linux/net/netfilter/nft_set_pipapo.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2
   3/* PIPAPO: PIle PAcket POlicies: set for arbitrary concatenations of ranges
   4 *
   5 * Copyright (c) 2019-2020 Red Hat GmbH
   6 *
   7 * Author: Stefano Brivio <sbrivio@redhat.com>
   8 */
   9
  10/**
  11 * DOC: Theory of Operation
  12 *
  13 *
  14 * Problem
  15 * -------
  16 *
  17 * Match packet bytes against entries composed of ranged or non-ranged packet
  18 * field specifiers, mapping them to arbitrary references. For example:
  19 *
  20 * ::
  21 *
  22 *               --- fields --->
  23 *      |    [net],[port],[net]... => [reference]
  24 *   entries [net],[port],[net]... => [reference]
  25 *      |    [net],[port],[net]... => [reference]
  26 *      V    ...
  27 *
  28 * where [net] fields can be IP ranges or netmasks, and [port] fields are port
  29 * ranges. Arbitrary packet fields can be matched.
  30 *
  31 *
  32 * Algorithm Overview
  33 * ------------------
  34 *
  35 * This algorithm is loosely inspired by [Ligatti 2010], and fundamentally
  36 * relies on the consideration that every contiguous range in a space of b bits
  37 * can be converted into b * 2 netmasks, from Theorem 3 in [Rottenstreich 2010],
  38 * as also illustrated in Section 9 of [Kogan 2014].
  39 *
  40 * Classification against a number of entries, that require matching given bits
  41 * of a packet field, is performed by grouping those bits in sets of arbitrary
  42 * size, and classifying packet bits one group at a time.
  43 *
  44 * Example:
  45 *   to match the source port (16 bits) of a packet, we can divide those 16 bits
  46 *   in 4 groups of 4 bits each. Given the entry:
  47 *      0000 0001 0101 1001
  48 *   and a packet with source port:
  49 *      0000 0001 1010 1001
  50 *   first and second groups match, but the third doesn't. We conclude that the
  51 *   packet doesn't match the given entry.
  52 *
  53 * Translate the set to a sequence of lookup tables, one per field. Each table
  54 * has two dimensions: bit groups to be matched for a single packet field, and
  55 * all the possible values of said groups (buckets). Input entries are
  56 * represented as one or more rules, depending on the number of composing
  57 * netmasks for the given field specifier, and a group match is indicated as a
  58 * set bit, with number corresponding to the rule index, in all the buckets
  59 * whose value matches the entry for a given group.
  60 *
  61 * Rules are mapped between fields through an array of x, n pairs, with each
  62 * item mapping a matched rule to one or more rules. The position of the pair in
  63 * the array indicates the matched rule to be mapped to the next field, x
  64 * indicates the first rule index in the next field, and n the amount of
  65 * next-field rules the current rule maps to.
  66 *
  67 * The mapping array for the last field maps to the desired references.
  68 *
  69 * To match, we perform table lookups using the values of grouped packet bits,
  70 * and use a sequence of bitwise operations to progressively evaluate rule
  71 * matching.
  72 *
  73 * A stand-alone, reference implementation, also including notes about possible
  74 * future optimisations, is available at:
  75 *    https://pipapo.lameexcu.se/
  76 *
  77 * Insertion
  78 * ---------
  79 *
  80 * - For each packet field:
  81 *
  82 *   - divide the b packet bits we want to classify into groups of size t,
  83 *     obtaining ceil(b / t) groups
  84 *
  85 *      Example: match on destination IP address, with t = 4: 32 bits, 8 groups
  86 *      of 4 bits each
  87 *
  88 *   - allocate a lookup table with one column ("bucket") for each possible
  89 *     value of a group, and with one row for each group
  90 *
  91 *      Example: 8 groups, 2^4 buckets:
  92 *
  93 * ::
  94 *
  95 *                     bucket
  96 *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
  97 *        0
  98 *        1
  99 *        2
 100 *        3
 101 *        4
 102 *        5
 103 *        6
 104 *        7
 105 *
 106 *   - map the bits we want to classify for the current field, for a given
 107 *     entry, to a single rule for non-ranged and netmask set items, and to one
 108 *     or multiple rules for ranges. Ranges are expanded to composing netmasks
 109 *     by pipapo_expand().
 110 *
 111 *      Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048
 112 *      - rule #0: 10.0.0.5
 113 *      - rule #1: 192.168.1.0/24
 114 *      - rule #2: 192.168.2.0/31
 115 *
 116 *   - insert references to the rules in the lookup table, selecting buckets
 117 *     according to bit values of a rule in the given group. This is done by
 118 *     pipapo_insert().
 119 *
 120 *      Example: given:
 121 *      - rule #0: 10.0.0.5 mapping to buckets
 122 *        < 0 10  0 0   0 0  0 5 >
 123 *      - rule #1: 192.168.1.0/24 mapping to buckets
 124 *        < 12 0  10 8  0 1  < 0..15 > < 0..15 > >
 125 *      - rule #2: 192.168.2.0/31 mapping to buckets
 126 *        < 12 0  10 8  0 2  0 < 0..1 > >
 127 *
 128 *      these bits are set in the lookup table:
 129 *
 130 * ::
 131 *
 132 *                     bucket
 133 *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
 134 *        0    0                                              1,2
 135 *        1   1,2                                      0
 136 *        2    0                                      1,2
 137 *        3    0                              1,2
 138 *        4  0,1,2
 139 *        5    0   1   2
 140 *        6  0,1,2 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
 141 *        7   1,2 1,2  1   1   1  0,1  1   1   1   1   1   1   1   1   1   1
 142 *
 143 *   - if this is not the last field in the set, fill a mapping array that maps
 144 *     rules from the lookup table to rules belonging to the same entry in
 145 *     the next lookup table, done by pipapo_map().
 146 *
 147 *     Note that as rules map to contiguous ranges of rules, given how netmask
 148 *     expansion and insertion is performed, &union nft_pipapo_map_bucket stores
 149 *     this information as pairs of first rule index, rule count.
 150 *
 151 *      Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048,
 152 *      given lookup table #0 for field 0 (see example above):
 153 *
 154 * ::
 155 *
 156 *                     bucket
 157 *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
 158 *        0    0                                              1,2
 159 *        1   1,2                                      0
 160 *        2    0                                      1,2
 161 *        3    0                              1,2
 162 *        4  0,1,2
 163 *        5    0   1   2
 164 *        6  0,1,2 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
 165 *        7   1,2 1,2  1   1   1  0,1  1   1   1   1   1   1   1   1   1   1
 166 *
 167 *      and lookup table #1 for field 1 with:
 168 *      - rule #0: 1024 mapping to buckets
 169 *        < 0  0  4  0 >
 170 *      - rule #1: 2048 mapping to buckets
 171 *        < 0  0  5  0 >
 172 *
 173 * ::
 174 *
 175 *                     bucket
 176 *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
 177 *        0   0,1
 178 *        1   0,1
 179 *        2                    0   1
 180 *        3   0,1
 181 *
 182 *      we need to map rules for 10.0.0.5 in lookup table #0 (rule #0) to 1024
 183 *      in lookup table #1 (rule #0) and rules for 192.168.1.0-192.168.2.1
 184 *      (rules #1, #2) to 2048 in lookup table #2 (rule #1):
 185 *
 186 * ::
 187 *
 188 *       rule indices in current field: 0    1    2
 189 *       map to rules in next field:    0    1    1
 190 *
 191 *   - if this is the last field in the set, fill a mapping array that maps
 192 *     rules from the last lookup table to element pointers, also done by
 193 *     pipapo_map().
 194 *
 195 *     Note that, in this implementation, we have two elements (start, end) for
 196 *     each entry. The pointer to the end element is stored in this array, and
 197 *     the pointer to the start element is linked from it.
 198 *
 199 *      Example: entry 10.0.0.5:1024 has a corresponding &struct nft_pipapo_elem
 200 *      pointer, 0x66, and element for 192.168.1.0-192.168.2.1:2048 is at 0x42.
 201 *      From the rules of lookup table #1 as mapped above:
 202 *
 203 * ::
 204 *
 205 *       rule indices in last field:    0    1
 206 *       map to elements:             0x66  0x42
 207 *
 208 *
 209 * Matching
 210 * --------
 211 *
 212 * We use a result bitmap, with the size of a single lookup table bucket, to
 213 * represent the matching state that applies at every algorithm step. This is
 214 * done by pipapo_lookup().
 215 *
 216 * - For each packet field:
 217 *
 218 *   - start with an all-ones result bitmap (res_map in pipapo_lookup())
 219 *
 220 *   - perform a lookup into the table corresponding to the current field,
 221 *     for each group, and at every group, AND the current result bitmap with
 222 *     the value from the lookup table bucket
 223 *
 224 * ::
 225 *
 226 *      Example: 192.168.1.5 < 12 0  10 8  0 1  0 5 >, with lookup table from
 227 *      insertion examples.
 228 *      Lookup table buckets are at least 3 bits wide, we'll assume 8 bits for
 229 *      convenience in this example. Initial result bitmap is 0xff, the steps
 230 *      below show the value of the result bitmap after each group is processed:
 231 *
 232 *                     bucket
 233 *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
 234 *        0    0                                              1,2
 235 *        result bitmap is now: 0xff & 0x6 [bucket 12] = 0x6
 236 *
 237 *        1   1,2                                      0
 238 *        result bitmap is now: 0x6 & 0x6 [bucket 0] = 0x6
 239 *
 240 *        2    0                                      1,2
 241 *        result bitmap is now: 0x6 & 0x6 [bucket 10] = 0x6
 242 *
 243 *        3    0                              1,2
 244 *        result bitmap is now: 0x6 & 0x6 [bucket 8] = 0x6
 245 *
 246 *        4  0,1,2
 247 *        result bitmap is now: 0x6 & 0x7 [bucket 0] = 0x6
 248 *
 249 *        5    0   1   2
 250 *        result bitmap is now: 0x6 & 0x2 [bucket 1] = 0x2
 251 *
 252 *        6  0,1,2 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
 253 *        result bitmap is now: 0x2 & 0x7 [bucket 0] = 0x2
 254 *
 255 *        7   1,2 1,2  1   1   1  0,1  1   1   1   1   1   1   1   1   1   1
 256 *        final result bitmap for this field is: 0x2 & 0x3 [bucket 5] = 0x2
 257 *
 258 *   - at the next field, start with a new, all-zeroes result bitmap. For each
 259 *     bit set in the previous result bitmap, fill the new result bitmap
 260 *     (fill_map in pipapo_lookup()) with the rule indices from the
 261 *     corresponding buckets of the mapping field for this field, done by
 262 *     pipapo_refill()
 263 *
 264 *      Example: with mapping table from insertion examples, with the current
 265 *      result bitmap from the previous example, 0x02:
 266 *
 267 * ::
 268 *
 269 *       rule indices in current field: 0    1    2
 270 *       map to rules in next field:    0    1    1
 271 *
 272 *      the new result bitmap will be 0x02: rule 1 was set, and rule 1 will be
 273 *      set.
 274 *
 275 *      We can now extend this example to cover the second iteration of the step
 276 *      above (lookup and AND bitmap): assuming the port field is
 277 *      2048 < 0  0  5  0 >, with starting result bitmap 0x2, and lookup table
 278 *      for "port" field from pre-computation example:
 279 *
 280 * ::
 281 *
 282 *                     bucket
 283 *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
 284 *        0   0,1
 285 *        1   0,1
 286 *        2                    0   1
 287 *        3   0,1
 288 *
 289 *       operations are: 0x2 & 0x3 [bucket 0] & 0x3 [bucket 0] & 0x2 [bucket 5]
 290 *       & 0x3 [bucket 0], resulting bitmap is 0x2.
 291 *
 292 *   - if this is the last field in the set, look up the value from the mapping
 293 *     array corresponding to the final result bitmap
 294 *
 295 *      Example: 0x2 resulting bitmap from 192.168.1.5:2048, mapping array for
 296 *      last field from insertion example:
 297 *
 298 * ::
 299 *
 300 *       rule indices in last field:    0    1
 301 *       map to elements:             0x66  0x42
 302 *
 303 *      the matching element is at 0x42.
 304 *
 305 *
 306 * References
 307 * ----------
 308 *
 309 * [Ligatti 2010]
 310 *      A Packet-classification Algorithm for Arbitrary Bitmask Rules, with
 311 *      Automatic Time-space Tradeoffs
 312 *      Jay Ligatti, Josh Kuhn, and Chris Gage.
 313 *      Proceedings of the IEEE International Conference on Computer
 314 *      Communication Networks (ICCCN), August 2010.
 315 *      https://www.cse.usf.edu/~ligatti/papers/grouper-conf.pdf
 316 *
 317 * [Rottenstreich 2010]
 318 *      Worst-Case TCAM Rule Expansion
 319 *      Ori Rottenstreich and Isaac Keslassy.
 320 *      2010 Proceedings IEEE INFOCOM, San Diego, CA, 2010.
 321 *      http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.212.4592&rep=rep1&type=pdf
 322 *
 323 * [Kogan 2014]
 324 *      SAX-PAC (Scalable And eXpressive PAcket Classification)
 325 *      Kirill Kogan, Sergey Nikolenko, Ori Rottenstreich, William Culhane,
 326 *      and Patrick Eugster.
 327 *      Proceedings of the 2014 ACM conference on SIGCOMM, August 2014.
 328 *      https://www.sigcomm.org/sites/default/files/ccr/papers/2014/August/2619239-2626294.pdf
 329 */
 330
 331#include <linux/kernel.h>
 332#include <linux/init.h>
 333#include <linux/module.h>
 334#include <linux/netlink.h>
 335#include <linux/netfilter.h>
 336#include <linux/netfilter/nf_tables.h>
 337#include <net/netfilter/nf_tables_core.h>
 338#include <uapi/linux/netfilter/nf_tables.h>
 339#include <linux/bitmap.h>
 340#include <linux/bitops.h>
 341
 342#include "nft_set_pipapo_avx2.h"
 343#include "nft_set_pipapo.h"
 344
 345/* Current working bitmap index, toggled between field matches */
 346static DEFINE_PER_CPU(bool, nft_pipapo_scratch_index);
 347
 348/**
 349 * pipapo_refill() - For each set bit, set bits from selected mapping table item
 350 * @map:        Bitmap to be scanned for set bits
 351 * @len:        Length of bitmap in longs
 352 * @rules:      Number of rules in field
 353 * @dst:        Destination bitmap
 354 * @mt:         Mapping table containing bit set specifiers
 355 * @match_only: Find a single bit and return, don't fill
 356 *
 357 * Iteration over set bits with __builtin_ctzl(): Daniel Lemire, public domain.
 358 *
 359 * For each bit set in map, select the bucket from mapping table with index
 360 * corresponding to the position of the bit set. Use start bit and amount of
 361 * bits specified in bucket to fill region in dst.
 362 *
 363 * Return: -1 on no match, bit position on 'match_only', 0 otherwise.
 364 */
 365int pipapo_refill(unsigned long *map, int len, int rules, unsigned long *dst,
 366                  union nft_pipapo_map_bucket *mt, bool match_only)
 367{
 368        unsigned long bitset;
 369        int k, ret = -1;
 370
 371        for (k = 0; k < len; k++) {
 372                bitset = map[k];
 373                while (bitset) {
 374                        unsigned long t = bitset & -bitset;
 375                        int r = __builtin_ctzl(bitset);
 376                        int i = k * BITS_PER_LONG + r;
 377
 378                        if (unlikely(i >= rules)) {
 379                                map[k] = 0;
 380                                return -1;
 381                        }
 382
 383                        if (match_only) {
 384                                bitmap_clear(map, i, 1);
 385                                return i;
 386                        }
 387
 388                        ret = 0;
 389
 390                        bitmap_set(dst, mt[i].to, mt[i].n);
 391
 392                        bitset ^= t;
 393                }
 394                map[k] = 0;
 395        }
 396
 397        return ret;
 398}
 399
 400/**
 401 * nft_pipapo_lookup() - Lookup function
 402 * @net:        Network namespace
 403 * @set:        nftables API set representation
 404 * @key:        nftables API element representation containing key data
 405 * @ext:        nftables API extension pointer, filled with matching reference
 406 *
 407 * For more details, see DOC: Theory of Operation.
 408 *
 409 * Return: true on match, false otherwise.
 410 */
 411static bool nft_pipapo_lookup(const struct net *net, const struct nft_set *set,
 412                              const u32 *key, const struct nft_set_ext **ext)
 413{
 414        struct nft_pipapo *priv = nft_set_priv(set);
 415        unsigned long *res_map, *fill_map;
 416        u8 genmask = nft_genmask_cur(net);
 417        const u8 *rp = (const u8 *)key;
 418        struct nft_pipapo_match *m;
 419        struct nft_pipapo_field *f;
 420        bool map_index;
 421        int i;
 422
 423        local_bh_disable();
 424
 425        map_index = raw_cpu_read(nft_pipapo_scratch_index);
 426
 427        m = rcu_dereference(priv->match);
 428
 429        if (unlikely(!m || !*raw_cpu_ptr(m->scratch)))
 430                goto out;
 431
 432        res_map  = *raw_cpu_ptr(m->scratch) + (map_index ? m->bsize_max : 0);
 433        fill_map = *raw_cpu_ptr(m->scratch) + (map_index ? 0 : m->bsize_max);
 434
 435        memset(res_map, 0xff, m->bsize_max * sizeof(*res_map));
 436
 437        nft_pipapo_for_each_field(f, i, m) {
 438                bool last = i == m->field_count - 1;
 439                int b;
 440
 441                /* For each bit group: select lookup table bucket depending on
 442                 * packet bytes value, then AND bucket value
 443                 */
 444                if (likely(f->bb == 8))
 445                        pipapo_and_field_buckets_8bit(f, res_map, rp);
 446                else
 447                        pipapo_and_field_buckets_4bit(f, res_map, rp);
 448                NFT_PIPAPO_GROUP_BITS_ARE_8_OR_4;
 449
 450                rp += f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f);
 451
 452                /* Now populate the bitmap for the next field, unless this is
 453                 * the last field, in which case return the matched 'ext'
 454                 * pointer if any.
 455                 *
 456                 * Now res_map contains the matching bitmap, and fill_map is the
 457                 * bitmap for the next field.
 458                 */
 459next_match:
 460                b = pipapo_refill(res_map, f->bsize, f->rules, fill_map, f->mt,
 461                                  last);
 462                if (b < 0) {
 463                        raw_cpu_write(nft_pipapo_scratch_index, map_index);
 464                        local_bh_enable();
 465
 466                        return false;
 467                }
 468
 469                if (last) {
 470                        *ext = &f->mt[b].e->ext;
 471                        if (unlikely(nft_set_elem_expired(*ext) ||
 472                                     !nft_set_elem_active(*ext, genmask)))
 473                                goto next_match;
 474
 475                        /* Last field: we're just returning the key without
 476                         * filling the initial bitmap for the next field, so the
 477                         * current inactive bitmap is clean and can be reused as
 478                         * *next* bitmap (not initial) for the next packet.
 479                         */
 480                        raw_cpu_write(nft_pipapo_scratch_index, map_index);
 481                        local_bh_enable();
 482
 483                        return true;
 484                }
 485
 486                /* Swap bitmap indices: res_map is the initial bitmap for the
 487                 * next field, and fill_map is guaranteed to be all-zeroes at
 488                 * this point.
 489                 */
 490                map_index = !map_index;
 491                swap(res_map, fill_map);
 492
 493                rp += NFT_PIPAPO_GROUPS_PADDING(f);
 494        }
 495
 496out:
 497        local_bh_enable();
 498        return false;
 499}
 500
 501/**
 502 * pipapo_get() - Get matching element reference given key data
 503 * @net:        Network namespace
 504 * @set:        nftables API set representation
 505 * @data:       Key data to be matched against existing elements
 506 * @genmask:    If set, check that element is active in given genmask
 507 *
 508 * This is essentially the same as the lookup function, except that it matches
 509 * key data against the uncommitted copy and doesn't use preallocated maps for
 510 * bitmap results.
 511 *
 512 * Return: pointer to &struct nft_pipapo_elem on match, error pointer otherwise.
 513 */
 514static struct nft_pipapo_elem *pipapo_get(const struct net *net,
 515                                          const struct nft_set *set,
 516                                          const u8 *data, u8 genmask)
 517{
 518        struct nft_pipapo_elem *ret = ERR_PTR(-ENOENT);
 519        struct nft_pipapo *priv = nft_set_priv(set);
 520        struct nft_pipapo_match *m = priv->clone;
 521        unsigned long *res_map, *fill_map = NULL;
 522        struct nft_pipapo_field *f;
 523        int i;
 524
 525        res_map = kmalloc_array(m->bsize_max, sizeof(*res_map), GFP_ATOMIC);
 526        if (!res_map) {
 527                ret = ERR_PTR(-ENOMEM);
 528                goto out;
 529        }
 530
 531        fill_map = kcalloc(m->bsize_max, sizeof(*res_map), GFP_ATOMIC);
 532        if (!fill_map) {
 533                ret = ERR_PTR(-ENOMEM);
 534                goto out;
 535        }
 536
 537        memset(res_map, 0xff, m->bsize_max * sizeof(*res_map));
 538
 539        nft_pipapo_for_each_field(f, i, m) {
 540                bool last = i == m->field_count - 1;
 541                int b;
 542
 543                /* For each bit group: select lookup table bucket depending on
 544                 * packet bytes value, then AND bucket value
 545                 */
 546                if (f->bb == 8)
 547                        pipapo_and_field_buckets_8bit(f, res_map, data);
 548                else if (f->bb == 4)
 549                        pipapo_and_field_buckets_4bit(f, res_map, data);
 550                else
 551                        BUG();
 552
 553                data += f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f);
 554
 555                /* Now populate the bitmap for the next field, unless this is
 556                 * the last field, in which case return the matched 'ext'
 557                 * pointer if any.
 558                 *
 559                 * Now res_map contains the matching bitmap, and fill_map is the
 560                 * bitmap for the next field.
 561                 */
 562next_match:
 563                b = pipapo_refill(res_map, f->bsize, f->rules, fill_map, f->mt,
 564                                  last);
 565                if (b < 0)
 566                        goto out;
 567
 568                if (last) {
 569                        if (nft_set_elem_expired(&f->mt[b].e->ext) ||
 570                            (genmask &&
 571                             !nft_set_elem_active(&f->mt[b].e->ext, genmask)))
 572                                goto next_match;
 573
 574                        ret = f->mt[b].e;
 575                        goto out;
 576                }
 577
 578                data += NFT_PIPAPO_GROUPS_PADDING(f);
 579
 580                /* Swap bitmap indices: fill_map will be the initial bitmap for
 581                 * the next field (i.e. the new res_map), and res_map is
 582                 * guaranteed to be all-zeroes at this point, ready to be filled
 583                 * according to the next mapping table.
 584                 */
 585                swap(res_map, fill_map);
 586        }
 587
 588out:
 589        kfree(fill_map);
 590        kfree(res_map);
 591        return ret;
 592}
 593
 594/**
 595 * nft_pipapo_get() - Get matching element reference given key data
 596 * @net:        Network namespace
 597 * @set:        nftables API set representation
 598 * @elem:       nftables API element representation containing key data
 599 * @flags:      Unused
 600 */
 601static void *nft_pipapo_get(const struct net *net, const struct nft_set *set,
 602                            const struct nft_set_elem *elem, unsigned int flags)
 603{
 604        return pipapo_get(net, set, (const u8 *)elem->key.val.data,
 605                          nft_genmask_cur(net));
 606}
 607
 608/**
 609 * pipapo_resize() - Resize lookup or mapping table, or both
 610 * @f:          Field containing lookup and mapping tables
 611 * @old_rules:  Previous amount of rules in field
 612 * @rules:      New amount of rules
 613 *
 614 * Increase, decrease or maintain tables size depending on new amount of rules,
 615 * and copy data over. In case the new size is smaller, throw away data for
 616 * highest-numbered rules.
 617 *
 618 * Return: 0 on success, -ENOMEM on allocation failure.
 619 */
 620static int pipapo_resize(struct nft_pipapo_field *f, int old_rules, int rules)
 621{
 622        long *new_lt = NULL, *new_p, *old_lt = f->lt, *old_p;
 623        union nft_pipapo_map_bucket *new_mt, *old_mt = f->mt;
 624        size_t new_bucket_size, copy;
 625        int group, bucket;
 626
 627        new_bucket_size = DIV_ROUND_UP(rules, BITS_PER_LONG);
 628#ifdef NFT_PIPAPO_ALIGN
 629        new_bucket_size = roundup(new_bucket_size,
 630                                  NFT_PIPAPO_ALIGN / sizeof(*new_lt));
 631#endif
 632
 633        if (new_bucket_size == f->bsize)
 634                goto mt;
 635
 636        if (new_bucket_size > f->bsize)
 637                copy = f->bsize;
 638        else
 639                copy = new_bucket_size;
 640
 641        new_lt = kvzalloc(f->groups * NFT_PIPAPO_BUCKETS(f->bb) *
 642                          new_bucket_size * sizeof(*new_lt) +
 643                          NFT_PIPAPO_ALIGN_HEADROOM,
 644                          GFP_KERNEL);
 645        if (!new_lt)
 646                return -ENOMEM;
 647
 648        new_p = NFT_PIPAPO_LT_ALIGN(new_lt);
 649        old_p = NFT_PIPAPO_LT_ALIGN(old_lt);
 650
 651        for (group = 0; group < f->groups; group++) {
 652                for (bucket = 0; bucket < NFT_PIPAPO_BUCKETS(f->bb); bucket++) {
 653                        memcpy(new_p, old_p, copy * sizeof(*new_p));
 654                        new_p += copy;
 655                        old_p += copy;
 656
 657                        if (new_bucket_size > f->bsize)
 658                                new_p += new_bucket_size - f->bsize;
 659                        else
 660                                old_p += f->bsize - new_bucket_size;
 661                }
 662        }
 663
 664mt:
 665        new_mt = kvmalloc(rules * sizeof(*new_mt), GFP_KERNEL);
 666        if (!new_mt) {
 667                kvfree(new_lt);
 668                return -ENOMEM;
 669        }
 670
 671        memcpy(new_mt, f->mt, min(old_rules, rules) * sizeof(*new_mt));
 672        if (rules > old_rules) {
 673                memset(new_mt + old_rules, 0,
 674                       (rules - old_rules) * sizeof(*new_mt));
 675        }
 676
 677        if (new_lt) {
 678                f->bsize = new_bucket_size;
 679                NFT_PIPAPO_LT_ASSIGN(f, new_lt);
 680                kvfree(old_lt);
 681        }
 682
 683        f->mt = new_mt;
 684        kvfree(old_mt);
 685
 686        return 0;
 687}
 688
 689/**
 690 * pipapo_bucket_set() - Set rule bit in bucket given group and group value
 691 * @f:          Field containing lookup table
 692 * @rule:       Rule index
 693 * @group:      Group index
 694 * @v:          Value of bit group
 695 */
 696static void pipapo_bucket_set(struct nft_pipapo_field *f, int rule, int group,
 697                              int v)
 698{
 699        unsigned long *pos;
 700
 701        pos = NFT_PIPAPO_LT_ALIGN(f->lt);
 702        pos += f->bsize * NFT_PIPAPO_BUCKETS(f->bb) * group;
 703        pos += f->bsize * v;
 704
 705        __set_bit(rule, pos);
 706}
 707
 708/**
 709 * pipapo_lt_4b_to_8b() - Switch lookup table group width from 4 bits to 8 bits
 710 * @old_groups: Number of current groups
 711 * @bsize:      Size of one bucket, in longs
 712 * @old_lt:     Pointer to the current lookup table
 713 * @new_lt:     Pointer to the new, pre-allocated lookup table
 714 *
 715 * Each bucket with index b in the new lookup table, belonging to group g, is
 716 * filled with the bit intersection between:
 717 * - bucket with index given by the upper 4 bits of b, from group g, and
 718 * - bucket with index given by the lower 4 bits of b, from group g + 1
 719 *
 720 * That is, given buckets from the new lookup table N(x, y) and the old lookup
 721 * table O(x, y), with x bucket index, and y group index:
 722 *
 723 *      N(b, g) := O(b / 16, g) & O(b % 16, g + 1)
 724 *
 725 * This ensures equivalence of the matching results on lookup. Two examples in
 726 * pictures:
 727 *
 728 *              bucket
 729 *  group  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 ... 254 255
 730 *    0                ^
 731 *    1                |                                                 ^
 732 *   ...             ( & )                                               |
 733 *                  /     \                                              |
 734 *                 /       \                                         .-( & )-.
 735 *                /  bucket \                                        |       |
 736 *      group  0 / 1   2   3 \ 4   5   6   7   8   9  10  11  12  13 |14  15 |
 737 *        0     /             \                                      |       |
 738 *        1                    \                                     |       |
 739 *        2                                                          |     --'
 740 *        3                                                          '-
 741 *       ...
 742 */
 743static void pipapo_lt_4b_to_8b(int old_groups, int bsize,
 744                               unsigned long *old_lt, unsigned long *new_lt)
 745{
 746        int g, b, i;
 747
 748        for (g = 0; g < old_groups / 2; g++) {
 749                int src_g0 = g * 2, src_g1 = g * 2 + 1;
 750
 751                for (b = 0; b < NFT_PIPAPO_BUCKETS(8); b++) {
 752                        int src_b0 = b / NFT_PIPAPO_BUCKETS(4);
 753                        int src_b1 = b % NFT_PIPAPO_BUCKETS(4);
 754                        int src_i0 = src_g0 * NFT_PIPAPO_BUCKETS(4) + src_b0;
 755                        int src_i1 = src_g1 * NFT_PIPAPO_BUCKETS(4) + src_b1;
 756
 757                        for (i = 0; i < bsize; i++) {
 758                                *new_lt = old_lt[src_i0 * bsize + i] &
 759                                          old_lt[src_i1 * bsize + i];
 760                                new_lt++;
 761                        }
 762                }
 763        }
 764}
 765
 766/**
 767 * pipapo_lt_8b_to_4b() - Switch lookup table group width from 8 bits to 4 bits
 768 * @old_groups: Number of current groups
 769 * @bsize:      Size of one bucket, in longs
 770 * @old_lt:     Pointer to the current lookup table
 771 * @new_lt:     Pointer to the new, pre-allocated lookup table
 772 *
 773 * Each bucket with index b in the new lookup table, belonging to group g, is
 774 * filled with the bit union of:
 775 * - all the buckets with index such that the upper four bits of the lower byte
 776 *   equal b, from group g, with g odd
 777 * - all the buckets with index such that the lower four bits equal b, from
 778 *   group g, with g even
 779 *
 780 * That is, given buckets from the new lookup table N(x, y) and the old lookup
 781 * table O(x, y), with x bucket index, and y group index:
 782 *
 783 *      - with g odd:  N(b, g) := U(O(x, g) for each x : x = (b & 0xf0) >> 4)
 784 *      - with g even: N(b, g) := U(O(x, g) for each x : x = b & 0x0f)
 785 *
 786 * where U() denotes the arbitrary union operation (binary OR of n terms). This
 787 * ensures equivalence of the matching results on lookup.
 788 */
 789static void pipapo_lt_8b_to_4b(int old_groups, int bsize,
 790                               unsigned long *old_lt, unsigned long *new_lt)
 791{
 792        int g, b, bsrc, i;
 793
 794        memset(new_lt, 0, old_groups * 2 * NFT_PIPAPO_BUCKETS(4) * bsize *
 795                          sizeof(unsigned long));
 796
 797        for (g = 0; g < old_groups * 2; g += 2) {
 798                int src_g = g / 2;
 799
 800                for (b = 0; b < NFT_PIPAPO_BUCKETS(4); b++) {
 801                        for (bsrc = NFT_PIPAPO_BUCKETS(8) * src_g;
 802                             bsrc < NFT_PIPAPO_BUCKETS(8) * (src_g + 1);
 803                             bsrc++) {
 804                                if (((bsrc & 0xf0) >> 4) != b)
 805                                        continue;
 806
 807                                for (i = 0; i < bsize; i++)
 808                                        new_lt[i] |= old_lt[bsrc * bsize + i];
 809                        }
 810
 811                        new_lt += bsize;
 812                }
 813
 814                for (b = 0; b < NFT_PIPAPO_BUCKETS(4); b++) {
 815                        for (bsrc = NFT_PIPAPO_BUCKETS(8) * src_g;
 816                             bsrc < NFT_PIPAPO_BUCKETS(8) * (src_g + 1);
 817                             bsrc++) {
 818                                if ((bsrc & 0x0f) != b)
 819                                        continue;
 820
 821                                for (i = 0; i < bsize; i++)
 822                                        new_lt[i] |= old_lt[bsrc * bsize + i];
 823                        }
 824
 825                        new_lt += bsize;
 826                }
 827        }
 828}
 829
 830/**
 831 * pipapo_lt_bits_adjust() - Adjust group size for lookup table if needed
 832 * @f:          Field containing lookup table
 833 */
 834static void pipapo_lt_bits_adjust(struct nft_pipapo_field *f)
 835{
 836        unsigned long *new_lt;
 837        int groups, bb;
 838        size_t lt_size;
 839
 840        lt_size = f->groups * NFT_PIPAPO_BUCKETS(f->bb) * f->bsize *
 841                  sizeof(*f->lt);
 842
 843        if (f->bb == NFT_PIPAPO_GROUP_BITS_SMALL_SET &&
 844            lt_size > NFT_PIPAPO_LT_SIZE_HIGH) {
 845                groups = f->groups * 2;
 846                bb = NFT_PIPAPO_GROUP_BITS_LARGE_SET;
 847
 848                lt_size = groups * NFT_PIPAPO_BUCKETS(bb) * f->bsize *
 849                          sizeof(*f->lt);
 850        } else if (f->bb == NFT_PIPAPO_GROUP_BITS_LARGE_SET &&
 851                   lt_size < NFT_PIPAPO_LT_SIZE_LOW) {
 852                groups = f->groups / 2;
 853                bb = NFT_PIPAPO_GROUP_BITS_SMALL_SET;
 854
 855                lt_size = groups * NFT_PIPAPO_BUCKETS(bb) * f->bsize *
 856                          sizeof(*f->lt);
 857
 858                /* Don't increase group width if the resulting lookup table size
 859                 * would exceed the upper size threshold for a "small" set.
 860                 */
 861                if (lt_size > NFT_PIPAPO_LT_SIZE_HIGH)
 862                        return;
 863        } else {
 864                return;
 865        }
 866
 867        new_lt = kvzalloc(lt_size + NFT_PIPAPO_ALIGN_HEADROOM, GFP_KERNEL);
 868        if (!new_lt)
 869                return;
 870
 871        NFT_PIPAPO_GROUP_BITS_ARE_8_OR_4;
 872        if (f->bb == 4 && bb == 8) {
 873                pipapo_lt_4b_to_8b(f->groups, f->bsize,
 874                                   NFT_PIPAPO_LT_ALIGN(f->lt),
 875                                   NFT_PIPAPO_LT_ALIGN(new_lt));
 876        } else if (f->bb == 8 && bb == 4) {
 877                pipapo_lt_8b_to_4b(f->groups, f->bsize,
 878                                   NFT_PIPAPO_LT_ALIGN(f->lt),
 879                                   NFT_PIPAPO_LT_ALIGN(new_lt));
 880        } else {
 881                BUG();
 882        }
 883
 884        f->groups = groups;
 885        f->bb = bb;
 886        kvfree(f->lt);
 887        NFT_PIPAPO_LT_ASSIGN(f, new_lt);
 888}
 889
 890/**
 891 * pipapo_insert() - Insert new rule in field given input key and mask length
 892 * @f:          Field containing lookup table
 893 * @k:          Input key for classification, without nftables padding
 894 * @mask_bits:  Length of mask; matches field length for non-ranged entry
 895 *
 896 * Insert a new rule reference in lookup buckets corresponding to k and
 897 * mask_bits.
 898 *
 899 * Return: 1 on success (one rule inserted), negative error code on failure.
 900 */
 901static int pipapo_insert(struct nft_pipapo_field *f, const uint8_t *k,
 902                         int mask_bits)
 903{
 904        int rule = f->rules++, group, ret, bit_offset = 0;
 905
 906        ret = pipapo_resize(f, f->rules - 1, f->rules);
 907        if (ret)
 908                return ret;
 909
 910        for (group = 0; group < f->groups; group++) {
 911                int i, v;
 912                u8 mask;
 913
 914                v = k[group / (BITS_PER_BYTE / f->bb)];
 915                v &= GENMASK(BITS_PER_BYTE - bit_offset - 1, 0);
 916                v >>= (BITS_PER_BYTE - bit_offset) - f->bb;
 917
 918                bit_offset += f->bb;
 919                bit_offset %= BITS_PER_BYTE;
 920
 921                if (mask_bits >= (group + 1) * f->bb) {
 922                        /* Not masked */
 923                        pipapo_bucket_set(f, rule, group, v);
 924                } else if (mask_bits <= group * f->bb) {
 925                        /* Completely masked */
 926                        for (i = 0; i < NFT_PIPAPO_BUCKETS(f->bb); i++)
 927                                pipapo_bucket_set(f, rule, group, i);
 928                } else {
 929                        /* The mask limit falls on this group */
 930                        mask = GENMASK(f->bb - 1, 0);
 931                        mask >>= mask_bits - group * f->bb;
 932                        for (i = 0; i < NFT_PIPAPO_BUCKETS(f->bb); i++) {
 933                                if ((i & ~mask) == (v & ~mask))
 934                                        pipapo_bucket_set(f, rule, group, i);
 935                        }
 936                }
 937        }
 938
 939        pipapo_lt_bits_adjust(f);
 940
 941        return 1;
 942}
 943
 944/**
 945 * pipapo_step_diff() - Check if setting @step bit in netmask would change it
 946 * @base:       Mask we are expanding
 947 * @step:       Step bit for given expansion step
 948 * @len:        Total length of mask space (set and unset bits), bytes
 949 *
 950 * Convenience function for mask expansion.
 951 *
 952 * Return: true if step bit changes mask (i.e. isn't set), false otherwise.
 953 */
 954static bool pipapo_step_diff(u8 *base, int step, int len)
 955{
 956        /* Network order, byte-addressed */
 957#ifdef __BIG_ENDIAN__
 958        return !(BIT(step % BITS_PER_BYTE) & base[step / BITS_PER_BYTE]);
 959#else
 960        return !(BIT(step % BITS_PER_BYTE) &
 961                 base[len - 1 - step / BITS_PER_BYTE]);
 962#endif
 963}
 964
 965/**
 966 * pipapo_step_after_end() - Check if mask exceeds range end with given step
 967 * @base:       Mask we are expanding
 968 * @end:        End of range
 969 * @step:       Step bit for given expansion step, highest bit to be set
 970 * @len:        Total length of mask space (set and unset bits), bytes
 971 *
 972 * Convenience function for mask expansion.
 973 *
 974 * Return: true if mask exceeds range setting step bits, false otherwise.
 975 */
 976static bool pipapo_step_after_end(const u8 *base, const u8 *end, int step,
 977                                  int len)
 978{
 979        u8 tmp[NFT_PIPAPO_MAX_BYTES];
 980        int i;
 981
 982        memcpy(tmp, base, len);
 983
 984        /* Network order, byte-addressed */
 985        for (i = 0; i <= step; i++)
 986#ifdef __BIG_ENDIAN__
 987                tmp[i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
 988#else
 989                tmp[len - 1 - i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
 990#endif
 991
 992        return memcmp(tmp, end, len) > 0;
 993}
 994
 995/**
 996 * pipapo_base_sum() - Sum step bit to given len-sized netmask base with carry
 997 * @base:       Netmask base
 998 * @step:       Step bit to sum
 999 * @len:        Netmask length, bytes
1000 */
1001static void pipapo_base_sum(u8 *base, int step, int len)
1002{
1003        bool carry = false;
1004        int i;
1005
1006        /* Network order, byte-addressed */
1007#ifdef __BIG_ENDIAN__
1008        for (i = step / BITS_PER_BYTE; i < len; i++) {
1009#else
1010        for (i = len - 1 - step / BITS_PER_BYTE; i >= 0; i--) {
1011#endif
1012                if (carry)
1013                        base[i]++;
1014                else
1015                        base[i] += 1 << (step % BITS_PER_BYTE);
1016
1017                if (base[i])
1018                        break;
1019
1020                carry = true;
1021        }
1022}
1023
1024/**
1025 * pipapo_expand() - Expand to composing netmasks, insert into lookup table
1026 * @f:          Field containing lookup table
1027 * @start:      Start of range
1028 * @end:        End of range
1029 * @len:        Length of value in bits
1030 *
1031 * Expand range to composing netmasks and insert corresponding rule references
1032 * in lookup buckets.
1033 *
1034 * Return: number of inserted rules on success, negative error code on failure.
1035 */
1036static int pipapo_expand(struct nft_pipapo_field *f,
1037                         const u8 *start, const u8 *end, int len)
1038{
1039        int step, masks = 0, bytes = DIV_ROUND_UP(len, BITS_PER_BYTE);
1040        u8 base[NFT_PIPAPO_MAX_BYTES];
1041
1042        memcpy(base, start, bytes);
1043        while (memcmp(base, end, bytes) <= 0) {
1044                int err;
1045
1046                step = 0;
1047                while (pipapo_step_diff(base, step, bytes)) {
1048                        if (pipapo_step_after_end(base, end, step, bytes))
1049                                break;
1050
1051                        step++;
1052                        if (step >= len) {
1053                                if (!masks) {
1054                                        pipapo_insert(f, base, 0);
1055                                        masks = 1;
1056                                }
1057                                goto out;
1058                        }
1059                }
1060
1061                err = pipapo_insert(f, base, len - step);
1062
1063                if (err < 0)
1064                        return err;
1065
1066                masks++;
1067                pipapo_base_sum(base, step, bytes);
1068        }
1069out:
1070        return masks;
1071}
1072
1073/**
1074 * pipapo_map() - Insert rules in mapping tables, mapping them between fields
1075 * @m:          Matching data, including mapping table
1076 * @map:        Table of rule maps: array of first rule and amount of rules
1077 *              in next field a given rule maps to, for each field
1078 * @e:          For last field, nft_set_ext pointer matching rules map to
1079 */
1080static void pipapo_map(struct nft_pipapo_match *m,
1081                       union nft_pipapo_map_bucket map[NFT_PIPAPO_MAX_FIELDS],
1082                       struct nft_pipapo_elem *e)
1083{
1084        struct nft_pipapo_field *f;
1085        int i, j;
1086
1087        for (i = 0, f = m->f; i < m->field_count - 1; i++, f++) {
1088                for (j = 0; j < map[i].n; j++) {
1089                        f->mt[map[i].to + j].to = map[i + 1].to;
1090                        f->mt[map[i].to + j].n = map[i + 1].n;
1091                }
1092        }
1093
1094        /* Last field: map to ext instead of mapping to next field */
1095        for (j = 0; j < map[i].n; j++)
1096                f->mt[map[i].to + j].e = e;
1097}
1098
1099/**
1100 * pipapo_realloc_scratch() - Reallocate scratch maps for partial match results
1101 * @clone:      Copy of matching data with pending insertions and deletions
1102 * @bsize_max:  Maximum bucket size, scratch maps cover two buckets
1103 *
1104 * Return: 0 on success, -ENOMEM on failure.
1105 */
1106static int pipapo_realloc_scratch(struct nft_pipapo_match *clone,
1107                                  unsigned long bsize_max)
1108{
1109        int i;
1110
1111        for_each_possible_cpu(i) {
1112                unsigned long *scratch;
1113#ifdef NFT_PIPAPO_ALIGN
1114                unsigned long *scratch_aligned;
1115#endif
1116
1117                scratch = kzalloc_node(bsize_max * sizeof(*scratch) * 2 +
1118                                       NFT_PIPAPO_ALIGN_HEADROOM,
1119                                       GFP_KERNEL, cpu_to_node(i));
1120                if (!scratch) {
1121                        /* On failure, there's no need to undo previous
1122                         * allocations: this means that some scratch maps have
1123                         * a bigger allocated size now (this is only called on
1124                         * insertion), but the extra space won't be used by any
1125                         * CPU as new elements are not inserted and m->bsize_max
1126                         * is not updated.
1127                         */
1128                        return -ENOMEM;
1129                }
1130
1131                kfree(*per_cpu_ptr(clone->scratch, i));
1132
1133                *per_cpu_ptr(clone->scratch, i) = scratch;
1134
1135#ifdef NFT_PIPAPO_ALIGN
1136                scratch_aligned = NFT_PIPAPO_LT_ALIGN(scratch);
1137                *per_cpu_ptr(clone->scratch_aligned, i) = scratch_aligned;
1138#endif
1139        }
1140
1141        return 0;
1142}
1143
1144/**
1145 * nft_pipapo_insert() - Validate and insert ranged elements
1146 * @net:        Network namespace
1147 * @set:        nftables API set representation
1148 * @elem:       nftables API element representation containing key data
1149 * @ext2:       Filled with pointer to &struct nft_set_ext in inserted element
1150 *
1151 * Return: 0 on success, error pointer on failure.
1152 */
1153static int nft_pipapo_insert(const struct net *net, const struct nft_set *set,
1154                             const struct nft_set_elem *elem,
1155                             struct nft_set_ext **ext2)
1156{
1157        const struct nft_set_ext *ext = nft_set_elem_ext(set, elem->priv);
1158        union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1159        const u8 *start = (const u8 *)elem->key.val.data, *end;
1160        struct nft_pipapo_elem *e = elem->priv, *dup;
1161        struct nft_pipapo *priv = nft_set_priv(set);
1162        struct nft_pipapo_match *m = priv->clone;
1163        u8 genmask = nft_genmask_next(net);
1164        struct nft_pipapo_field *f;
1165        int i, bsize_max, err = 0;
1166
1167        if (nft_set_ext_exists(ext, NFT_SET_EXT_KEY_END))
1168                end = (const u8 *)nft_set_ext_key_end(ext)->data;
1169        else
1170                end = start;
1171
1172        dup = pipapo_get(net, set, start, genmask);
1173        if (!IS_ERR(dup)) {
1174                /* Check if we already have the same exact entry */
1175                const struct nft_data *dup_key, *dup_end;
1176
1177                dup_key = nft_set_ext_key(&dup->ext);
1178                if (nft_set_ext_exists(&dup->ext, NFT_SET_EXT_KEY_END))
1179                        dup_end = nft_set_ext_key_end(&dup->ext);
1180                else
1181                        dup_end = dup_key;
1182
1183                if (!memcmp(start, dup_key->data, sizeof(*dup_key->data)) &&
1184                    !memcmp(end, dup_end->data, sizeof(*dup_end->data))) {
1185                        *ext2 = &dup->ext;
1186                        return -EEXIST;
1187                }
1188
1189                return -ENOTEMPTY;
1190        }
1191
1192        if (PTR_ERR(dup) == -ENOENT) {
1193                /* Look for partially overlapping entries */
1194                dup = pipapo_get(net, set, end, nft_genmask_next(net));
1195        }
1196
1197        if (PTR_ERR(dup) != -ENOENT) {
1198                if (IS_ERR(dup))
1199                        return PTR_ERR(dup);
1200                *ext2 = &dup->ext;
1201                return -ENOTEMPTY;
1202        }
1203
1204        /* Validate */
1205        nft_pipapo_for_each_field(f, i, m) {
1206                const u8 *start_p = start, *end_p = end;
1207
1208                if (f->rules >= (unsigned long)NFT_PIPAPO_RULE0_MAX)
1209                        return -ENOSPC;
1210
1211                if (memcmp(start_p, end_p,
1212                           f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)) > 0)
1213                        return -EINVAL;
1214
1215                start_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1216                end_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1217        }
1218
1219        /* Insert */
1220        priv->dirty = true;
1221
1222        bsize_max = m->bsize_max;
1223
1224        nft_pipapo_for_each_field(f, i, m) {
1225                int ret;
1226
1227                rulemap[i].to = f->rules;
1228
1229                ret = memcmp(start, end,
1230                             f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f));
1231                if (!ret)
1232                        ret = pipapo_insert(f, start, f->groups * f->bb);
1233                else
1234                        ret = pipapo_expand(f, start, end, f->groups * f->bb);
1235
1236                if (f->bsize > bsize_max)
1237                        bsize_max = f->bsize;
1238
1239                rulemap[i].n = ret;
1240
1241                start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1242                end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1243        }
1244
1245        if (!*get_cpu_ptr(m->scratch) || bsize_max > m->bsize_max) {
1246                put_cpu_ptr(m->scratch);
1247
1248                err = pipapo_realloc_scratch(m, bsize_max);
1249                if (err)
1250                        return err;
1251
1252                m->bsize_max = bsize_max;
1253        } else {
1254                put_cpu_ptr(m->scratch);
1255        }
1256
1257        *ext2 = &e->ext;
1258
1259        pipapo_map(m, rulemap, e);
1260
1261        return 0;
1262}
1263
1264/**
1265 * pipapo_clone() - Clone matching data to create new working copy
1266 * @old:        Existing matching data
1267 *
1268 * Return: copy of matching data passed as 'old', error pointer on failure
1269 */
1270static struct nft_pipapo_match *pipapo_clone(struct nft_pipapo_match *old)
1271{
1272        struct nft_pipapo_field *dst, *src;
1273        struct nft_pipapo_match *new;
1274        int i;
1275
1276        new = kmalloc(sizeof(*new) + sizeof(*dst) * old->field_count,
1277                      GFP_KERNEL);
1278        if (!new)
1279                return ERR_PTR(-ENOMEM);
1280
1281        new->field_count = old->field_count;
1282        new->bsize_max = old->bsize_max;
1283
1284        new->scratch = alloc_percpu(*new->scratch);
1285        if (!new->scratch)
1286                goto out_scratch;
1287
1288#ifdef NFT_PIPAPO_ALIGN
1289        new->scratch_aligned = alloc_percpu(*new->scratch_aligned);
1290        if (!new->scratch_aligned)
1291                goto out_scratch;
1292#endif
1293
1294        rcu_head_init(&new->rcu);
1295
1296        src = old->f;
1297        dst = new->f;
1298
1299        for (i = 0; i < old->field_count; i++) {
1300                unsigned long *new_lt;
1301
1302                memcpy(dst, src, offsetof(struct nft_pipapo_field, lt));
1303
1304                new_lt = kvzalloc(src->groups * NFT_PIPAPO_BUCKETS(src->bb) *
1305                                  src->bsize * sizeof(*dst->lt) +
1306                                  NFT_PIPAPO_ALIGN_HEADROOM,
1307                                  GFP_KERNEL);
1308                if (!new_lt)
1309                        goto out_lt;
1310
1311                NFT_PIPAPO_LT_ASSIGN(dst, new_lt);
1312
1313                memcpy(NFT_PIPAPO_LT_ALIGN(new_lt),
1314                       NFT_PIPAPO_LT_ALIGN(src->lt),
1315                       src->bsize * sizeof(*dst->lt) *
1316                       src->groups * NFT_PIPAPO_BUCKETS(src->bb));
1317
1318                dst->mt = kvmalloc(src->rules * sizeof(*src->mt), GFP_KERNEL);
1319                if (!dst->mt)
1320                        goto out_mt;
1321
1322                memcpy(dst->mt, src->mt, src->rules * sizeof(*src->mt));
1323                src++;
1324                dst++;
1325        }
1326
1327        return new;
1328
1329out_mt:
1330        kvfree(dst->lt);
1331out_lt:
1332        for (dst--; i > 0; i--) {
1333                kvfree(dst->mt);
1334                kvfree(dst->lt);
1335                dst--;
1336        }
1337#ifdef NFT_PIPAPO_ALIGN
1338        free_percpu(new->scratch_aligned);
1339#endif
1340out_scratch:
1341        free_percpu(new->scratch);
1342        kfree(new);
1343
1344        return ERR_PTR(-ENOMEM);
1345}
1346
1347/**
1348 * pipapo_rules_same_key() - Get number of rules originated from the same entry
1349 * @f:          Field containing mapping table
1350 * @first:      Index of first rule in set of rules mapping to same entry
1351 *
1352 * Using the fact that all rules in a field that originated from the same entry
1353 * will map to the same set of rules in the next field, or to the same element
1354 * reference, return the cardinality of the set of rules that originated from
1355 * the same entry as the rule with index @first, @first rule included.
1356 *
1357 * In pictures:
1358 *                              rules
1359 *      field #0                0    1    2    3    4
1360 *              map to:         0    1   2-4  2-4  5-9
1361 *                              .    .    .......   . ...
1362 *                              |    |    |    | \   \
1363 *                              |    |    |    |  \   \
1364 *                              |    |    |    |   \   \
1365 *                              '    '    '    '    '   \
1366 *      in field #1             0    1    2    3    4    5 ...
1367 *
1368 * if this is called for rule 2 on field #0, it will return 3, as also rules 2
1369 * and 3 in field 0 map to the same set of rules (2, 3, 4) in the next field.
1370 *
1371 * For the last field in a set, we can rely on associated entries to map to the
1372 * same element references.
1373 *
1374 * Return: Number of rules that originated from the same entry as @first.
1375 */
1376static int pipapo_rules_same_key(struct nft_pipapo_field *f, int first)
1377{
1378        struct nft_pipapo_elem *e = NULL; /* Keep gcc happy */
1379        int r;
1380
1381        for (r = first; r < f->rules; r++) {
1382                if (r != first && e != f->mt[r].e)
1383                        return r - first;
1384
1385                e = f->mt[r].e;
1386        }
1387
1388        if (r != first)
1389                return r - first;
1390
1391        return 0;
1392}
1393
1394/**
1395 * pipapo_unmap() - Remove rules from mapping tables, renumber remaining ones
1396 * @mt:         Mapping array
1397 * @rules:      Original amount of rules in mapping table
1398 * @start:      First rule index to be removed
1399 * @n:          Amount of rules to be removed
1400 * @to_offset:  First rule index, in next field, this group of rules maps to
1401 * @is_last:    If this is the last field, delete reference from mapping array
1402 *
1403 * This is used to unmap rules from the mapping table for a single field,
1404 * maintaining consistency and compactness for the existing ones.
1405 *
1406 * In pictures: let's assume that we want to delete rules 2 and 3 from the
1407 * following mapping array:
1408 *
1409 *                 rules
1410 *               0      1      2      3      4
1411 *      map to:  4-10   4-10   11-15  11-15  16-18
1412 *
1413 * the result will be:
1414 *
1415 *                 rules
1416 *               0      1      2
1417 *      map to:  4-10   4-10   11-13
1418 *
1419 * for fields before the last one. In case this is the mapping table for the
1420 * last field in a set, and rules map to pointers to &struct nft_pipapo_elem:
1421 *
1422 *                      rules
1423 *                        0      1      2      3      4
1424 *  element pointers:  0x42   0x42   0x33   0x33   0x44
1425 *
1426 * the result will be:
1427 *
1428 *                      rules
1429 *                        0      1      2
1430 *  element pointers:  0x42   0x42   0x44
1431 */
1432static void pipapo_unmap(union nft_pipapo_map_bucket *mt, int rules,
1433                         int start, int n, int to_offset, bool is_last)
1434{
1435        int i;
1436
1437        memmove(mt + start, mt + start + n, (rules - start - n) * sizeof(*mt));
1438        memset(mt + rules - n, 0, n * sizeof(*mt));
1439
1440        if (is_last)
1441                return;
1442
1443        for (i = start; i < rules - n; i++)
1444                mt[i].to -= to_offset;
1445}
1446
1447/**
1448 * pipapo_drop() - Delete entry from lookup and mapping tables, given rule map
1449 * @m:          Matching data
1450 * @rulemap:    Table of rule maps, arrays of first rule and amount of rules
1451 *              in next field a given entry maps to, for each field
1452 *
1453 * For each rule in lookup table buckets mapping to this set of rules, drop
1454 * all bits set in lookup table mapping. In pictures, assuming we want to drop
1455 * rules 0 and 1 from this lookup table:
1456 *
1457 *                     bucket
1458 *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
1459 *        0    0                                              1,2
1460 *        1   1,2                                      0
1461 *        2    0                                      1,2
1462 *        3    0                              1,2
1463 *        4  0,1,2
1464 *        5    0   1   2
1465 *        6  0,1,2 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
1466 *        7   1,2 1,2  1   1   1  0,1  1   1   1   1   1   1   1   1   1   1
1467 *
1468 * rule 2 becomes rule 0, and the result will be:
1469 *
1470 *                     bucket
1471 *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
1472 *        0                                                    0
1473 *        1    0
1474 *        2                                            0
1475 *        3                                    0
1476 *        4    0
1477 *        5            0
1478 *        6    0
1479 *        7    0   0
1480 *
1481 * once this is done, call unmap() to drop all the corresponding rule references
1482 * from mapping tables.
1483 */
1484static void pipapo_drop(struct nft_pipapo_match *m,
1485                        union nft_pipapo_map_bucket rulemap[])
1486{
1487        struct nft_pipapo_field *f;
1488        int i;
1489
1490        nft_pipapo_for_each_field(f, i, m) {
1491                int g;
1492
1493                for (g = 0; g < f->groups; g++) {
1494                        unsigned long *pos;
1495                        int b;
1496
1497                        pos = NFT_PIPAPO_LT_ALIGN(f->lt) + g *
1498                              NFT_PIPAPO_BUCKETS(f->bb) * f->bsize;
1499
1500                        for (b = 0; b < NFT_PIPAPO_BUCKETS(f->bb); b++) {
1501                                bitmap_cut(pos, pos, rulemap[i].to,
1502                                           rulemap[i].n,
1503                                           f->bsize * BITS_PER_LONG);
1504
1505                                pos += f->bsize;
1506                        }
1507                }
1508
1509                pipapo_unmap(f->mt, f->rules, rulemap[i].to, rulemap[i].n,
1510                             rulemap[i + 1].n, i == m->field_count - 1);
1511                if (pipapo_resize(f, f->rules, f->rules - rulemap[i].n)) {
1512                        /* We can ignore this, a failure to shrink tables down
1513                         * doesn't make tables invalid.
1514                         */
1515                        ;
1516                }
1517                f->rules -= rulemap[i].n;
1518
1519                pipapo_lt_bits_adjust(f);
1520        }
1521}
1522
1523/**
1524 * pipapo_gc() - Drop expired entries from set, destroy start and end elements
1525 * @set:        nftables API set representation
1526 * @m:          Matching data
1527 */
1528static void pipapo_gc(const struct nft_set *set, struct nft_pipapo_match *m)
1529{
1530        struct nft_pipapo *priv = nft_set_priv(set);
1531        int rules_f0, first_rule = 0;
1532
1533        while ((rules_f0 = pipapo_rules_same_key(m->f, first_rule))) {
1534                union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1535                struct nft_pipapo_field *f;
1536                struct nft_pipapo_elem *e;
1537                int i, start, rules_fx;
1538
1539                start = first_rule;
1540                rules_fx = rules_f0;
1541
1542                nft_pipapo_for_each_field(f, i, m) {
1543                        rulemap[i].to = start;
1544                        rulemap[i].n = rules_fx;
1545
1546                        if (i < m->field_count - 1) {
1547                                rules_fx = f->mt[start].n;
1548                                start = f->mt[start].to;
1549                        }
1550                }
1551
1552                /* Pick the last field, and its last index */
1553                f--;
1554                i--;
1555                e = f->mt[rulemap[i].to].e;
1556                if (nft_set_elem_expired(&e->ext) &&
1557                    !nft_set_elem_mark_busy(&e->ext)) {
1558                        priv->dirty = true;
1559                        pipapo_drop(m, rulemap);
1560
1561                        rcu_barrier();
1562                        nft_set_elem_destroy(set, e, true);
1563
1564                        /* And check again current first rule, which is now the
1565                         * first we haven't checked.
1566                         */
1567                } else {
1568                        first_rule += rules_f0;
1569                }
1570        }
1571
1572        priv->last_gc = jiffies;
1573}
1574
1575/**
1576 * pipapo_free_fields() - Free per-field tables contained in matching data
1577 * @m:          Matching data
1578 */
1579static void pipapo_free_fields(struct nft_pipapo_match *m)
1580{
1581        struct nft_pipapo_field *f;
1582        int i;
1583
1584        nft_pipapo_for_each_field(f, i, m) {
1585                kvfree(f->lt);
1586                kvfree(f->mt);
1587        }
1588}
1589
1590/**
1591 * pipapo_reclaim_match - RCU callback to free fields from old matching data
1592 * @rcu:        RCU head
1593 */
1594static void pipapo_reclaim_match(struct rcu_head *rcu)
1595{
1596        struct nft_pipapo_match *m;
1597        int i;
1598
1599        m = container_of(rcu, struct nft_pipapo_match, rcu);
1600
1601        for_each_possible_cpu(i)
1602                kfree(*per_cpu_ptr(m->scratch, i));
1603
1604#ifdef NFT_PIPAPO_ALIGN
1605        free_percpu(m->scratch_aligned);
1606#endif
1607        free_percpu(m->scratch);
1608
1609        pipapo_free_fields(m);
1610
1611        kfree(m);
1612}
1613
1614/**
1615 * pipapo_commit() - Replace lookup data with current working copy
1616 * @set:        nftables API set representation
1617 *
1618 * While at it, check if we should perform garbage collection on the working
1619 * copy before committing it for lookup, and don't replace the table if the
1620 * working copy doesn't have pending changes.
1621 *
1622 * We also need to create a new working copy for subsequent insertions and
1623 * deletions.
1624 */
1625static void pipapo_commit(const struct nft_set *set)
1626{
1627        struct nft_pipapo *priv = nft_set_priv(set);
1628        struct nft_pipapo_match *new_clone, *old;
1629
1630        if (time_after_eq(jiffies, priv->last_gc + nft_set_gc_interval(set)))
1631                pipapo_gc(set, priv->clone);
1632
1633        if (!priv->dirty)
1634                return;
1635
1636        new_clone = pipapo_clone(priv->clone);
1637        if (IS_ERR(new_clone))
1638                return;
1639
1640        priv->dirty = false;
1641
1642        old = rcu_access_pointer(priv->match);
1643        rcu_assign_pointer(priv->match, priv->clone);
1644        if (old)
1645                call_rcu(&old->rcu, pipapo_reclaim_match);
1646
1647        priv->clone = new_clone;
1648}
1649
1650/**
1651 * nft_pipapo_activate() - Mark element reference as active given key, commit
1652 * @net:        Network namespace
1653 * @set:        nftables API set representation
1654 * @elem:       nftables API element representation containing key data
1655 *
1656 * On insertion, elements are added to a copy of the matching data currently
1657 * in use for lookups, and not directly inserted into current lookup data, so
1658 * we'll take care of that by calling pipapo_commit() here. Both
1659 * nft_pipapo_insert() and nft_pipapo_activate() are called once for each
1660 * element, hence we can't purpose either one as a real commit operation.
1661 */
1662static void nft_pipapo_activate(const struct net *net,
1663                                const struct nft_set *set,
1664                                const struct nft_set_elem *elem)
1665{
1666        struct nft_pipapo_elem *e;
1667
1668        e = pipapo_get(net, set, (const u8 *)elem->key.val.data, 0);
1669        if (IS_ERR(e))
1670                return;
1671
1672        nft_set_elem_change_active(net, set, &e->ext);
1673        nft_set_elem_clear_busy(&e->ext);
1674
1675        pipapo_commit(set);
1676}
1677
1678/**
1679 * pipapo_deactivate() - Check that element is in set, mark as inactive
1680 * @net:        Network namespace
1681 * @set:        nftables API set representation
1682 * @data:       Input key data
1683 * @ext:        nftables API extension pointer, used to check for end element
1684 *
1685 * This is a convenience function that can be called from both
1686 * nft_pipapo_deactivate() and nft_pipapo_flush(), as they are in fact the same
1687 * operation.
1688 *
1689 * Return: deactivated element if found, NULL otherwise.
1690 */
1691static void *pipapo_deactivate(const struct net *net, const struct nft_set *set,
1692                               const u8 *data, const struct nft_set_ext *ext)
1693{
1694        struct nft_pipapo_elem *e;
1695
1696        e = pipapo_get(net, set, data, nft_genmask_next(net));
1697        if (IS_ERR(e))
1698                return NULL;
1699
1700        nft_set_elem_change_active(net, set, &e->ext);
1701
1702        return e;
1703}
1704
1705/**
1706 * nft_pipapo_deactivate() - Call pipapo_deactivate() to make element inactive
1707 * @net:        Network namespace
1708 * @set:        nftables API set representation
1709 * @elem:       nftables API element representation containing key data
1710 *
1711 * Return: deactivated element if found, NULL otherwise.
1712 */
1713static void *nft_pipapo_deactivate(const struct net *net,
1714                                   const struct nft_set *set,
1715                                   const struct nft_set_elem *elem)
1716{
1717        const struct nft_set_ext *ext = nft_set_elem_ext(set, elem->priv);
1718
1719        return pipapo_deactivate(net, set, (const u8 *)elem->key.val.data, ext);
1720}
1721
1722/**
1723 * nft_pipapo_flush() - Call pipapo_deactivate() to make element inactive
1724 * @net:        Network namespace
1725 * @set:        nftables API set representation
1726 * @elem:       nftables API element representation containing key data
1727 *
1728 * This is functionally the same as nft_pipapo_deactivate(), with a slightly
1729 * different interface, and it's also called once for each element in a set
1730 * being flushed, so we can't implement, strictly speaking, a flush operation,
1731 * which would otherwise be as simple as allocating an empty copy of the
1732 * matching data.
1733 *
1734 * Note that we could in theory do that, mark the set as flushed, and ignore
1735 * subsequent calls, but we would leak all the elements after the first one,
1736 * because they wouldn't then be freed as result of API calls.
1737 *
1738 * Return: true if element was found and deactivated.
1739 */
1740static bool nft_pipapo_flush(const struct net *net, const struct nft_set *set,
1741                             void *elem)
1742{
1743        struct nft_pipapo_elem *e = elem;
1744
1745        return pipapo_deactivate(net, set, (const u8 *)nft_set_ext_key(&e->ext),
1746                                 &e->ext);
1747}
1748
1749/**
1750 * pipapo_get_boundaries() - Get byte interval for associated rules
1751 * @f:          Field including lookup table
1752 * @first_rule: First rule (lowest index)
1753 * @rule_count: Number of associated rules
1754 * @left:       Byte expression for left boundary (start of range)
1755 * @right:      Byte expression for right boundary (end of range)
1756 *
1757 * Given the first rule and amount of rules that originated from the same entry,
1758 * build the original range associated with the entry, and calculate the length
1759 * of the originating netmask.
1760 *
1761 * In pictures:
1762 *
1763 *                     bucket
1764 *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
1765 *        0                                                   1,2
1766 *        1   1,2
1767 *        2                                           1,2
1768 *        3                                   1,2
1769 *        4   1,2
1770 *        5        1   2
1771 *        6   1,2  1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
1772 *        7   1,2 1,2  1   1   1   1   1   1   1   1   1   1   1   1   1   1
1773 *
1774 * this is the lookup table corresponding to the IPv4 range
1775 * 192.168.1.0-192.168.2.1, which was expanded to the two composing netmasks,
1776 * rule #1: 192.168.1.0/24, and rule #2: 192.168.2.0/31.
1777 *
1778 * This function fills @left and @right with the byte values of the leftmost
1779 * and rightmost bucket indices for the lowest and highest rule indices,
1780 * respectively. If @first_rule is 1 and @rule_count is 2, we obtain, in
1781 * nibbles:
1782 *   left:  < 12, 0, 10, 8, 0, 1, 0, 0 >
1783 *   right: < 12, 0, 10, 8, 0, 2, 2, 1 >
1784 * corresponding to bytes:
1785 *   left:  < 192, 168, 1, 0 >
1786 *   right: < 192, 168, 2, 1 >
1787 * with mask length irrelevant here, unused on return, as the range is already
1788 * defined by its start and end points. The mask length is relevant for a single
1789 * ranged entry instead: if @first_rule is 1 and @rule_count is 1, we ignore
1790 * rule 2 above: @left becomes < 192, 168, 1, 0 >, @right becomes
1791 * < 192, 168, 1, 255 >, and the mask length, calculated from the distances
1792 * between leftmost and rightmost bucket indices for each group, would be 24.
1793 *
1794 * Return: mask length, in bits.
1795 */
1796static int pipapo_get_boundaries(struct nft_pipapo_field *f, int first_rule,
1797                                 int rule_count, u8 *left, u8 *right)
1798{
1799        int g, mask_len = 0, bit_offset = 0;
1800        u8 *l = left, *r = right;
1801
1802        for (g = 0; g < f->groups; g++) {
1803                int b, x0, x1;
1804
1805                x0 = -1;
1806                x1 = -1;
1807                for (b = 0; b < NFT_PIPAPO_BUCKETS(f->bb); b++) {
1808                        unsigned long *pos;
1809
1810                        pos = NFT_PIPAPO_LT_ALIGN(f->lt) +
1811                              (g * NFT_PIPAPO_BUCKETS(f->bb) + b) * f->bsize;
1812                        if (test_bit(first_rule, pos) && x0 == -1)
1813                                x0 = b;
1814                        if (test_bit(first_rule + rule_count - 1, pos))
1815                                x1 = b;
1816                }
1817
1818                *l |= x0 << (BITS_PER_BYTE - f->bb - bit_offset);
1819                *r |= x1 << (BITS_PER_BYTE - f->bb - bit_offset);
1820
1821                bit_offset += f->bb;
1822                if (bit_offset >= BITS_PER_BYTE) {
1823                        bit_offset %= BITS_PER_BYTE;
1824                        l++;
1825                        r++;
1826                }
1827
1828                if (x1 - x0 == 0)
1829                        mask_len += 4;
1830                else if (x1 - x0 == 1)
1831                        mask_len += 3;
1832                else if (x1 - x0 == 3)
1833                        mask_len += 2;
1834                else if (x1 - x0 == 7)
1835                        mask_len += 1;
1836        }
1837
1838        return mask_len;
1839}
1840
1841/**
1842 * pipapo_match_field() - Match rules against byte ranges
1843 * @f:          Field including the lookup table
1844 * @first_rule: First of associated rules originating from same entry
1845 * @rule_count: Amount of associated rules
1846 * @start:      Start of range to be matched
1847 * @end:        End of range to be matched
1848 *
1849 * Return: true on match, false otherwise.
1850 */
1851static bool pipapo_match_field(struct nft_pipapo_field *f,
1852                               int first_rule, int rule_count,
1853                               const u8 *start, const u8 *end)
1854{
1855        u8 right[NFT_PIPAPO_MAX_BYTES] = { 0 };
1856        u8 left[NFT_PIPAPO_MAX_BYTES] = { 0 };
1857
1858        pipapo_get_boundaries(f, first_rule, rule_count, left, right);
1859
1860        return !memcmp(start, left,
1861                       f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)) &&
1862               !memcmp(end, right, f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f));
1863}
1864
1865/**
1866 * nft_pipapo_remove() - Remove element given key, commit
1867 * @net:        Network namespace
1868 * @set:        nftables API set representation
1869 * @elem:       nftables API element representation containing key data
1870 *
1871 * Similarly to nft_pipapo_activate(), this is used as commit operation by the
1872 * API, but it's called once per element in the pending transaction, so we can't
1873 * implement this as a single commit operation. Closest we can get is to remove
1874 * the matched element here, if any, and commit the updated matching data.
1875 */
1876static void nft_pipapo_remove(const struct net *net, const struct nft_set *set,
1877                              const struct nft_set_elem *elem)
1878{
1879        struct nft_pipapo *priv = nft_set_priv(set);
1880        struct nft_pipapo_match *m = priv->clone;
1881        struct nft_pipapo_elem *e = elem->priv;
1882        int rules_f0, first_rule = 0;
1883        const u8 *data;
1884
1885        data = (const u8 *)nft_set_ext_key(&e->ext);
1886
1887        e = pipapo_get(net, set, data, 0);
1888        if (IS_ERR(e))
1889                return;
1890
1891        while ((rules_f0 = pipapo_rules_same_key(m->f, first_rule))) {
1892                union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1893                const u8 *match_start, *match_end;
1894                struct nft_pipapo_field *f;
1895                int i, start, rules_fx;
1896
1897                match_start = data;
1898                match_end = (const u8 *)nft_set_ext_key_end(&e->ext)->data;
1899
1900                start = first_rule;
1901                rules_fx = rules_f0;
1902
1903                nft_pipapo_for_each_field(f, i, m) {
1904                        if (!pipapo_match_field(f, start, rules_fx,
1905                                                match_start, match_end))
1906                                break;
1907
1908                        rulemap[i].to = start;
1909                        rulemap[i].n = rules_fx;
1910
1911                        rules_fx = f->mt[start].n;
1912                        start = f->mt[start].to;
1913
1914                        match_start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1915                        match_end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1916                }
1917
1918                if (i == m->field_count) {
1919                        priv->dirty = true;
1920                        pipapo_drop(m, rulemap);
1921                        pipapo_commit(set);
1922                        return;
1923                }
1924
1925                first_rule += rules_f0;
1926        }
1927}
1928
1929/**
1930 * nft_pipapo_walk() - Walk over elements
1931 * @ctx:        nftables API context
1932 * @set:        nftables API set representation
1933 * @iter:       Iterator
1934 *
1935 * As elements are referenced in the mapping array for the last field, directly
1936 * scan that array: there's no need to follow rule mappings from the first
1937 * field.
1938 */
1939static void nft_pipapo_walk(const struct nft_ctx *ctx, struct nft_set *set,
1940                            struct nft_set_iter *iter)
1941{
1942        struct nft_pipapo *priv = nft_set_priv(set);
1943        struct nft_pipapo_match *m;
1944        struct nft_pipapo_field *f;
1945        int i, r;
1946
1947        rcu_read_lock();
1948        m = rcu_dereference(priv->match);
1949
1950        if (unlikely(!m))
1951                goto out;
1952
1953        for (i = 0, f = m->f; i < m->field_count - 1; i++, f++)
1954                ;
1955
1956        for (r = 0; r < f->rules; r++) {
1957                struct nft_pipapo_elem *e;
1958                struct nft_set_elem elem;
1959
1960                if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e)
1961                        continue;
1962
1963                if (iter->count < iter->skip)
1964                        goto cont;
1965
1966                e = f->mt[r].e;
1967                if (nft_set_elem_expired(&e->ext))
1968                        goto cont;
1969
1970                elem.priv = e;
1971
1972                iter->err = iter->fn(ctx, set, iter, &elem);
1973                if (iter->err < 0)
1974                        goto out;
1975
1976cont:
1977                iter->count++;
1978        }
1979
1980out:
1981        rcu_read_unlock();
1982}
1983
1984/**
1985 * nft_pipapo_privsize() - Return the size of private data for the set
1986 * @nla:        netlink attributes, ignored as size doesn't depend on them
1987 * @desc:       Set description, ignored as size doesn't depend on it
1988 *
1989 * Return: size of private data for this set implementation, in bytes
1990 */
1991static u64 nft_pipapo_privsize(const struct nlattr * const nla[],
1992                               const struct nft_set_desc *desc)
1993{
1994        return sizeof(struct nft_pipapo);
1995}
1996
1997/**
1998 * nft_pipapo_estimate() - Set size, space and lookup complexity
1999 * @desc:       Set description, element count and field description used
2000 * @features:   Flags: NFT_SET_INTERVAL needs to be there
2001 * @est:        Storage for estimation data
2002 *
2003 * Return: true if set description is compatible, false otherwise
2004 */
2005static bool nft_pipapo_estimate(const struct nft_set_desc *desc, u32 features,
2006                                struct nft_set_estimate *est)
2007{
2008        if (!(features & NFT_SET_INTERVAL) ||
2009            desc->field_count < NFT_PIPAPO_MIN_FIELDS)
2010                return false;
2011
2012        est->size = pipapo_estimate_size(desc);
2013        if (!est->size)
2014                return false;
2015
2016        est->lookup = NFT_SET_CLASS_O_LOG_N;
2017
2018        est->space = NFT_SET_CLASS_O_N;
2019
2020        return true;
2021}
2022
2023/**
2024 * nft_pipapo_init() - Initialise data for a set instance
2025 * @set:        nftables API set representation
2026 * @desc:       Set description
2027 * @nla:        netlink attributes
2028 *
2029 * Validate number and size of fields passed as NFTA_SET_DESC_CONCAT netlink
2030 * attributes, initialise internal set parameters, current instance of matching
2031 * data and a copy for subsequent insertions.
2032 *
2033 * Return: 0 on success, negative error code on failure.
2034 */
2035static int nft_pipapo_init(const struct nft_set *set,
2036                           const struct nft_set_desc *desc,
2037                           const struct nlattr * const nla[])
2038{
2039        struct nft_pipapo *priv = nft_set_priv(set);
2040        struct nft_pipapo_match *m;
2041        struct nft_pipapo_field *f;
2042        int err, i, field_count;
2043
2044        field_count = desc->field_count ? : 1;
2045
2046        if (field_count > NFT_PIPAPO_MAX_FIELDS)
2047                return -EINVAL;
2048
2049        m = kmalloc(sizeof(*priv->match) + sizeof(*f) * field_count,
2050                    GFP_KERNEL);
2051        if (!m)
2052                return -ENOMEM;
2053
2054        m->field_count = field_count;
2055        m->bsize_max = 0;
2056
2057        m->scratch = alloc_percpu(unsigned long *);
2058        if (!m->scratch) {
2059                err = -ENOMEM;
2060                goto out_scratch;
2061        }
2062        for_each_possible_cpu(i)
2063                *per_cpu_ptr(m->scratch, i) = NULL;
2064
2065#ifdef NFT_PIPAPO_ALIGN
2066        m->scratch_aligned = alloc_percpu(unsigned long *);
2067        if (!m->scratch_aligned) {
2068                err = -ENOMEM;
2069                goto out_free;
2070        }
2071        for_each_possible_cpu(i)
2072                *per_cpu_ptr(m->scratch_aligned, i) = NULL;
2073#endif
2074
2075        rcu_head_init(&m->rcu);
2076
2077        nft_pipapo_for_each_field(f, i, m) {
2078                int len = desc->field_len[i] ? : set->klen;
2079
2080                f->bb = NFT_PIPAPO_GROUP_BITS_INIT;
2081                f->groups = len * NFT_PIPAPO_GROUPS_PER_BYTE(f);
2082
2083                priv->width += round_up(len, sizeof(u32));
2084
2085                f->bsize = 0;
2086                f->rules = 0;
2087                NFT_PIPAPO_LT_ASSIGN(f, NULL);
2088                f->mt = NULL;
2089        }
2090
2091        /* Create an initial clone of matching data for next insertion */
2092        priv->clone = pipapo_clone(m);
2093        if (IS_ERR(priv->clone)) {
2094                err = PTR_ERR(priv->clone);
2095                goto out_free;
2096        }
2097
2098        priv->dirty = false;
2099
2100        rcu_assign_pointer(priv->match, m);
2101
2102        return 0;
2103
2104out_free:
2105#ifdef NFT_PIPAPO_ALIGN
2106        free_percpu(m->scratch_aligned);
2107#endif
2108        free_percpu(m->scratch);
2109out_scratch:
2110        kfree(m);
2111
2112        return err;
2113}
2114
2115/**
2116 * nft_pipapo_destroy() - Free private data for set and all committed elements
2117 * @set:        nftables API set representation
2118 */
2119static void nft_pipapo_destroy(const struct nft_set *set)
2120{
2121        struct nft_pipapo *priv = nft_set_priv(set);
2122        struct nft_pipapo_match *m;
2123        struct nft_pipapo_field *f;
2124        int i, r, cpu;
2125
2126        m = rcu_dereference_protected(priv->match, true);
2127        if (m) {
2128                rcu_barrier();
2129
2130                for (i = 0, f = m->f; i < m->field_count - 1; i++, f++)
2131                        ;
2132
2133                for (r = 0; r < f->rules; r++) {
2134                        struct nft_pipapo_elem *e;
2135
2136                        if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e)
2137                                continue;
2138
2139                        e = f->mt[r].e;
2140
2141                        nft_set_elem_destroy(set, e, true);
2142                }
2143
2144#ifdef NFT_PIPAPO_ALIGN
2145                free_percpu(m->scratch_aligned);
2146#endif
2147                for_each_possible_cpu(cpu)
2148                        kfree(*per_cpu_ptr(m->scratch, cpu));
2149                free_percpu(m->scratch);
2150                pipapo_free_fields(m);
2151                kfree(m);
2152                priv->match = NULL;
2153        }
2154
2155        if (priv->clone) {
2156#ifdef NFT_PIPAPO_ALIGN
2157                free_percpu(priv->clone->scratch_aligned);
2158#endif
2159                for_each_possible_cpu(cpu)
2160                        kfree(*per_cpu_ptr(priv->clone->scratch, cpu));
2161                free_percpu(priv->clone->scratch);
2162
2163                pipapo_free_fields(priv->clone);
2164                kfree(priv->clone);
2165                priv->clone = NULL;
2166        }
2167}
2168
2169/**
2170 * nft_pipapo_gc_init() - Initialise garbage collection
2171 * @set:        nftables API set representation
2172 *
2173 * Instead of actually setting up a periodic work for garbage collection, as
2174 * this operation requires a swap of matching data with the working copy, we'll
2175 * do that opportunistically with other commit operations if the interval is
2176 * elapsed, so we just need to set the current jiffies timestamp here.
2177 */
2178static void nft_pipapo_gc_init(const struct nft_set *set)
2179{
2180        struct nft_pipapo *priv = nft_set_priv(set);
2181
2182        priv->last_gc = jiffies;
2183}
2184
2185const struct nft_set_type nft_set_pipapo_type = {
2186        .features       = NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT |
2187                          NFT_SET_TIMEOUT,
2188        .ops            = {
2189                .lookup         = nft_pipapo_lookup,
2190                .insert         = nft_pipapo_insert,
2191                .activate       = nft_pipapo_activate,
2192                .deactivate     = nft_pipapo_deactivate,
2193                .flush          = nft_pipapo_flush,
2194                .remove         = nft_pipapo_remove,
2195                .walk           = nft_pipapo_walk,
2196                .get            = nft_pipapo_get,
2197                .privsize       = nft_pipapo_privsize,
2198                .estimate       = nft_pipapo_estimate,
2199                .init           = nft_pipapo_init,
2200                .destroy        = nft_pipapo_destroy,
2201                .gc_init        = nft_pipapo_gc_init,
2202                .elemsize       = offsetof(struct nft_pipapo_elem, ext),
2203        },
2204};
2205
2206#if defined(CONFIG_X86_64) && !defined(CONFIG_UML)
2207const struct nft_set_type nft_set_pipapo_avx2_type = {
2208        .features       = NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT |
2209                          NFT_SET_TIMEOUT,
2210        .ops            = {
2211                .lookup         = nft_pipapo_avx2_lookup,
2212                .insert         = nft_pipapo_insert,
2213                .activate       = nft_pipapo_activate,
2214                .deactivate     = nft_pipapo_deactivate,
2215                .flush          = nft_pipapo_flush,
2216                .remove         = nft_pipapo_remove,
2217                .walk           = nft_pipapo_walk,
2218                .get            = nft_pipapo_get,
2219                .privsize       = nft_pipapo_privsize,
2220                .estimate       = nft_pipapo_avx2_estimate,
2221                .init           = nft_pipapo_init,
2222                .destroy        = nft_pipapo_destroy,
2223                .gc_init        = nft_pipapo_gc_init,
2224                .elemsize       = offsetof(struct nft_pipapo_elem, ext),
2225        },
2226};
2227#endif
2228