond_resched();
 276        }
 277
 278skip_percpu_elems:
 279        if (htab_is_lru(htab))
 280                err = bpf_lru_init(&htab->lru,
 281                                   htab->map.map_flags & BPF_F_NO_COMMON_LRU,
 282                                   offsetof(struct htab_elem, hash) -
 283                                   offsetof(struct htab_elem, lru_node),
 284                                   htab_lru_map_delete_node,
 285                                   htab);
 286        else
 287                err = pcpu_freelist_init(&htab->freelist);
 288
 289        if (err)
 290                goto free_elems;
 291
 292        if (htab_is_lru(htab))
 293                bpf_lru_populate(&htab->lru, htab->elems,
 294                                 offsetof(struct htab_elem, lru_node),
 295                                 htab->elem_size, num_entries);
 296        else
 297                pcpu_freelist_populate(&htab->freelist,
 298                                       htab->elems + offsetof(struct htab_elem, fnode),
 299                                       htab->elem_size, num_entries);
 300
 301        return 0;
 302
 303free_elems:
 304        htab_free_elems(htab);
 305        return err;
 306}
 307
 308static void prealloc_destroy(struct bpf_htab *htab)
 309{
 310        htab_free_elems(htab);
 311
 312        if (htab_is_lru(htab))
 313                bpf_lru_destroy(&htab->lru);
 314        else
 315                pcpu_freelist_destroy(&htab->freelist);
 316}
 317
 318static int alloc_extra_elems(struct bpf_htab *htab)
 319{
 320        struct htab_elem *__percpu *pptr, *l_new;
 321        struct pcpu_freelist_node *l;
 322        int cpu;
 323
 324        pptr = __alloc_percpu_gfp(sizeof(struct htab_elem *), 8,
 325                                  GFP_USER | __GFP_NOWARN);
 326        if (!pptr)
 327                return -ENOMEM;
 328
 329        for_each_possible_cpu(cpu) {
 330                l = pcpu_freelist_pop(&htab->freelist);
 331                /* pop will succeed, since prealloc_init()
 332                 * preallocated extra num_possible_cpus elements
 333                 */
 334                l_new = container_of(l, struct htab_elem, fnode);
 335                *per_cpu_ptr(pptr, cpu) = l_new;
 336        }
 337        htab->extra_elems = pptr;
 338        return 0;
 339}
 340
 341/* Called from syscall */
 342static int htab_map_alloc_check(union bpf_attr *attr)
 343{
 344        bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
 345                       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
 346        bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
 347                    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
 348        /* percpu_lru means each cpu has its own LRU list.
 349         * it is different from BPF_MAP_TYPE_PERCPU_HASH where
 350         * the map's value itself is percpu.  percpu_lru has
 351         * nothing to do with the map's value.
 352         */
 353        bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
 354        bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
 355        bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED);
 356        int numa_node = bpf_map_attr_numa_node(attr);
 357
 358        BUILD_BUG_ON(offsetof(struct htab_elem, htab) !=
 359                     offsetof(struct htab_elem, hash_node.pprev));
 360        BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) !=
 361                     offsetof(struct htab_elem, hash_node.pprev));
 362
 363        if (lru && !bpf_capable())
 364                /* LRU implementation is much complicated than other
 365                 * maps.  Hence, limit to CAP_BPF.
 366                 */
 367                return -EPERM;
 368
 369        if (zero_seed && !capable(CAP_SYS_ADMIN))
 370                /* Guard against local DoS, and discourage production use. */
 371                return -EPERM;
 372
 373        if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK ||
 374            !bpf_map_flags_access_ok(attr->map_flags))
 375                return -EINVAL;
 376
 377        if (!lru && percpu_lru)
 378                return -EINVAL;
 379
 380        if (lru && !prealloc)
 381                return -ENOTSUPP;
 382
 383        if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru))
 384                return -EINVAL;
 385
 386        /* check sanity of attributes.
 387         * value_size == 0 may be allowed in the future to use map as a set
 388         */
 389        if (attr->max_entries == 0 || attr->key_size == 0 ||
 390            attr->value_size == 0)
 391                return -EINVAL;
 392
 393        if (attr->key_size > MAX_BPF_STACK)
 394                /* eBPF programs initialize keys on stack, so they cannot be
 395                 * larger than max stack size
 396                 */
 397                return -E2BIG;
 398
 399        if (attr->value_size >= KMALLOC_MAX_SIZE -
 400            MAX_BPF_STACK - sizeof(struct htab_elem))
 401                /* if value_size is bigger, the user space won't be able to
 402                 * access the elements via bpf syscall. This check also makes
 403                 * sure that the elem_size doesn't overflow and it's
 404                 * kmalloc-able later in htab_map_update_elem()
 405                 */
 406                return -E2BIG;
 407
 408        return 0;
 409}
 410
 411static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
 412{
 413        bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
 414                       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
 415        bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
 416                    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
 417        /* percpu_lru means each cpu has its own LRU list.
 418         * it is different from BPF_MAP_TYPE_PERCPU_HASH where
 419         * the map's value itself is percpu.  percpu_lru has
 420         * nothing to do with the map's value.
 421         */
 422        bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
 423        bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
 424        struct bpf_htab *htab;
 425        u64 cost;
 426        int err;
 427
 428        htab = kzalloc(sizeof(*htab), GFP_USER);
 429        if (!htab)
 430                return ERR_PTR(-ENOMEM);
 431
 432        bpf_map_init_from_attr(&htab->map, attr);
 433
 434        if (percpu_lru) {
 435                /* ensure each CPU's lru list has >=1 elements.
 436                 * since we are at it, make each lru list has the same
 437                 * number of elements.
 438                 */
 439                htab->map.max_entries = roundup(attr->max_entries,
 440                                                num_possible_cpus());
 441                if (htab->map.max_entries < attr->max_entries)
 442                        htab->map.max_entries = rounddown(attr->max_entries,
 443                                                          num_possible_cpus());
 444        }
 445
 446        /* hash table size must be power of 2 */
 447        htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
 448
 449        htab->elem_size = sizeof(struct htab_elem) +
 450                          round_up(htab->map.key_size, 8);
 451        if (percpu)
 452                htab->elem_size += sizeof(void *);
 453        else
 454                htab->elem_size += round_up(htab->map.value_size, 8);
 455
 456        err = -E2BIG;
 457        /* prevent zero size kmalloc and check for u32 overflow */
 458        if (htab->n_buckets == 0 ||
 459            htab->n_buckets > U32_MAX / sizeof(struct bucket))
 460                goto free_htab;
 461
 462        cost = (u64) htab->n_buckets * sizeof(struct bucket) +
 463               (u64) htab->elem_size * htab->map.max_entries;
 464
 465        if (percpu)
 466                cost += (u64) round_up(htab->map.value_size, 8) *
 467                        num_possible_cpus() * htab->map.max_entries;
 468        else
 469               cost += (u64) htab->elem_size * num_possible_cpus();
 470
 471        /* if map size is larger than memlock limit, reject it */
 472        err = bpf_map_charge_init(&htab->map.memory, cost);
 473        if (err)
 474                goto free_htab;
 475
 476        err = -ENOMEM;
 477        htab->buckets = bpf_map_area_alloc(htab->n_buckets *
 478                                           sizeof(struct bucket),
 479                                           htab->map.numa_node);
 480        if (!htab->buckets)
 481                goto free_charge;
 482
 483        if (htab->map.map_flags & BPF_F_ZERO_SEED)
 484                htab->hashrnd = 0;
 485        else
 486                htab->hashrnd = get_random_int();
 487
 488        htab_init_buckets(htab);
 489
 490        if (prealloc) {
 491                err = prealloc_init(htab);
 492                if (err)
 493                        goto free_buckets;
 494
 495                if (!percpu && !lru) {
 496                        /* lru itself can remove the least used element, so
 497                         * there is no need for an extra elem during map_update.
 498                         */
 499                        err = alloc_extra_elems(htab);
 500                        if (err)
 501                                goto free_prealloc;
 502                }
 503        }
 504
 505        return &htab->map;
 506
 507free_prealloc:
 508        prealloc_destroy(htab);
 509free_buckets:
 510        bpf_map_area_free(htab->buckets);
 511free_charge:
 512        bpf_map_charge_finish(&htab->map.memory);
 513free_htab:
 514        kfree(htab);
 515        return ERR_PTR(err);
 516}
 517
 518static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd)
 519{
 520        return jhash(key, key_len, hashrnd);
 521}
 522
 523static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
 524{
 525        return &htab->buckets[hash & (htab->n_buckets - 1)];
 526}
 527
 528static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash)
 529{
 530        return &__select_bucket(htab, hash)->head;
 531}
 532
 533/* this lookup function can only be called with bucket lock taken */
 534static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash,
 535                                         void *key, u32 key_size)
 536{
 537        struct hlist_nulls_node *n;
 538        struct htab_elem *l;
 539
 540        hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
 541                if (l->hash == hash && !memcmp(&l->key, key, key_size))
 542                        return l;
 543
 544        return NULL;
 545}
 546
 547/* can be called without bucket lock. it will repeat the loop in
 548 * the unlikely event when elements moved from one bucket into another
 549 * while link list is being walked
 550 */
 551static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head,
 552                                               u32 hash, void *key,
 553                                               u32 key_size, u32 n_buckets)
 554{
 555        struct hlist_nulls_node *n;
 556        struct htab_elem *l;
 557
 558again:
 559        hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
 560                if (l->hash == hash && !memcmp(&l->key, key, key_size))
 561                        return l;
 562
 563        if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1))))
 564                goto again;
 565
 566        return NULL;
 567}
 568
 569/* Called from syscall or from eBPF program directly, so
 570 * arguments have to match bpf_map_lookup_elem() exactly.
 571 * The return value is adjusted by BPF instructions
 572 * in htab_map_gen_lookup().
 573 */
 574static void *__htab_map_lookup_elem(struct bpf_map *map, void *key)
 575{
 576        struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
 577        struct hlist_nulls_head *head;
 578        struct htab_elem *l;
 579        u32 hash, key_size;
 580
 581        WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
 582
 583        key_size = map->key_size;
 584
 585        hash = htab_map_hash(key, key_size, htab->hashrnd);
 586
 587        head = select_bucket(htab, hash);
 588
 589        l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
 590
 591        return l;
 592}
 593
 594static void *htab_map_lookup_elem(struct bpf_map *map, void *key)
 595{
 596        struct htab_elem *l = __htab_map_lookup_elem(map, key);
 597
 598        if (l)
 599                return l->key + round_up(map->key_size, 8);
 600
 601        return NULL;
 602}
 603
 604/* inline bpf_map_lookup_elem() call.
 605 * Instead of:
 606 * bpf_prog
 607 *   bpf_map_lookup_elem
 608 *     map->ops->map_lookup_elem
 609 *       htab_map_lookup_elem
 610 *         __htab_map_lookup_elem
 611 * do:
 612 * bpf_prog
 613 *   __htab_map_lookup_elem
 614 */
 615static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
 616{
 617        struct bpf_insn *insn = insn_buf;
 618        const int ret = BPF_REG_0;
 619
 620        BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
 621                     (void *(*)(struct bpf_map *map, void *key))NULL));
 622        *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
 623        *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
 624        *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
 625                                offsetof(struct htab_elem, key) +
 626                                round_up(map->key_size, 8));
 627        return insn - insn_buf;
 628}
 629
 630static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map,
 631                                                        void *key, const bool mark)
 632{
 633        struct htab_elem *l = __htab_map_lookup_elem(map, key);
 634
 635        if (l) {
 636                if (mark)
 637                        bpf_lru_node_set_ref(&l->lru_node);
 638                return l->key + round_up(map->key_size, 8);
 639        }
 640
 641        return NULL;
 642}
 643
 644static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key)
 645{
 646        return __htab_lru_map_lookup_elem(map, key, true);
 647}
 648
 649static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key)
 650{
 651        return __htab_lru_map_lookup_elem(map, key, false);
 652}
 653
 654static int htab_lru_map_gen_lookup(struct bpf_map *map,
 655                                   struct bpf_insn *insn_buf)
 656{
 657        struct bpf_insn *insn = insn_buf;
 658        const int ret = BPF_REG_0;
 659        const int ref_reg = BPF_REG_1;
 660
 661        BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
 662                     (void *(*)(struct bpf_map *map, void *key))NULL));
 663        *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
 664        *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4);
 665        *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret,
 666                              offsetof(struct htab_elem, lru_node) +
 667                              offsetof(struct bpf_lru_node, ref));
 668        *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1);
 669        *insn++ = BPF_ST_MEM(BPF_B, ret,
 670                             offsetof(struct htab_elem, lru_node) +
 671                             offsetof(struct bpf_lru_node, ref),
 672                             1);
 673        *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
 674                                offsetof(struct htab_elem, key) +
 675                                round_up(map->key_size, 8));
 676        return insn - insn_buf;
 677}
 678
 679/* It is called from the bpf_lru_list when the LRU needs to delete
 680 * older elements from the htab.
 681 */
 682static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node)
 683{
 684        struct bpf_htab *htab = (struct bpf_htab *)arg;
 685        struct htab_elem *l = NULL, *tgt_l;
 686        struct hlist_nulls_head *head;
 687        struct hlist_nulls_node *n;
 688        unsigned long flags;
 689        struct bucket *b;
 690
 691        tgt_l = container_of(node, struct htab_elem, lru_node);
 692        b = __select_bucket(htab, tgt_l->hash);
 693        head = &b->head;
 694
 695        flags = htab_lock_bucket(htab, b);
 696
 697        hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
 698                if (l == tgt_l) {
 699                        hlist_nulls_del_rcu(&l->hash_node);
 700                        break;
 701                }
 702
 703        htab_unlock_bucket(htab, b, flags);
 704
 705        return l == tgt_l;
 706}
 707
 708/* Called from syscall */
 709static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
 710{
 711        struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
 712        struct hlist_nulls_head *head;
 713        struct htab_elem *l, *next_l;
 714        u32 hash, key_size;
 715        int i = 0;
 716
 717        WARN_ON_ONCE(!rcu_read_lock_held());
 718
 719        key_size = map->key_size;
 720
 721        if (!key)
 722                goto find_first_elem;
 723
 724        hash = htab_map_hash(key, key_size, htab->hashrnd);
 725
 726        head = select_bucket(htab, hash);
 727
 728        /* lookup the key */
 729        l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
 730
 731        if (!l)
 732                goto find_first_elem;
 733
 734        /* key was found, get next key in the same bucket */
 735        next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)),
 736                                  struct htab_elem, hash_node);
 737
 738        if (next_l) {
 739                /* if next elem in this hash list is non-zero, just return it */
 740                memcpy(next_key, next_l->key, key_size);
 741                return 0;
 742        }
 743
 744        /* no more elements in this hash list, go to the next bucket */
 745        i = hash & (htab->n_buckets - 1);
 746        i++;
 747
 748find_first_elem:
 749        /* iterate over buckets */
 750        for (; i < htab->n_buckets; i++) {
 751                head = select_bucket(htab, i);
 752
 753                /* pick first element in the bucket */
 754                next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)),
 755                                          struct htab_elem, hash_node);
 756                if (next_l) {
 757                        /* if it's not empty, just return it */
 758                        memcpy(next_key, next_l->key, key_size);
 759                        return 0;
 760                }
 761        }
 762
 763        /* iterated over all buckets and all elements */
 764        return -ENOENT;
 765}
 766
 767static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l)
 768{
 769        if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH)
 770                free_percpu(htab_elem_get_ptr(l, htab->map.key_size));
 771        kfree(l);
 772}
 773
 774static void htab_elem_free_rcu(struct rcu_head *head)
 775{
 776        struct htab_elem *l = container_of(head, struct htab_elem, rcu);
 777        struct bpf_htab *htab = l->htab;
 778
 779        htab_elem_free(htab, l);
 780}
 781
 782static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l)
 783{
 784        struct bpf_map *map = &htab->map;
 785        void *ptr;
 786
 787        if (map->ops->map_fd_put_ptr) {
 788                ptr = fd_htab_map_get_ptr(map, l);
 789                map->ops->map_fd_put_ptr(ptr);
 790        }
 791}
 792
 793static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
 794{
 795        htab_put_fd_value(htab, l);
 796
 797        if (htab_is_prealloc(htab)) {
 798                __pcpu_freelist_push(&htab->freelist, &l->fnode);
 799        } else {
 800                atomic_dec(&htab->count);
 801                l->htab = htab;
 802                call_rcu(&l->rcu, htab_elem_free_rcu);
 803        }
 804}
 805
 806static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr,
 807                            void *value, bool onallcpus)
 808{
 809        if (!onallcpus) {
 810                /* copy true value_size bytes */
 811                memcpy(this_cpu_ptr(pptr), value, htab->map.value_size);
 812        } else {
 813                u32 size = round_up(htab->map.value_size, 8);
 814                int off = 0, cpu;
 815
 816                for_each_possible_cpu(cpu) {
 817                        bpf_long_memcpy(per_cpu_ptr(pptr, cpu),
 818                                        value + off, size);
 819                        off += size;
 820                }
 821        }
 822}
 823
 824static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr,
 825                            void *value, bool onallcpus)
 826{
 827        /* When using prealloc and not setting the initial value on all cpus,
 828         * zero-fill element values for other cpus (just as what happens when
 829         * not using prealloc). Otherwise, bpf program has no way to ensure
 830         * known initial values for cpus other than current one
 831         * (onallcpus=false always when coming from bpf prog).
 832         */
 833        if (htab_is_prealloc(htab) && !onallcpus) {
 834                u32 size = round_up(htab->map.value_size, 8);
 835                int current_cpu = raw_smp_processor_id();
 836                int cpu;
 837
 838                for_each_possible_cpu(cpu) {
 839                        if (cpu == current_cpu)
 840                                bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value,
 841                                                size);
 842                        else
 843                                memset(per_cpu_ptr(pptr, cpu), 0, size);
 844                }
 845        } else {
 846                pcpu_copy_value(htab, pptr, value, onallcpus);
 847        }
 848}
 849
 850static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab)
 851{
 852        return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS &&
 853               BITS_PER_LONG == 64;
 854}
 855
 856static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
 857                                         void *value, u32 key_size, u32 hash,
 858                                         bool percpu, bool onallcpus,
 859                                         struct htab_elem *old_elem)
 860{
 861        u32 size = htab->map.value_size;
 862        bool prealloc = htab_is_prealloc(htab);
 863        struct htab_elem *l_new, **pl_new;
 864        void __percpu *pptr;
 865
 866        if (prealloc) {
 867                if (old_elem) {
 868                        /* if we're updating the existing element,
 869                         * use per-cpu extra elems to avoid freelist_pop/push
 870                         */
 871                        pl_new = this_cpu_ptr(htab->extra_elems);
 872                        l_new = *pl_new;
 873                        htab_put_fd_value(htab, old_elem);
 874                        *pl_new = old_elem;
 875                } else {
 876                        struct pcpu_freelist_node *l;
 877
 878                        l = __pcpu_freelist_pop(&htab->freelist);
 879                        if (!l)
 880                                return ERR_PTR(-E2BIG);
 881                        l_new = container_of(l, struct htab_elem, fnode);
 882                }
 883        } else {
 884                if (atomic_inc_return(&htab->count) > htab->map.max_entries)
 885                        if (!old_elem) {
 886                                /* when map is full and update() is replacing
 887                                 * old element, it's ok to allocate, since
 888                                 * old element will be freed immediately.
 889                                 * Otherwise return an error
 890                                 */
 891                                l_new = ERR_PTR(-E2BIG);
 892                                goto dec_count;
 893                        }
 894                l_new = kmalloc_node(htab->elem_size, GFP_ATOMIC | __GFP_NOWARN,
 895                                     htab->map.numa_node);
 896                if (!l_new) {
 897                        l_new = ERR_PTR(-ENOMEM);
 898                        goto dec_count;
 899                }
 900                check_and_init_map_lock(&htab->map,
 901                                        l_new->key + round_up(key_size, 8));
 902        }
 903
 904        memcpy(l_new->key, key, key_size);
 905        if (percpu) {
 906                size = round_up(size, 8);
 907                if (prealloc) {
 908                        pptr = htab_elem_get_ptr(l_new, key_size);
 909                } else {
 910                        /* alloc_percpu zero-fills */
 911                        pptr = __alloc_percpu_gfp(size, 8,
 912                                                  GFP_ATOMIC | __GFP_NOWARN);
 913                        if (!pptr) {
 914                                kfree(l_new);
 915                                l_new = ERR_PTR(-ENOMEM);
 916                                goto dec_count;
 917                        }
 918                }
 919
 920                pcpu_init_value(htab, pptr, value, onallcpus);
 921
 922                if (!prealloc)
 923                        htab_elem_set_ptr(l_new, key_size, pptr);
 924        } else if (fd_htab_map_needs_adjust(htab)) {
 925                size = round_up(size, 8);
 926                memcpy(l_new->key + round_up(key_size, 8), value, size);
 927        } else {
 928                copy_map_value(&htab->map,
 929                               l_new->key + round_up(key_size, 8),
 930                               value);
 931        }
 932
 933        l_new->hash = hash;
 934        return l_new;
 935dec_count:
 936        atomic_dec(&htab->count);
 937        return l_new;
 938}
 939
 940static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old,
 941                       u64 map_flags)
 942{
 943        if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
 944                /* elem already exists */
 945                return -EEXIST;
 946
 947        if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
 948                /* elem doesn't exist, cannot update it */
 949                return -ENOENT;
 950
 951        return 0;
 952}
 953
 954/* Called from syscall or from eBPF program */
 955static int htab_map_update_elem(struct bpf_map *map, void *key, void *value,
 956                                u64 map_flags)
 957{
 958        struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
 959        struct htab_elem *l_new = NULL, *l_old;
 960        struct hlist_nulls_head *head;
 961        unsigned long flags;
 962        struct bucket *b;
 963        u32 key_size, hash;
 964        int ret;
 965
 966        if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
 967                /* unknown flags */
 968                return -EINVAL;
 969
 970        WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
 971
 972        key_size = map->key_size;
 973
 974        hash = htab_map_hash(key, key_size, htab->hashrnd);
 975
 976        b = __select_bucket(htab, hash);
 977        head = &b->head;
 978
 979        if (unlikely(map_flags & BPF_F_LOCK)) {
 980                if (unlikely(!map_value_has_spin_lock(map)))
 981                        return -EINVAL;
 982                /* find an element without taking the bucket lock */
 983                l_old = lookup_nulls_elem_raw(head, hash, key, key_size,
 984                                              htab->n_buckets);
 985                ret = check_flags(htab, l_old, map_flags);
 986                if (ret)
 987                        return ret;
 988                if (l_old) {
 989                        /* grab the element lock and update value in place */
 990                        copy_map_value_locked(map,
 991                                              l_old->key + round_up(key_size, 8),
 992                                              value, false);
 993                        return 0;
 994                }
 995                /* fall through, grab the bucket lock and lookup again.
 996                 * 99.9% chance that the element won't be found,
 997                 * but second lookup under lock has to be done.
 998                 */
 999        }
1000
1001        flags = htab_lock_bucket(htab, b);
1002
1003        l_old = lookup_elem_raw(head, hash, key, key_size);
1004
1005        ret = check_flags(htab, l_old, map_flags);
1006        if (ret)
1007                goto err;
1008
1009        if (unlikely(l_old && (map_flags & BPF_F_LOCK))) {
1010                /* first lookup without the bucket lock didn't find the element,
1011                 * but second lookup with the bucket lock found it.
1012                 * This case is highly unlikely, but has to be dealt with:
1013                 * grab the element lock in addition to the bucket lock
1014                 * and update element in place
1015                 */
1016                copy_map_value_locked(map,
1017                                      l_old->key + round_up(key_size, 8),
1018                                      value, false);
1019                ret = 0;
1020                goto err;
1021        }
1022
1023        l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false,
1024                                l_old);
1025        if (IS_ERR(l_new)) {
1026                /* all pre-allocated elements are in use or memory exhausted */
1027                ret = PTR_ERR(l_new);
1028                goto err;
1029        }
1030
1031        /* add new element to the head of the list, so that
1032         * concurrent search will find it before old elem
1033         */
1034        hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1035        if (l_old) {
1036                hlist_nulls_del_rcu(&l_old->hash_node);
1037                if (!htab_is_prealloc(htab))
1038                        free_htab_elem(htab, l_old);
1039        }
1040        ret = 0;
1041err:
1042        htab_unlock_bucket(htab, b, flags);
1043        return ret;
1044}
1045
1046static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value,
1047                                    u64 map_flags)
1048{
1049        struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1050        struct htab_elem *l_new, *l_old = NULL;
1051        struct hlist_nulls_head *head;
1052        unsigned long flags;
1053        struct bucket *b;
1054        u32 key_size, hash;
1055        int ret;
1056
1057        if (unlikely(map_flags > BPF_EXIST))
1058                /* unknown flags */
1059                return -EINVAL;
1060
1061        WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
1062
1063        key_size = map->key_size;
1064
1065        hash = htab_map_hash(key, key_size, htab->hashrnd);
1066
1067        b = __select_bucket(htab, hash);
1068        head = &b->head;
1069
1070        /* For LRU, we need to alloc before taking bucket's
1071         * spinlock because getting free nodes from LRU may need
1072         * to remove older elements from htab and this removal
1073         * operation will need a bucket lock.
1074         */
1075        l_new = prealloc_lru_pop(htab, key, hash);
1076        if (!l_new)
1077                return -ENOMEM;
1078        memcpy(l_new->key + round_up(map->key_size, 8), value, map->value_size);
1079
1080        flags = htab_lock_bucket(htab, b);
1081
1082        l_old = lookup_elem_raw(head, hash, key, key_size);
1083
1084        ret = check_flags(htab, l_old, map_flags);
1085        if (ret)
1086                goto err;
1087
1088        /* add new element to the head of the list, so that
1089         * concurrent search will find it before old elem
1090         */
1091        hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1092        if (l_old) {
1093                bpf_lru_node_set_ref(&l_new->lru_node);
1094                hlist_nulls_del_rcu(&l_old->hash_node);
1095        }
1096        ret = 0;
1097
1098err:
1099        htab_unlock_bucket(htab, b, flags);
1100
1101        if (ret)
1102                bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1103        else if (l_old)
1104                bpf_lru_push_free(&htab->lru, &l_old->lru_node);
1105
1106        return ret;
1107}
1108
1109static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1110                                         void *value, u64 map_flags,
1111                                         bool onallcpus)
1112{
1113        struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1114        struct htab_elem *l_new = NULL, *l_old;
1115        struct hlist_nulls_head *head;
1116        unsigned long flags;
1117        struct bucket *b;
1118        u32 key_size, hash;
1119        int ret;
1120
1121        if (unlikely(map_flags > BPF_EXIST))
1122                /* unknown flags */
1123                return -EINVAL;
1124
1125        WARN_ON_ONCE(!rcu_read_lock_held());
1126
1127        key_size = map->key_size;
1128
1129        hash = htab_map_hash(key, key_size, htab->hashrnd);
1130
1131        b = __select_bucket(htab, hash);
1132        head = &b->head;
1133
1134        flags = htab_lock_bucket(htab, b);
1135
1136        l_old = lookup_elem_raw(head, hash, key, key_size);
1137
1138        ret = check_flags(htab, l_old, map_flags);
1139        if (ret)
1140                goto err;
1141
1142        if (l_old) {
1143                /* per-cpu hash map can update value in-place */
1144                pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1145                                value, onallcpus);
1146        } else {
1147                l_new = alloc_htab_elem(htab, key, value, key_size,
1148                                        hash, true, onallcpus, NULL);
1149                if (IS_ERR(l_new)) {
1150                        ret = PTR_ERR(l_new);
1151                        goto err;
1152                }
1153                hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1154        }
1155        ret = 0;
1156err:
1157        htab_unlock_bucket(htab, b, flags);
1158        return ret;
1159}
1160
1161static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1162                                             void *value, u64 map_flags,
1163                                             bool onallcpus)
1164{
1165        struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1166        struct htab_elem *l_new = NULL, *l_old;
1167        struct hlist_nulls_head *head;
1168        unsigned long flags;
1169        struct bucket *b;
1170        u32 key_size, hash;
1171        int ret;
1172
1173        if (unlikely(map_flags > BPF_EXIST))
1174                /* unknown flags */
1175                return -EINVAL;
1176
1177        WARN_ON_ONCE(!rcu_read_lock_held());
1178
1179        key_size = map->key_size;
1180
1181        hash = htab_map_hash(key, key_size, htab->hashrnd);
1182
1183        b = __select_bucket(htab, hash);
1184        head = &b->head;
1185
1186        /* For LRU, we need to alloc before taking bucket's
1187         * spinlock because LRU's elem alloc may need
1188         * to remove older elem from htab and this removal
1189         * operation will need a bucket lock.
1190         */
1191        if (map_flags != BPF_EXIST) {
1192                l_new = prealloc_lru_pop(htab, key, hash);
1193                if (!l_new)
1194                        return -ENOMEM;
1195        }
1196
1197        flags = htab_lock_bucket(htab, b);
1198
1199        l_old = lookup_elem_raw(head, hash, key, key_size);
1200
1201        ret = check_flags(htab, l_old, map_flags);
1202        if (ret)
1203                goto err;
1204
1205        if (l_old) {
1206                bpf_lru_node_set_ref(&l_old->lru_node);
1207
1208                /* per-cpu hash map can update value in-place */
1209                pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1210                                value, onallcpus);
1211        } else {
1212                pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size),
1213                                value, onallcpus);
1214                hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1215                l_new = NULL;
1216        }
1217        ret = 0;
1218err:
1219        htab_unlock_bucket(htab, b, flags);
1220        if (l_new)
1221                bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1222        return ret;
1223}
1224
1225static int htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1226                                       void *value, u64 map_flags)
1227{
1228        return __htab_percpu_map_update_elem(map, key, value, map_flags, false);
1229}
1230
1231static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1232                                           void *value, u64 map_flags)
1233{
1234        return __htab_lru_percpu_map_update_elem(map, key, value, map_flags,
1235                                                 false);
1236}
1237
1238/* Called from syscall or from eBPF program */
1239static int htab_map_delete_elem(struct bpf_map *map, void *key)
1240{
1241        struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1242        struct hlist_nulls_head *head;
1243        struct bucket *b;
1244        struct htab_elem *l;
1245        unsigned long flags;
1246        u32 hash, key_size;
1247        int ret = -ENOENT;
1248
1249        WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
1250
1251        key_size = map->key_size;
1252
1253        hash = htab_map_hash(key, key_size, htab->hashrnd);
1254        b = __select_bucket(htab, hash);
1255        head = &b->head;
1256
1257        flags = htab_lock_bucket(htab, b);
1258
1259        l = lookup_elem_raw(head, hash, key, key_size);
1260
1261        if (l) {
1262                hlist_nulls_del_rcu(&l->hash_node);
1263                free_htab_elem(htab, l);
1264                ret = 0;
1265        }
1266
1267        htab_unlock_bucket(htab, b, flags);
1268        return ret;
1269}
1270
1271static int htab_lru_map_delete_elem(struct bpf_map *map, void *key)
1272{
1273        struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1274        struct hlist_nulls_head *head;
1275        struct bucket *b;
1276        struct htab_elem *l;
1277        unsigned long flags;
1278        u32 hash, key_size;
1279        int ret = -ENOENT;
1280
1281        WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
1282
1283        key_size = map->key_size;
1284
1285        hash = htab_map_hash(key, key_size, htab->hashrnd);
1286        b = __select_bucket(htab, hash);
1287        head = &b->head;
1288
1289        flags = htab_lock_bucket(htab, b);
1290
1291        l = lookup_elem_raw(head, hash, key, key_size);
1292
1293        if (l) {
1294                hlist_nulls_del_rcu(&l->hash_node);
1295                ret = 0;
1296        }
1297
1298        htab_unlock_bucket(htab, b, flags);
1299        if (l)
1300                bpf_lru_push_free(&htab->lru, &l->lru_node);
1301        return ret;
1302}
1303
1304static void delete_all_elements(struct bpf_htab *htab)
1305{
1306        int i;
1307
1308        for (i = 0; i < htab->n_buckets; i++) {
1309                struct hlist_nulls_head *head = select_bucket(htab, i);
1310                struct hlist_nulls_node *n;
1311                struct htab_elem *l;
1312
1313                hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1314                        hlist_nulls_del_rcu(&l->hash_node);
1315                        htab_elem_free(htab, l);
1316                }
1317        }
1318}
1319
1320/* Called when map->refcnt goes to zero, either from workqueue or from syscall */
1321static void htab_map_free(struct bpf_map *map)
1322{
1323        struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1324
1325        /* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback.
1326         * bpf_free_used_maps() is called after bpf prog is no longer executing.
1327         * There is no need to synchronize_rcu() here to protect map elements.
1328         */
1329
1330        /* some of free_htab_elem() callbacks for elements of this map may
1331         * not have executed. Wait for them.
1332         */
1333        rcu_barrier();
1334        if (!htab_is_prealloc(htab))
1335                delete_all_elements(htab);
1336        else
1337                prealloc_destroy(htab);
1338
1339        free_percpu(htab->extra_elems);
1340        bpf_map_area_free(htab->buckets);
1341        kfree(htab);
1342}
1343
1344static void htab_map_seq_show_elem(struct bpf_map *map, void *key,
1345                                   struct seq_file *m)
1346{
1347        void *value;
1348
1349        rcu_read_lock();
1350
1351        value = htab_map_lookup_elem(map, key);
1352        if (!value) {
1353                rcu_read_unlock();
1354                return;
1355        }
1356
1357        btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1358        seq_puts(m, ": ");
1359        btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
1360        seq_puts(m, "\n");
1361
1362        rcu_read_unlock();
1363}
1364
1365static int
1366__htab_map_lookup_and_delete_batch(struct bpf_map *map,
1367                                   const union bpf_attr *attr,
1368                                   union bpf_attr __user *uattr,
1369                                   bool do_delete, bool is_lru_map,
1370                                   bool is_percpu)
1371{
1372        struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1373        u32 bucket_cnt, total, key_size, value_size, roundup_key_size;
1374        void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val;
1375        void __user *uvalues = u64_to_user_ptr(attr->batch.values);
1376        void __user *ukeys = u64_to_user_ptr(attr->batch.keys);
1377        void *ubatch = u64_to_user_ptr(attr->batch.in_batch);
1378        u32 batch, max_count, size, bucket_size;
1379        struct htab_elem *node_to_free = NULL;
1380        u64 elem_map_flags, map_flags;
1381        struct hlist_nulls_head *head;
1382        struct hlist_nulls_node *n;
1383        unsigned long flags = 0;
1384        bool locked = false;
1385        struct htab_elem *l;
1386        struct bucket *b;
1387        int ret = 0;
1388
1389        elem_map_flags = attr->batch.elem_flags;
1390        if ((elem_map_flags & ~BPF_F_LOCK) ||
1391            ((elem_map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map)))
1392                return -EINVAL;
1393
1394        map_flags = attr->batch.flags;
1395        if (map_flags)
1396                return -EINVAL;
1397
1398        max_count = attr->batch.count;
1399        if (!max_count)
1400                return 0;
1401
1402        if (put_user(0, &uattr->batch.count))
1403                return -EFAULT;
1404
1405        batch = 0;
1406        if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch)))
1407                return -EFAULT;
1408
1409        if (batch >= htab->n_buckets)
1410                return -ENOENT;
1411
1412        key_size = htab->map.key_size;
1413        roundup_key_size = round_up(htab->map.key_size, 8);
1414        value_size = htab->map.value_size;
1415        size = round_up(value_size, 8);
1416        if (is_percpu)
1417                value_size = size * num_possible_cpus();
1418        total = 0;
1419        /* while experimenting with hash tables with sizes ranging from 10 to
1420         * 1000, it was observed that a bucket can have upto 5 entries.
1421         */
1422        bucket_size = 5;
1423
1424alloc:
1425        /* We cannot do copy_from_user or copy_to_user inside
1426         * the rcu_read_lock. Allocate enough space here.
1427         */
1428        keys = kvmalloc(key_size * bucket_size, GFP_USER | __GFP_NOWARN);
1429        values = kvmalloc(value_size * bucket_size, GFP_USER | __GFP_NOWARN);
1430        if (!keys || !values) {
1431                ret = -ENOMEM;
1432                goto after_loop;
1433        }
1434
1435again:
1436        bpf_disable_instrumentation();
1437        rcu_read_lock();
1438again_nocopy:
1439        dst_key = keys;
1440        dst_val = values;
1441        b = &htab->buckets[batch];
1442        head = &b->head;
1443        /* do not grab the lock unless need it (bucket_cnt > 0). */
1444        if (locked)
1445                flags = htab_lock_bucket(htab, b);
1446
1447        bucket_cnt = 0;
1448        hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
1449                bucket_cnt++;
1450
1451        if (bucket_cnt && !locked) {
1452                locked = true;
1453                goto again_nocopy;
1454        }
1455
1456        if (bucket_cnt > (max_count - total)) {
1457                if (total == 0)
1458                        ret = -ENOSPC;
1459                /* Note that since bucket_cnt > 0 here, it is implicit
1460                 * that the locked was grabbed, so release it.
1461                 */
1462                htab_unlock_bucket(htab, b, flags);
1463                rcu_read_unlock();
1464                bpf_enable_instrumentation();
1465                goto after_loop;
1466        }
1467
1468        if (bucket_cnt > bucket_size) {
1469                bucket_size = bucket_cnt;
1470                /* Note that since bucket_cnt > 0 here, it is implicit
1471                 * that the locked was grabbed, so release it.
1472                 */
1473                htab_unlock_bucket(htab, b, flags);
1474                rcu_read_unlock();
1475                bpf_enable_instrumentation();
1476                kvfree(keys);
1477                kvfree(values);
1478                goto alloc;
1479        }
1480
1481        /* Next block is only safe to run if you have grabbed the lock */
1482        if (!locked)
1483                goto next_batch;
1484
1485        hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1486                memcpy(dst_key, l->key, key_size);
1487
1488                if (is_percpu) {
1489                        int off = 0, cpu;
1490                        void __percpu *pptr;
1491
1492                        pptr = htab_elem_get_ptr(l, map->key_size);
1493                        for_each_possible_cpu(cpu) {
1494                                bpf_long_memcpy(dst_val + off,
1495                                                per_cpu_ptr(pptr, cpu), size);
1496                                off += size;
1497                        }
1498                } else {
1499                        value = l->key + roundup_key_size;
1500                        if (elem_map_flags & BPF_F_LOCK)
1501                                copy_map_value_locked(map, dst_val, value,
1502                                                      true);
1503                        else
1504                                copy_map_value(map, dst_val, value);
1505                        check_and_init_map_lock(map, dst_val);
1506                }
1507                if (do_delete) {
1508                        hlist_nulls_del_rcu(&l->hash_node);
1509
1510                        /* bpf_lru_push_free() will acquire lru_lock, which
1511                         * may cause deadlock. See comments in function
1512                         * prealloc_lru_pop(). Let us do bpf_lru_push_free()
1513                         * after releasing the bucket lock.
1514                         */
1515                        if (is_lru_map) {
1516                                l->batch_flink = node_to_free;
1517                                node_to_free = l;
1518                        } else {
1519                                free_htab_elem(htab, l);
1520                        }
1521                }
1522                dst_key += key_size;
1523                dst_val += value_size;
1524        }
1525
1526        htab_unlock_bucket(htab, b, flags);
1527        locked = false;
1528
1529        while (node_to_free) {
1530                l = node_to_free;
1531                node_to_free = node_to_free->batch_flink;
1532                bpf_lru_push_free(&htab->lru, &l->lru_node);
1533        }
1534
1535next_batch:
1536        /* If we are not copying data, we can go to next bucket and avoid
1537         * unlocking the rcu.
1538         */
1539        if (!bucket_cnt && (batch + 1 < htab->n_buckets)) {
1540                batch++;
1541                goto again_nocopy;
1542        }
1543
1544        rcu_read_unlock();
1545        bpf_enable_instrumentation();
1546        if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys,
1547            key_size * bucket_cnt) ||
1548            copy_to_user(uvalues + total * value_size, values,
1549            value_size * bucket_cnt))) {
1550                ret = -EFAULT;
1551                goto after_loop;
1552        }
1553
1554        total += bucket_cnt;
1555        batch++;
1556        if (batch >= htab->n_buckets) {
1557                ret = -ENOENT;
1558                goto after_loop;
1559        }
1560        goto again;
1561
1562after_loop:
1563        if (ret == -EFAULT)
1564                goto out;
1565
1566        /* copy # of entries and next batch */
1567        ubatch = u64_to_user_ptr(attr->batch.out_batch);
1568        if (copy_to_user(ubatch, &batch, sizeof(batch)) ||
1569            put_user(total, &uattr->batch.count))
1570                ret = -EFAULT;
1571
1572out:
1573        kvfree(keys);
1574        kvfree(values);
1575        return ret;
1576}
1577
1578static int
1579htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1580                             union bpf_attr __user *uattr)
1581{
1582        return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1583                                                  false, true);
1584}
1585
1586static int
1587htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1588                                        const union bpf_attr *attr,
1589                                        union bpf_attr __user *uattr)
1590{
1591        return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1592                                                  false, true);
1593}
1594
1595static int
1596htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1597                      union bpf_attr __user *uattr)
1598{
1599        return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1600                                                  false, false);
1601}
1602
1603static int
1604htab_map_lookup_and_delete_batch(struct bpf_map *map,
1605                                 const union bpf_attr *attr,
1606                                 union bpf_attr __user *uattr)
1607{
1608        return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1609                                                  false, false);
1610}
1611
1612static int
1613htab_lru_percpu_map_lookup_batch(struct bpf_map *map,
1614                                 const union bpf_attr *attr,
1615                                 union bpf_attr __user *uattr)
1616{
1617        return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1618                                                  true, true);
1619}
1620
1621static int
1622htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1623                                            const union bpf_attr *attr,
1624                                            union bpf_attr __user *uattr)
1625{
1626        return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1627                                                  true, true);
1628}
1629
1630static int
1631htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1632                          union bpf_attr __user *uattr)
1633{
1634        return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1635                                                  true, false);
1636}
1637
1638static int
1639htab_lru_map_lookup_and_delete_batch(struct bpf_map *map,
1640                                     const union bpf_attr *attr,
1641                                     union bpf_attr __user *uattr)
1642{
1643        return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1644                                                  true, false);
1645}
1646
1647struct bpf_iter_seq_hash_map_info {
1648        struct bpf_map *map;
1649        struct bpf_htab *htab;
1650        void *percpu_value_buf; // non-zero means percpu hash
1651        u32 bucket_id;
1652        u32 skip_elems;
1653};
1654
1655static struct htab_elem *
1656bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info,
1657                           struct htab_elem *prev_elem)
1658{
1659        const struct bpf_htab *htab = info->htab;
1660        u32 skip_elems = info->skip_elems;
1661        u32 bucket_id = info->bucket_id;
1662        struct hlist_nulls_head *head;
1663        struct hlist_nulls_node *n;
1664        struct htab_elem *elem;
1665        struct bucket *b;
1666        u32 i, count;
1667
1668        if (bucket_id >= htab->n_buckets)
1669                return NULL;
1670
1671        /* try to find next elem in the same bucket */
1672        if (prev_elem) {
1673                /* no update/deletion on this bucket, prev_elem should be still valid
1674                 * and we won't skip elements.
1675                 */
1676                n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node));
1677                elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node);
1678                if (elem)
1679                        return elem;
1680
1681                /* not found, unlock and go to the next bucket */
1682                b = &htab->buckets[bucket_id++];
1683                rcu_read_unlock();
1684                skip_elems = 0;
1685        }
1686
1687        for (i = bucket_id; i < htab->n_buckets; i++) {
1688                b = &htab->buckets[i];
1689                rcu_read_lock();
1690
1691                count = 0;
1692                head = &b->head;
1693                hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
1694                        if (count >= skip_elems) {
1695                                info->bucket_id = i;
1696                                info->skip_elems = count;
1697                                return elem;
1698                        }
1699                        count++;
1700                }
1701
1702                rcu_read_unlock();
1703                skip_elems = 0;
1704        }
1705
1706        info->bucket_id = i;
1707        info->skip_elems = 0;
1708        return NULL;
1709}
1710
1711static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos)
1712{
1713        struct bpf_iter_seq_hash_map_info *info = seq->private;
1714        struct htab_elem *elem;
1715
1716        elem = bpf_hash_map_seq_find_next(info, NULL);
1717        if (!elem)
1718                return NULL;
1719
1720        if (*pos == 0)
1721                ++*pos;
1722        return elem;
1723}
1724
1725static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1726{
1727        struct bpf_iter_seq_hash_map_info *info = seq->private;
1728
1729        ++*pos;
1730        ++info->skip_elems;
1731        return bpf_hash_map_seq_find_next(info, v);
1732}
1733
1734static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem)
1735{
1736        struct bpf_iter_seq_hash_map_info *info = seq->private;
1737        u32 roundup_key_size, roundup_value_size;
1738        struct bpf_iter__bpf_map_elem ctx = {};
1739        struct bpf_map *map = info->map;
1740        struct bpf_iter_meta meta;
1741        int ret = 0, off = 0, cpu;
1742        struct bpf_prog *prog;
1743        void __percpu *pptr;
1744
1745        meta.seq = seq;
1746        prog = bpf_iter_get_info(&meta, elem == NULL);
1747        if (prog) {
1748                ctx.meta = &meta;
1749                ctx.map = info->map;
1750                if (elem) {
1751                        roundup_key_size = round_up(map->key_size, 8);
1752                        ctx.key = elem->key;
1753                        if (!info->percpu_value_buf) {
1754                                ctx.value = elem->key + roundup_key_size;
1755                        } else {
1756                                roundup_value_size = round_up(map->value_size, 8);
1757                                pptr = htab_elem_get_ptr(elem, map->key_size);
1758                                for_each_possible_cpu(cpu) {
1759                                        bpf_long_memcpy(info->percpu_value_buf + off,
1760                                                        per_cpu_ptr(pptr, cpu),
1761                                                        roundup_value_size);
1762                                        off += roundup_value_size;
1763                                }
1764                                ctx.value = info->percpu_value_buf;
1765                        }
1766                }
1767                ret = bpf_iter_run_prog(prog, &ctx);
1768        }
1769
1770        return ret;
1771}
1772
1773static int bpf_hash_map_seq_show(struct seq_file *seq, void *v)
1774{
1775        return __bpf_hash_map_seq_show(seq, v);
1776}
1777
1778static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v)
1779{
1780        if (!v)
1781                (void)__bpf_hash_map_seq_show(seq, NULL);
1782        else
1783                rcu_read_unlock();
1784}
1785
1786static int bpf_iter_init_hash_map(void *priv_data,
1787                                  struct bpf_iter_aux_info *aux)
1788{
1789        struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
1790        struct bpf_map *map = aux->map;
1791        void *value_buf;
1792        u32 buf_size;
1793
1794        if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
1795            map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
1796                buf_size = round_up(map->value_size, 8) * num_possible_cpus();
1797                value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
1798                if (!value_buf)
1799                        return -ENOMEM;
1800
1801                seq_info->percpu_value_buf = value_buf;
1802        }
1803
1804        seq_info->map = map;
1805        seq_info->htab = container_of(map, struct bpf_htab, map);
1806        return 0;
1807}
1808
1809static void bpf_iter_fini_hash_map(void *priv_data)
1810{
1811        struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
1812
1813        kfree(seq_info->percpu_value_buf);
1814}
1815
1816static const struct seq_operations bpf_hash_map_seq_ops = {
1817        .start  = bpf_hash_map_seq_start,
1818        .next   = bpf_hash_map_seq_next,
1819        .stop   = bpf_hash_map_seq_stop,
1820        .show   = bpf_hash_map_seq_show,
1821};
1822
1823static const struct bpf_iter_seq_info iter_seq_info = {
1824        .seq_ops                = &bpf_hash_map_seq_ops,
1825        .init_seq_private       = bpf_iter_init_hash_map,
1826        .fini_seq_private       = bpf_iter_fini_hash_map,
1827        .seq_priv_size          = sizeof(struct bpf_iter_seq_hash_map_info),
1828};
1829
1830static int htab_map_btf_id;
1831const struct bpf_map_ops htab_map_ops = {
1832        .map_meta_equal = bpf_map_meta_equal,
1833        .map_alloc_check = htab_map_alloc_check,
1834        .map_alloc = htab_map_alloc,
1835        .map_free = htab_map_free,
1836        .map_get_next_key = htab_map_get_next_key,
1837        .map_lookup_elem = htab_map_lookup_elem,
1838        .map_update_elem = htab_map_update_elem,
1839        .map_delete_elem = htab_map_delete_elem,
1840        .map_gen_lookup = htab_map_gen_lookup,
1841        .map_seq_show_elem = htab_map_seq_show_elem,
1842        BATCH_OPS(htab),
1843        .map_btf_name = "bpf_htab",
1844        .map_btf_id = &htab_map_btf_id,
1845        .iter_seq_info = &iter_seq_info,
1846};
1847
1848static int htab_lru_map_btf_id;
1849const struct bpf_map_ops htab_lru_map_ops = {
1850        .map_meta_equal = bpf_map_meta_equal,
1851        .map_alloc_check = htab_map_alloc_check,
1852        .map_alloc = htab_map_alloc,
1853        .map_free = htab_map_free,
1854        .map_get_next_key = htab_map_get_next_key,
1855        .map_lookup_elem = htab_lru_map_lookup_elem,
1856        .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys,
1857        .map_update_elem = htab_lru_map_update_elem,
1858        .map_delete_elem = htab_lru_map_delete_elem,
1859        .map_gen_lookup = htab_lru_map_gen_lookup,
1860        .map_seq_show_elem = htab_map_seq_show_elem,
1861        BATCH_OPS(htab_lru),
1862        .map_btf_name = "bpf_htab",
1863        .map_btf_id = &htab_lru_map_btf_id,
1864        .iter_seq_info = &iter_seq_info,
1865};
1866
1867/* Called from eBPF program */
1868static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
1869{
1870        struct htab_elem *l = __htab_map_lookup_elem(map, key);
1871
1872        if (l)
1873                return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
1874        else
1875                return NULL;
1876}
1877
1878static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key)
1879{
1880        struct htab_elem *l = __htab_map_lookup_elem(map, key);
1881
1882        if (l) {
1883                bpf_lru_node_set_ref(&l->lru_node);
1884                return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
1885        }
1886
1887        return NULL;
1888}
1889
1890int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
1891{
1892        struct htab_elem *l;
1893        void __percpu *pptr;
1894        int ret = -ENOENT;
1895        int cpu, off = 0;
1896        u32 size;
1897
1898        /* per_cpu areas are zero-filled and bpf programs can only
1899         * access 'value_size' of them, so copying rounded areas
1900         * will not leak any kernel data
1901         */
1902        size = round_up(map->value_size, 8);
1903        rcu_read_lock();
1904        l = __htab_map_lookup_elem(map, key);
1905        if (!l)
1906                goto out;
1907        /* We do not mark LRU map element here in order to not mess up
1908         * eviction heuristics when user space does a map walk.
1909         */
1910        pptr = htab_elem_get_ptr(l, map->key_size);
1911        for_each_possible_cpu(cpu) {
1912                bpf_long_memcpy(value + off,
1913                                per_cpu_ptr(pptr, cpu), size);
1914                off += size;
1915        }
1916        ret = 0;
1917out:
1918        rcu_read_unlock();
1919        return ret;
1920}
1921
1922int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
1923                           u64 map_flags)
1924{
1925        struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1926        int ret;
1927
1928        rcu_read_lock();
1929        if (htab_is_lru(htab))
1930                ret = __htab_lru_percpu_map_update_elem(map, key, value,
1931                                                        map_flags, true);
1932        else
1933                ret = __htab_percpu_map_update_elem(map, key, value, map_flags,
1934                                                    true);
1935        rcu_read_unlock();
1936
1937        return ret;
1938}
1939
1940static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key,
1941                                          struct seq_file *m)
1942{
1943        struct htab_elem *l;
1944        void __percpu *pptr;
1945        int cpu;
1946
1947        rcu_read_lock();
1948
1949        l = __htab_map_lookup_elem(map, key);
1950        if (!l) {
1951                rcu_read_unlock();
1952                return;
1953        }
1954
1955        btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1956        seq_puts(m, ": {\n");
1957        pptr = htab_elem_get_ptr(l, map->key_size);
1958        for_each_possible_cpu(cpu) {
1959                seq_printf(m, "\tcpu%d: ", cpu);
1960                btf_type_seq_show(map->btf, map->btf_value_type_id,
1961                                  per_cpu_ptr(pptr, cpu), m);
1962                seq_puts(m, "\n");
1963        }
1964        seq_puts(m, "}\n");
1965
1966        rcu_read_unlock();
1967}
1968
1969static int htab_percpu_map_btf_id;
1970const struct bpf_map_ops htab_percpu_map_ops = {
1971        .map_meta_equal = bpf_map_meta_equal,
1972        .map_alloc_check = htab_map_alloc_check,
1973        .map_alloc = htab_map_alloc,
1974        .map_free = htab_map_free,
1975        .map_get_next_key = htab_map_get_next_key,
1976        .map_lookup_elem = htab_percpu_map_lookup_elem,
1977        .map_update_elem = htab_percpu_map_update_elem,
1978        .map_delete_elem = htab_map_delete_elem,
1979        .map_seq_show_elem = htab_percpu_map_seq_show_elem,
1980        BATCH_OPS(htab_percpu),
1981        .map_btf_name = "bpf_htab",
1982        .map_btf_id = &htab_percpu_map_btf_id,
1983        .iter_seq_info = &iter_seq_info,
1984};
1985
1986static int htab_lru_percpu_map_btf_id;
1987const struct bpf_map_ops htab_lru_percpu_map_ops = {
1988        .map_meta_equal = bpf_map_meta_equal,
1989        .map_alloc_check = htab_map_alloc_check,
1990        .map_alloc = htab_map_alloc,
1991        .map_free = htab_map_free,
1992        .map_get_next_key = htab_map_get_next_key,
1993        .map_lookup_elem = htab_lru_percpu_map_lookup_elem,
1994        .map_update_elem = htab_lru_percpu_map_update_elem,
1995        .map_delete_elem = htab_lru_map_delete_elem,
1996        .map_seq_show_elem = htab_percpu_map_seq_show_elem,
1997        BATCH_OPS(htab_lru_percpu),
1998        .map_btf_name = "bpf_htab",
1999        .map_btf_id = &htab_lru_percpu_map_btf_id,
2000        .iter_seq_info = &iter_seq_info,
2001};
2002
2003static int fd_htab_map_alloc_check(union bpf_attr *attr)
2004{
2005        if (attr->value_size != sizeof(u32))
2006                return -EINVAL;
2007        return htab_map_alloc_check(attr);
2008}
2009
2010static void fd_htab_map_free(struct bpf_map *map)
2011{
2012        struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2013        struct hlist_nulls_node *n;
2014        struct hlist_nulls_head *head;
2015        struct htab_elem *l;
2016        int i;
2017
2018        for (i = 0; i < htab->n_buckets; i++) {
2019                head = select_bucket(htab, i);
2020
2021                hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
2022                        void *ptr = fd_htab_map_get_ptr(map, l);
2023
2024                        map->ops->map_fd_put_ptr(ptr);
2025                }
2026        }
2027
2028        htab_map_free(map);
2029}
2030
2031/* only called from syscall */
2032int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
2033{
2034        void **ptr;
2035        int ret = 0;
2036
2037        if (!map->ops->map_fd_sys_lookup_elem)
2038                return -ENOTSUPP;
2039
2040        rcu_read_lock();
2041        ptr = htab_map_lookup_elem(map, key);
2042        if (ptr)
2043                *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr));
2044        else
2045                ret = -ENOENT;
2046        rcu_read_unlock();
2047
2048        return ret;
2049}
2050
2051/* only called from syscall */
2052int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2053                                void *key, void *value, u64 map_flags)
2054{
2055        void *ptr;
2056        int ret;
2057        u32 ufd = *(u32 *)value;
2058
2059        ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
2060        if (IS_ERR(ptr))
2061                return PTR_ERR(ptr);
2062
2063        ret = htab_map_update_elem(map, key, &ptr, map_flags);
2064        if (ret)
2065                map->ops->map_fd_put_ptr(ptr);
2066
2067        return ret;
2068}
2069
2070static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr)
2071{
2072        struct bpf_map *map, *inner_map_meta;
2073
2074        inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
2075        if (IS_ERR(inner_map_meta))
2076                return inner_map_meta;
2077
2078        map = htab_map_alloc(attr);
2079        if (IS_ERR(map)) {
2080                bpf_map_meta_free(inner_map_meta);
2081                return map;
2082        }
2083
2084        map->inner_map_meta = inner_map_meta;
2085
2086        return map;
2087}
2088
2089static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key)
2090{
2091        struct bpf_map **inner_map  = htab_map_lookup_elem(map, key);
2092
2093        if (!inner_map)
2094                return NULL;
2095
2096        return READ_ONCE(*inner_map);
2097}
2098
2099static int htab_of_map_gen_lookup(struct bpf_map *map,
2100                                  struct bpf_insn *insn_buf)
2101{
2102        struct bpf_insn *insn = insn_buf;
2103        const int ret = BPF_REG_0;
2104
2105        BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
2106                     (void *(*)(struct bpf_map *map, void *key))NULL));
2107        *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
2108        *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2);
2109        *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
2110                                offsetof(struct htab_elem, key) +
2111                                round_up(map->key_size, 8));
2112        *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
2113
2114        return insn - insn_buf;
2115}
2116
2117static void htab_of_map_free(struct bpf_map *map)
2118{
2119        bpf_map_meta_free(map->inner_map_meta);
2120        fd_htab_map_free(map);
2121}
2122
2123static int htab_of_maps_map_btf_id;
2124const struct bpf_map_ops htab_of_maps_map_ops = {
2125        .map_alloc_check = fd_htab_map_alloc_check,
2126        .map_alloc = htab_of_map_alloc,
2127        .map_free = htab_of_map_free,
2128        .map_get_next_key = htab_map_get_next_key,
2129        .map_lookup_elem = htab_of_map_lookup_elem,
2130        .map_delete_elem = htab_map_delete_elem,
2131        .map_fd_get_ptr = bpf_map_fd_get_ptr,
2132        .map_fd_put_ptr = bpf_map_fd_put_ptr,
2133        .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
2134        .map_gen_lookup = htab_of_map_gen_lookup,
2135        .map_check_btf = map_check_no_btf,
2136        .map_btf_name = "bpf_htab",
2137        .map_btf_id = &htab_of_maps_map_btf_id,
2138};
2139