linux/lib/radix-tree.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2001 Momchil Velikov
   4 * Portions Copyright (C) 2001 Christoph Hellwig
   5 * Copyright (C) 2005 SGI, Christoph Lameter
   6 * Copyright (C) 2006 Nick Piggin
   7 * Copyright (C) 2012 Konstantin Khlebnikov
   8 * Copyright (C) 2016 Intel, Matthew Wilcox
   9 * Copyright (C) 2016 Intel, Ross Zwisler
  10 */
  11
  12#include <linux/bitmap.h>
  13#include <linux/bitops.h>
  14#include <linux/bug.h>
  15#include <linux/cpu.h>
  16#include <linux/errno.h>
  17#include <linux/export.h>
  18#include <linux/idr.h>
  19#include <linux/init.h>
  20#include <linux/kernel.h>
  21#include <linux/kmemleak.h>
  22#include <linux/percpu.h>
  23#include <linux/preempt.h>              /* in_interrupt() */
  24#include <linux/radix-tree.h>
  25#include <linux/rcupdate.h>
  26#include <linux/slab.h>
  27#include <linux/string.h>
  28#include <linux/xarray.h>
  29
  30/*
  31 * Radix tree node cache.
  32 */
  33struct kmem_cache *radix_tree_node_cachep;
  34
  35/*
  36 * The radix tree is variable-height, so an insert operation not only has
  37 * to build the branch to its corresponding item, it also has to build the
  38 * branch to existing items if the size has to be increased (by
  39 * radix_tree_extend).
  40 *
  41 * The worst case is a zero height tree with just a single item at index 0,
  42 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
  43 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
  44 * Hence:
  45 */
  46#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
  47
  48/*
  49 * The IDR does not have to be as high as the radix tree since it uses
  50 * signed integers, not unsigned longs.
  51 */
  52#define IDR_INDEX_BITS          (8 /* CHAR_BIT */ * sizeof(int) - 1)
  53#define IDR_MAX_PATH            (DIV_ROUND_UP(IDR_INDEX_BITS, \
  54                                                RADIX_TREE_MAP_SHIFT))
  55#define IDR_PRELOAD_SIZE        (IDR_MAX_PATH * 2 - 1)
  56
  57/*
  58 * Per-cpu pool of preloaded nodes
  59 */
  60DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = {
  61        .lock = INIT_LOCAL_LOCK(lock),
  62};
  63EXPORT_PER_CPU_SYMBOL_GPL(radix_tree_preloads);
  64
  65static inline struct radix_tree_node *entry_to_node(void *ptr)
  66{
  67        return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
  68}
  69
  70static inline void *node_to_entry(void *ptr)
  71{
  72        return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
  73}
  74
  75#define RADIX_TREE_RETRY        XA_RETRY_ENTRY
  76
  77static inline unsigned long
  78get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
  79{
  80        return parent ? slot - parent->slots : 0;
  81}
  82
  83static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
  84                        struct radix_tree_node **nodep, unsigned long index)
  85{
  86        unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
  87        void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);
  88
  89        *nodep = (void *)entry;
  90        return offset;
  91}
  92
  93static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
  94{
  95        return root->xa_flags & (__GFP_BITS_MASK & ~GFP_ZONEMASK);
  96}
  97
  98static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
  99                int offset)
 100{
 101        __set_bit(offset, node->tags[tag]);
 102}
 103
 104static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
 105                int offset)
 106{
 107        __clear_bit(offset, node->tags[tag]);
 108}
 109
 110static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
 111                int offset)
 112{
 113        return test_bit(offset, node->tags[tag]);
 114}
 115
 116static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
 117{
 118        root->xa_flags |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
 119}
 120
 121static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
 122{
 123        root->xa_flags &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
 124}
 125
 126static inline void root_tag_clear_all(struct radix_tree_root *root)
 127{
 128        root->xa_flags &= (__force gfp_t)((1 << ROOT_TAG_SHIFT) - 1);
 129}
 130
 131static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
 132{
 133        return (__force int)root->xa_flags & (1 << (tag + ROOT_TAG_SHIFT));
 134}
 135
 136static inline unsigned root_tags_get(const struct radix_tree_root *root)
 137{
 138        return (__force unsigned)root->xa_flags >> ROOT_TAG_SHIFT;
 139}
 140
 141static inline bool is_idr(const struct radix_tree_root *root)
 142{
 143        return !!(root->xa_flags & ROOT_IS_IDR);
 144}
 145
 146/*
 147 * Returns 1 if any slot in the node has this tag set.
 148 * Otherwise returns 0.
 149 */
 150static inline int any_tag_set(const struct radix_tree_node *node,
 151                                                        unsigned int tag)
 152{
 153        unsigned idx;
 154        for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
 155                if (node->tags[tag][idx])
 156                        return 1;
 157        }
 158        return 0;
 159}
 160
 161static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
 162{
 163        bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
 164}
 165
 166/**
 167 * radix_tree_find_next_bit - find the next set bit in a memory region
 168 *
 169 * @addr: The address to base the search on
 170 * @size: The bitmap size in bits
 171 * @offset: The bitnumber to start searching at
 172 *
 173 * Unrollable variant of find_next_bit() for constant size arrays.
 174 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
 175 * Returns next bit offset, or size if nothing found.
 176 */
 177static __always_inline unsigned long
 178radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
 179                         unsigned long offset)
 180{
 181        const unsigned long *addr = node->tags[tag];
 182
 183        if (offset < RADIX_TREE_MAP_SIZE) {
 184                unsigned long tmp;
 185
 186                addr += offset / BITS_PER_LONG;
 187                tmp = *addr >> (offset % BITS_PER_LONG);
 188                if (tmp)
 189                        return __ffs(tmp) + offset;
 190                offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
 191                while (offset < RADIX_TREE_MAP_SIZE) {
 192                        tmp = *++addr;
 193                        if (tmp)
 194                                return __ffs(tmp) + offset;
 195                        offset += BITS_PER_LONG;
 196                }
 197        }
 198        return RADIX_TREE_MAP_SIZE;
 199}
 200
 201static unsigned int iter_offset(const struct radix_tree_iter *iter)
 202{
 203        return iter->index & RADIX_TREE_MAP_MASK;
 204}
 205
 206/*
 207 * The maximum index which can be stored in a radix tree
 208 */
 209static inline unsigned long shift_maxindex(unsigned int shift)
 210{
 211        return (RADIX_TREE_MAP_SIZE << shift) - 1;
 212}
 213
 214static inline unsigned long node_maxindex(const struct radix_tree_node *node)
 215{
 216        return shift_maxindex(node->shift);
 217}
 218
 219static unsigned long next_index(unsigned long index,
 220                                const struct radix_tree_node *node,
 221                                unsigned long offset)
 222{
 223        return (index & ~node_maxindex(node)) + (offset << node->shift);
 224}
 225
 226/*
 227 * This assumes that the caller has performed appropriate preallocation, and
 228 * that the caller has pinned this thread of control to the current CPU.
 229 */
 230static struct radix_tree_node *
 231radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
 232                        struct radix_tree_root *root,
 233                        unsigned int shift, unsigned int offset,
 234                        unsigned int count, unsigned int nr_values)
 235{
 236        struct radix_tree_node *ret = NULL;
 237
 238        /*
 239         * Preload code isn't irq safe and it doesn't make sense to use
 240         * preloading during an interrupt anyway as all the allocations have
 241         * to be atomic. So just do normal allocation when in interrupt.
 242         */
 243        if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
 244                struct radix_tree_preload *rtp;
 245
 246                /*
 247                 * Even if the caller has preloaded, try to allocate from the
 248                 * cache first for the new node to get accounted to the memory
 249                 * cgroup.
 250                 */
 251                ret = kmem_cache_alloc(radix_tree_node_cachep,
 252                                       gfp_mask | __GFP_NOWARN);
 253                if (ret)
 254                        goto out;
 255
 256                /*
 257                 * Provided the caller has preloaded here, we will always
 258                 * succeed in getting a node here (and never reach
 259                 * kmem_cache_alloc)
 260                 */
 261                rtp = this_cpu_ptr(&radix_tree_preloads);
 262                if (rtp->nr) {
 263                        ret = rtp->nodes;
 264                        rtp->nodes = ret->parent;
 265                        rtp->nr--;
 266                }
 267                /*
 268                 * Update the allocation stack trace as this is more useful
 269                 * for debugging.
 270                 */
 271                kmemleak_update_trace(ret);
 272                goto out;
 273        }
 274        ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 275out:
 276        BUG_ON(radix_tree_is_internal_node(ret));
 277        if (ret) {
 278                ret->shift = shift;
 279                ret->offset = offset;
 280                ret->count = count;
 281                ret->nr_values = nr_values;
 282                ret->parent = parent;
 283                ret->array = root;
 284        }
 285        return ret;
 286}
 287
 288void radix_tree_node_rcu_free(struct rcu_head *head)
 289{
 290        struct radix_tree_node *node =
 291                        container_of(head, struct radix_tree_node, rcu_head);
 292
 293        /*
 294         * Must only free zeroed nodes into the slab.  We can be left with
 295         * non-NULL entries by radix_tree_free_nodes, so clear the entries
 296         * and tags here.
 297         */
 298        memset(node->slots, 0, sizeof(node->slots));
 299        memset(node->tags, 0, sizeof(node->tags));
 300        INIT_LIST_HEAD(&node->private_list);
 301
 302        kmem_cache_free(radix_tree_node_cachep, node);
 303}
 304
 305static inline void
 306radix_tree_node_free(struct radix_tree_node *node)
 307{
 308        call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
 309}
 310
 311/*
 312 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 313 * ensure that the addition of a single element in the tree cannot fail.  On
 314 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 315 * with preemption not disabled.
 316 *
 317 * To make use of this facility, the radix tree must be initialised without
 318 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 319 */
 320static __must_check int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
 321{
 322        struct radix_tree_preload *rtp;
 323        struct radix_tree_node *node;
 324        int ret = -ENOMEM;
 325
 326        /*
 327         * Nodes preloaded by one cgroup can be used by another cgroup, so
 328         * they should never be accounted to any particular memory cgroup.
 329         */
 330        gfp_mask &= ~__GFP_ACCOUNT;
 331
 332        local_lock(&radix_tree_preloads.lock);
 333        rtp = this_cpu_ptr(&radix_tree_preloads);
 334        while (rtp->nr < nr) {
 335                local_unlock(&radix_tree_preloads.lock);
 336                node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 337                if (node == NULL)
 338                        goto out;
 339                local_lock(&radix_tree_preloads.lock);
 340                rtp = this_cpu_ptr(&radix_tree_preloads);
 341                if (rtp->nr < nr) {
 342                        node->parent = rtp->nodes;
 343                        rtp->nodes = node;
 344                        rtp->nr++;
 345                } else {
 346                        kmem_cache_free(radix_tree_node_cachep, node);
 347                }
 348        }
 349        ret = 0;
 350out:
 351        return ret;
 352}
 353
 354/*
 355 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 356 * ensure that the addition of a single element in the tree cannot fail.  On
 357 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 358 * with preemption not disabled.
 359 *
 360 * To make use of this facility, the radix tree must be initialised without
 361 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 362 */
 363int radix_tree_preload(gfp_t gfp_mask)
 364{
 365        /* Warn on non-sensical use... */
 366        WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
 367        return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
 368}
 369EXPORT_SYMBOL(radix_tree_preload);
 370
 371/*
 372 * The same as above function, except we don't guarantee preloading happens.
 373 * We do it, if we decide it helps. On success, return zero with preemption
 374 * disabled. On error, return -ENOMEM with preemption not disabled.
 375 */
 376int radix_tree_maybe_preload(gfp_t gfp_mask)
 377{
 378        if (gfpflags_allow_blocking(gfp_mask))
 379                return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
 380        /* Preloading doesn't help anything with this gfp mask, skip it */
 381        local_lock(&radix_tree_preloads.lock);
 382        return 0;
 383}
 384EXPORT_SYMBOL(radix_tree_maybe_preload);
 385
 386static unsigned radix_tree_load_root(const struct radix_tree_root *root,
 387                struct radix_tree_node **nodep, unsigned long *maxindex)
 388{
 389        struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
 390
 391        *nodep = node;
 392
 393        if (likely(radix_tree_is_internal_node(node))) {
 394                node = entry_to_node(node);
 395                *maxindex = node_maxindex(node);
 396                return node->shift + RADIX_TREE_MAP_SHIFT;
 397        }
 398
 399        *maxindex = 0;
 400        return 0;
 401}
 402
 403/*
 404 *      Extend a radix tree so it can store key @index.
 405 */
 406static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
 407                                unsigned long index, unsigned int shift)
 408{
 409        void *entry;
 410        unsigned int maxshift;
 411        int tag;
 412
 413        /* Figure out what the shift should be.  */
 414        maxshift = shift;
 415        while (index > shift_maxindex(maxshift))
 416                maxshift += RADIX_TREE_MAP_SHIFT;
 417
 418        entry = rcu_dereference_raw(root->xa_head);
 419        if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
 420                goto out;
 421
 422        do {
 423                struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
 424                                                        root, shift, 0, 1, 0);
 425                if (!node)
 426                        return -ENOMEM;
 427
 428                if (is_idr(root)) {
 429                        all_tag_set(node, IDR_FREE);
 430                        if (!root_tag_get(root, IDR_FREE)) {
 431                                tag_clear(node, IDR_FREE, 0);
 432                                root_tag_set(root, IDR_FREE);
 433                        }
 434                } else {
 435                        /* Propagate the aggregated tag info to the new child */
 436                        for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
 437                                if (root_tag_get(root, tag))
 438                                        tag_set(node, tag, 0);
 439                        }
 440                }
 441
 442                BUG_ON(shift > BITS_PER_LONG);
 443                if (radix_tree_is_internal_node(entry)) {
 444                        entry_to_node(entry)->parent = node;
 445                } else if (xa_is_value(entry)) {
 446                        /* Moving a value entry root->xa_head to a node */
 447                        node->nr_values = 1;
 448                }
 449                /*
 450                 * entry was already in the radix tree, so we do not need
 451                 * rcu_assign_pointer here
 452                 */
 453                node->slots[0] = (void __rcu *)entry;
 454                entry = node_to_entry(node);
 455                rcu_assign_pointer(root->xa_head, entry);
 456                shift += RADIX_TREE_MAP_SHIFT;
 457        } while (shift <= maxshift);
 458out:
 459        return maxshift + RADIX_TREE_MAP_SHIFT;
 460}
 461
 462/**
 463 *      radix_tree_shrink    -    shrink radix tree to minimum height
 464 *      @root           radix tree root
 465 */
 466static inline bool radix_tree_shrink(struct radix_tree_root *root)
 467{
 468        bool shrunk = false;
 469
 470        for (;;) {
 471                struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
 472                struct radix_tree_node *child;
 473
 474                if (!radix_tree_is_internal_node(node))
 475                        break;
 476                node = entry_to_node(node);
 477
 478                /*
 479                 * The candidate node has more than one child, or its child
 480                 * is not at the leftmost slot, we cannot shrink.
 481                 */
 482                if (node->count != 1)
 483                        break;
 484                child = rcu_dereference_raw(node->slots[0]);
 485                if (!child)
 486                        break;
 487
 488                /*
 489                 * For an IDR, we must not shrink entry 0 into the root in
 490                 * case somebody calls idr_replace() with a pointer that
 491                 * appears to be an internal entry
 492                 */
 493                if (!node->shift && is_idr(root))
 494                        break;
 495
 496                if (radix_tree_is_internal_node(child))
 497                        entry_to_node(child)->parent = NULL;
 498
 499                /*
 500                 * We don't need rcu_assign_pointer(), since we are simply
 501                 * moving the node from one part of the tree to another: if it
 502                 * was safe to dereference the old pointer to it
 503                 * (node->slots[0]), it will be safe to dereference the new
 504                 * one (root->xa_head) as far as dependent read barriers go.
 505                 */
 506                root->xa_head = (void __rcu *)child;
 507                if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
 508                        root_tag_clear(root, IDR_FREE);
 509
 510                /*
 511                 * We have a dilemma here. The node's slot[0] must not be
 512                 * NULLed in case there are concurrent lookups expecting to
 513                 * find the item. However if this was a bottom-level node,
 514                 * then it may be subject to the slot pointer being visible
 515                 * to callers dereferencing it. If item corresponding to
 516                 * slot[0] is subsequently deleted, these callers would expect
 517                 * their slot to become empty sooner or later.
 518                 *
 519                 * For example, lockless pagecache will look up a slot, deref
 520                 * the page pointer, and if the page has 0 refcount it means it
 521                 * was concurrently deleted from pagecache so try the deref
 522                 * again. Fortunately there is already a requirement for logic
 523                 * to retry the entire slot lookup -- the indirect pointer
 524                 * problem (replacing direct root node with an indirect pointer
 525                 * also results in a stale slot). So tag the slot as indirect
 526                 * to force callers to retry.
 527                 */
 528                node->count = 0;
 529                if (!radix_tree_is_internal_node(child)) {
 530                        node->slots[0] = (void __rcu *)RADIX_TREE_RETRY;
 531                }
 532
 533                WARN_ON_ONCE(!list_empty(&node->private_list));
 534                radix_tree_node_free(node);
 535                shrunk = true;
 536        }
 537
 538        return shrunk;
 539}
 540
 541static bool delete_node(struct radix_tree_root *root,
 542                        struct radix_tree_node *node)
 543{
 544        bool deleted = false;
 545
 546        do {
 547                struct radix_tree_node *parent;
 548
 549                if (node->count) {
 550                        if (node_to_entry(node) ==
 551                                        rcu_dereference_raw(root->xa_head))
 552                                deleted |= radix_tree_shrink(root);
 553                        return deleted;
 554                }
 555
 556                parent = node->parent;
 557                if (parent) {
 558                        parent->slots[node->offset] = NULL;
 559                        parent->count--;
 560                } else {
 561                        /*
 562                         * Shouldn't the tags already have all been cleared
 563                         * by the caller?
 564                         */
 565                        if (!is_idr(root))
 566                                root_tag_clear_all(root);
 567                        root->xa_head = NULL;
 568                }
 569
 570                WARN_ON_ONCE(!list_empty(&node->private_list));
 571                radix_tree_node_free(node);
 572                deleted = true;
 573
 574                node = parent;
 575        } while (node);
 576
 577        return deleted;
 578}
 579
 580/**
 581 *      __radix_tree_create     -       create a slot in a radix tree
 582 *      @root:          radix tree root
 583 *      @index:         index key
 584 *      @nodep:         returns node
 585 *      @slotp:         returns slot
 586 *
 587 *      Create, if necessary, and return the node and slot for an item
 588 *      at position @index in the radix tree @root.
 589 *
 590 *      Until there is more than one item in the tree, no nodes are
 591 *      allocated and @root->xa_head is used as a direct slot instead of
 592 *      pointing to a node, in which case *@nodep will be NULL.
 593 *
 594 *      Returns -ENOMEM, or 0 for success.
 595 */
 596static int __radix_tree_create(struct radix_tree_root *root,
 597                unsigned long index, struct radix_tree_node **nodep,
 598                void __rcu ***slotp)
 599{
 600        struct radix_tree_node *node = NULL, *child;
 601        void __rcu **slot = (void __rcu **)&root->xa_head;
 602        unsigned long maxindex;
 603        unsigned int shift, offset = 0;
 604        unsigned long max = index;
 605        gfp_t gfp = root_gfp_mask(root);
 606
 607        shift = radix_tree_load_root(root, &child, &maxindex);
 608
 609        /* Make sure the tree is high enough.  */
 610        if (max > maxindex) {
 611                int error = radix_tree_extend(root, gfp, max, shift);
 612                if (error < 0)
 613                        return error;
 614                shift = error;
 615                child = rcu_dereference_raw(root->xa_head);
 616        }
 617
 618        while (shift > 0) {
 619                shift -= RADIX_TREE_MAP_SHIFT;
 620                if (child == NULL) {
 621                        /* Have to add a child node.  */
 622                        child = radix_tree_node_alloc(gfp, node, root, shift,
 623                                                        offset, 0, 0);
 624                        if (!child)
 625                                return -ENOMEM;
 626                        rcu_assign_pointer(*slot, node_to_entry(child));
 627                        if (node)
 628                                node->count++;
 629                } else if (!radix_tree_is_internal_node(child))
 630                        break;
 631
 632                /* Go a level down */
 633                node = entry_to_node(child);
 634                offset = radix_tree_descend(node, &child, index);
 635                slot = &node->slots[offset];
 636        }
 637
 638        if (nodep)
 639                *nodep = node;
 640        if (slotp)
 641                *slotp = slot;
 642        return 0;
 643}
 644
 645/*
 646 * Free any nodes below this node.  The tree is presumed to not need
 647 * shrinking, and any user data in the tree is presumed to not need a
 648 * destructor called on it.  If we need to add a destructor, we can
 649 * add that functionality later.  Note that we may not clear tags or
 650 * slots from the tree as an RCU walker may still have a pointer into
 651 * this subtree.  We could replace the entries with RADIX_TREE_RETRY,
 652 * but we'll still have to clear those in rcu_free.
 653 */
 654static void radix_tree_free_nodes(struct radix_tree_node *node)
 655{
 656        unsigned offset = 0;
 657        struct radix_tree_node *child = entry_to_node(node);
 658
 659        for (;;) {
 660                void *entry = rcu_dereference_raw(child->slots[offset]);
 661                if (xa_is_node(entry) && child->shift) {
 662                        child = entry_to_node(entry);
 663                        offset = 0;
 664                        continue;
 665                }
 666                offset++;
 667                while (offset == RADIX_TREE_MAP_SIZE) {
 668                        struct radix_tree_node *old = child;
 669                        offset = child->offset + 1;
 670                        child = child->parent;
 671                        WARN_ON_ONCE(!list_empty(&old->private_list));
 672                        radix_tree_node_free(old);
 673                        if (old == entry_to_node(node))
 674                                return;
 675                }
 676        }
 677}
 678
 679static inline int insert_entries(struct radix_tree_node *node,
 680                void __rcu **slot, void *item, bool replace)
 681{
 682        if (*slot)
 683                return -EEXIST;
 684        rcu_assign_pointer(*slot, item);
 685        if (node) {
 686                node->count++;
 687                if (xa_is_value(item))
 688                        node->nr_values++;
 689        }
 690        return 1;
 691}
 692
 693/**
 694 *      __radix_tree_insert    -    insert into a radix tree
 695 *      @root:          radix tree root
 696 *      @index:         index key
 697 *      @item:          item to insert
 698 *
 699 *      Insert an item into the radix tree at position @index.
 700 */
 701int radix_tree_insert(struct radix_tree_root *root, unsigned long index,
 702                        void *item)
 703{
 704        struct radix_tree_node *node;
 705        void __rcu **slot;
 706        int error;
 707
 708        BUG_ON(radix_tree_is_internal_node(item));
 709
 710        error = __radix_tree_create(root, index, &node, &slot);
 711        if (error)
 712                return error;
 713
 714        error = insert_entries(node, slot, item, false);
 715        if (error < 0)
 716                return error;
 717
 718        if (node) {
 719                unsigned offset = get_slot_offset(node, slot);
 720                BUG_ON(tag_get(node, 0, offset));
 721                BUG_ON(tag_get(node, 1, offset));
 722                BUG_ON(tag_get(node, 2, offset));
 723        } else {
 724                BUG_ON(root_tags_get(root));
 725        }
 726
 727        return 0;
 728}
 729EXPORT_SYMBOL(radix_tree_insert);
 730
 731/**
 732 *      __radix_tree_lookup     -       lookup an item in a radix tree
 733 *      @root:          radix tree root
 734 *      @index:         index key
 735 *      @nodep:         returns node
 736 *      @slotp:         returns slot
 737 *
 738 *      Lookup and return the item at position @index in the radix
 739 *      tree @root.
 740 *
 741 *      Until there is more than one item in the tree, no nodes are
 742 *      allocated and @root->xa_head is used as a direct slot instead of
 743 *      pointing to a node, in which case *@nodep will be NULL.
 744 */
 745void *__radix_tree_lookup(const struct radix_tree_root *root,
 746                          unsigned long index, struct radix_tree_node **nodep,
 747                          void __rcu ***slotp)
 748{
 749        struct radix_tree_node *node, *parent;
 750        unsigned long maxindex;
 751        void __rcu **slot;
 752
 753 restart:
 754        parent = NULL;
 755        slot = (void __rcu **)&root->xa_head;
 756        radix_tree_load_root(root, &node, &maxindex);
 757        if (index > maxindex)
 758                return NULL;
 759
 760        while (radix_tree_is_internal_node(node)) {
 761                unsigned offset;
 762
 763                parent = entry_to_node(node);
 764                offset = radix_tree_descend(parent, &node, index);
 765                slot = parent->slots + offset;
 766                if (node == RADIX_TREE_RETRY)
 767                        goto restart;
 768                if (parent->shift == 0)
 769                        break;
 770        }
 771
 772        if (nodep)
 773                *nodep = parent;
 774        if (slotp)
 775                *slotp = slot;
 776        return node;
 777}
 778
 779/**
 780 *      radix_tree_lookup_slot    -    lookup a slot in a radix tree
 781 *      @root:          radix tree root
 782 *      @index:         index key
 783 *
 784 *      Returns:  the slot corresponding to the position @index in the
 785 *      radix tree @root. This is useful for update-if-exists operations.
 786 *
 787 *      This function can be called under rcu_read_lock iff the slot is not
 788 *      modified by radix_tree_replace_slot, otherwise it must be called
 789 *      exclusive from other writers. Any dereference of the slot must be done
 790 *      using radix_tree_deref_slot.
 791 */
 792void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
 793                                unsigned long index)
 794{
 795        void __rcu **slot;
 796
 797        if (!__radix_tree_lookup(root, index, NULL, &slot))
 798                return NULL;
 799        return slot;
 800}
 801EXPORT_SYMBOL(radix_tree_lookup_slot);
 802
 803/**
 804 *      radix_tree_lookup    -    perform lookup operation on a radix tree
 805 *      @root:          radix tree root
 806 *      @index:         index key
 807 *
 808 *      Lookup the item at the position @index in the radix tree @root.
 809 *
 810 *      This function can be called under rcu_read_lock, however the caller
 811 *      must manage lifetimes of leaf nodes (eg. RCU may also be used to free
 812 *      them safely). No RCU barriers are required to access or modify the
 813 *      returned item, however.
 814 */
 815void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
 816{
 817        return __radix_tree_lookup(root, index, NULL, NULL);
 818}
 819EXPORT_SYMBOL(radix_tree_lookup);
 820
 821static void replace_slot(void __rcu **slot, void *item,
 822                struct radix_tree_node *node, int count, int values)
 823{
 824        if (node && (count || values)) {
 825                node->count += count;
 826                node->nr_values += values;
 827        }
 828
 829        rcu_assign_pointer(*slot, item);
 830}
 831
 832static bool node_tag_get(const struct radix_tree_root *root,
 833                                const struct radix_tree_node *node,
 834                                unsigned int tag, unsigned int offset)
 835{
 836        if (node)
 837                return tag_get(node, tag, offset);
 838        return root_tag_get(root, tag);
 839}
 840
 841/*
 842 * IDR users want to be able to store NULL in the tree, so if the slot isn't
 843 * free, don't adjust the count, even if it's transitioning between NULL and
 844 * non-NULL.  For the IDA, we mark slots as being IDR_FREE while they still
 845 * have empty bits, but it only stores NULL in slots when they're being
 846 * deleted.
 847 */
 848static int calculate_count(struct radix_tree_root *root,
 849                                struct radix_tree_node *node, void __rcu **slot,
 850                                void *item, void *old)
 851{
 852        if (is_idr(root)) {
 853                unsigned offset = get_slot_offset(node, slot);
 854                bool free = node_tag_get(root, node, IDR_FREE, offset);
 855                if (!free)
 856                        return 0;
 857                if (!old)
 858                        return 1;
 859        }
 860        return !!item - !!old;
 861}
 862
 863/**
 864 * __radix_tree_replace         - replace item in a slot
 865 * @root:               radix tree root
 866 * @node:               pointer to tree node
 867 * @slot:               pointer to slot in @node
 868 * @item:               new item to store in the slot.
 869 *
 870 * For use with __radix_tree_lookup().  Caller must hold tree write locked
 871 * across slot lookup and replacement.
 872 */
 873void __radix_tree_replace(struct radix_tree_root *root,
 874                          struct radix_tree_node *node,
 875                          void __rcu **slot, void *item)
 876{
 877        void *old = rcu_dereference_raw(*slot);
 878        int values = !!xa_is_value(item) - !!xa_is_value(old);
 879        int count = calculate_count(root, node, slot, item, old);
 880
 881        /*
 882         * This function supports replacing value entries and
 883         * deleting entries, but that needs accounting against the
 884         * node unless the slot is root->xa_head.
 885         */
 886        WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->xa_head) &&
 887                        (count || values));
 888        replace_slot(slot, item, node, count, values);
 889
 890        if (!node)
 891                return;
 892
 893        delete_node(root, node);
 894}
 895
 896/**
 897 * radix_tree_replace_slot      - replace item in a slot
 898 * @root:       radix tree root
 899 * @slot:       pointer to slot
 900 * @item:       new item to store in the slot.
 901 *
 902 * For use with radix_tree_lookup_slot() and
 903 * radix_tree_gang_lookup_tag_slot().  Caller must hold tree write locked
 904 * across slot lookup and replacement.
 905 *
 906 * NOTE: This cannot be used to switch between non-entries (empty slots),
 907 * regular entries, and value entries, as that requires accounting
 908 * inside the radix tree node. When switching from one type of entry or
 909 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
 910 * radix_tree_iter_replace().
 911 */
 912void radix_tree_replace_slot(struct radix_tree_root *root,
 913                             void __rcu **slot, void *item)
 914{
 915        __radix_tree_replace(root, NULL, slot, item);
 916}
 917EXPORT_SYMBOL(radix_tree_replace_slot);
 918
 919/**
 920 * radix_tree_iter_replace - replace item in a slot
 921 * @root:       radix tree root
 922 * @slot:       pointer to slot
 923 * @item:       new item to store in the slot.
 924 *
 925 * For use with radix_tree_for_each_slot().
 926 * Caller must hold tree write locked.
 927 */
 928void radix_tree_iter_replace(struct radix_tree_root *root,
 929                                const struct radix_tree_iter *iter,
 930                                void __rcu **slot, void *item)
 931{
 932        __radix_tree_replace(root, iter->node, slot, item);
 933}
 934
 935static void node_tag_set(struct radix_tree_root *root,
 936                                struct radix_tree_node *node,
 937                                unsigned int tag, unsigned int offset)
 938{
 939        while (node) {
 940                if (tag_get(node, tag, offset))
 941                        return;
 942                tag_set(node, tag, offset);
 943                offset = node->offset;
 944                node = node->parent;
 945        }
 946
 947        if (!root_tag_get(root, tag))
 948                root_tag_set(root, tag);
 949}
 950
 951/**
 952 *      radix_tree_tag_set - set a tag on a radix tree node
 953 *      @root:          radix tree root
 954 *      @index:         index key
 955 *      @tag:           tag index
 956 *
 957 *      Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
 958 *      corresponding to @index in the radix tree.  From
 959 *      the root all the way down to the leaf node.
 960 *
 961 *      Returns the address of the tagged item.  Setting a tag on a not-present
 962 *      item is a bug.
 963 */
 964void *radix_tree_tag_set(struct radix_tree_root *root,
 965                        unsigned long index, unsigned int tag)
 966{
 967        struct radix_tree_node *node, *parent;
 968        unsigned long maxindex;
 969
 970        radix_tree_load_root(root, &node, &maxindex);
 971        BUG_ON(index > maxindex);
 972
 973        while (radix_tree_is_internal_node(node)) {
 974                unsigned offset;
 975
 976                parent = entry_to_node(node);
 977                offset = radix_tree_descend(parent, &node, index);
 978                BUG_ON(!node);
 979
 980                if (!tag_get(parent, tag, offset))
 981                        tag_set(parent, tag, offset);
 982        }
 983
 984        /* set the root's tag bit */
 985        if (!root_tag_get(root, tag))
 986                root_tag_set(root, tag);
 987
 988        return node;
 989}
 990EXPORT_SYMBOL(radix_tree_tag_set);
 991
 992static void node_tag_clear(struct radix_tree_root *root,
 993                                struct radix_tree_node *node,
 994                                unsigned int tag, unsigned int offset)
 995{
 996        while (node) {
 997                if (!tag_get(node, tag, offset))
 998                        return;
 999                tag_clear(node, tag, offset);
1000                if (any_tag_set(node, tag))
1001                        return;
1002
1003                offset = node->offset;
1004                node = node->parent;
1005        }
1006
1007        /* clear the root's tag bit */
1008        if (root_tag_get(root, tag))
1009                root_tag_clear(root, tag);
1010}
1011
1012/**
1013 *      radix_tree_tag_clear - clear a tag on a radix tree node
1014 *      @root:          radix tree root
1015 *      @index:         index key
1016 *      @tag:           tag index
1017 *
1018 *      Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1019 *      corresponding to @index in the radix tree.  If this causes
1020 *      the leaf node to have no tags set then clear the tag in the
1021 *      next-to-leaf node, etc.
1022 *
1023 *      Returns the address of the tagged item on success, else NULL.  ie:
1024 *      has the same return value and semantics as radix_tree_lookup().
1025 */
1026void *radix_tree_tag_clear(struct radix_tree_root *root,
1027                        unsigned long index, unsigned int tag)
1028{
1029        struct radix_tree_node *node, *parent;
1030        unsigned long maxindex;
1031        int offset;
1032
1033        radix_tree_load_root(root, &node, &maxindex);
1034        if (index > maxindex)
1035                return NULL;
1036
1037        parent = NULL;
1038
1039        while (radix_tree_is_internal_node(node)) {
1040                parent = entry_to_node(node);
1041                offset = radix_tree_descend(parent, &node, index);
1042        }
1043
1044        if (node)
1045                node_tag_clear(root, parent, tag, offset);
1046
1047        return node;
1048}
1049EXPORT_SYMBOL(radix_tree_tag_clear);
1050
1051/**
1052  * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1053  * @root: radix tree root
1054  * @iter: iterator state
1055  * @tag: tag to clear
1056  */
1057void radix_tree_iter_tag_clear(struct radix_tree_root *root,
1058                        const struct radix_tree_iter *iter, unsigned int tag)
1059{
1060        node_tag_clear(root, iter->node, tag, iter_offset(iter));
1061}
1062
1063/**
1064 * radix_tree_tag_get - get a tag on a radix tree node
1065 * @root:               radix tree root
1066 * @index:              index key
1067 * @tag:                tag index (< RADIX_TREE_MAX_TAGS)
1068 *
1069 * Return values:
1070 *
1071 *  0: tag not present or not set
1072 *  1: tag set
1073 *
1074 * Note that the return value of this function may not be relied on, even if
1075 * the RCU lock is held, unless tag modification and node deletion are excluded
1076 * from concurrency.
1077 */
1078int radix_tree_tag_get(const struct radix_tree_root *root,
1079                        unsigned long index, unsigned int tag)
1080{
1081        struct radix_tree_node *node, *parent;
1082        unsigned long maxindex;
1083
1084        if (!root_tag_get(root, tag))
1085                return 0;
1086
1087        radix_tree_load_root(root, &node, &maxindex);
1088        if (index > maxindex)
1089                return 0;
1090
1091        while (radix_tree_is_internal_node(node)) {
1092                unsigned offset;
1093
1094                parent = entry_to_node(node);
1095                offset = radix_tree_descend(parent, &node, index);
1096
1097                if (!tag_get(parent, tag, offset))
1098                        return 0;
1099                if (node == RADIX_TREE_RETRY)
1100                        break;
1101        }
1102
1103        return 1;
1104}
1105EXPORT_SYMBOL(radix_tree_tag_get);
1106
1107/* Construct iter->tags bit-mask from node->tags[tag] array */
1108static void set_iter_tags(struct radix_tree_iter *iter,
1109                                struct radix_tree_node *node, unsigned offset,
1110                                unsigned tag)
1111{
1112        unsigned tag_long = offset / BITS_PER_LONG;
1113        unsigned tag_bit  = offset % BITS_PER_LONG;
1114
1115        if (!node) {
1116                iter->tags = 1;
1117                return;
1118        }
1119
1120        iter->tags = node->tags[tag][tag_long] >> tag_bit;
1121
1122        /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1123        if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1124                /* Pick tags from next element */
1125                if (tag_bit)
1126                        iter->tags |= node->tags[tag][tag_long + 1] <<
1127                                                (BITS_PER_LONG - tag_bit);
1128                /* Clip chunk size, here only BITS_PER_LONG tags */
1129                iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1130        }
1131}
1132
1133void __rcu **radix_tree_iter_resume(void __rcu **slot,
1134                                        struct radix_tree_iter *iter)
1135{
1136        slot++;
1137        iter->index = __radix_tree_iter_add(iter, 1);
1138        iter->next_index = iter->index;
1139        iter->tags = 0;
1140        return NULL;
1141}
1142EXPORT_SYMBOL(radix_tree_iter_resume);
1143
1144/**
1145 * radix_tree_next_chunk - find next chunk of slots for iteration
1146 *
1147 * @root:       radix tree root
1148 * @iter:       iterator state
1149 * @flags:      RADIX_TREE_ITER_* flags and tag index
1150 * Returns:     pointer to chunk first slot, or NULL if iteration is over
1151 */
1152void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
1153                             struct radix_tree_iter *iter, unsigned flags)
1154{
1155        unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1156        struct radix_tree_node *node, *child;
1157        unsigned long index, offset, maxindex;
1158
1159        if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1160                return NULL;
1161
1162        /*
1163         * Catch next_index overflow after ~0UL. iter->index never overflows
1164         * during iterating; it can be zero only at the beginning.
1165         * And we cannot overflow iter->next_index in a single step,
1166         * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1167         *
1168         * This condition also used by radix_tree_next_slot() to stop
1169         * contiguous iterating, and forbid switching to the next chunk.
1170         */
1171        index = iter->next_index;
1172        if (!index && iter->index)
1173                return NULL;
1174
1175 restart:
1176        radix_tree_load_root(root, &child, &maxindex);
1177        if (index > maxindex)
1178                return NULL;
1179        if (!child)
1180                return NULL;
1181
1182        if (!radix_tree_is_internal_node(child)) {
1183                /* Single-slot tree */
1184                iter->index = index;
1185                iter->next_index = maxindex + 1;
1186                iter->tags = 1;
1187                iter->node = NULL;
1188                return (void __rcu **)&root->xa_head;
1189        }
1190
1191        do {
1192                node = entry_to_node(child);
1193                offset = radix_tree_descend(node, &child, index);
1194
1195                if ((flags & RADIX_TREE_ITER_TAGGED) ?
1196                                !tag_get(node, tag, offset) : !child) {
1197                        /* Hole detected */
1198                        if (flags & RADIX_TREE_ITER_CONTIG)
1199                                return NULL;
1200
1201                        if (flags & RADIX_TREE_ITER_TAGGED)
1202                                offset = radix_tree_find_next_bit(node, tag,
1203                                                offset + 1);
1204                        else
1205                                while (++offset < RADIX_TREE_MAP_SIZE) {
1206                                        void *slot = rcu_dereference_raw(
1207                                                        node->slots[offset]);
1208                                        if (slot)
1209                                                break;
1210                                }
1211                        index &= ~node_maxindex(node);
1212                        index += offset << node->shift;
1213                        /* Overflow after ~0UL */
1214                        if (!index)
1215                                return NULL;
1216                        if (offset == RADIX_TREE_MAP_SIZE)
1217                                goto restart;
1218                        child = rcu_dereference_raw(node->slots[offset]);
1219                }
1220
1221                if (!child)
1222                        goto restart;
1223                if (child == RADIX_TREE_RETRY)
1224                        break;
1225        } while (node->shift && radix_tree_is_internal_node(child));
1226
1227        /* Update the iterator state */
1228        iter->index = (index &~ node_maxindex(node)) | offset;
1229        iter->next_index = (index | node_maxindex(node)) + 1;
1230        iter->node = node;
1231
1232        if (flags & RADIX_TREE_ITER_TAGGED)
1233                set_iter_tags(iter, node, offset, tag);
1234
1235        return node->slots + offset;
1236}
1237EXPORT_SYMBOL(radix_tree_next_chunk);
1238
1239/**
1240 *      radix_tree_gang_lookup - perform multiple lookup on a radix tree
1241 *      @root:          radix tree root
1242 *      @results:       where the results of the lookup are placed
1243 *      @first_index:   start the lookup from this key
1244 *      @max_items:     place up to this many items at *results
1245 *
1246 *      Performs an index-ascending scan of the tree for present items.  Places
1247 *      them at *@results and returns the number of items which were placed at
1248 *      *@results.
1249 *
1250 *      The implementation is naive.
1251 *
1252 *      Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1253 *      rcu_read_lock. In this case, rather than the returned results being
1254 *      an atomic snapshot of the tree at a single point in time, the
1255 *      semantics of an RCU protected gang lookup are as though multiple
1256 *      radix_tree_lookups have been issued in individual locks, and results
1257 *      stored in 'results'.
1258 */
1259unsigned int
1260radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
1261                        unsigned long first_index, unsigned int max_items)
1262{
1263        struct radix_tree_iter iter;
1264        void __rcu **slot;
1265        unsigned int ret = 0;
1266
1267        if (unlikely(!max_items))
1268                return 0;
1269
1270        radix_tree_for_each_slot(slot, root, &iter, first_index) {
1271                results[ret] = rcu_dereference_raw(*slot);
1272                if (!results[ret])
1273                        continue;
1274                if (radix_tree_is_internal_node(results[ret])) {
1275                        slot = radix_tree_iter_retry(&iter);
1276                        continue;
1277                }
1278                if (++ret == max_items)
1279                        break;
1280        }
1281
1282        return ret;
1283}
1284EXPORT_SYMBOL(radix_tree_gang_lookup);
1285
1286/**
1287 *      radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1288 *                                   based on a tag
1289 *      @root:          radix tree root
1290 *      @results:       where the results of the lookup are placed
1291 *      @first_index:   start the lookup from this key
1292 *      @max_items:     place up to this many items at *results
1293 *      @tag:           the tag index (< RADIX_TREE_MAX_TAGS)
1294 *
1295 *      Performs an index-ascending scan of the tree for present items which
1296 *      have the tag indexed by @tag set.  Places the items at *@results and
1297 *      returns the number of items which were placed at *@results.
1298 */
1299unsigned int
1300radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
1301                unsigned long first_index, unsigned int max_items,
1302                unsigned int tag)
1303{
1304        struct radix_tree_iter iter;
1305        void __rcu **slot;
1306        unsigned int ret = 0;
1307
1308        if (unlikely(!max_items))
1309                return 0;
1310
1311        radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1312                results[ret] = rcu_dereference_raw(*slot);
1313                if (!results[ret])
1314                        continue;
1315                if (radix_tree_is_internal_node(results[ret])) {
1316                        slot = radix_tree_iter_retry(&iter);
1317                        continue;
1318                }
1319                if (++ret == max_items)
1320                        break;
1321        }
1322
1323        return ret;
1324}
1325EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1326
1327/**
1328 *      radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1329 *                                        radix tree based on a tag
1330 *      @root:          radix tree root
1331 *      @results:       where the results of the lookup are placed
1332 *      @first_index:   start the lookup from this key
1333 *      @max_items:     place up to this many items at *results
1334 *      @tag:           the tag index (< RADIX_TREE_MAX_TAGS)
1335 *
1336 *      Performs an index-ascending scan of the tree for present items which
1337 *      have the tag indexed by @tag set.  Places the slots at *@results and
1338 *      returns the number of slots which were placed at *@results.
1339 */
1340unsigned int
1341radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
1342                void __rcu ***results, unsigned long first_index,
1343                unsigned int max_items, unsigned int tag)
1344{
1345        struct radix_tree_iter iter;
1346        void __rcu **slot;
1347        unsigned int ret = 0;
1348
1349        if (unlikely(!max_items))
1350                return 0;
1351
1352        radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1353                results[ret] = slot;
1354                if (++ret == max_items)
1355                        break;
1356        }
1357
1358        return ret;
1359}
1360EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1361
1362static bool __radix_tree_delete(struct radix_tree_root *root,
1363                                struct radix_tree_node *node, void __rcu **slot)
1364{
1365        void *old = rcu_dereference_raw(*slot);
1366        int values = xa_is_value(old) ? -1 : 0;
1367        unsigned offset = get_slot_offset(node, slot);
1368        int tag;
1369
1370        if (is_idr(root))
1371                node_tag_set(root, node, IDR_FREE, offset);
1372        else
1373                for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1374                        node_tag_clear(root, node, tag, offset);
1375
1376        replace_slot(slot, NULL, node, -1, values);
1377        return node && delete_node(root, node);
1378}
1379
1380/**
1381 * radix_tree_iter_delete - delete the entry at this iterator position
1382 * @root: radix tree root
1383 * @iter: iterator state
1384 * @slot: pointer to slot
1385 *
1386 * Delete the entry at the position currently pointed to by the iterator.
1387 * This may result in the current node being freed; if it is, the iterator
1388 * is advanced so that it will not reference the freed memory.  This
1389 * function may be called without any locking if there are no other threads
1390 * which can access this tree.
1391 */
1392void radix_tree_iter_delete(struct radix_tree_root *root,
1393                                struct radix_tree_iter *iter, void __rcu **slot)
1394{
1395        if (__radix_tree_delete(root, iter->node, slot))
1396                iter->index = iter->next_index;
1397}
1398EXPORT_SYMBOL(radix_tree_iter_delete);
1399
1400/**
1401 * radix_tree_delete_item - delete an item from a radix tree
1402 * @root: radix tree root
1403 * @index: index key
1404 * @item: expected item
1405 *
1406 * Remove @item at @index from the radix tree rooted at @root.
1407 *
1408 * Return: the deleted entry, or %NULL if it was not present
1409 * or the entry at the given @index was not @item.
1410 */
1411void *radix_tree_delete_item(struct radix_tree_root *root,
1412                             unsigned long index, void *item)
1413{
1414        struct radix_tree_node *node = NULL;
1415        void __rcu **slot = NULL;
1416        void *entry;
1417
1418        entry = __radix_tree_lookup(root, index, &node, &slot);
1419        if (!slot)
1420                return NULL;
1421        if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
1422                                                get_slot_offset(node, slot))))
1423                return NULL;
1424
1425        if (item && entry != item)
1426                return NULL;
1427
1428        __radix_tree_delete(root, node, slot);
1429
1430        return entry;
1431}
1432EXPORT_SYMBOL(radix_tree_delete_item);
1433
1434/**
1435 * radix_tree_delete - delete an entry from a radix tree
1436 * @root: radix tree root
1437 * @index: index key
1438 *
1439 * Remove the entry at @index from the radix tree rooted at @root.
1440 *
1441 * Return: The deleted entry, or %NULL if it was not present.
1442 */
1443void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1444{
1445        return radix_tree_delete_item(root, index, NULL);
1446}
1447EXPORT_SYMBOL(radix_tree_delete);
1448
1449/**
1450 *      radix_tree_tagged - test whether any items in the tree are tagged
1451 *      @root:          radix tree root
1452 *      @tag:           tag to test
1453 */
1454int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
1455{
1456        return root_tag_get(root, tag);
1457}
1458EXPORT_SYMBOL(radix_tree_tagged);
1459
1460/**
1461 * idr_preload - preload for idr_alloc()
1462 * @gfp_mask: allocation mask to use for preloading
1463 *
1464 * Preallocate memory to use for the next call to idr_alloc().  This function
1465 * returns with preemption disabled.  It will be enabled by idr_preload_end().
1466 */
1467void idr_preload(gfp_t gfp_mask)
1468{
1469        if (__radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE))
1470                local_lock(&radix_tree_preloads.lock);
1471}
1472EXPORT_SYMBOL(idr_preload);
1473
1474void __rcu **idr_get_free(struct radix_tree_root *root,
1475                              struct radix_tree_iter *iter, gfp_t gfp,
1476                              unsigned long max)
1477{
1478        struct radix_tree_node *node = NULL, *child;
1479        void __rcu **slot = (void __rcu **)&root->xa_head;
1480        unsigned long maxindex, start = iter->next_index;
1481        unsigned int shift, offset = 0;
1482
1483 grow:
1484        shift = radix_tree_load_root(root, &child, &maxindex);
1485        if (!radix_tree_tagged(root, IDR_FREE))
1486                start = max(start, maxindex + 1);
1487        if (start > max)
1488                return ERR_PTR(-ENOSPC);
1489
1490        if (start > maxindex) {
1491                int error = radix_tree_extend(root, gfp, start, shift);
1492                if (error < 0)
1493                        return ERR_PTR(error);
1494                shift = error;
1495                child = rcu_dereference_raw(root->xa_head);
1496        }
1497        if (start == 0 && shift == 0)
1498                shift = RADIX_TREE_MAP_SHIFT;
1499
1500        while (shift) {
1501                shift -= RADIX_TREE_MAP_SHIFT;
1502                if (child == NULL) {
1503                        /* Have to add a child node.  */
1504                        child = radix_tree_node_alloc(gfp, node, root, shift,
1505                                                        offset, 0, 0);
1506                        if (!child)
1507                                return ERR_PTR(-ENOMEM);
1508                        all_tag_set(child, IDR_FREE);
1509                        rcu_assign_pointer(*slot, node_to_entry(child));
1510                        if (node)
1511                                node->count++;
1512                } else if (!radix_tree_is_internal_node(child))
1513                        break;
1514
1515                node = entry_to_node(child);
1516                offset = radix_tree_descend(node, &child, start);
1517                if (!tag_get(node, IDR_FREE, offset)) {
1518                        offset = radix_tree_find_next_bit(node, IDR_FREE,
1519                                                        offset + 1);
1520                        start = next_index(start, node, offset);
1521                        if (start > max || start == 0)
1522                                return ERR_PTR(-ENOSPC);
1523                        while (offset == RADIX_TREE_MAP_SIZE) {
1524                                offset = node->offset + 1;
1525                                node = node->parent;
1526                                if (!node)
1527                                        goto grow;
1528                                shift = node->shift;
1529                        }
1530                        child = rcu_dereference_raw(node->slots[offset]);
1531                }
1532                slot = &node->slots[offset];
1533        }
1534
1535        iter->index = start;
1536        if (node)
1537                iter->next_index = 1 + min(max, (start | node_maxindex(node)));
1538        else
1539                iter->next_index = 1;
1540        iter->node = node;
1541        set_iter_tags(iter, node, offset, IDR_FREE);
1542
1543        return slot;
1544}
1545
1546/**
1547 * idr_destroy - release all internal memory from an IDR
1548 * @idr: idr handle
1549 *
1550 * After this function is called, the IDR is empty, and may be reused or
1551 * the data structure containing it may be freed.
1552 *
1553 * A typical clean-up sequence for objects stored in an idr tree will use
1554 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
1555 * free the memory used to keep track of those objects.
1556 */
1557void idr_destroy(struct idr *idr)
1558{
1559        struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.xa_head);
1560        if (radix_tree_is_internal_node(node))
1561                radix_tree_free_nodes(node);
1562        idr->idr_rt.xa_head = NULL;
1563        root_tag_set(&idr->idr_rt, IDR_FREE);
1564}
1565EXPORT_SYMBOL(idr_destroy);
1566
1567static void
1568radix_tree_node_ctor(void *arg)
1569{
1570        struct radix_tree_node *node = arg;
1571
1572        memset(node, 0, sizeof(*node));
1573        INIT_LIST_HEAD(&node->private_list);
1574}
1575
1576static int radix_tree_cpu_dead(unsigned int cpu)
1577{
1578        struct radix_tree_preload *rtp;
1579        struct radix_tree_node *node;
1580
1581        /* Free per-cpu pool of preloaded nodes */
1582        rtp = &per_cpu(radix_tree_preloads, cpu);
1583        while (rtp->nr) {
1584                node = rtp->nodes;
1585                rtp->nodes = node->parent;
1586                kmem_cache_free(radix_tree_node_cachep, node);
1587                rtp->nr--;
1588        }
1589        return 0;
1590}
1591
1592void __init radix_tree_init(void)
1593{
1594        int ret;
1595
1596        BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32);
1597        BUILD_BUG_ON(ROOT_IS_IDR & ~GFP_ZONEMASK);
1598        BUILD_BUG_ON(XA_CHUNK_SIZE > 255);
1599        radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1600                        sizeof(struct radix_tree_node), 0,
1601                        SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1602                        radix_tree_node_ctor);
1603        ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
1604                                        NULL, radix_tree_cpu_dead);
1605        WARN_ON(ret < 0);
1606}
1607