linux/mm/page_io.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/mm/page_io.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *
   7 *  Swap reorganised 29.12.95, 
   8 *  Asynchronous swapping added 30.12.95. Stephen Tweedie
   9 *  Removed race in async swapping. 14.4.1996. Bruno Haible
  10 *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
  11 *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
  12 */
  13
  14#include <linux/mm.h>
  15#include <linux/kernel_stat.h>
  16#include <linux/gfp.h>
  17#include <linux/pagemap.h>
  18#include <linux/swap.h>
  19#include <linux/bio.h>
  20#include <linux/swapops.h>
  21#include <linux/buffer_head.h>
  22#include <linux/writeback.h>
  23#include <linux/frontswap.h>
  24#include <linux/blkdev.h>
  25#include <linux/psi.h>
  26#include <linux/uio.h>
  27#include <linux/sched/task.h>
  28
  29static struct bio *get_swap_bio(gfp_t gfp_flags,
  30                                struct page *page, bio_end_io_t end_io)
  31{
  32        struct bio *bio;
  33
  34        bio = bio_alloc(gfp_flags, 1);
  35        if (bio) {
  36                struct block_device *bdev;
  37
  38                bio->bi_iter.bi_sector = map_swap_page(page, &bdev);
  39                bio_set_dev(bio, bdev);
  40                bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
  41                bio->bi_end_io = end_io;
  42
  43                bio_add_page(bio, page, thp_size(page), 0);
  44        }
  45        return bio;
  46}
  47
  48void end_swap_bio_write(struct bio *bio)
  49{
  50        struct page *page = bio_first_page_all(bio);
  51
  52        if (bio->bi_status) {
  53                SetPageError(page);
  54                /*
  55                 * We failed to write the page out to swap-space.
  56                 * Re-dirty the page in order to avoid it being reclaimed.
  57                 * Also print a dire warning that things will go BAD (tm)
  58                 * very quickly.
  59                 *
  60                 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
  61                 */
  62                set_page_dirty(page);
  63                pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
  64                         MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
  65                         (unsigned long long)bio->bi_iter.bi_sector);
  66                ClearPageReclaim(page);
  67        }
  68        end_page_writeback(page);
  69        bio_put(bio);
  70}
  71
  72static void swap_slot_free_notify(struct page *page)
  73{
  74        struct swap_info_struct *sis;
  75        struct gendisk *disk;
  76        swp_entry_t entry;
  77
  78        /*
  79         * There is no guarantee that the page is in swap cache - the software
  80         * suspend code (at least) uses end_swap_bio_read() against a non-
  81         * swapcache page.  So we must check PG_swapcache before proceeding with
  82         * this optimization.
  83         */
  84        if (unlikely(!PageSwapCache(page)))
  85                return;
  86
  87        sis = page_swap_info(page);
  88        if (data_race(!(sis->flags & SWP_BLKDEV)))
  89                return;
  90
  91        /*
  92         * The swap subsystem performs lazy swap slot freeing,
  93         * expecting that the page will be swapped out again.
  94         * So we can avoid an unnecessary write if the page
  95         * isn't redirtied.
  96         * This is good for real swap storage because we can
  97         * reduce unnecessary I/O and enhance wear-leveling
  98         * if an SSD is used as the as swap device.
  99         * But if in-memory swap device (eg zram) is used,
 100         * this causes a duplicated copy between uncompressed
 101         * data in VM-owned memory and compressed data in
 102         * zram-owned memory.  So let's free zram-owned memory
 103         * and make the VM-owned decompressed page *dirty*,
 104         * so the page should be swapped out somewhere again if
 105         * we again wish to reclaim it.
 106         */
 107        disk = sis->bdev->bd_disk;
 108        entry.val = page_private(page);
 109        if (disk->fops->swap_slot_free_notify && __swap_count(entry) == 1) {
 110                unsigned long offset;
 111
 112                offset = swp_offset(entry);
 113
 114                SetPageDirty(page);
 115                disk->fops->swap_slot_free_notify(sis->bdev,
 116                                offset);
 117        }
 118}
 119
 120static void end_swap_bio_read(struct bio *bio)
 121{
 122        struct page *page = bio_first_page_all(bio);
 123        struct task_struct *waiter = bio->bi_private;
 124
 125        if (bio->bi_status) {
 126                SetPageError(page);
 127                ClearPageUptodate(page);
 128                pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
 129                         MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 130                         (unsigned long long)bio->bi_iter.bi_sector);
 131                goto out;
 132        }
 133
 134        SetPageUptodate(page);
 135        swap_slot_free_notify(page);
 136out:
 137        unlock_page(page);
 138        WRITE_ONCE(bio->bi_private, NULL);
 139        bio_put(bio);
 140        if (waiter) {
 141                blk_wake_io_task(waiter);
 142                put_task_struct(waiter);
 143        }
 144}
 145
 146int generic_swapfile_activate(struct swap_info_struct *sis,
 147                                struct file *swap_file,
 148                                sector_t *span)
 149{
 150        struct address_space *mapping = swap_file->f_mapping;
 151        struct inode *inode = mapping->host;
 152        unsigned blocks_per_page;
 153        unsigned long page_no;
 154        unsigned blkbits;
 155        sector_t probe_block;
 156        sector_t last_block;
 157        sector_t lowest_block = -1;
 158        sector_t highest_block = 0;
 159        int nr_extents = 0;
 160        int ret;
 161
 162        blkbits = inode->i_blkbits;
 163        blocks_per_page = PAGE_SIZE >> blkbits;
 164
 165        /*
 166         * Map all the blocks into the extent tree.  This code doesn't try
 167         * to be very smart.
 168         */
 169        probe_block = 0;
 170        page_no = 0;
 171        last_block = i_size_read(inode) >> blkbits;
 172        while ((probe_block + blocks_per_page) <= last_block &&
 173                        page_no < sis->max) {
 174                unsigned block_in_page;
 175                sector_t first_block;
 176
 177                cond_resched();
 178
 179                first_block = probe_block;
 180                ret = bmap(inode, &first_block);
 181                if (ret || !first_block)
 182                        goto bad_bmap;
 183
 184                /*
 185                 * It must be PAGE_SIZE aligned on-disk
 186                 */
 187                if (first_block & (blocks_per_page - 1)) {
 188                        probe_block++;
 189                        goto reprobe;
 190                }
 191
 192                for (block_in_page = 1; block_in_page < blocks_per_page;
 193                                        block_in_page++) {
 194                        sector_t block;
 195
 196                        block = probe_block + block_in_page;
 197                        ret = bmap(inode, &block);
 198                        if (ret || !block)
 199                                goto bad_bmap;
 200
 201                        if (block != first_block + block_in_page) {
 202                                /* Discontiguity */
 203                                probe_block++;
 204                                goto reprobe;
 205                        }
 206                }
 207
 208                first_block >>= (PAGE_SHIFT - blkbits);
 209                if (page_no) {  /* exclude the header page */
 210                        if (first_block < lowest_block)
 211                                lowest_block = first_block;
 212                        if (first_block > highest_block)
 213                                highest_block = first_block;
 214                }
 215
 216                /*
 217                 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
 218                 */
 219                ret = add_swap_extent(sis, page_no, 1, first_block);
 220                if (ret < 0)
 221                        goto out;
 222                nr_extents += ret;
 223                page_no++;
 224                probe_block += blocks_per_page;
 225reprobe:
 226                continue;
 227        }
 228        ret = nr_extents;
 229        *span = 1 + highest_block - lowest_block;
 230        if (page_no == 0)
 231                page_no = 1;    /* force Empty message */
 232        sis->max = page_no;
 233        sis->pages = page_no - 1;
 234        sis->highest_bit = page_no - 1;
 235out:
 236        return ret;
 237bad_bmap:
 238        pr_err("swapon: swapfile has holes\n");
 239        ret = -EINVAL;
 240        goto out;
 241}
 242
 243/*
 244 * We may have stale swap cache pages in memory: notice
 245 * them here and get rid of the unnecessary final write.
 246 */
 247int swap_writepage(struct page *page, struct writeback_control *wbc)
 248{
 249        int ret = 0;
 250
 251        if (try_to_free_swap(page)) {
 252                unlock_page(page);
 253                goto out;
 254        }
 255        /*
 256         * Arch code may have to preserve more data than just the page
 257         * contents, e.g. memory tags.
 258         */
 259        ret = arch_prepare_to_swap(page);
 260        if (ret) {
 261                set_page_dirty(page);
 262                unlock_page(page);
 263                goto out;
 264        }
 265        if (frontswap_store(page) == 0) {
 266                set_page_writeback(page);
 267                unlock_page(page);
 268                end_page_writeback(page);
 269                goto out;
 270        }
 271        ret = __swap_writepage(page, wbc, end_swap_bio_write);
 272out:
 273        return ret;
 274}
 275
 276static sector_t swap_page_sector(struct page *page)
 277{
 278        return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
 279}
 280
 281static inline void count_swpout_vm_event(struct page *page)
 282{
 283#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 284        if (unlikely(PageTransHuge(page)))
 285                count_vm_event(THP_SWPOUT);
 286#endif
 287        count_vm_events(PSWPOUT, thp_nr_pages(page));
 288}
 289
 290#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
 291static void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
 292{
 293        struct cgroup_subsys_state *css;
 294
 295        if (!page->mem_cgroup)
 296                return;
 297
 298        rcu_read_lock();
 299        css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
 300        bio_associate_blkg_from_css(bio, css);
 301        rcu_read_unlock();
 302}
 303#else
 304#define bio_associate_blkg_from_page(bio, page)         do { } while (0)
 305#endif /* CONFIG_MEMCG && CONFIG_BLK_CGROUP */
 306
 307int __swap_writepage(struct page *page, struct writeback_control *wbc,
 308                bio_end_io_t end_write_func)
 309{
 310        struct bio *bio;
 311        int ret;
 312        struct swap_info_struct *sis = page_swap_info(page);
 313
 314        VM_BUG_ON_PAGE(!PageSwapCache(page), page);
 315        if (data_race(sis->flags & SWP_FS_OPS)) {
 316                struct kiocb kiocb;
 317                struct file *swap_file = sis->swap_file;
 318                struct address_space *mapping = swap_file->f_mapping;
 319                struct bio_vec bv = {
 320                        .bv_page = page,
 321                        .bv_len  = PAGE_SIZE,
 322                        .bv_offset = 0
 323                };
 324                struct iov_iter from;
 325
 326                iov_iter_bvec(&from, WRITE, &bv, 1, PAGE_SIZE);
 327                init_sync_kiocb(&kiocb, swap_file);
 328                kiocb.ki_pos = page_file_offset(page);
 329
 330                set_page_writeback(page);
 331                unlock_page(page);
 332                ret = mapping->a_ops->direct_IO(&kiocb, &from);
 333                if (ret == PAGE_SIZE) {
 334                        count_vm_event(PSWPOUT);
 335                        ret = 0;
 336                } else {
 337                        /*
 338                         * In the case of swap-over-nfs, this can be a
 339                         * temporary failure if the system has limited
 340                         * memory for allocating transmit buffers.
 341                         * Mark the page dirty and avoid
 342                         * rotate_reclaimable_page but rate-limit the
 343                         * messages but do not flag PageError like
 344                         * the normal direct-to-bio case as it could
 345                         * be temporary.
 346                         */
 347                        set_page_dirty(page);
 348                        ClearPageReclaim(page);
 349                        pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
 350                                           page_file_offset(page));
 351                }
 352                end_page_writeback(page);
 353                return ret;
 354        }
 355
 356        ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
 357        if (!ret) {
 358                count_swpout_vm_event(page);
 359                return 0;
 360        }
 361
 362        bio = get_swap_bio(GFP_NOIO, page, end_write_func);
 363        if (bio == NULL) {
 364                set_page_dirty(page);
 365                unlock_page(page);
 366                return -ENOMEM;
 367        }
 368        bio->bi_opf = REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc);
 369        bio_associate_blkg_from_page(bio, page);
 370        count_swpout_vm_event(page);
 371        set_page_writeback(page);
 372        unlock_page(page);
 373        submit_bio(bio);
 374
 375        return 0;
 376}
 377
 378int swap_readpage(struct page *page, bool synchronous)
 379{
 380        struct bio *bio;
 381        int ret = 0;
 382        struct swap_info_struct *sis = page_swap_info(page);
 383        blk_qc_t qc;
 384        struct gendisk *disk;
 385        unsigned long pflags;
 386
 387        VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
 388        VM_BUG_ON_PAGE(!PageLocked(page), page);
 389        VM_BUG_ON_PAGE(PageUptodate(page), page);
 390
 391        /*
 392         * Count submission time as memory stall. When the device is congested,
 393         * or the submitting cgroup IO-throttled, submission can be a
 394         * significant part of overall IO time.
 395         */
 396        psi_memstall_enter(&pflags);
 397
 398        if (frontswap_load(page) == 0) {
 399                SetPageUptodate(page);
 400                unlock_page(page);
 401                goto out;
 402        }
 403
 404        if (data_race(sis->flags & SWP_FS_OPS)) {
 405                struct file *swap_file = sis->swap_file;
 406                struct address_space *mapping = swap_file->f_mapping;
 407
 408                ret = mapping->a_ops->readpage(swap_file, page);
 409                if (!ret)
 410                        count_vm_event(PSWPIN);
 411                goto out;
 412        }
 413
 414        if (sis->flags & SWP_SYNCHRONOUS_IO) {
 415                ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
 416                if (!ret) {
 417                        if (trylock_page(page)) {
 418                                swap_slot_free_notify(page);
 419                                unlock_page(page);
 420                        }
 421
 422                        count_vm_event(PSWPIN);
 423                        goto out;
 424                }
 425        }
 426
 427        ret = 0;
 428        bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
 429        if (bio == NULL) {
 430                unlock_page(page);
 431                ret = -ENOMEM;
 432                goto out;
 433        }
 434        disk = bio->bi_disk;
 435        /*
 436         * Keep this task valid during swap readpage because the oom killer may
 437         * attempt to access it in the page fault retry time check.
 438         */
 439        bio_set_op_attrs(bio, REQ_OP_READ, 0);
 440        if (synchronous) {
 441                bio->bi_opf |= REQ_HIPRI;
 442                get_task_struct(current);
 443                bio->bi_private = current;
 444        }
 445        count_vm_event(PSWPIN);
 446        bio_get(bio);
 447        qc = submit_bio(bio);
 448        while (synchronous) {
 449                set_current_state(TASK_UNINTERRUPTIBLE);
 450                if (!READ_ONCE(bio->bi_private))
 451                        break;
 452
 453                if (!blk_poll(disk->queue, qc, true))
 454                        blk_io_schedule();
 455        }
 456        __set_current_state(TASK_RUNNING);
 457        bio_put(bio);
 458
 459out:
 460        psi_memstall_leave(&pflags);
 461        return ret;
 462}
 463
 464int swap_set_page_dirty(struct page *page)
 465{
 466        struct swap_info_struct *sis = page_swap_info(page);
 467
 468        if (data_race(sis->flags & SWP_FS_OPS)) {
 469                struct address_space *mapping = sis->swap_file->f_mapping;
 470
 471                VM_BUG_ON_PAGE(!PageSwapCache(page), page);
 472                return mapping->a_ops->set_page_dirty(page);
 473        } else {
 474                return __set_page_dirty_no_writeback(page);
 475        }
 476}
 477