linux/net/ipv4/ip_input.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   4 *              operating system.  INET is implemented using the  BSD Socket
   5 *              interface as the means of communication with the user level.
   6 *
   7 *              The Internet Protocol (IP) module.
   8 *
   9 * Authors:     Ross Biro
  10 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *              Donald Becker, <becker@super.org>
  12 *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
  13 *              Richard Underwood
  14 *              Stefan Becker, <stefanb@yello.ping.de>
  15 *              Jorge Cwik, <jorge@laser.satlink.net>
  16 *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  17 *
  18 * Fixes:
  19 *              Alan Cox        :       Commented a couple of minor bits of surplus code
  20 *              Alan Cox        :       Undefining IP_FORWARD doesn't include the code
  21 *                                      (just stops a compiler warning).
  22 *              Alan Cox        :       Frames with >=MAX_ROUTE record routes, strict routes or loose routes
  23 *                                      are junked rather than corrupting things.
  24 *              Alan Cox        :       Frames to bad broadcast subnets are dumped
  25 *                                      We used to process them non broadcast and
  26 *                                      boy could that cause havoc.
  27 *              Alan Cox        :       ip_forward sets the free flag on the
  28 *                                      new frame it queues. Still crap because
  29 *                                      it copies the frame but at least it
  30 *                                      doesn't eat memory too.
  31 *              Alan Cox        :       Generic queue code and memory fixes.
  32 *              Fred Van Kempen :       IP fragment support (borrowed from NET2E)
  33 *              Gerhard Koerting:       Forward fragmented frames correctly.
  34 *              Gerhard Koerting:       Fixes to my fix of the above 8-).
  35 *              Gerhard Koerting:       IP interface addressing fix.
  36 *              Linus Torvalds  :       More robustness checks
  37 *              Alan Cox        :       Even more checks: Still not as robust as it ought to be
  38 *              Alan Cox        :       Save IP header pointer for later
  39 *              Alan Cox        :       ip option setting
  40 *              Alan Cox        :       Use ip_tos/ip_ttl settings
  41 *              Alan Cox        :       Fragmentation bogosity removed
  42 *                                      (Thanks to Mark.Bush@prg.ox.ac.uk)
  43 *              Dmitry Gorodchanin :    Send of a raw packet crash fix.
  44 *              Alan Cox        :       Silly ip bug when an overlength
  45 *                                      fragment turns up. Now frees the
  46 *                                      queue.
  47 *              Linus Torvalds/ :       Memory leakage on fragmentation
  48 *              Alan Cox        :       handling.
  49 *              Gerhard Koerting:       Forwarding uses IP priority hints
  50 *              Teemu Rantanen  :       Fragment problems.
  51 *              Alan Cox        :       General cleanup, comments and reformat
  52 *              Alan Cox        :       SNMP statistics
  53 *              Alan Cox        :       BSD address rule semantics. Also see
  54 *                                      UDP as there is a nasty checksum issue
  55 *                                      if you do things the wrong way.
  56 *              Alan Cox        :       Always defrag, moved IP_FORWARD to the config.in file
  57 *              Alan Cox        :       IP options adjust sk->priority.
  58 *              Pedro Roque     :       Fix mtu/length error in ip_forward.
  59 *              Alan Cox        :       Avoid ip_chk_addr when possible.
  60 *      Richard Underwood       :       IP multicasting.
  61 *              Alan Cox        :       Cleaned up multicast handlers.
  62 *              Alan Cox        :       RAW sockets demultiplex in the BSD style.
  63 *              Gunther Mayer   :       Fix the SNMP reporting typo
  64 *              Alan Cox        :       Always in group 224.0.0.1
  65 *      Pauline Middelink       :       Fast ip_checksum update when forwarding
  66 *                                      Masquerading support.
  67 *              Alan Cox        :       Multicast loopback error for 224.0.0.1
  68 *              Alan Cox        :       IP_MULTICAST_LOOP option.
  69 *              Alan Cox        :       Use notifiers.
  70 *              Bjorn Ekwall    :       Removed ip_csum (from slhc.c too)
  71 *              Bjorn Ekwall    :       Moved ip_fast_csum to ip.h (inline!)
  72 *              Stefan Becker   :       Send out ICMP HOST REDIRECT
  73 *      Arnt Gulbrandsen        :       ip_build_xmit
  74 *              Alan Cox        :       Per socket routing cache
  75 *              Alan Cox        :       Fixed routing cache, added header cache.
  76 *              Alan Cox        :       Loopback didn't work right in original ip_build_xmit - fixed it.
  77 *              Alan Cox        :       Only send ICMP_REDIRECT if src/dest are the same net.
  78 *              Alan Cox        :       Incoming IP option handling.
  79 *              Alan Cox        :       Set saddr on raw output frames as per BSD.
  80 *              Alan Cox        :       Stopped broadcast source route explosions.
  81 *              Alan Cox        :       Can disable source routing
  82 *              Takeshi Sone    :       Masquerading didn't work.
  83 *      Dave Bonn,Alan Cox      :       Faster IP forwarding whenever possible.
  84 *              Alan Cox        :       Memory leaks, tramples, misc debugging.
  85 *              Alan Cox        :       Fixed multicast (by popular demand 8))
  86 *              Alan Cox        :       Fixed forwarding (by even more popular demand 8))
  87 *              Alan Cox        :       Fixed SNMP statistics [I think]
  88 *      Gerhard Koerting        :       IP fragmentation forwarding fix
  89 *              Alan Cox        :       Device lock against page fault.
  90 *              Alan Cox        :       IP_HDRINCL facility.
  91 *      Werner Almesberger      :       Zero fragment bug
  92 *              Alan Cox        :       RAW IP frame length bug
  93 *              Alan Cox        :       Outgoing firewall on build_xmit
  94 *              A.N.Kuznetsov   :       IP_OPTIONS support throughout the kernel
  95 *              Alan Cox        :       Multicast routing hooks
  96 *              Jos Vos         :       Do accounting *before* call_in_firewall
  97 *      Willy Konynenberg       :       Transparent proxying support
  98 *
  99 * To Fix:
 100 *              IP fragmentation wants rewriting cleanly. The RFC815 algorithm is much more efficient
 101 *              and could be made very efficient with the addition of some virtual memory hacks to permit
 102 *              the allocation of a buffer that can then be 'grown' by twiddling page tables.
 103 *              Output fragmentation wants updating along with the buffer management to use a single
 104 *              interleaved copy algorithm so that fragmenting has a one copy overhead. Actual packet
 105 *              output should probably do its own fragmentation at the UDP/RAW layer. TCP shouldn't cause
 106 *              fragmentation anyway.
 107 */
 108
 109#define pr_fmt(fmt) "IPv4: " fmt
 110
 111#include <linux/module.h>
 112#include <linux/types.h>
 113#include <linux/kernel.h>
 114#include <linux/string.h>
 115#include <linux/errno.h>
 116#include <linux/slab.h>
 117
 118#include <linux/net.h>
 119#include <linux/socket.h>
 120#include <linux/sockios.h>
 121#include <linux/in.h>
 122#include <linux/inet.h>
 123#include <linux/inetdevice.h>
 124#include <linux/netdevice.h>
 125#include <linux/etherdevice.h>
 126#include <linux/indirect_call_wrapper.h>
 127
 128#include <net/snmp.h>
 129#include <net/ip.h>
 130#include <net/protocol.h>
 131#include <net/route.h>
 132#include <linux/skbuff.h>
 133#include <net/sock.h>
 134#include <net/arp.h>
 135#include <net/icmp.h>
 136#include <net/raw.h>
 137#include <net/checksum.h>
 138#include <net/inet_ecn.h>
 139#include <linux/netfilter_ipv4.h>
 140#include <net/xfrm.h>
 141#include <linux/mroute.h>
 142#include <linux/netlink.h>
 143#include <net/dst_metadata.h>
 144
 145/*
 146 *      Process Router Attention IP option (RFC 2113)
 147 */
 148bool ip_call_ra_chain(struct sk_buff *skb)
 149{
 150        struct ip_ra_chain *ra;
 151        u8 protocol = ip_hdr(skb)->protocol;
 152        struct sock *last = NULL;
 153        struct net_device *dev = skb->dev;
 154        struct net *net = dev_net(dev);
 155
 156        for (ra = rcu_dereference(net->ipv4.ra_chain); ra; ra = rcu_dereference(ra->next)) {
 157                struct sock *sk = ra->sk;
 158
 159                /* If socket is bound to an interface, only report
 160                 * the packet if it came  from that interface.
 161                 */
 162                if (sk && inet_sk(sk)->inet_num == protocol &&
 163                    (!sk->sk_bound_dev_if ||
 164                     sk->sk_bound_dev_if == dev->ifindex)) {
 165                        if (ip_is_fragment(ip_hdr(skb))) {
 166                                if (ip_defrag(net, skb, IP_DEFRAG_CALL_RA_CHAIN))
 167                                        return true;
 168                        }
 169                        if (last) {
 170                                struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
 171                                if (skb2)
 172                                        raw_rcv(last, skb2);
 173                        }
 174                        last = sk;
 175                }
 176        }
 177
 178        if (last) {
 179                raw_rcv(last, skb);
 180                return true;
 181        }
 182        return false;
 183}
 184
 185INDIRECT_CALLABLE_DECLARE(int udp_rcv(struct sk_buff *));
 186INDIRECT_CALLABLE_DECLARE(int tcp_v4_rcv(struct sk_buff *));
 187void ip_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int protocol)
 188{
 189        const struct net_protocol *ipprot;
 190        int raw, ret;
 191
 192resubmit:
 193        raw = raw_local_deliver(skb, protocol);
 194
 195        ipprot = rcu_dereference(inet_protos[protocol]);
 196        if (ipprot) {
 197                if (!ipprot->no_policy) {
 198                        if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
 199                                kfree_skb(skb);
 200                                return;
 201                        }
 202                        nf_reset_ct(skb);
 203                }
 204                ret = INDIRECT_CALL_2(ipprot->handler, tcp_v4_rcv, udp_rcv,
 205                                      skb);
 206                if (ret < 0) {
 207                        protocol = -ret;
 208                        goto resubmit;
 209                }
 210                __IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
 211        } else {
 212                if (!raw) {
 213                        if (xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
 214                                __IP_INC_STATS(net, IPSTATS_MIB_INUNKNOWNPROTOS);
 215                                icmp_send(skb, ICMP_DEST_UNREACH,
 216                                          ICMP_PROT_UNREACH, 0);
 217                        }
 218                        kfree_skb(skb);
 219                } else {
 220                        __IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
 221                        consume_skb(skb);
 222                }
 223        }
 224}
 225
 226static int ip_local_deliver_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
 227{
 228        __skb_pull(skb, skb_network_header_len(skb));
 229
 230        rcu_read_lock();
 231        ip_protocol_deliver_rcu(net, skb, ip_hdr(skb)->protocol);
 232        rcu_read_unlock();
 233
 234        return 0;
 235}
 236
 237/*
 238 *      Deliver IP Packets to the higher protocol layers.
 239 */
 240int ip_local_deliver(struct sk_buff *skb)
 241{
 242        /*
 243         *      Reassemble IP fragments.
 244         */
 245        struct net *net = dev_net(skb->dev);
 246
 247        if (ip_is_fragment(ip_hdr(skb))) {
 248                if (ip_defrag(net, skb, IP_DEFRAG_LOCAL_DELIVER))
 249                        return 0;
 250        }
 251
 252        return NF_HOOK(NFPROTO_IPV4, NF_INET_LOCAL_IN,
 253                       net, NULL, skb, skb->dev, NULL,
 254                       ip_local_deliver_finish);
 255}
 256
 257static inline bool ip_rcv_options(struct sk_buff *skb, struct net_device *dev)
 258{
 259        struct ip_options *opt;
 260        const struct iphdr *iph;
 261
 262        /* It looks as overkill, because not all
 263           IP options require packet mangling.
 264           But it is the easiest for now, especially taking
 265           into account that combination of IP options
 266           and running sniffer is extremely rare condition.
 267                                              --ANK (980813)
 268        */
 269        if (skb_cow(skb, skb_headroom(skb))) {
 270                __IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INDISCARDS);
 271                goto drop;
 272        }
 273
 274        iph = ip_hdr(skb);
 275        opt = &(IPCB(skb)->opt);
 276        opt->optlen = iph->ihl*4 - sizeof(struct iphdr);
 277
 278        if (ip_options_compile(dev_net(dev), opt, skb)) {
 279                __IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INHDRERRORS);
 280                goto drop;
 281        }
 282
 283        if (unlikely(opt->srr)) {
 284                struct in_device *in_dev = __in_dev_get_rcu(dev);
 285
 286                if (in_dev) {
 287                        if (!IN_DEV_SOURCE_ROUTE(in_dev)) {
 288                                if (IN_DEV_LOG_MARTIANS(in_dev))
 289                                        net_info_ratelimited("source route option %pI4 -> %pI4\n",
 290                                                             &iph->saddr,
 291                                                             &iph->daddr);
 292                                goto drop;
 293                        }
 294                }
 295
 296                if (ip_options_rcv_srr(skb, dev))
 297                        goto drop;
 298        }
 299
 300        return false;
 301drop:
 302        return true;
 303}
 304
 305static bool ip_can_use_hint(const struct sk_buff *skb, const struct iphdr *iph,
 306                            const struct sk_buff *hint)
 307{
 308        return hint && !skb_dst(skb) && ip_hdr(hint)->daddr == iph->daddr &&
 309               ip_hdr(hint)->tos == iph->tos;
 310}
 311
 312INDIRECT_CALLABLE_DECLARE(int udp_v4_early_demux(struct sk_buff *));
 313INDIRECT_CALLABLE_DECLARE(int tcp_v4_early_demux(struct sk_buff *));
 314static int ip_rcv_finish_core(struct net *net, struct sock *sk,
 315                              struct sk_buff *skb, struct net_device *dev,
 316                              const struct sk_buff *hint)
 317{
 318        const struct iphdr *iph = ip_hdr(skb);
 319        int (*edemux)(struct sk_buff *skb);
 320        struct rtable *rt;
 321        int err;
 322
 323        if (ip_can_use_hint(skb, iph, hint)) {
 324                err = ip_route_use_hint(skb, iph->daddr, iph->saddr, iph->tos,
 325                                        dev, hint);
 326                if (unlikely(err))
 327                        goto drop_error;
 328        }
 329
 330        if (net->ipv4.sysctl_ip_early_demux &&
 331            !skb_dst(skb) &&
 332            !skb->sk &&
 333            !ip_is_fragment(iph)) {
 334                const struct net_protocol *ipprot;
 335                int protocol = iph->protocol;
 336
 337                ipprot = rcu_dereference(inet_protos[protocol]);
 338                if (ipprot && (edemux = READ_ONCE(ipprot->early_demux))) {
 339                        err = INDIRECT_CALL_2(edemux, tcp_v4_early_demux,
 340                                              udp_v4_early_demux, skb);
 341                        if (unlikely(err))
 342                                goto drop_error;
 343                        /* must reload iph, skb->head might have changed */
 344                        iph = ip_hdr(skb);
 345                }
 346        }
 347
 348        /*
 349         *      Initialise the virtual path cache for the packet. It describes
 350         *      how the packet travels inside Linux networking.
 351         */
 352        if (!skb_valid_dst(skb)) {
 353                err = ip_route_input_noref(skb, iph->daddr, iph->saddr,
 354                                           iph->tos, dev);
 355                if (unlikely(err))
 356                        goto drop_error;
 357        }
 358
 359#ifdef CONFIG_IP_ROUTE_CLASSID
 360        if (unlikely(skb_dst(skb)->tclassid)) {
 361                struct ip_rt_acct *st = this_cpu_ptr(ip_rt_acct);
 362                u32 idx = skb_dst(skb)->tclassid;
 363                st[idx&0xFF].o_packets++;
 364                st[idx&0xFF].o_bytes += skb->len;
 365                st[(idx>>16)&0xFF].i_packets++;
 366                st[(idx>>16)&0xFF].i_bytes += skb->len;
 367        }
 368#endif
 369
 370        if (iph->ihl > 5 && ip_rcv_options(skb, dev))
 371                goto drop;
 372
 373        rt = skb_rtable(skb);
 374        if (rt->rt_type == RTN_MULTICAST) {
 375                __IP_UPD_PO_STATS(net, IPSTATS_MIB_INMCAST, skb->len);
 376        } else if (rt->rt_type == RTN_BROADCAST) {
 377                __IP_UPD_PO_STATS(net, IPSTATS_MIB_INBCAST, skb->len);
 378        } else if (skb->pkt_type == PACKET_BROADCAST ||
 379                   skb->pkt_type == PACKET_MULTICAST) {
 380                struct in_device *in_dev = __in_dev_get_rcu(dev);
 381
 382                /* RFC 1122 3.3.6:
 383                 *
 384                 *   When a host sends a datagram to a link-layer broadcast
 385                 *   address, the IP destination address MUST be a legal IP
 386                 *   broadcast or IP multicast address.
 387                 *
 388                 *   A host SHOULD silently discard a datagram that is received
 389                 *   via a link-layer broadcast (see Section 2.4) but does not
 390                 *   specify an IP multicast or broadcast destination address.
 391                 *
 392                 * This doesn't explicitly say L2 *broadcast*, but broadcast is
 393                 * in a way a form of multicast and the most common use case for
 394                 * this is 802.11 protecting against cross-station spoofing (the
 395                 * so-called "hole-196" attack) so do it for both.
 396                 */
 397                if (in_dev &&
 398                    IN_DEV_ORCONF(in_dev, DROP_UNICAST_IN_L2_MULTICAST))
 399                        goto drop;
 400        }
 401
 402        return NET_RX_SUCCESS;
 403
 404drop:
 405        kfree_skb(skb);
 406        return NET_RX_DROP;
 407
 408drop_error:
 409        if (err == -EXDEV)
 410                __NET_INC_STATS(net, LINUX_MIB_IPRPFILTER);
 411        goto drop;
 412}
 413
 414static int ip_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
 415{
 416        struct net_device *dev = skb->dev;
 417        int ret;
 418
 419        /* if ingress device is enslaved to an L3 master device pass the
 420         * skb to its handler for processing
 421         */
 422        skb = l3mdev_ip_rcv(skb);
 423        if (!skb)
 424                return NET_RX_SUCCESS;
 425
 426        ret = ip_rcv_finish_core(net, sk, skb, dev, NULL);
 427        if (ret != NET_RX_DROP)
 428                ret = dst_input(skb);
 429        return ret;
 430}
 431
 432/*
 433 *      Main IP Receive routine.
 434 */
 435static struct sk_buff *ip_rcv_core(struct sk_buff *skb, struct net *net)
 436{
 437        const struct iphdr *iph;
 438        u32 len;
 439
 440        /* When the interface is in promisc. mode, drop all the crap
 441         * that it receives, do not try to analyse it.
 442         */
 443        if (skb->pkt_type == PACKET_OTHERHOST)
 444                goto drop;
 445
 446        __IP_UPD_PO_STATS(net, IPSTATS_MIB_IN, skb->len);
 447
 448        skb = skb_share_check(skb, GFP_ATOMIC);
 449        if (!skb) {
 450                __IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
 451                goto out;
 452        }
 453
 454        if (!pskb_may_pull(skb, sizeof(struct iphdr)))
 455                goto inhdr_error;
 456
 457        iph = ip_hdr(skb);
 458
 459        /*
 460         *      RFC1122: 3.2.1.2 MUST silently discard any IP frame that fails the checksum.
 461         *
 462         *      Is the datagram acceptable?
 463         *
 464         *      1.      Length at least the size of an ip header
 465         *      2.      Version of 4
 466         *      3.      Checksums correctly. [Speed optimisation for later, skip loopback checksums]
 467         *      4.      Doesn't have a bogus length
 468         */
 469
 470        if (iph->ihl < 5 || iph->version != 4)
 471                goto inhdr_error;
 472
 473        BUILD_BUG_ON(IPSTATS_MIB_ECT1PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_1);
 474        BUILD_BUG_ON(IPSTATS_MIB_ECT0PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_0);
 475        BUILD_BUG_ON(IPSTATS_MIB_CEPKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_CE);
 476        __IP_ADD_STATS(net,
 477                       IPSTATS_MIB_NOECTPKTS + (iph->tos & INET_ECN_MASK),
 478                       max_t(unsigned short, 1, skb_shinfo(skb)->gso_segs));
 479
 480        if (!pskb_may_pull(skb, iph->ihl*4))
 481                goto inhdr_error;
 482
 483        iph = ip_hdr(skb);
 484
 485        if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
 486                goto csum_error;
 487
 488        len = ntohs(iph->tot_len);
 489        if (skb->len < len) {
 490                __IP_INC_STATS(net, IPSTATS_MIB_INTRUNCATEDPKTS);
 491                goto drop;
 492        } else if (len < (iph->ihl*4))
 493                goto inhdr_error;
 494
 495        /* Our transport medium may have padded the buffer out. Now we know it
 496         * is IP we can trim to the true length of the frame.
 497         * Note this now means skb->len holds ntohs(iph->tot_len).
 498         */
 499        if (pskb_trim_rcsum(skb, len)) {
 500                __IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
 501                goto drop;
 502        }
 503
 504        iph = ip_hdr(skb);
 505        skb->transport_header = skb->network_header + iph->ihl*4;
 506
 507        /* Remove any debris in the socket control block */
 508        memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
 509        IPCB(skb)->iif = skb->skb_iif;
 510
 511        /* Must drop socket now because of tproxy. */
 512        if (!skb_sk_is_prefetched(skb))
 513                skb_orphan(skb);
 514
 515        return skb;
 516
 517csum_error:
 518        __IP_INC_STATS(net, IPSTATS_MIB_CSUMERRORS);
 519inhdr_error:
 520        __IP_INC_STATS(net, IPSTATS_MIB_INHDRERRORS);
 521drop:
 522        kfree_skb(skb);
 523out:
 524        return NULL;
 525}
 526
 527/*
 528 * IP receive entry point
 529 */
 530int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt,
 531           struct net_device *orig_dev)
 532{
 533        struct net *net = dev_net(dev);
 534
 535        skb = ip_rcv_core(skb, net);
 536        if (skb == NULL)
 537                return NET_RX_DROP;
 538
 539        return NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING,
 540                       net, NULL, skb, dev, NULL,
 541                       ip_rcv_finish);
 542}
 543
 544static void ip_sublist_rcv_finish(struct list_head *head)
 545{
 546        struct sk_buff *skb, *next;
 547
 548        list_for_each_entry_safe(skb, next, head, list) {
 549                skb_list_del_init(skb);
 550                dst_input(skb);
 551        }
 552}
 553
 554static struct sk_buff *ip_extract_route_hint(const struct net *net,
 555                                             struct sk_buff *skb, int rt_type)
 556{
 557        if (fib4_has_custom_rules(net) || rt_type == RTN_BROADCAST)
 558                return NULL;
 559
 560        return skb;
 561}
 562
 563static void ip_list_rcv_finish(struct net *net, struct sock *sk,
 564                               struct list_head *head)
 565{
 566        struct sk_buff *skb, *next, *hint = NULL;
 567        struct dst_entry *curr_dst = NULL;
 568        struct list_head sublist;
 569
 570        INIT_LIST_HEAD(&sublist);
 571        list_for_each_entry_safe(skb, next, head, list) {
 572                struct net_device *dev = skb->dev;
 573                struct dst_entry *dst;
 574
 575                skb_list_del_init(skb);
 576                /* if ingress device is enslaved to an L3 master device pass the
 577                 * skb to its handler for processing
 578                 */
 579                skb = l3mdev_ip_rcv(skb);
 580                if (!skb)
 581                        continue;
 582                if (ip_rcv_finish_core(net, sk, skb, dev, hint) == NET_RX_DROP)
 583                        continue;
 584
 585                dst = skb_dst(skb);
 586                if (curr_dst != dst) {
 587                        hint = ip_extract_route_hint(net, skb,
 588                                               ((struct rtable *)dst)->rt_type);
 589
 590                        /* dispatch old sublist */
 591                        if (!list_empty(&sublist))
 592                                ip_sublist_rcv_finish(&sublist);
 593                        /* start new sublist */
 594                        INIT_LIST_HEAD(&sublist);
 595                        curr_dst = dst;
 596                }
 597                list_add_tail(&skb->list, &sublist);
 598        }
 599        /* dispatch final sublist */
 600        ip_sublist_rcv_finish(&sublist);
 601}
 602
 603static void ip_sublist_rcv(struct list_head *head, struct net_device *dev,
 604                           struct net *net)
 605{
 606        NF_HOOK_LIST(NFPROTO_IPV4, NF_INET_PRE_ROUTING, net, NULL,
 607                     head, dev, NULL, ip_rcv_finish);
 608        ip_list_rcv_finish(net, NULL, head);
 609}
 610
 611/* Receive a list of IP packets */
 612void ip_list_rcv(struct list_head *head, struct packet_type *pt,
 613                 struct net_device *orig_dev)
 614{
 615        struct net_device *curr_dev = NULL;
 616        struct net *curr_net = NULL;
 617        struct sk_buff *skb, *next;
 618        struct list_head sublist;
 619
 620        INIT_LIST_HEAD(&sublist);
 621        list_for_each_entry_safe(skb, next, head, list) {
 622                struct net_device *dev = skb->dev;
 623                struct net *net = dev_net(dev);
 624
 625                skb_list_del_init(skb);
 626                skb = ip_rcv_core(skb, net);
 627                if (skb == NULL)
 628                        continue;
 629
 630                if (curr_dev != dev || curr_net != net) {
 631                        /* dispatch old sublist */
 632                        if (!list_empty(&sublist))
 633                                ip_sublist_rcv(&sublist, curr_dev, curr_net);
 634                        /* start new sublist */
 635                        INIT_LIST_HEAD(&sublist);
 636                        curr_dev = dev;
 637                        curr_net = net;
 638                }
 639                list_add_tail(&skb->list, &sublist);
 640        }
 641        /* dispatch final sublist */
 642        if (!list_empty(&sublist))
 643                ip_sublist_rcv(&sublist, curr_dev, curr_net);
 644}
 645