1
2
3
4
5
6
7
8#include <linux/mm.h>
9#include <linux/slab.h>
10#include <linux/sched/autogroup.h>
11#include <linux/sched/mm.h>
12#include <linux/sched/stat.h>
13#include <linux/sched/task.h>
14#include <linux/sched/task_stack.h>
15#include <linux/sched/cputime.h>
16#include <linux/interrupt.h>
17#include <linux/module.h>
18#include <linux/capability.h>
19#include <linux/completion.h>
20#include <linux/personality.h>
21#include <linux/tty.h>
22#include <linux/iocontext.h>
23#include <linux/key.h>
24#include <linux/cpu.h>
25#include <linux/acct.h>
26#include <linux/tsacct_kern.h>
27#include <linux/file.h>
28#include <linux/fdtable.h>
29#include <linux/freezer.h>
30#include <linux/binfmts.h>
31#include <linux/nsproxy.h>
32#include <linux/pid_namespace.h>
33#include <linux/ptrace.h>
34#include <linux/profile.h>
35#include <linux/mount.h>
36#include <linux/proc_fs.h>
37#include <linux/kthread.h>
38#include <linux/mempolicy.h>
39#include <linux/taskstats_kern.h>
40#include <linux/delayacct.h>
41#include <linux/cgroup.h>
42#include <linux/syscalls.h>
43#include <linux/signal.h>
44#include <linux/posix-timers.h>
45#include <linux/cn_proc.h>
46#include <linux/mutex.h>
47#include <linux/futex.h>
48#include <linux/pipe_fs_i.h>
49#include <linux/audit.h>
50#include <linux/resource.h>
51#include <linux/blkdev.h>
52#include <linux/task_io_accounting_ops.h>
53#include <linux/tracehook.h>
54#include <linux/fs_struct.h>
55#include <linux/init_task.h>
56#include <linux/perf_event.h>
57#include <trace/events/sched.h>
58#include <linux/hw_breakpoint.h>
59#include <linux/oom.h>
60#include <linux/writeback.h>
61#include <linux/shm.h>
62#include <linux/kcov.h>
63#include <linux/random.h>
64#include <linux/rcuwait.h>
65#include <linux/compat.h>
66
67#include <linux/uaccess.h>
68#include <asm/unistd.h>
69#include <asm/mmu_context.h>
70
71static void __unhash_process(struct task_struct *p, bool group_dead)
72{
73 nr_threads--;
74 detach_pid(p, PIDTYPE_PID);
75 if (group_dead) {
76 detach_pid(p, PIDTYPE_TGID);
77 detach_pid(p, PIDTYPE_PGID);
78 detach_pid(p, PIDTYPE_SID);
79
80 list_del_rcu(&p->tasks);
81 list_del_init(&p->sibling);
82 __this_cpu_dec(process_counts);
83 }
84 list_del_rcu(&p->thread_group);
85 list_del_rcu(&p->thread_node);
86}
87
88
89
90
91static void __exit_signal(struct task_struct *tsk)
92{
93 struct signal_struct *sig = tsk->signal;
94 bool group_dead = thread_group_leader(tsk);
95 struct sighand_struct *sighand;
96 struct tty_struct *tty;
97 u64 utime, stime;
98
99 sighand = rcu_dereference_check(tsk->sighand,
100 lockdep_tasklist_lock_is_held());
101 spin_lock(&sighand->siglock);
102
103#ifdef CONFIG_POSIX_TIMERS
104 posix_cpu_timers_exit(tsk);
105 if (group_dead)
106 posix_cpu_timers_exit_group(tsk);
107#endif
108
109 if (group_dead) {
110 tty = sig->tty;
111 sig->tty = NULL;
112 } else {
113
114
115
116
117 if (sig->notify_count > 0 && !--sig->notify_count)
118 wake_up_process(sig->group_exit_task);
119
120 if (tsk == sig->curr_target)
121 sig->curr_target = next_thread(tsk);
122 }
123
124 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
125 sizeof(unsigned long long));
126
127
128
129
130
131
132
133 task_cputime(tsk, &utime, &stime);
134 write_seqlock(&sig->stats_lock);
135 sig->utime += utime;
136 sig->stime += stime;
137 sig->gtime += task_gtime(tsk);
138 sig->min_flt += tsk->min_flt;
139 sig->maj_flt += tsk->maj_flt;
140 sig->nvcsw += tsk->nvcsw;
141 sig->nivcsw += tsk->nivcsw;
142 sig->inblock += task_io_get_inblock(tsk);
143 sig->oublock += task_io_get_oublock(tsk);
144 task_io_accounting_add(&sig->ioac, &tsk->ioac);
145 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
146 sig->nr_threads--;
147 __unhash_process(tsk, group_dead);
148 write_sequnlock(&sig->stats_lock);
149
150
151
152
153
154 flush_sigqueue(&tsk->pending);
155 tsk->sighand = NULL;
156 spin_unlock(&sighand->siglock);
157
158 __cleanup_sighand(sighand);
159 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
160 if (group_dead) {
161 flush_sigqueue(&sig->shared_pending);
162 tty_kref_put(tty);
163 }
164}
165
166static void delayed_put_task_struct(struct rcu_head *rhp)
167{
168 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
169
170 perf_event_delayed_put(tsk);
171 trace_sched_process_free(tsk);
172 put_task_struct(tsk);
173}
174
175void put_task_struct_rcu_user(struct task_struct *task)
176{
177 if (refcount_dec_and_test(&task->rcu_users))
178 call_rcu(&task->rcu, delayed_put_task_struct);
179}
180
181void release_task(struct task_struct *p)
182{
183 struct task_struct *leader;
184 struct pid *thread_pid;
185 int zap_leader;
186repeat:
187
188
189 rcu_read_lock();
190 atomic_dec(&__task_cred(p)->user->processes);
191 rcu_read_unlock();
192
193 cgroup_release(p);
194
195 write_lock_irq(&tasklist_lock);
196 ptrace_release_task(p);
197 thread_pid = get_pid(p->thread_pid);
198 __exit_signal(p);
199
200
201
202
203
204
205 zap_leader = 0;
206 leader = p->group_leader;
207 if (leader != p && thread_group_empty(leader)
208 && leader->exit_state == EXIT_ZOMBIE) {
209
210
211
212
213
214 zap_leader = do_notify_parent(leader, leader->exit_signal);
215 if (zap_leader)
216 leader->exit_state = EXIT_DEAD;
217 }
218
219 write_unlock_irq(&tasklist_lock);
220 seccomp_filter_release(p);
221 proc_flush_pid(thread_pid);
222 put_pid(thread_pid);
223 release_thread(p);
224 put_task_struct_rcu_user(p);
225
226 p = leader;
227 if (unlikely(zap_leader))
228 goto repeat;
229}
230
231int rcuwait_wake_up(struct rcuwait *w)
232{
233 int ret = 0;
234 struct task_struct *task;
235
236 rcu_read_lock();
237
238
239
240
241
242
243
244
245
246
247
248
249 smp_mb();
250
251 task = rcu_dereference(w->task);
252 if (task)
253 ret = wake_up_process(task);
254 rcu_read_unlock();
255
256 return ret;
257}
258EXPORT_SYMBOL_GPL(rcuwait_wake_up);
259
260
261
262
263
264
265
266
267
268static int will_become_orphaned_pgrp(struct pid *pgrp,
269 struct task_struct *ignored_task)
270{
271 struct task_struct *p;
272
273 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
274 if ((p == ignored_task) ||
275 (p->exit_state && thread_group_empty(p)) ||
276 is_global_init(p->real_parent))
277 continue;
278
279 if (task_pgrp(p->real_parent) != pgrp &&
280 task_session(p->real_parent) == task_session(p))
281 return 0;
282 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
283
284 return 1;
285}
286
287int is_current_pgrp_orphaned(void)
288{
289 int retval;
290
291 read_lock(&tasklist_lock);
292 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
293 read_unlock(&tasklist_lock);
294
295 return retval;
296}
297
298static bool has_stopped_jobs(struct pid *pgrp)
299{
300 struct task_struct *p;
301
302 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
303 if (p->signal->flags & SIGNAL_STOP_STOPPED)
304 return true;
305 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
306
307 return false;
308}
309
310
311
312
313
314
315static void
316kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
317{
318 struct pid *pgrp = task_pgrp(tsk);
319 struct task_struct *ignored_task = tsk;
320
321 if (!parent)
322
323
324
325 parent = tsk->real_parent;
326 else
327
328
329
330 ignored_task = NULL;
331
332 if (task_pgrp(parent) != pgrp &&
333 task_session(parent) == task_session(tsk) &&
334 will_become_orphaned_pgrp(pgrp, ignored_task) &&
335 has_stopped_jobs(pgrp)) {
336 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
337 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
338 }
339}
340
341#ifdef CONFIG_MEMCG
342
343
344
345void mm_update_next_owner(struct mm_struct *mm)
346{
347 struct task_struct *c, *g, *p = current;
348
349retry:
350
351
352
353
354 if (mm->owner != p)
355 return;
356
357
358
359
360
361 if (atomic_read(&mm->mm_users) <= 1) {
362 WRITE_ONCE(mm->owner, NULL);
363 return;
364 }
365
366 read_lock(&tasklist_lock);
367
368
369
370 list_for_each_entry(c, &p->children, sibling) {
371 if (c->mm == mm)
372 goto assign_new_owner;
373 }
374
375
376
377
378 list_for_each_entry(c, &p->real_parent->children, sibling) {
379 if (c->mm == mm)
380 goto assign_new_owner;
381 }
382
383
384
385
386 for_each_process(g) {
387 if (g->flags & PF_KTHREAD)
388 continue;
389 for_each_thread(g, c) {
390 if (c->mm == mm)
391 goto assign_new_owner;
392 if (c->mm)
393 break;
394 }
395 }
396 read_unlock(&tasklist_lock);
397
398
399
400
401
402 WRITE_ONCE(mm->owner, NULL);
403 return;
404
405assign_new_owner:
406 BUG_ON(c == p);
407 get_task_struct(c);
408
409
410
411
412 task_lock(c);
413
414
415
416
417 read_unlock(&tasklist_lock);
418 if (c->mm != mm) {
419 task_unlock(c);
420 put_task_struct(c);
421 goto retry;
422 }
423 WRITE_ONCE(mm->owner, c);
424 task_unlock(c);
425 put_task_struct(c);
426}
427#endif
428
429
430
431
432
433static void exit_mm(void)
434{
435 struct mm_struct *mm = current->mm;
436 struct core_state *core_state;
437
438 exit_mm_release(current, mm);
439 if (!mm)
440 return;
441 sync_mm_rss(mm);
442
443
444
445
446
447
448
449 mmap_read_lock(mm);
450 core_state = mm->core_state;
451 if (core_state) {
452 struct core_thread self;
453
454 mmap_read_unlock(mm);
455
456 self.task = current;
457 if (self.task->flags & PF_SIGNALED)
458 self.next = xchg(&core_state->dumper.next, &self);
459 else
460 self.task = NULL;
461
462
463
464
465 if (atomic_dec_and_test(&core_state->nr_threads))
466 complete(&core_state->startup);
467
468 for (;;) {
469 set_current_state(TASK_UNINTERRUPTIBLE);
470 if (!self.task)
471 break;
472 freezable_schedule();
473 }
474 __set_current_state(TASK_RUNNING);
475 mmap_read_lock(mm);
476 }
477 mmgrab(mm);
478 BUG_ON(mm != current->active_mm);
479
480 task_lock(current);
481 current->mm = NULL;
482 mmap_read_unlock(mm);
483 enter_lazy_tlb(mm, current);
484 task_unlock(current);
485 mm_update_next_owner(mm);
486 mmput(mm);
487 if (test_thread_flag(TIF_MEMDIE))
488 exit_oom_victim();
489}
490
491static struct task_struct *find_alive_thread(struct task_struct *p)
492{
493 struct task_struct *t;
494
495 for_each_thread(p, t) {
496 if (!(t->flags & PF_EXITING))
497 return t;
498 }
499 return NULL;
500}
501
502static struct task_struct *find_child_reaper(struct task_struct *father,
503 struct list_head *dead)
504 __releases(&tasklist_lock)
505 __acquires(&tasklist_lock)
506{
507 struct pid_namespace *pid_ns = task_active_pid_ns(father);
508 struct task_struct *reaper = pid_ns->child_reaper;
509 struct task_struct *p, *n;
510
511 if (likely(reaper != father))
512 return reaper;
513
514 reaper = find_alive_thread(father);
515 if (reaper) {
516 pid_ns->child_reaper = reaper;
517 return reaper;
518 }
519
520 write_unlock_irq(&tasklist_lock);
521
522 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
523 list_del_init(&p->ptrace_entry);
524 release_task(p);
525 }
526
527 zap_pid_ns_processes(pid_ns);
528 write_lock_irq(&tasklist_lock);
529
530 return father;
531}
532
533
534
535
536
537
538
539
540static struct task_struct *find_new_reaper(struct task_struct *father,
541 struct task_struct *child_reaper)
542{
543 struct task_struct *thread, *reaper;
544
545 thread = find_alive_thread(father);
546 if (thread)
547 return thread;
548
549 if (father->signal->has_child_subreaper) {
550 unsigned int ns_level = task_pid(father)->level;
551
552
553
554
555
556
557
558
559 for (reaper = father->real_parent;
560 task_pid(reaper)->level == ns_level;
561 reaper = reaper->real_parent) {
562 if (reaper == &init_task)
563 break;
564 if (!reaper->signal->is_child_subreaper)
565 continue;
566 thread = find_alive_thread(reaper);
567 if (thread)
568 return thread;
569 }
570 }
571
572 return child_reaper;
573}
574
575
576
577
578static void reparent_leader(struct task_struct *father, struct task_struct *p,
579 struct list_head *dead)
580{
581 if (unlikely(p->exit_state == EXIT_DEAD))
582 return;
583
584
585 p->exit_signal = SIGCHLD;
586
587
588 if (!p->ptrace &&
589 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
590 if (do_notify_parent(p, p->exit_signal)) {
591 p->exit_state = EXIT_DEAD;
592 list_add(&p->ptrace_entry, dead);
593 }
594 }
595
596 kill_orphaned_pgrp(p, father);
597}
598
599
600
601
602
603
604
605
606
607static void forget_original_parent(struct task_struct *father,
608 struct list_head *dead)
609{
610 struct task_struct *p, *t, *reaper;
611
612 if (unlikely(!list_empty(&father->ptraced)))
613 exit_ptrace(father, dead);
614
615
616 reaper = find_child_reaper(father, dead);
617 if (list_empty(&father->children))
618 return;
619
620 reaper = find_new_reaper(father, reaper);
621 list_for_each_entry(p, &father->children, sibling) {
622 for_each_thread(p, t) {
623 RCU_INIT_POINTER(t->real_parent, reaper);
624 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
625 if (likely(!t->ptrace))
626 t->parent = t->real_parent;
627 if (t->pdeath_signal)
628 group_send_sig_info(t->pdeath_signal,
629 SEND_SIG_NOINFO, t,
630 PIDTYPE_TGID);
631 }
632
633
634
635
636 if (!same_thread_group(reaper, father))
637 reparent_leader(father, p, dead);
638 }
639 list_splice_tail_init(&father->children, &reaper->children);
640}
641
642
643
644
645
646static void exit_notify(struct task_struct *tsk, int group_dead)
647{
648 bool autoreap;
649 struct task_struct *p, *n;
650 LIST_HEAD(dead);
651
652 write_lock_irq(&tasklist_lock);
653 forget_original_parent(tsk, &dead);
654
655 if (group_dead)
656 kill_orphaned_pgrp(tsk->group_leader, NULL);
657
658 tsk->exit_state = EXIT_ZOMBIE;
659 if (unlikely(tsk->ptrace)) {
660 int sig = thread_group_leader(tsk) &&
661 thread_group_empty(tsk) &&
662 !ptrace_reparented(tsk) ?
663 tsk->exit_signal : SIGCHLD;
664 autoreap = do_notify_parent(tsk, sig);
665 } else if (thread_group_leader(tsk)) {
666 autoreap = thread_group_empty(tsk) &&
667 do_notify_parent(tsk, tsk->exit_signal);
668 } else {
669 autoreap = true;
670 }
671
672 if (autoreap) {
673 tsk->exit_state = EXIT_DEAD;
674 list_add(&tsk->ptrace_entry, &dead);
675 }
676
677
678 if (unlikely(tsk->signal->notify_count < 0))
679 wake_up_process(tsk->signal->group_exit_task);
680 write_unlock_irq(&tasklist_lock);
681
682 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
683 list_del_init(&p->ptrace_entry);
684 release_task(p);
685 }
686}
687
688#ifdef CONFIG_DEBUG_STACK_USAGE
689static void check_stack_usage(void)
690{
691 static DEFINE_SPINLOCK(low_water_lock);
692 static int lowest_to_date = THREAD_SIZE;
693 unsigned long free;
694
695 free = stack_not_used(current);
696
697 if (free >= lowest_to_date)
698 return;
699
700 spin_lock(&low_water_lock);
701 if (free < lowest_to_date) {
702 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
703 current->comm, task_pid_nr(current), free);
704 lowest_to_date = free;
705 }
706 spin_unlock(&low_water_lock);
707}
708#else
709static inline void check_stack_usage(void) {}
710#endif
711
712void __noreturn do_exit(long code)
713{
714 struct task_struct *tsk = current;
715 int group_dead;
716
717
718
719
720
721
722
723
724 WARN_ON(blk_needs_flush_plug(tsk));
725
726 if (unlikely(in_interrupt()))
727 panic("Aiee, killing interrupt handler!");
728 if (unlikely(!tsk->pid))
729 panic("Attempted to kill the idle task!");
730
731
732
733
734
735
736
737
738 force_uaccess_begin();
739
740 if (unlikely(in_atomic())) {
741 pr_info("note: %s[%d] exited with preempt_count %d\n",
742 current->comm, task_pid_nr(current),
743 preempt_count());
744 preempt_count_set(PREEMPT_ENABLED);
745 }
746
747 profile_task_exit(tsk);
748 kcov_task_exit(tsk);
749
750 ptrace_event(PTRACE_EVENT_EXIT, code);
751
752 validate_creds_for_do_exit(tsk);
753
754
755
756
757
758 if (unlikely(tsk->flags & PF_EXITING)) {
759 pr_alert("Fixing recursive fault but reboot is needed!\n");
760 futex_exit_recursive(tsk);
761 set_current_state(TASK_UNINTERRUPTIBLE);
762 schedule();
763 }
764
765 exit_signals(tsk);
766
767
768 if (tsk->mm)
769 sync_mm_rss(tsk->mm);
770 acct_update_integrals(tsk);
771 group_dead = atomic_dec_and_test(&tsk->signal->live);
772 if (group_dead) {
773
774
775
776
777 if (unlikely(is_global_init(tsk)))
778 panic("Attempted to kill init! exitcode=0x%08x\n",
779 tsk->signal->group_exit_code ?: (int)code);
780
781#ifdef CONFIG_POSIX_TIMERS
782 hrtimer_cancel(&tsk->signal->real_timer);
783 exit_itimers(tsk->signal);
784#endif
785 if (tsk->mm)
786 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
787 }
788 acct_collect(code, group_dead);
789 if (group_dead)
790 tty_audit_exit();
791 audit_free(tsk);
792
793 tsk->exit_code = code;
794 taskstats_exit(tsk, group_dead);
795
796 exit_mm();
797
798 if (group_dead)
799 acct_process();
800 trace_sched_process_exit(tsk);
801
802 exit_sem(tsk);
803 exit_shm(tsk);
804 exit_files(tsk);
805 exit_fs(tsk);
806 if (group_dead)
807 disassociate_ctty(1);
808 exit_task_namespaces(tsk);
809 exit_task_work(tsk);
810 exit_thread(tsk);
811
812
813
814
815
816
817
818 perf_event_exit_task(tsk);
819
820 sched_autogroup_exit_task(tsk);
821 cgroup_exit(tsk);
822
823
824
825
826 flush_ptrace_hw_breakpoint(tsk);
827
828 exit_tasks_rcu_start();
829 exit_notify(tsk, group_dead);
830 proc_exit_connector(tsk);
831 mpol_put_task_policy(tsk);
832#ifdef CONFIG_FUTEX
833 if (unlikely(current->pi_state_cache))
834 kfree(current->pi_state_cache);
835#endif
836
837
838
839 debug_check_no_locks_held();
840
841 if (tsk->io_context)
842 exit_io_context(tsk);
843
844 if (tsk->splice_pipe)
845 free_pipe_info(tsk->splice_pipe);
846
847 if (tsk->task_frag.page)
848 put_page(tsk->task_frag.page);
849
850 validate_creds_for_do_exit(tsk);
851
852 check_stack_usage();
853 preempt_disable();
854 if (tsk->nr_dirtied)
855 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
856 exit_rcu();
857 exit_tasks_rcu_finish();
858
859 lockdep_free_task(tsk);
860 do_task_dead();
861}
862EXPORT_SYMBOL_GPL(do_exit);
863
864void complete_and_exit(struct completion *comp, long code)
865{
866 if (comp)
867 complete(comp);
868
869 do_exit(code);
870}
871EXPORT_SYMBOL(complete_and_exit);
872
873SYSCALL_DEFINE1(exit, int, error_code)
874{
875 do_exit((error_code&0xff)<<8);
876}
877
878
879
880
881
882void
883do_group_exit(int exit_code)
884{
885 struct signal_struct *sig = current->signal;
886
887 BUG_ON(exit_code & 0x80);
888
889 if (signal_group_exit(sig))
890 exit_code = sig->group_exit_code;
891 else if (!thread_group_empty(current)) {
892 struct sighand_struct *const sighand = current->sighand;
893
894 spin_lock_irq(&sighand->siglock);
895 if (signal_group_exit(sig))
896
897 exit_code = sig->group_exit_code;
898 else {
899 sig->group_exit_code = exit_code;
900 sig->flags = SIGNAL_GROUP_EXIT;
901 zap_other_threads(current);
902 }
903 spin_unlock_irq(&sighand->siglock);
904 }
905
906 do_exit(exit_code);
907
908}
909
910
911
912
913
914
915SYSCALL_DEFINE1(exit_group, int, error_code)
916{
917 do_group_exit((error_code & 0xff) << 8);
918
919 return 0;
920}
921
922struct waitid_info {
923 pid_t pid;
924 uid_t uid;
925 int status;
926 int cause;
927};
928
929struct wait_opts {
930 enum pid_type wo_type;
931 int wo_flags;
932 struct pid *wo_pid;
933
934 struct waitid_info *wo_info;
935 int wo_stat;
936 struct rusage *wo_rusage;
937
938 wait_queue_entry_t child_wait;
939 int notask_error;
940};
941
942static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
943{
944 return wo->wo_type == PIDTYPE_MAX ||
945 task_pid_type(p, wo->wo_type) == wo->wo_pid;
946}
947
948static int
949eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
950{
951 if (!eligible_pid(wo, p))
952 return 0;
953
954
955
956
957
958 if (ptrace || (wo->wo_flags & __WALL))
959 return 1;
960
961
962
963
964
965
966
967
968
969 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
970 return 0;
971
972 return 1;
973}
974
975
976
977
978
979
980
981static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
982{
983 int state, status;
984 pid_t pid = task_pid_vnr(p);
985 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
986 struct waitid_info *infop;
987
988 if (!likely(wo->wo_flags & WEXITED))
989 return 0;
990
991 if (unlikely(wo->wo_flags & WNOWAIT)) {
992 status = p->exit_code;
993 get_task_struct(p);
994 read_unlock(&tasklist_lock);
995 sched_annotate_sleep();
996 if (wo->wo_rusage)
997 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
998 put_task_struct(p);
999 goto out_info;
1000 }
1001
1002
1003
1004 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1005 EXIT_TRACE : EXIT_DEAD;
1006 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1007 return 0;
1008
1009
1010
1011 read_unlock(&tasklist_lock);
1012 sched_annotate_sleep();
1013
1014
1015
1016
1017 if (state == EXIT_DEAD && thread_group_leader(p)) {
1018 struct signal_struct *sig = p->signal;
1019 struct signal_struct *psig = current->signal;
1020 unsigned long maxrss;
1021 u64 tgutime, tgstime;
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1044 spin_lock_irq(¤t->sighand->siglock);
1045 write_seqlock(&psig->stats_lock);
1046 psig->cutime += tgutime + sig->cutime;
1047 psig->cstime += tgstime + sig->cstime;
1048 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1049 psig->cmin_flt +=
1050 p->min_flt + sig->min_flt + sig->cmin_flt;
1051 psig->cmaj_flt +=
1052 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1053 psig->cnvcsw +=
1054 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1055 psig->cnivcsw +=
1056 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1057 psig->cinblock +=
1058 task_io_get_inblock(p) +
1059 sig->inblock + sig->cinblock;
1060 psig->coublock +=
1061 task_io_get_oublock(p) +
1062 sig->oublock + sig->coublock;
1063 maxrss = max(sig->maxrss, sig->cmaxrss);
1064 if (psig->cmaxrss < maxrss)
1065 psig->cmaxrss = maxrss;
1066 task_io_accounting_add(&psig->ioac, &p->ioac);
1067 task_io_accounting_add(&psig->ioac, &sig->ioac);
1068 write_sequnlock(&psig->stats_lock);
1069 spin_unlock_irq(¤t->sighand->siglock);
1070 }
1071
1072 if (wo->wo_rusage)
1073 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1074 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1075 ? p->signal->group_exit_code : p->exit_code;
1076 wo->wo_stat = status;
1077
1078 if (state == EXIT_TRACE) {
1079 write_lock_irq(&tasklist_lock);
1080
1081 ptrace_unlink(p);
1082
1083
1084 state = EXIT_ZOMBIE;
1085 if (do_notify_parent(p, p->exit_signal))
1086 state = EXIT_DEAD;
1087 p->exit_state = state;
1088 write_unlock_irq(&tasklist_lock);
1089 }
1090 if (state == EXIT_DEAD)
1091 release_task(p);
1092
1093out_info:
1094 infop = wo->wo_info;
1095 if (infop) {
1096 if ((status & 0x7f) == 0) {
1097 infop->cause = CLD_EXITED;
1098 infop->status = status >> 8;
1099 } else {
1100 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1101 infop->status = status & 0x7f;
1102 }
1103 infop->pid = pid;
1104 infop->uid = uid;
1105 }
1106
1107 return pid;
1108}
1109
1110static int *task_stopped_code(struct task_struct *p, bool ptrace)
1111{
1112 if (ptrace) {
1113 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1114 return &p->exit_code;
1115 } else {
1116 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1117 return &p->signal->group_exit_code;
1118 }
1119 return NULL;
1120}
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140static int wait_task_stopped(struct wait_opts *wo,
1141 int ptrace, struct task_struct *p)
1142{
1143 struct waitid_info *infop;
1144 int exit_code, *p_code, why;
1145 uid_t uid = 0;
1146 pid_t pid;
1147
1148
1149
1150
1151 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1152 return 0;
1153
1154 if (!task_stopped_code(p, ptrace))
1155 return 0;
1156
1157 exit_code = 0;
1158 spin_lock_irq(&p->sighand->siglock);
1159
1160 p_code = task_stopped_code(p, ptrace);
1161 if (unlikely(!p_code))
1162 goto unlock_sig;
1163
1164 exit_code = *p_code;
1165 if (!exit_code)
1166 goto unlock_sig;
1167
1168 if (!unlikely(wo->wo_flags & WNOWAIT))
1169 *p_code = 0;
1170
1171 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1172unlock_sig:
1173 spin_unlock_irq(&p->sighand->siglock);
1174 if (!exit_code)
1175 return 0;
1176
1177
1178
1179
1180
1181
1182
1183
1184 get_task_struct(p);
1185 pid = task_pid_vnr(p);
1186 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1187 read_unlock(&tasklist_lock);
1188 sched_annotate_sleep();
1189 if (wo->wo_rusage)
1190 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1191 put_task_struct(p);
1192
1193 if (likely(!(wo->wo_flags & WNOWAIT)))
1194 wo->wo_stat = (exit_code << 8) | 0x7f;
1195
1196 infop = wo->wo_info;
1197 if (infop) {
1198 infop->cause = why;
1199 infop->status = exit_code;
1200 infop->pid = pid;
1201 infop->uid = uid;
1202 }
1203 return pid;
1204}
1205
1206
1207
1208
1209
1210
1211
1212static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1213{
1214 struct waitid_info *infop;
1215 pid_t pid;
1216 uid_t uid;
1217
1218 if (!unlikely(wo->wo_flags & WCONTINUED))
1219 return 0;
1220
1221 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1222 return 0;
1223
1224 spin_lock_irq(&p->sighand->siglock);
1225
1226 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1227 spin_unlock_irq(&p->sighand->siglock);
1228 return 0;
1229 }
1230 if (!unlikely(wo->wo_flags & WNOWAIT))
1231 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1232 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1233 spin_unlock_irq(&p->sighand->siglock);
1234
1235 pid = task_pid_vnr(p);
1236 get_task_struct(p);
1237 read_unlock(&tasklist_lock);
1238 sched_annotate_sleep();
1239 if (wo->wo_rusage)
1240 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1241 put_task_struct(p);
1242
1243 infop = wo->wo_info;
1244 if (!infop) {
1245 wo->wo_stat = 0xffff;
1246 } else {
1247 infop->cause = CLD_CONTINUED;
1248 infop->pid = pid;
1249 infop->uid = uid;
1250 infop->status = SIGCONT;
1251 }
1252 return pid;
1253}
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264static int wait_consider_task(struct wait_opts *wo, int ptrace,
1265 struct task_struct *p)
1266{
1267
1268
1269
1270
1271
1272 int exit_state = READ_ONCE(p->exit_state);
1273 int ret;
1274
1275 if (unlikely(exit_state == EXIT_DEAD))
1276 return 0;
1277
1278 ret = eligible_child(wo, ptrace, p);
1279 if (!ret)
1280 return ret;
1281
1282 if (unlikely(exit_state == EXIT_TRACE)) {
1283
1284
1285
1286
1287 if (likely(!ptrace))
1288 wo->notask_error = 0;
1289 return 0;
1290 }
1291
1292 if (likely(!ptrace) && unlikely(p->ptrace)) {
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304 if (!ptrace_reparented(p))
1305 ptrace = 1;
1306 }
1307
1308
1309 if (exit_state == EXIT_ZOMBIE) {
1310
1311 if (!delay_group_leader(p)) {
1312
1313
1314
1315
1316
1317 if (unlikely(ptrace) || likely(!p->ptrace))
1318 return wait_task_zombie(wo, p);
1319 }
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1342 wo->notask_error = 0;
1343 } else {
1344
1345
1346
1347
1348 wo->notask_error = 0;
1349 }
1350
1351
1352
1353
1354
1355 ret = wait_task_stopped(wo, ptrace, p);
1356 if (ret)
1357 return ret;
1358
1359
1360
1361
1362
1363
1364 return wait_task_continued(wo, p);
1365}
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1377{
1378 struct task_struct *p;
1379
1380 list_for_each_entry(p, &tsk->children, sibling) {
1381 int ret = wait_consider_task(wo, 0, p);
1382
1383 if (ret)
1384 return ret;
1385 }
1386
1387 return 0;
1388}
1389
1390static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1391{
1392 struct task_struct *p;
1393
1394 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1395 int ret = wait_consider_task(wo, 1, p);
1396
1397 if (ret)
1398 return ret;
1399 }
1400
1401 return 0;
1402}
1403
1404static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1405 int sync, void *key)
1406{
1407 struct wait_opts *wo = container_of(wait, struct wait_opts,
1408 child_wait);
1409 struct task_struct *p = key;
1410
1411 if (!eligible_pid(wo, p))
1412 return 0;
1413
1414 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1415 return 0;
1416
1417 return default_wake_function(wait, mode, sync, key);
1418}
1419
1420void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1421{
1422 __wake_up_sync_key(&parent->signal->wait_chldexit,
1423 TASK_INTERRUPTIBLE, p);
1424}
1425
1426static long do_wait(struct wait_opts *wo)
1427{
1428 struct task_struct *tsk;
1429 int retval;
1430
1431 trace_sched_process_wait(wo->wo_pid);
1432
1433 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1434 wo->child_wait.private = current;
1435 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1436repeat:
1437
1438
1439
1440
1441
1442
1443 wo->notask_error = -ECHILD;
1444 if ((wo->wo_type < PIDTYPE_MAX) &&
1445 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1446 goto notask;
1447
1448 set_current_state(TASK_INTERRUPTIBLE);
1449 read_lock(&tasklist_lock);
1450 tsk = current;
1451 do {
1452 retval = do_wait_thread(wo, tsk);
1453 if (retval)
1454 goto end;
1455
1456 retval = ptrace_do_wait(wo, tsk);
1457 if (retval)
1458 goto end;
1459
1460 if (wo->wo_flags & __WNOTHREAD)
1461 break;
1462 } while_each_thread(current, tsk);
1463 read_unlock(&tasklist_lock);
1464
1465notask:
1466 retval = wo->notask_error;
1467 if (!retval && !(wo->wo_flags & WNOHANG)) {
1468 retval = -ERESTARTSYS;
1469 if (!signal_pending(current)) {
1470 schedule();
1471 goto repeat;
1472 }
1473 }
1474end:
1475 __set_current_state(TASK_RUNNING);
1476 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1477 return retval;
1478}
1479
1480static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1481 int options, struct rusage *ru)
1482{
1483 struct wait_opts wo;
1484 struct pid *pid = NULL;
1485 enum pid_type type;
1486 long ret;
1487 unsigned int f_flags = 0;
1488
1489 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1490 __WNOTHREAD|__WCLONE|__WALL))
1491 return -EINVAL;
1492 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1493 return -EINVAL;
1494
1495 switch (which) {
1496 case P_ALL:
1497 type = PIDTYPE_MAX;
1498 break;
1499 case P_PID:
1500 type = PIDTYPE_PID;
1501 if (upid <= 0)
1502 return -EINVAL;
1503
1504 pid = find_get_pid(upid);
1505 break;
1506 case P_PGID:
1507 type = PIDTYPE_PGID;
1508 if (upid < 0)
1509 return -EINVAL;
1510
1511 if (upid)
1512 pid = find_get_pid(upid);
1513 else
1514 pid = get_task_pid(current, PIDTYPE_PGID);
1515 break;
1516 case P_PIDFD:
1517 type = PIDTYPE_PID;
1518 if (upid < 0)
1519 return -EINVAL;
1520
1521 pid = pidfd_get_pid(upid, &f_flags);
1522 if (IS_ERR(pid))
1523 return PTR_ERR(pid);
1524
1525 break;
1526 default:
1527 return -EINVAL;
1528 }
1529
1530 wo.wo_type = type;
1531 wo.wo_pid = pid;
1532 wo.wo_flags = options;
1533 wo.wo_info = infop;
1534 wo.wo_rusage = ru;
1535 if (f_flags & O_NONBLOCK)
1536 wo.wo_flags |= WNOHANG;
1537
1538 ret = do_wait(&wo);
1539 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1540 ret = -EAGAIN;
1541
1542 put_pid(pid);
1543 return ret;
1544}
1545
1546SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1547 infop, int, options, struct rusage __user *, ru)
1548{
1549 struct rusage r;
1550 struct waitid_info info = {.status = 0};
1551 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1552 int signo = 0;
1553
1554 if (err > 0) {
1555 signo = SIGCHLD;
1556 err = 0;
1557 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1558 return -EFAULT;
1559 }
1560 if (!infop)
1561 return err;
1562
1563 if (!user_write_access_begin(infop, sizeof(*infop)))
1564 return -EFAULT;
1565
1566 unsafe_put_user(signo, &infop->si_signo, Efault);
1567 unsafe_put_user(0, &infop->si_errno, Efault);
1568 unsafe_put_user(info.cause, &infop->si_code, Efault);
1569 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1570 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1571 unsafe_put_user(info.status, &infop->si_status, Efault);
1572 user_write_access_end();
1573 return err;
1574Efault:
1575 user_write_access_end();
1576 return -EFAULT;
1577}
1578
1579long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1580 struct rusage *ru)
1581{
1582 struct wait_opts wo;
1583 struct pid *pid = NULL;
1584 enum pid_type type;
1585 long ret;
1586
1587 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1588 __WNOTHREAD|__WCLONE|__WALL))
1589 return -EINVAL;
1590
1591
1592 if (upid == INT_MIN)
1593 return -ESRCH;
1594
1595 if (upid == -1)
1596 type = PIDTYPE_MAX;
1597 else if (upid < 0) {
1598 type = PIDTYPE_PGID;
1599 pid = find_get_pid(-upid);
1600 } else if (upid == 0) {
1601 type = PIDTYPE_PGID;
1602 pid = get_task_pid(current, PIDTYPE_PGID);
1603 } else {
1604 type = PIDTYPE_PID;
1605 pid = find_get_pid(upid);
1606 }
1607
1608 wo.wo_type = type;
1609 wo.wo_pid = pid;
1610 wo.wo_flags = options | WEXITED;
1611 wo.wo_info = NULL;
1612 wo.wo_stat = 0;
1613 wo.wo_rusage = ru;
1614 ret = do_wait(&wo);
1615 put_pid(pid);
1616 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1617 ret = -EFAULT;
1618
1619 return ret;
1620}
1621
1622int kernel_wait(pid_t pid, int *stat)
1623{
1624 struct wait_opts wo = {
1625 .wo_type = PIDTYPE_PID,
1626 .wo_pid = find_get_pid(pid),
1627 .wo_flags = WEXITED,
1628 };
1629 int ret;
1630
1631 ret = do_wait(&wo);
1632 if (ret > 0 && wo.wo_stat)
1633 *stat = wo.wo_stat;
1634 put_pid(wo.wo_pid);
1635 return ret;
1636}
1637
1638SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1639 int, options, struct rusage __user *, ru)
1640{
1641 struct rusage r;
1642 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1643
1644 if (err > 0) {
1645 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1646 return -EFAULT;
1647 }
1648 return err;
1649}
1650
1651#ifdef __ARCH_WANT_SYS_WAITPID
1652
1653
1654
1655
1656
1657SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1658{
1659 return kernel_wait4(pid, stat_addr, options, NULL);
1660}
1661
1662#endif
1663
1664#ifdef CONFIG_COMPAT
1665COMPAT_SYSCALL_DEFINE4(wait4,
1666 compat_pid_t, pid,
1667 compat_uint_t __user *, stat_addr,
1668 int, options,
1669 struct compat_rusage __user *, ru)
1670{
1671 struct rusage r;
1672 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1673 if (err > 0) {
1674 if (ru && put_compat_rusage(&r, ru))
1675 return -EFAULT;
1676 }
1677 return err;
1678}
1679
1680COMPAT_SYSCALL_DEFINE5(waitid,
1681 int, which, compat_pid_t, pid,
1682 struct compat_siginfo __user *, infop, int, options,
1683 struct compat_rusage __user *, uru)
1684{
1685 struct rusage ru;
1686 struct waitid_info info = {.status = 0};
1687 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1688 int signo = 0;
1689 if (err > 0) {
1690 signo = SIGCHLD;
1691 err = 0;
1692 if (uru) {
1693
1694 if (COMPAT_USE_64BIT_TIME)
1695 err = copy_to_user(uru, &ru, sizeof(ru));
1696 else
1697 err = put_compat_rusage(&ru, uru);
1698 if (err)
1699 return -EFAULT;
1700 }
1701 }
1702
1703 if (!infop)
1704 return err;
1705
1706 if (!user_write_access_begin(infop, sizeof(*infop)))
1707 return -EFAULT;
1708
1709 unsafe_put_user(signo, &infop->si_signo, Efault);
1710 unsafe_put_user(0, &infop->si_errno, Efault);
1711 unsafe_put_user(info.cause, &infop->si_code, Efault);
1712 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1713 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1714 unsafe_put_user(info.status, &infop->si_status, Efault);
1715 user_write_access_end();
1716 return err;
1717Efault:
1718 user_write_access_end();
1719 return -EFAULT;
1720}
1721#endif
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732bool thread_group_exited(struct pid *pid)
1733{
1734 struct task_struct *task;
1735 bool exited;
1736
1737 rcu_read_lock();
1738 task = pid_task(pid, PIDTYPE_PID);
1739 exited = !task ||
1740 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1741 rcu_read_unlock();
1742
1743 return exited;
1744}
1745EXPORT_SYMBOL(thread_group_exited);
1746
1747__weak void abort(void)
1748{
1749 BUG();
1750
1751
1752 panic("Oops failed to kill thread");
1753}
1754EXPORT_SYMBOL(abort);
1755