linux/net/tipc/crypto.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/**
   3 * net/tipc/crypto.c: TIPC crypto for key handling & packet en/decryption
   4 *
   5 * Copyright (c) 2019, Ericsson AB
   6 * All rights reserved.
   7 *
   8 * Redistribution and use in source and binary forms, with or without
   9 * modification, are permitted provided that the following conditions are met:
  10 *
  11 * 1. Redistributions of source code must retain the above copyright
  12 *    notice, this list of conditions and the following disclaimer.
  13 * 2. Redistributions in binary form must reproduce the above copyright
  14 *    notice, this list of conditions and the following disclaimer in the
  15 *    documentation and/or other materials provided with the distribution.
  16 * 3. Neither the names of the copyright holders nor the names of its
  17 *    contributors may be used to endorse or promote products derived from
  18 *    this software without specific prior written permission.
  19 *
  20 * Alternatively, this software may be distributed under the terms of the
  21 * GNU General Public License ("GPL") version 2 as published by the Free
  22 * Software Foundation.
  23 *
  24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  27 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  28 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  34 * POSSIBILITY OF SUCH DAMAGE.
  35 */
  36
  37#include <crypto/aead.h>
  38#include <crypto/aes.h>
  39#include <crypto/rng.h>
  40#include "crypto.h"
  41#include "msg.h"
  42#include "bcast.h"
  43
  44#define TIPC_TX_GRACE_PERIOD    msecs_to_jiffies(5000) /* 5s */
  45#define TIPC_TX_LASTING_TIME    msecs_to_jiffies(10000) /* 10s */
  46#define TIPC_RX_ACTIVE_LIM      msecs_to_jiffies(3000) /* 3s */
  47#define TIPC_RX_PASSIVE_LIM     msecs_to_jiffies(15000) /* 15s */
  48
  49#define TIPC_MAX_TFMS_DEF       10
  50#define TIPC_MAX_TFMS_LIM       1000
  51
  52#define TIPC_REKEYING_INTV_DEF  (60 * 24) /* default: 1 day */
  53
  54/**
  55 * TIPC Key ids
  56 */
  57enum {
  58        KEY_MASTER = 0,
  59        KEY_MIN = KEY_MASTER,
  60        KEY_1 = 1,
  61        KEY_2,
  62        KEY_3,
  63        KEY_MAX = KEY_3,
  64};
  65
  66/**
  67 * TIPC Crypto statistics
  68 */
  69enum {
  70        STAT_OK,
  71        STAT_NOK,
  72        STAT_ASYNC,
  73        STAT_ASYNC_OK,
  74        STAT_ASYNC_NOK,
  75        STAT_BADKEYS, /* tx only */
  76        STAT_BADMSGS = STAT_BADKEYS, /* rx only */
  77        STAT_NOKEYS,
  78        STAT_SWITCHES,
  79
  80        MAX_STATS,
  81};
  82
  83/* TIPC crypto statistics' header */
  84static const char *hstats[MAX_STATS] = {"ok", "nok", "async", "async_ok",
  85                                        "async_nok", "badmsgs", "nokeys",
  86                                        "switches"};
  87
  88/* Max TFMs number per key */
  89int sysctl_tipc_max_tfms __read_mostly = TIPC_MAX_TFMS_DEF;
  90/* Key exchange switch, default: on */
  91int sysctl_tipc_key_exchange_enabled __read_mostly = 1;
  92
  93/**
  94 * struct tipc_key - TIPC keys' status indicator
  95 *
  96 *         7     6     5     4     3     2     1     0
  97 *      +-----+-----+-----+-----+-----+-----+-----+-----+
  98 * key: | (reserved)|passive idx| active idx|pending idx|
  99 *      +-----+-----+-----+-----+-----+-----+-----+-----+
 100 */
 101struct tipc_key {
 102#define KEY_BITS (2)
 103#define KEY_MASK ((1 << KEY_BITS) - 1)
 104        union {
 105                struct {
 106#if defined(__LITTLE_ENDIAN_BITFIELD)
 107                        u8 pending:2,
 108                           active:2,
 109                           passive:2, /* rx only */
 110                           reserved:2;
 111#elif defined(__BIG_ENDIAN_BITFIELD)
 112                        u8 reserved:2,
 113                           passive:2, /* rx only */
 114                           active:2,
 115                           pending:2;
 116#else
 117#error  "Please fix <asm/byteorder.h>"
 118#endif
 119                } __packed;
 120                u8 keys;
 121        };
 122};
 123
 124/**
 125 * struct tipc_tfm - TIPC TFM structure to form a list of TFMs
 126 */
 127struct tipc_tfm {
 128        struct crypto_aead *tfm;
 129        struct list_head list;
 130};
 131
 132/**
 133 * struct tipc_aead - TIPC AEAD key structure
 134 * @tfm_entry: per-cpu pointer to one entry in TFM list
 135 * @crypto: TIPC crypto owns this key
 136 * @cloned: reference to the source key in case cloning
 137 * @users: the number of the key users (TX/RX)
 138 * @salt: the key's SALT value
 139 * @authsize: authentication tag size (max = 16)
 140 * @mode: crypto mode is applied to the key
 141 * @hint[]: a hint for user key
 142 * @rcu: struct rcu_head
 143 * @key: the aead key
 144 * @gen: the key's generation
 145 * @seqno: the key seqno (cluster scope)
 146 * @refcnt: the key reference counter
 147 */
 148struct tipc_aead {
 149#define TIPC_AEAD_HINT_LEN (5)
 150        struct tipc_tfm * __percpu *tfm_entry;
 151        struct tipc_crypto *crypto;
 152        struct tipc_aead *cloned;
 153        atomic_t users;
 154        u32 salt;
 155        u8 authsize;
 156        u8 mode;
 157        char hint[2 * TIPC_AEAD_HINT_LEN + 1];
 158        struct rcu_head rcu;
 159        struct tipc_aead_key *key;
 160        u16 gen;
 161
 162        atomic64_t seqno ____cacheline_aligned;
 163        refcount_t refcnt ____cacheline_aligned;
 164
 165} ____cacheline_aligned;
 166
 167/**
 168 * struct tipc_crypto_stats - TIPC Crypto statistics
 169 */
 170struct tipc_crypto_stats {
 171        unsigned int stat[MAX_STATS];
 172};
 173
 174/**
 175 * struct tipc_crypto - TIPC TX/RX crypto structure
 176 * @net: struct net
 177 * @node: TIPC node (RX)
 178 * @aead: array of pointers to AEAD keys for encryption/decryption
 179 * @peer_rx_active: replicated peer RX active key index
 180 * @key_gen: TX/RX key generation
 181 * @key: the key states
 182 * @skey_mode: session key's mode
 183 * @skey: received session key
 184 * @wq: common workqueue on TX crypto
 185 * @work: delayed work sched for TX/RX
 186 * @key_distr: key distributing state
 187 * @rekeying_intv: rekeying interval (in minutes)
 188 * @stats: the crypto statistics
 189 * @name: the crypto name
 190 * @sndnxt: the per-peer sndnxt (TX)
 191 * @timer1: general timer 1 (jiffies)
 192 * @timer2: general timer 2 (jiffies)
 193 * @working: the crypto is working or not
 194 * @key_master: flag indicates if master key exists
 195 * @legacy_user: flag indicates if a peer joins w/o master key (for bwd comp.)
 196 * @nokey: no key indication
 197 * @lock: tipc_key lock
 198 */
 199struct tipc_crypto {
 200        struct net *net;
 201        struct tipc_node *node;
 202        struct tipc_aead __rcu *aead[KEY_MAX + 1];
 203        atomic_t peer_rx_active;
 204        u16 key_gen;
 205        struct tipc_key key;
 206        u8 skey_mode;
 207        struct tipc_aead_key *skey;
 208        struct workqueue_struct *wq;
 209        struct delayed_work work;
 210#define KEY_DISTR_SCHED         1
 211#define KEY_DISTR_COMPL         2
 212        atomic_t key_distr;
 213        u32 rekeying_intv;
 214
 215        struct tipc_crypto_stats __percpu *stats;
 216        char name[48];
 217
 218        atomic64_t sndnxt ____cacheline_aligned;
 219        unsigned long timer1;
 220        unsigned long timer2;
 221        union {
 222                struct {
 223                        u8 working:1;
 224                        u8 key_master:1;
 225                        u8 legacy_user:1;
 226                        u8 nokey: 1;
 227                };
 228                u8 flags;
 229        };
 230        spinlock_t lock; /* crypto lock */
 231
 232} ____cacheline_aligned;
 233
 234/* struct tipc_crypto_tx_ctx - TX context for callbacks */
 235struct tipc_crypto_tx_ctx {
 236        struct tipc_aead *aead;
 237        struct tipc_bearer *bearer;
 238        struct tipc_media_addr dst;
 239};
 240
 241/* struct tipc_crypto_rx_ctx - RX context for callbacks */
 242struct tipc_crypto_rx_ctx {
 243        struct tipc_aead *aead;
 244        struct tipc_bearer *bearer;
 245};
 246
 247static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead);
 248static inline void tipc_aead_put(struct tipc_aead *aead);
 249static void tipc_aead_free(struct rcu_head *rp);
 250static int tipc_aead_users(struct tipc_aead __rcu *aead);
 251static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim);
 252static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim);
 253static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val);
 254static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead);
 255static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
 256                          u8 mode);
 257static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src);
 258static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
 259                                 unsigned int crypto_ctx_size,
 260                                 u8 **iv, struct aead_request **req,
 261                                 struct scatterlist **sg, int nsg);
 262static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
 263                             struct tipc_bearer *b,
 264                             struct tipc_media_addr *dst,
 265                             struct tipc_node *__dnode);
 266static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err);
 267static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
 268                             struct sk_buff *skb, struct tipc_bearer *b);
 269static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err);
 270static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr);
 271static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
 272                           u8 tx_key, struct sk_buff *skb,
 273                           struct tipc_crypto *__rx);
 274static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
 275                                             u8 new_passive,
 276                                             u8 new_active,
 277                                             u8 new_pending);
 278static int tipc_crypto_key_attach(struct tipc_crypto *c,
 279                                  struct tipc_aead *aead, u8 pos,
 280                                  bool master_key);
 281static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending);
 282static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
 283                                                 struct tipc_crypto *rx,
 284                                                 struct sk_buff *skb,
 285                                                 u8 tx_key);
 286static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb);
 287static int tipc_crypto_key_revoke(struct net *net, u8 tx_key);
 288static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
 289                                         struct tipc_bearer *b,
 290                                         struct tipc_media_addr *dst,
 291                                         struct tipc_node *__dnode, u8 type);
 292static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
 293                                     struct tipc_bearer *b,
 294                                     struct sk_buff **skb, int err);
 295static void tipc_crypto_do_cmd(struct net *net, int cmd);
 296static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf);
 297static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
 298                                  char *buf);
 299static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
 300                                u16 gen, u8 mode, u32 dnode);
 301static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr);
 302static void tipc_crypto_work_tx(struct work_struct *work);
 303static void tipc_crypto_work_rx(struct work_struct *work);
 304static int tipc_aead_key_generate(struct tipc_aead_key *skey);
 305
 306#define is_tx(crypto) (!(crypto)->node)
 307#define is_rx(crypto) (!is_tx(crypto))
 308
 309#define key_next(cur) ((cur) % KEY_MAX + 1)
 310
 311#define tipc_aead_rcu_ptr(rcu_ptr, lock)                                \
 312        rcu_dereference_protected((rcu_ptr), lockdep_is_held(lock))
 313
 314#define tipc_aead_rcu_replace(rcu_ptr, ptr, lock)                       \
 315do {                                                                    \
 316        typeof(rcu_ptr) __tmp = rcu_dereference_protected((rcu_ptr),    \
 317                                                lockdep_is_held(lock)); \
 318        rcu_assign_pointer((rcu_ptr), (ptr));                           \
 319        tipc_aead_put(__tmp);                                           \
 320} while (0)
 321
 322#define tipc_crypto_key_detach(rcu_ptr, lock)                           \
 323        tipc_aead_rcu_replace((rcu_ptr), NULL, lock)
 324
 325/**
 326 * tipc_aead_key_validate - Validate a AEAD user key
 327 */
 328int tipc_aead_key_validate(struct tipc_aead_key *ukey, struct genl_info *info)
 329{
 330        int keylen;
 331
 332        /* Check if algorithm exists */
 333        if (unlikely(!crypto_has_alg(ukey->alg_name, 0, 0))) {
 334                GENL_SET_ERR_MSG(info, "unable to load the algorithm (module existed?)");
 335                return -ENODEV;
 336        }
 337
 338        /* Currently, we only support the "gcm(aes)" cipher algorithm */
 339        if (strcmp(ukey->alg_name, "gcm(aes)")) {
 340                GENL_SET_ERR_MSG(info, "not supported yet the algorithm");
 341                return -ENOTSUPP;
 342        }
 343
 344        /* Check if key size is correct */
 345        keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
 346        if (unlikely(keylen != TIPC_AES_GCM_KEY_SIZE_128 &&
 347                     keylen != TIPC_AES_GCM_KEY_SIZE_192 &&
 348                     keylen != TIPC_AES_GCM_KEY_SIZE_256)) {
 349                GENL_SET_ERR_MSG(info, "incorrect key length (20, 28 or 36 octets?)");
 350                return -EKEYREJECTED;
 351        }
 352
 353        return 0;
 354}
 355
 356/**
 357 * tipc_aead_key_generate - Generate new session key
 358 * @skey: input/output key with new content
 359 *
 360 * Return: 0 in case of success, otherwise < 0
 361 */
 362static int tipc_aead_key_generate(struct tipc_aead_key *skey)
 363{
 364        int rc = 0;
 365
 366        /* Fill the key's content with a random value via RNG cipher */
 367        rc = crypto_get_default_rng();
 368        if (likely(!rc)) {
 369                rc = crypto_rng_get_bytes(crypto_default_rng, skey->key,
 370                                          skey->keylen);
 371                crypto_put_default_rng();
 372        }
 373
 374        return rc;
 375}
 376
 377static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead)
 378{
 379        struct tipc_aead *tmp;
 380
 381        rcu_read_lock();
 382        tmp = rcu_dereference(aead);
 383        if (unlikely(!tmp || !refcount_inc_not_zero(&tmp->refcnt)))
 384                tmp = NULL;
 385        rcu_read_unlock();
 386
 387        return tmp;
 388}
 389
 390static inline void tipc_aead_put(struct tipc_aead *aead)
 391{
 392        if (aead && refcount_dec_and_test(&aead->refcnt))
 393                call_rcu(&aead->rcu, tipc_aead_free);
 394}
 395
 396/**
 397 * tipc_aead_free - Release AEAD key incl. all the TFMs in the list
 398 * @rp: rcu head pointer
 399 */
 400static void tipc_aead_free(struct rcu_head *rp)
 401{
 402        struct tipc_aead *aead = container_of(rp, struct tipc_aead, rcu);
 403        struct tipc_tfm *tfm_entry, *head, *tmp;
 404
 405        if (aead->cloned) {
 406                tipc_aead_put(aead->cloned);
 407        } else {
 408                head = *get_cpu_ptr(aead->tfm_entry);
 409                put_cpu_ptr(aead->tfm_entry);
 410                list_for_each_entry_safe(tfm_entry, tmp, &head->list, list) {
 411                        crypto_free_aead(tfm_entry->tfm);
 412                        list_del(&tfm_entry->list);
 413                        kfree(tfm_entry);
 414                }
 415                /* Free the head */
 416                crypto_free_aead(head->tfm);
 417                list_del(&head->list);
 418                kfree(head);
 419        }
 420        free_percpu(aead->tfm_entry);
 421        kfree_sensitive(aead->key);
 422        kfree(aead);
 423}
 424
 425static int tipc_aead_users(struct tipc_aead __rcu *aead)
 426{
 427        struct tipc_aead *tmp;
 428        int users = 0;
 429
 430        rcu_read_lock();
 431        tmp = rcu_dereference(aead);
 432        if (tmp)
 433                users = atomic_read(&tmp->users);
 434        rcu_read_unlock();
 435
 436        return users;
 437}
 438
 439static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim)
 440{
 441        struct tipc_aead *tmp;
 442
 443        rcu_read_lock();
 444        tmp = rcu_dereference(aead);
 445        if (tmp)
 446                atomic_add_unless(&tmp->users, 1, lim);
 447        rcu_read_unlock();
 448}
 449
 450static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim)
 451{
 452        struct tipc_aead *tmp;
 453
 454        rcu_read_lock();
 455        tmp = rcu_dereference(aead);
 456        if (tmp)
 457                atomic_add_unless(&rcu_dereference(aead)->users, -1, lim);
 458        rcu_read_unlock();
 459}
 460
 461static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val)
 462{
 463        struct tipc_aead *tmp;
 464        int cur;
 465
 466        rcu_read_lock();
 467        tmp = rcu_dereference(aead);
 468        if (tmp) {
 469                do {
 470                        cur = atomic_read(&tmp->users);
 471                        if (cur == val)
 472                                break;
 473                } while (atomic_cmpxchg(&tmp->users, cur, val) != cur);
 474        }
 475        rcu_read_unlock();
 476}
 477
 478/**
 479 * tipc_aead_tfm_next - Move TFM entry to the next one in list and return it
 480 */
 481static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead)
 482{
 483        struct tipc_tfm **tfm_entry;
 484        struct crypto_aead *tfm;
 485
 486        tfm_entry = get_cpu_ptr(aead->tfm_entry);
 487        *tfm_entry = list_next_entry(*tfm_entry, list);
 488        tfm = (*tfm_entry)->tfm;
 489        put_cpu_ptr(tfm_entry);
 490
 491        return tfm;
 492}
 493
 494/**
 495 * tipc_aead_init - Initiate TIPC AEAD
 496 * @aead: returned new TIPC AEAD key handle pointer
 497 * @ukey: pointer to user key data
 498 * @mode: the key mode
 499 *
 500 * Allocate a (list of) new cipher transformation (TFM) with the specific user
 501 * key data if valid. The number of the allocated TFMs can be set via the sysfs
 502 * "net/tipc/max_tfms" first.
 503 * Also, all the other AEAD data are also initialized.
 504 *
 505 * Return: 0 if the initiation is successful, otherwise: < 0
 506 */
 507static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
 508                          u8 mode)
 509{
 510        struct tipc_tfm *tfm_entry, *head;
 511        struct crypto_aead *tfm;
 512        struct tipc_aead *tmp;
 513        int keylen, err, cpu;
 514        int tfm_cnt = 0;
 515
 516        if (unlikely(*aead))
 517                return -EEXIST;
 518
 519        /* Allocate a new AEAD */
 520        tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC);
 521        if (unlikely(!tmp))
 522                return -ENOMEM;
 523
 524        /* The key consists of two parts: [AES-KEY][SALT] */
 525        keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
 526
 527        /* Allocate per-cpu TFM entry pointer */
 528        tmp->tfm_entry = alloc_percpu(struct tipc_tfm *);
 529        if (!tmp->tfm_entry) {
 530                kfree_sensitive(tmp);
 531                return -ENOMEM;
 532        }
 533
 534        /* Make a list of TFMs with the user key data */
 535        do {
 536                tfm = crypto_alloc_aead(ukey->alg_name, 0, 0);
 537                if (IS_ERR(tfm)) {
 538                        err = PTR_ERR(tfm);
 539                        break;
 540                }
 541
 542                if (unlikely(!tfm_cnt &&
 543                             crypto_aead_ivsize(tfm) != TIPC_AES_GCM_IV_SIZE)) {
 544                        crypto_free_aead(tfm);
 545                        err = -ENOTSUPP;
 546                        break;
 547                }
 548
 549                err = crypto_aead_setauthsize(tfm, TIPC_AES_GCM_TAG_SIZE);
 550                err |= crypto_aead_setkey(tfm, ukey->key, keylen);
 551                if (unlikely(err)) {
 552                        crypto_free_aead(tfm);
 553                        break;
 554                }
 555
 556                tfm_entry = kmalloc(sizeof(*tfm_entry), GFP_KERNEL);
 557                if (unlikely(!tfm_entry)) {
 558                        crypto_free_aead(tfm);
 559                        err = -ENOMEM;
 560                        break;
 561                }
 562                INIT_LIST_HEAD(&tfm_entry->list);
 563                tfm_entry->tfm = tfm;
 564
 565                /* First entry? */
 566                if (!tfm_cnt) {
 567                        head = tfm_entry;
 568                        for_each_possible_cpu(cpu) {
 569                                *per_cpu_ptr(tmp->tfm_entry, cpu) = head;
 570                        }
 571                } else {
 572                        list_add_tail(&tfm_entry->list, &head->list);
 573                }
 574
 575        } while (++tfm_cnt < sysctl_tipc_max_tfms);
 576
 577        /* Not any TFM is allocated? */
 578        if (!tfm_cnt) {
 579                free_percpu(tmp->tfm_entry);
 580                kfree_sensitive(tmp);
 581                return err;
 582        }
 583
 584        /* Form a hex string of some last bytes as the key's hint */
 585        bin2hex(tmp->hint, ukey->key + keylen - TIPC_AEAD_HINT_LEN,
 586                TIPC_AEAD_HINT_LEN);
 587
 588        /* Initialize the other data */
 589        tmp->mode = mode;
 590        tmp->cloned = NULL;
 591        tmp->authsize = TIPC_AES_GCM_TAG_SIZE;
 592        tmp->key = kmemdup(ukey, tipc_aead_key_size(ukey), GFP_KERNEL);
 593        memcpy(&tmp->salt, ukey->key + keylen, TIPC_AES_GCM_SALT_SIZE);
 594        atomic_set(&tmp->users, 0);
 595        atomic64_set(&tmp->seqno, 0);
 596        refcount_set(&tmp->refcnt, 1);
 597
 598        *aead = tmp;
 599        return 0;
 600}
 601
 602/**
 603 * tipc_aead_clone - Clone a TIPC AEAD key
 604 * @dst: dest key for the cloning
 605 * @src: source key to clone from
 606 *
 607 * Make a "copy" of the source AEAD key data to the dest, the TFMs list is
 608 * common for the keys.
 609 * A reference to the source is hold in the "cloned" pointer for the later
 610 * freeing purposes.
 611 *
 612 * Note: this must be done in cluster-key mode only!
 613 * Return: 0 in case of success, otherwise < 0
 614 */
 615static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src)
 616{
 617        struct tipc_aead *aead;
 618        int cpu;
 619
 620        if (!src)
 621                return -ENOKEY;
 622
 623        if (src->mode != CLUSTER_KEY)
 624                return -EINVAL;
 625
 626        if (unlikely(*dst))
 627                return -EEXIST;
 628
 629        aead = kzalloc(sizeof(*aead), GFP_ATOMIC);
 630        if (unlikely(!aead))
 631                return -ENOMEM;
 632
 633        aead->tfm_entry = alloc_percpu_gfp(struct tipc_tfm *, GFP_ATOMIC);
 634        if (unlikely(!aead->tfm_entry)) {
 635                kfree_sensitive(aead);
 636                return -ENOMEM;
 637        }
 638
 639        for_each_possible_cpu(cpu) {
 640                *per_cpu_ptr(aead->tfm_entry, cpu) =
 641                                *per_cpu_ptr(src->tfm_entry, cpu);
 642        }
 643
 644        memcpy(aead->hint, src->hint, sizeof(src->hint));
 645        aead->mode = src->mode;
 646        aead->salt = src->salt;
 647        aead->authsize = src->authsize;
 648        atomic_set(&aead->users, 0);
 649        atomic64_set(&aead->seqno, 0);
 650        refcount_set(&aead->refcnt, 1);
 651
 652        WARN_ON(!refcount_inc_not_zero(&src->refcnt));
 653        aead->cloned = src;
 654
 655        *dst = aead;
 656        return 0;
 657}
 658
 659/**
 660 * tipc_aead_mem_alloc - Allocate memory for AEAD request operations
 661 * @tfm: cipher handle to be registered with the request
 662 * @crypto_ctx_size: size of crypto context for callback
 663 * @iv: returned pointer to IV data
 664 * @req: returned pointer to AEAD request data
 665 * @sg: returned pointer to SG lists
 666 * @nsg: number of SG lists to be allocated
 667 *
 668 * Allocate memory to store the crypto context data, AEAD request, IV and SG
 669 * lists, the memory layout is as follows:
 670 * crypto_ctx || iv || aead_req || sg[]
 671 *
 672 * Return: the pointer to the memory areas in case of success, otherwise NULL
 673 */
 674static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
 675                                 unsigned int crypto_ctx_size,
 676                                 u8 **iv, struct aead_request **req,
 677                                 struct scatterlist **sg, int nsg)
 678{
 679        unsigned int iv_size, req_size;
 680        unsigned int len;
 681        u8 *mem;
 682
 683        iv_size = crypto_aead_ivsize(tfm);
 684        req_size = sizeof(**req) + crypto_aead_reqsize(tfm);
 685
 686        len = crypto_ctx_size;
 687        len += iv_size;
 688        len += crypto_aead_alignmask(tfm) & ~(crypto_tfm_ctx_alignment() - 1);
 689        len = ALIGN(len, crypto_tfm_ctx_alignment());
 690        len += req_size;
 691        len = ALIGN(len, __alignof__(struct scatterlist));
 692        len += nsg * sizeof(**sg);
 693
 694        mem = kmalloc(len, GFP_ATOMIC);
 695        if (!mem)
 696                return NULL;
 697
 698        *iv = (u8 *)PTR_ALIGN(mem + crypto_ctx_size,
 699                              crypto_aead_alignmask(tfm) + 1);
 700        *req = (struct aead_request *)PTR_ALIGN(*iv + iv_size,
 701                                                crypto_tfm_ctx_alignment());
 702        *sg = (struct scatterlist *)PTR_ALIGN((u8 *)*req + req_size,
 703                                              __alignof__(struct scatterlist));
 704
 705        return (void *)mem;
 706}
 707
 708/**
 709 * tipc_aead_encrypt - Encrypt a message
 710 * @aead: TIPC AEAD key for the message encryption
 711 * @skb: the input/output skb
 712 * @b: TIPC bearer where the message will be delivered after the encryption
 713 * @dst: the destination media address
 714 * @__dnode: TIPC dest node if "known"
 715 *
 716 * Return:
 717 * 0                   : if the encryption has completed
 718 * -EINPROGRESS/-EBUSY : if a callback will be performed
 719 * < 0                 : the encryption has failed
 720 */
 721static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
 722                             struct tipc_bearer *b,
 723                             struct tipc_media_addr *dst,
 724                             struct tipc_node *__dnode)
 725{
 726        struct crypto_aead *tfm = tipc_aead_tfm_next(aead);
 727        struct tipc_crypto_tx_ctx *tx_ctx;
 728        struct aead_request *req;
 729        struct sk_buff *trailer;
 730        struct scatterlist *sg;
 731        struct tipc_ehdr *ehdr;
 732        int ehsz, len, tailen, nsg, rc;
 733        void *ctx;
 734        u32 salt;
 735        u8 *iv;
 736
 737        /* Make sure message len at least 4-byte aligned */
 738        len = ALIGN(skb->len, 4);
 739        tailen = len - skb->len + aead->authsize;
 740
 741        /* Expand skb tail for authentication tag:
 742         * As for simplicity, we'd have made sure skb having enough tailroom
 743         * for authentication tag @skb allocation. Even when skb is nonlinear
 744         * but there is no frag_list, it should be still fine!
 745         * Otherwise, we must cow it to be a writable buffer with the tailroom.
 746         */
 747        SKB_LINEAR_ASSERT(skb);
 748        if (tailen > skb_tailroom(skb)) {
 749                pr_debug("TX(): skb tailroom is not enough: %d, requires: %d\n",
 750                         skb_tailroom(skb), tailen);
 751        }
 752
 753        if (unlikely(!skb_cloned(skb) && tailen <= skb_tailroom(skb))) {
 754                nsg = 1;
 755                trailer = skb;
 756        } else {
 757                /* TODO: We could avoid skb_cow_data() if skb has no frag_list
 758                 * e.g. by skb_fill_page_desc() to add another page to the skb
 759                 * with the wanted tailen... However, page skbs look not often,
 760                 * so take it easy now!
 761                 * Cloned skbs e.g. from link_xmit() seems no choice though :(
 762                 */
 763                nsg = skb_cow_data(skb, tailen, &trailer);
 764                if (unlikely(nsg < 0)) {
 765                        pr_err("TX: skb_cow_data() returned %d\n", nsg);
 766                        return nsg;
 767                }
 768        }
 769
 770        pskb_put(skb, trailer, tailen);
 771
 772        /* Allocate memory for the AEAD operation */
 773        ctx = tipc_aead_mem_alloc(tfm, sizeof(*tx_ctx), &iv, &req, &sg, nsg);
 774        if (unlikely(!ctx))
 775                return -ENOMEM;
 776        TIPC_SKB_CB(skb)->crypto_ctx = ctx;
 777
 778        /* Map skb to the sg lists */
 779        sg_init_table(sg, nsg);
 780        rc = skb_to_sgvec(skb, sg, 0, skb->len);
 781        if (unlikely(rc < 0)) {
 782                pr_err("TX: skb_to_sgvec() returned %d, nsg %d!\n", rc, nsg);
 783                goto exit;
 784        }
 785
 786        /* Prepare IV: [SALT (4 octets)][SEQNO (8 octets)]
 787         * In case we're in cluster-key mode, SALT is varied by xor-ing with
 788         * the source address (or w0 of id), otherwise with the dest address
 789         * if dest is known.
 790         */
 791        ehdr = (struct tipc_ehdr *)skb->data;
 792        salt = aead->salt;
 793        if (aead->mode == CLUSTER_KEY)
 794                salt ^= ehdr->addr; /* __be32 */
 795        else if (__dnode)
 796                salt ^= tipc_node_get_addr(__dnode);
 797        memcpy(iv, &salt, 4);
 798        memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
 799
 800        /* Prepare request */
 801        ehsz = tipc_ehdr_size(ehdr);
 802        aead_request_set_tfm(req, tfm);
 803        aead_request_set_ad(req, ehsz);
 804        aead_request_set_crypt(req, sg, sg, len - ehsz, iv);
 805
 806        /* Set callback function & data */
 807        aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 808                                  tipc_aead_encrypt_done, skb);
 809        tx_ctx = (struct tipc_crypto_tx_ctx *)ctx;
 810        tx_ctx->aead = aead;
 811        tx_ctx->bearer = b;
 812        memcpy(&tx_ctx->dst, dst, sizeof(*dst));
 813
 814        /* Hold bearer */
 815        if (unlikely(!tipc_bearer_hold(b))) {
 816                rc = -ENODEV;
 817                goto exit;
 818        }
 819
 820        /* Now, do encrypt */
 821        rc = crypto_aead_encrypt(req);
 822        if (rc == -EINPROGRESS || rc == -EBUSY)
 823                return rc;
 824
 825        tipc_bearer_put(b);
 826
 827exit:
 828        kfree(ctx);
 829        TIPC_SKB_CB(skb)->crypto_ctx = NULL;
 830        return rc;
 831}
 832
 833static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err)
 834{
 835        struct sk_buff *skb = base->data;
 836        struct tipc_crypto_tx_ctx *tx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
 837        struct tipc_bearer *b = tx_ctx->bearer;
 838        struct tipc_aead *aead = tx_ctx->aead;
 839        struct tipc_crypto *tx = aead->crypto;
 840        struct net *net = tx->net;
 841
 842        switch (err) {
 843        case 0:
 844                this_cpu_inc(tx->stats->stat[STAT_ASYNC_OK]);
 845                rcu_read_lock();
 846                if (likely(test_bit(0, &b->up)))
 847                        b->media->send_msg(net, skb, b, &tx_ctx->dst);
 848                else
 849                        kfree_skb(skb);
 850                rcu_read_unlock();
 851                break;
 852        case -EINPROGRESS:
 853                return;
 854        default:
 855                this_cpu_inc(tx->stats->stat[STAT_ASYNC_NOK]);
 856                kfree_skb(skb);
 857                break;
 858        }
 859
 860        kfree(tx_ctx);
 861        tipc_bearer_put(b);
 862        tipc_aead_put(aead);
 863}
 864
 865/**
 866 * tipc_aead_decrypt - Decrypt an encrypted message
 867 * @net: struct net
 868 * @aead: TIPC AEAD for the message decryption
 869 * @skb: the input/output skb
 870 * @b: TIPC bearer where the message has been received
 871 *
 872 * Return:
 873 * 0                   : if the decryption has completed
 874 * -EINPROGRESS/-EBUSY : if a callback will be performed
 875 * < 0                 : the decryption has failed
 876 */
 877static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
 878                             struct sk_buff *skb, struct tipc_bearer *b)
 879{
 880        struct tipc_crypto_rx_ctx *rx_ctx;
 881        struct aead_request *req;
 882        struct crypto_aead *tfm;
 883        struct sk_buff *unused;
 884        struct scatterlist *sg;
 885        struct tipc_ehdr *ehdr;
 886        int ehsz, nsg, rc;
 887        void *ctx;
 888        u32 salt;
 889        u8 *iv;
 890
 891        if (unlikely(!aead))
 892                return -ENOKEY;
 893
 894        /* Cow skb data if needed */
 895        if (likely(!skb_cloned(skb) &&
 896                   (!skb_is_nonlinear(skb) || !skb_has_frag_list(skb)))) {
 897                nsg = 1 + skb_shinfo(skb)->nr_frags;
 898        } else {
 899                nsg = skb_cow_data(skb, 0, &unused);
 900                if (unlikely(nsg < 0)) {
 901                        pr_err("RX: skb_cow_data() returned %d\n", nsg);
 902                        return nsg;
 903                }
 904        }
 905
 906        /* Allocate memory for the AEAD operation */
 907        tfm = tipc_aead_tfm_next(aead);
 908        ctx = tipc_aead_mem_alloc(tfm, sizeof(*rx_ctx), &iv, &req, &sg, nsg);
 909        if (unlikely(!ctx))
 910                return -ENOMEM;
 911        TIPC_SKB_CB(skb)->crypto_ctx = ctx;
 912
 913        /* Map skb to the sg lists */
 914        sg_init_table(sg, nsg);
 915        rc = skb_to_sgvec(skb, sg, 0, skb->len);
 916        if (unlikely(rc < 0)) {
 917                pr_err("RX: skb_to_sgvec() returned %d, nsg %d\n", rc, nsg);
 918                goto exit;
 919        }
 920
 921        /* Reconstruct IV: */
 922        ehdr = (struct tipc_ehdr *)skb->data;
 923        salt = aead->salt;
 924        if (aead->mode == CLUSTER_KEY)
 925                salt ^= ehdr->addr; /* __be32 */
 926        else if (ehdr->destined)
 927                salt ^= tipc_own_addr(net);
 928        memcpy(iv, &salt, 4);
 929        memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
 930
 931        /* Prepare request */
 932        ehsz = tipc_ehdr_size(ehdr);
 933        aead_request_set_tfm(req, tfm);
 934        aead_request_set_ad(req, ehsz);
 935        aead_request_set_crypt(req, sg, sg, skb->len - ehsz, iv);
 936
 937        /* Set callback function & data */
 938        aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 939                                  tipc_aead_decrypt_done, skb);
 940        rx_ctx = (struct tipc_crypto_rx_ctx *)ctx;
 941        rx_ctx->aead = aead;
 942        rx_ctx->bearer = b;
 943
 944        /* Hold bearer */
 945        if (unlikely(!tipc_bearer_hold(b))) {
 946                rc = -ENODEV;
 947                goto exit;
 948        }
 949
 950        /* Now, do decrypt */
 951        rc = crypto_aead_decrypt(req);
 952        if (rc == -EINPROGRESS || rc == -EBUSY)
 953                return rc;
 954
 955        tipc_bearer_put(b);
 956
 957exit:
 958        kfree(ctx);
 959        TIPC_SKB_CB(skb)->crypto_ctx = NULL;
 960        return rc;
 961}
 962
 963static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err)
 964{
 965        struct sk_buff *skb = base->data;
 966        struct tipc_crypto_rx_ctx *rx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
 967        struct tipc_bearer *b = rx_ctx->bearer;
 968        struct tipc_aead *aead = rx_ctx->aead;
 969        struct tipc_crypto_stats __percpu *stats = aead->crypto->stats;
 970        struct net *net = aead->crypto->net;
 971
 972        switch (err) {
 973        case 0:
 974                this_cpu_inc(stats->stat[STAT_ASYNC_OK]);
 975                break;
 976        case -EINPROGRESS:
 977                return;
 978        default:
 979                this_cpu_inc(stats->stat[STAT_ASYNC_NOK]);
 980                break;
 981        }
 982
 983        kfree(rx_ctx);
 984        tipc_crypto_rcv_complete(net, aead, b, &skb, err);
 985        if (likely(skb)) {
 986                if (likely(test_bit(0, &b->up)))
 987                        tipc_rcv(net, skb, b);
 988                else
 989                        kfree_skb(skb);
 990        }
 991
 992        tipc_bearer_put(b);
 993}
 994
 995static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr)
 996{
 997        return (ehdr->user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
 998}
 999
1000/**
1001 * tipc_ehdr_validate - Validate an encryption message
1002 * @skb: the message buffer
1003 *
1004 * Returns "true" if this is a valid encryption message, otherwise "false"
1005 */
1006bool tipc_ehdr_validate(struct sk_buff *skb)
1007{
1008        struct tipc_ehdr *ehdr;
1009        int ehsz;
1010
1011        if (unlikely(!pskb_may_pull(skb, EHDR_MIN_SIZE)))
1012                return false;
1013
1014        ehdr = (struct tipc_ehdr *)skb->data;
1015        if (unlikely(ehdr->version != TIPC_EVERSION))
1016                return false;
1017        ehsz = tipc_ehdr_size(ehdr);
1018        if (unlikely(!pskb_may_pull(skb, ehsz)))
1019                return false;
1020        if (unlikely(skb->len <= ehsz + TIPC_AES_GCM_TAG_SIZE))
1021                return false;
1022
1023        return true;
1024}
1025
1026/**
1027 * tipc_ehdr_build - Build TIPC encryption message header
1028 * @net: struct net
1029 * @aead: TX AEAD key to be used for the message encryption
1030 * @tx_key: key id used for the message encryption
1031 * @skb: input/output message skb
1032 * @__rx: RX crypto handle if dest is "known"
1033 *
1034 * Return: the header size if the building is successful, otherwise < 0
1035 */
1036static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
1037                           u8 tx_key, struct sk_buff *skb,
1038                           struct tipc_crypto *__rx)
1039{
1040        struct tipc_msg *hdr = buf_msg(skb);
1041        struct tipc_ehdr *ehdr;
1042        u32 user = msg_user(hdr);
1043        u64 seqno;
1044        int ehsz;
1045
1046        /* Make room for encryption header */
1047        ehsz = (user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
1048        WARN_ON(skb_headroom(skb) < ehsz);
1049        ehdr = (struct tipc_ehdr *)skb_push(skb, ehsz);
1050
1051        /* Obtain a seqno first:
1052         * Use the key seqno (= cluster wise) if dest is unknown or we're in
1053         * cluster key mode, otherwise it's better for a per-peer seqno!
1054         */
1055        if (!__rx || aead->mode == CLUSTER_KEY)
1056                seqno = atomic64_inc_return(&aead->seqno);
1057        else
1058                seqno = atomic64_inc_return(&__rx->sndnxt);
1059
1060        /* Revoke the key if seqno is wrapped around */
1061        if (unlikely(!seqno))
1062                return tipc_crypto_key_revoke(net, tx_key);
1063
1064        /* Word 1-2 */
1065        ehdr->seqno = cpu_to_be64(seqno);
1066
1067        /* Words 0, 3- */
1068        ehdr->version = TIPC_EVERSION;
1069        ehdr->user = 0;
1070        ehdr->keepalive = 0;
1071        ehdr->tx_key = tx_key;
1072        ehdr->destined = (__rx) ? 1 : 0;
1073        ehdr->rx_key_active = (__rx) ? __rx->key.active : 0;
1074        ehdr->rx_nokey = (__rx) ? __rx->nokey : 0;
1075        ehdr->master_key = aead->crypto->key_master;
1076        ehdr->reserved_1 = 0;
1077        ehdr->reserved_2 = 0;
1078
1079        switch (user) {
1080        case LINK_CONFIG:
1081                ehdr->user = LINK_CONFIG;
1082                memcpy(ehdr->id, tipc_own_id(net), NODE_ID_LEN);
1083                break;
1084        default:
1085                if (user == LINK_PROTOCOL && msg_type(hdr) == STATE_MSG) {
1086                        ehdr->user = LINK_PROTOCOL;
1087                        ehdr->keepalive = msg_is_keepalive(hdr);
1088                }
1089                ehdr->addr = hdr->hdr[3];
1090                break;
1091        }
1092
1093        return ehsz;
1094}
1095
1096static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
1097                                             u8 new_passive,
1098                                             u8 new_active,
1099                                             u8 new_pending)
1100{
1101        struct tipc_key old = c->key;
1102        char buf[32];
1103
1104        c->key.keys = ((new_passive & KEY_MASK) << (KEY_BITS * 2)) |
1105                      ((new_active  & KEY_MASK) << (KEY_BITS)) |
1106                      ((new_pending & KEY_MASK));
1107
1108        pr_debug("%s: key changing %s ::%pS\n", c->name,
1109                 tipc_key_change_dump(old, c->key, buf),
1110                 __builtin_return_address(0));
1111}
1112
1113/**
1114 * tipc_crypto_key_init - Initiate a new user / AEAD key
1115 * @c: TIPC crypto to which new key is attached
1116 * @ukey: the user key
1117 * @mode: the key mode (CLUSTER_KEY or PER_NODE_KEY)
1118 * @master_key: specify this is a cluster master key
1119 *
1120 * A new TIPC AEAD key will be allocated and initiated with the specified user
1121 * key, then attached to the TIPC crypto.
1122 *
1123 * Return: new key id in case of success, otherwise: < 0
1124 */
1125int tipc_crypto_key_init(struct tipc_crypto *c, struct tipc_aead_key *ukey,
1126                         u8 mode, bool master_key)
1127{
1128        struct tipc_aead *aead = NULL;
1129        int rc = 0;
1130
1131        /* Initiate with the new user key */
1132        rc = tipc_aead_init(&aead, ukey, mode);
1133
1134        /* Attach it to the crypto */
1135        if (likely(!rc)) {
1136                rc = tipc_crypto_key_attach(c, aead, 0, master_key);
1137                if (rc < 0)
1138                        tipc_aead_free(&aead->rcu);
1139        }
1140
1141        return rc;
1142}
1143
1144/**
1145 * tipc_crypto_key_attach - Attach a new AEAD key to TIPC crypto
1146 * @c: TIPC crypto to which the new AEAD key is attached
1147 * @aead: the new AEAD key pointer
1148 * @pos: desired slot in the crypto key array, = 0 if any!
1149 * @master_key: specify this is a cluster master key
1150 *
1151 * Return: new key id in case of success, otherwise: -EBUSY
1152 */
1153static int tipc_crypto_key_attach(struct tipc_crypto *c,
1154                                  struct tipc_aead *aead, u8 pos,
1155                                  bool master_key)
1156{
1157        struct tipc_key key;
1158        int rc = -EBUSY;
1159        u8 new_key;
1160
1161        spin_lock_bh(&c->lock);
1162        key = c->key;
1163        if (master_key) {
1164                new_key = KEY_MASTER;
1165                goto attach;
1166        }
1167        if (key.active && key.passive)
1168                goto exit;
1169        if (key.pending) {
1170                if (tipc_aead_users(c->aead[key.pending]) > 0)
1171                        goto exit;
1172                /* if (pos): ok with replacing, will be aligned when needed */
1173                /* Replace it */
1174                new_key = key.pending;
1175        } else {
1176                if (pos) {
1177                        if (key.active && pos != key_next(key.active)) {
1178                                key.passive = pos;
1179                                new_key = pos;
1180                                goto attach;
1181                        } else if (!key.active && !key.passive) {
1182                                key.pending = pos;
1183                                new_key = pos;
1184                                goto attach;
1185                        }
1186                }
1187                key.pending = key_next(key.active ?: key.passive);
1188                new_key = key.pending;
1189        }
1190
1191attach:
1192        aead->crypto = c;
1193        aead->gen = (is_tx(c)) ? ++c->key_gen : c->key_gen;
1194        tipc_aead_rcu_replace(c->aead[new_key], aead, &c->lock);
1195        if (likely(c->key.keys != key.keys))
1196                tipc_crypto_key_set_state(c, key.passive, key.active,
1197                                          key.pending);
1198        c->working = 1;
1199        c->nokey = 0;
1200        c->key_master |= master_key;
1201        rc = new_key;
1202
1203exit:
1204        spin_unlock_bh(&c->lock);
1205        return rc;
1206}
1207
1208void tipc_crypto_key_flush(struct tipc_crypto *c)
1209{
1210        struct tipc_crypto *tx, *rx;
1211        int k;
1212
1213        spin_lock_bh(&c->lock);
1214        if (is_rx(c)) {
1215                /* Try to cancel pending work */
1216                rx = c;
1217                tx = tipc_net(rx->net)->crypto_tx;
1218                if (cancel_delayed_work(&rx->work)) {
1219                        kfree(rx->skey);
1220                        rx->skey = NULL;
1221                        atomic_xchg(&rx->key_distr, 0);
1222                        tipc_node_put(rx->node);
1223                }
1224                /* RX stopping => decrease TX key users if any */
1225                k = atomic_xchg(&rx->peer_rx_active, 0);
1226                if (k) {
1227                        tipc_aead_users_dec(tx->aead[k], 0);
1228                        /* Mark the point TX key users changed */
1229                        tx->timer1 = jiffies;
1230                }
1231        }
1232
1233        c->flags = 0;
1234        tipc_crypto_key_set_state(c, 0, 0, 0);
1235        for (k = KEY_MIN; k <= KEY_MAX; k++)
1236                tipc_crypto_key_detach(c->aead[k], &c->lock);
1237        atomic64_set(&c->sndnxt, 0);
1238        spin_unlock_bh(&c->lock);
1239}
1240
1241/**
1242 * tipc_crypto_key_try_align - Align RX keys if possible
1243 * @rx: RX crypto handle
1244 * @new_pending: new pending slot if aligned (= TX key from peer)
1245 *
1246 * Peer has used an unknown key slot, this only happens when peer has left and
1247 * rejoned, or we are newcomer.
1248 * That means, there must be no active key but a pending key at unaligned slot.
1249 * If so, we try to move the pending key to the new slot.
1250 * Note: A potential passive key can exist, it will be shifted correspondingly!
1251 *
1252 * Return: "true" if key is successfully aligned, otherwise "false"
1253 */
1254static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending)
1255{
1256        struct tipc_aead *tmp1, *tmp2 = NULL;
1257        struct tipc_key key;
1258        bool aligned = false;
1259        u8 new_passive = 0;
1260        int x;
1261
1262        spin_lock(&rx->lock);
1263        key = rx->key;
1264        if (key.pending == new_pending) {
1265                aligned = true;
1266                goto exit;
1267        }
1268        if (key.active)
1269                goto exit;
1270        if (!key.pending)
1271                goto exit;
1272        if (tipc_aead_users(rx->aead[key.pending]) > 0)
1273                goto exit;
1274
1275        /* Try to "isolate" this pending key first */
1276        tmp1 = tipc_aead_rcu_ptr(rx->aead[key.pending], &rx->lock);
1277        if (!refcount_dec_if_one(&tmp1->refcnt))
1278                goto exit;
1279        rcu_assign_pointer(rx->aead[key.pending], NULL);
1280
1281        /* Move passive key if any */
1282        if (key.passive) {
1283                tmp2 = rcu_replace_pointer(rx->aead[key.passive], tmp2, lockdep_is_held(&rx->lock));
1284                x = (key.passive - key.pending + new_pending) % KEY_MAX;
1285                new_passive = (x <= 0) ? x + KEY_MAX : x;
1286        }
1287
1288        /* Re-allocate the key(s) */
1289        tipc_crypto_key_set_state(rx, new_passive, 0, new_pending);
1290        rcu_assign_pointer(rx->aead[new_pending], tmp1);
1291        if (new_passive)
1292                rcu_assign_pointer(rx->aead[new_passive], tmp2);
1293        refcount_set(&tmp1->refcnt, 1);
1294        aligned = true;
1295        pr_info_ratelimited("%s: key[%d] -> key[%d]\n", rx->name, key.pending,
1296                            new_pending);
1297
1298exit:
1299        spin_unlock(&rx->lock);
1300        return aligned;
1301}
1302
1303/**
1304 * tipc_crypto_key_pick_tx - Pick one TX key for message decryption
1305 * @tx: TX crypto handle
1306 * @rx: RX crypto handle (can be NULL)
1307 * @skb: the message skb which will be decrypted later
1308 * @tx_key: peer TX key id
1309 *
1310 * This function looks up the existing TX keys and pick one which is suitable
1311 * for the message decryption, that must be a cluster key and not used before
1312 * on the same message (i.e. recursive).
1313 *
1314 * Return: the TX AEAD key handle in case of success, otherwise NULL
1315 */
1316static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
1317                                                 struct tipc_crypto *rx,
1318                                                 struct sk_buff *skb,
1319                                                 u8 tx_key)
1320{
1321        struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(skb);
1322        struct tipc_aead *aead = NULL;
1323        struct tipc_key key = tx->key;
1324        u8 k, i = 0;
1325
1326        /* Initialize data if not yet */
1327        if (!skb_cb->tx_clone_deferred) {
1328                skb_cb->tx_clone_deferred = 1;
1329                memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1330        }
1331
1332        skb_cb->tx_clone_ctx.rx = rx;
1333        if (++skb_cb->tx_clone_ctx.recurs > 2)
1334                return NULL;
1335
1336        /* Pick one TX key */
1337        spin_lock(&tx->lock);
1338        if (tx_key == KEY_MASTER) {
1339                aead = tipc_aead_rcu_ptr(tx->aead[KEY_MASTER], &tx->lock);
1340                goto done;
1341        }
1342        do {
1343                k = (i == 0) ? key.pending :
1344                        ((i == 1) ? key.active : key.passive);
1345                if (!k)
1346                        continue;
1347                aead = tipc_aead_rcu_ptr(tx->aead[k], &tx->lock);
1348                if (!aead)
1349                        continue;
1350                if (aead->mode != CLUSTER_KEY ||
1351                    aead == skb_cb->tx_clone_ctx.last) {
1352                        aead = NULL;
1353                        continue;
1354                }
1355                /* Ok, found one cluster key */
1356                skb_cb->tx_clone_ctx.last = aead;
1357                WARN_ON(skb->next);
1358                skb->next = skb_clone(skb, GFP_ATOMIC);
1359                if (unlikely(!skb->next))
1360                        pr_warn("Failed to clone skb for next round if any\n");
1361                break;
1362        } while (++i < 3);
1363
1364done:
1365        if (likely(aead))
1366                WARN_ON(!refcount_inc_not_zero(&aead->refcnt));
1367        spin_unlock(&tx->lock);
1368
1369        return aead;
1370}
1371
1372/**
1373 * tipc_crypto_key_synch: Synch own key data according to peer key status
1374 * @rx: RX crypto handle
1375 * @skb: TIPCv2 message buffer (incl. the ehdr from peer)
1376 *
1377 * This function updates the peer node related data as the peer RX active key
1378 * has changed, so the number of TX keys' users on this node are increased and
1379 * decreased correspondingly.
1380 *
1381 * It also considers if peer has no key, then we need to make own master key
1382 * (if any) taking over i.e. starting grace period and also trigger key
1383 * distributing process.
1384 *
1385 * The "per-peer" sndnxt is also reset when the peer key has switched.
1386 */
1387static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb)
1388{
1389        struct tipc_ehdr *ehdr = (struct tipc_ehdr *)skb_network_header(skb);
1390        struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
1391        struct tipc_msg *hdr = buf_msg(skb);
1392        u32 self = tipc_own_addr(rx->net);
1393        u8 cur, new;
1394        unsigned long delay;
1395
1396        /* Update RX 'key_master' flag according to peer, also mark "legacy" if
1397         * a peer has no master key.
1398         */
1399        rx->key_master = ehdr->master_key;
1400        if (!rx->key_master)
1401                tx->legacy_user = 1;
1402
1403        /* For later cases, apply only if message is destined to this node */
1404        if (!ehdr->destined || msg_short(hdr) || msg_destnode(hdr) != self)
1405                return;
1406
1407        /* Case 1: Peer has no keys, let's make master key take over */
1408        if (ehdr->rx_nokey) {
1409                /* Set or extend grace period */
1410                tx->timer2 = jiffies;
1411                /* Schedule key distributing for the peer if not yet */
1412                if (tx->key.keys &&
1413                    !atomic_cmpxchg(&rx->key_distr, 0, KEY_DISTR_SCHED)) {
1414                        get_random_bytes(&delay, 2);
1415                        delay %= 5;
1416                        delay = msecs_to_jiffies(500 * ++delay);
1417                        if (queue_delayed_work(tx->wq, &rx->work, delay))
1418                                tipc_node_get(rx->node);
1419                }
1420        } else {
1421                /* Cancel a pending key distributing if any */
1422                atomic_xchg(&rx->key_distr, 0);
1423        }
1424
1425        /* Case 2: Peer RX active key has changed, let's update own TX users */
1426        cur = atomic_read(&rx->peer_rx_active);
1427        new = ehdr->rx_key_active;
1428        if (tx->key.keys &&
1429            cur != new &&
1430            atomic_cmpxchg(&rx->peer_rx_active, cur, new) == cur) {
1431                if (new)
1432                        tipc_aead_users_inc(tx->aead[new], INT_MAX);
1433                if (cur)
1434                        tipc_aead_users_dec(tx->aead[cur], 0);
1435
1436                atomic64_set(&rx->sndnxt, 0);
1437                /* Mark the point TX key users changed */
1438                tx->timer1 = jiffies;
1439
1440                pr_debug("%s: key users changed %d-- %d++, peer %s\n",
1441                         tx->name, cur, new, rx->name);
1442        }
1443}
1444
1445static int tipc_crypto_key_revoke(struct net *net, u8 tx_key)
1446{
1447        struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1448        struct tipc_key key;
1449
1450        spin_lock(&tx->lock);
1451        key = tx->key;
1452        WARN_ON(!key.active || tx_key != key.active);
1453
1454        /* Free the active key */
1455        tipc_crypto_key_set_state(tx, key.passive, 0, key.pending);
1456        tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1457        spin_unlock(&tx->lock);
1458
1459        pr_warn("%s: key is revoked\n", tx->name);
1460        return -EKEYREVOKED;
1461}
1462
1463int tipc_crypto_start(struct tipc_crypto **crypto, struct net *net,
1464                      struct tipc_node *node)
1465{
1466        struct tipc_crypto *c;
1467
1468        if (*crypto)
1469                return -EEXIST;
1470
1471        /* Allocate crypto */
1472        c = kzalloc(sizeof(*c), GFP_ATOMIC);
1473        if (!c)
1474                return -ENOMEM;
1475
1476        /* Allocate workqueue on TX */
1477        if (!node) {
1478                c->wq = alloc_ordered_workqueue("tipc_crypto", 0);
1479                if (!c->wq) {
1480                        kfree(c);
1481                        return -ENOMEM;
1482                }
1483        }
1484
1485        /* Allocate statistic structure */
1486        c->stats = alloc_percpu_gfp(struct tipc_crypto_stats, GFP_ATOMIC);
1487        if (!c->stats) {
1488                kfree_sensitive(c);
1489                return -ENOMEM;
1490        }
1491
1492        c->flags = 0;
1493        c->net = net;
1494        c->node = node;
1495        get_random_bytes(&c->key_gen, 2);
1496        tipc_crypto_key_set_state(c, 0, 0, 0);
1497        atomic_set(&c->key_distr, 0);
1498        atomic_set(&c->peer_rx_active, 0);
1499        atomic64_set(&c->sndnxt, 0);
1500        c->timer1 = jiffies;
1501        c->timer2 = jiffies;
1502        c->rekeying_intv = TIPC_REKEYING_INTV_DEF;
1503        spin_lock_init(&c->lock);
1504        scnprintf(c->name, 48, "%s(%s)", (is_rx(c)) ? "RX" : "TX",
1505                  (is_rx(c)) ? tipc_node_get_id_str(c->node) :
1506                               tipc_own_id_string(c->net));
1507
1508        if (is_rx(c))
1509                INIT_DELAYED_WORK(&c->work, tipc_crypto_work_rx);
1510        else
1511                INIT_DELAYED_WORK(&c->work, tipc_crypto_work_tx);
1512
1513        *crypto = c;
1514        return 0;
1515}
1516
1517void tipc_crypto_stop(struct tipc_crypto **crypto)
1518{
1519        struct tipc_crypto *c = *crypto;
1520        u8 k;
1521
1522        if (!c)
1523                return;
1524
1525        /* Flush any queued works & destroy wq */
1526        if (is_tx(c)) {
1527                c->rekeying_intv = 0;
1528                cancel_delayed_work_sync(&c->work);
1529                destroy_workqueue(c->wq);
1530        }
1531
1532        /* Release AEAD keys */
1533        rcu_read_lock();
1534        for (k = KEY_MIN; k <= KEY_MAX; k++)
1535                tipc_aead_put(rcu_dereference(c->aead[k]));
1536        rcu_read_unlock();
1537        pr_debug("%s: has been stopped\n", c->name);
1538
1539        /* Free this crypto statistics */
1540        free_percpu(c->stats);
1541
1542        *crypto = NULL;
1543        kfree_sensitive(c);
1544}
1545
1546void tipc_crypto_timeout(struct tipc_crypto *rx)
1547{
1548        struct tipc_net *tn = tipc_net(rx->net);
1549        struct tipc_crypto *tx = tn->crypto_tx;
1550        struct tipc_key key;
1551        int cmd;
1552
1553        /* TX pending: taking all users & stable -> active */
1554        spin_lock(&tx->lock);
1555        key = tx->key;
1556        if (key.active && tipc_aead_users(tx->aead[key.active]) > 0)
1557                goto s1;
1558        if (!key.pending || tipc_aead_users(tx->aead[key.pending]) <= 0)
1559                goto s1;
1560        if (time_before(jiffies, tx->timer1 + TIPC_TX_LASTING_TIME))
1561                goto s1;
1562
1563        tipc_crypto_key_set_state(tx, key.passive, key.pending, 0);
1564        if (key.active)
1565                tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1566        this_cpu_inc(tx->stats->stat[STAT_SWITCHES]);
1567        pr_info("%s: key[%d] is activated\n", tx->name, key.pending);
1568
1569s1:
1570        spin_unlock(&tx->lock);
1571
1572        /* RX pending: having user -> active */
1573        spin_lock(&rx->lock);
1574        key = rx->key;
1575        if (!key.pending || tipc_aead_users(rx->aead[key.pending]) <= 0)
1576                goto s2;
1577
1578        if (key.active)
1579                key.passive = key.active;
1580        key.active = key.pending;
1581        rx->timer2 = jiffies;
1582        tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
1583        this_cpu_inc(rx->stats->stat[STAT_SWITCHES]);
1584        pr_info("%s: key[%d] is activated\n", rx->name, key.pending);
1585        goto s5;
1586
1587s2:
1588        /* RX pending: not working -> remove */
1589        if (!key.pending || tipc_aead_users(rx->aead[key.pending]) > -10)
1590                goto s3;
1591
1592        tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
1593        tipc_crypto_key_detach(rx->aead[key.pending], &rx->lock);
1594        pr_debug("%s: key[%d] is removed\n", rx->name, key.pending);
1595        goto s5;
1596
1597s3:
1598        /* RX active: timed out or no user -> pending */
1599        if (!key.active)
1600                goto s4;
1601        if (time_before(jiffies, rx->timer1 + TIPC_RX_ACTIVE_LIM) &&
1602            tipc_aead_users(rx->aead[key.active]) > 0)
1603                goto s4;
1604
1605        if (key.pending)
1606                key.passive = key.active;
1607        else
1608                key.pending = key.active;
1609        rx->timer2 = jiffies;
1610        tipc_crypto_key_set_state(rx, key.passive, 0, key.pending);
1611        tipc_aead_users_set(rx->aead[key.pending], 0);
1612        pr_debug("%s: key[%d] is deactivated\n", rx->name, key.active);
1613        goto s5;
1614
1615s4:
1616        /* RX passive: outdated or not working -> free */
1617        if (!key.passive)
1618                goto s5;
1619        if (time_before(jiffies, rx->timer2 + TIPC_RX_PASSIVE_LIM) &&
1620            tipc_aead_users(rx->aead[key.passive]) > -10)
1621                goto s5;
1622
1623        tipc_crypto_key_set_state(rx, 0, key.active, key.pending);
1624        tipc_crypto_key_detach(rx->aead[key.passive], &rx->lock);
1625        pr_debug("%s: key[%d] is freed\n", rx->name, key.passive);
1626
1627s5:
1628        spin_unlock(&rx->lock);
1629
1630        /* Relax it here, the flag will be set again if it really is, but only
1631         * when we are not in grace period for safety!
1632         */
1633        if (time_after(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD))
1634                tx->legacy_user = 0;
1635
1636        /* Limit max_tfms & do debug commands if needed */
1637        if (likely(sysctl_tipc_max_tfms <= TIPC_MAX_TFMS_LIM))
1638                return;
1639
1640        cmd = sysctl_tipc_max_tfms;
1641        sysctl_tipc_max_tfms = TIPC_MAX_TFMS_DEF;
1642        tipc_crypto_do_cmd(rx->net, cmd);
1643}
1644
1645static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
1646                                         struct tipc_bearer *b,
1647                                         struct tipc_media_addr *dst,
1648                                         struct tipc_node *__dnode, u8 type)
1649{
1650        struct sk_buff *skb;
1651
1652        skb = skb_clone(_skb, GFP_ATOMIC);
1653        if (skb) {
1654                TIPC_SKB_CB(skb)->xmit_type = type;
1655                tipc_crypto_xmit(net, &skb, b, dst, __dnode);
1656                if (skb)
1657                        b->media->send_msg(net, skb, b, dst);
1658        }
1659}
1660
1661/**
1662 * tipc_crypto_xmit - Build & encrypt TIPC message for xmit
1663 * @net: struct net
1664 * @skb: input/output message skb pointer
1665 * @b: bearer used for xmit later
1666 * @dst: destination media address
1667 * @__dnode: destination node for reference if any
1668 *
1669 * First, build an encryption message header on the top of the message, then
1670 * encrypt the original TIPC message by using the pending, master or active
1671 * key with this preference order.
1672 * If the encryption is successful, the encrypted skb is returned directly or
1673 * via the callback.
1674 * Otherwise, the skb is freed!
1675 *
1676 * Return:
1677 * 0                   : the encryption has succeeded (or no encryption)
1678 * -EINPROGRESS/-EBUSY : the encryption is ongoing, a callback will be made
1679 * -ENOKEK             : the encryption has failed due to no key
1680 * -EKEYREVOKED        : the encryption has failed due to key revoked
1681 * -ENOMEM             : the encryption has failed due to no memory
1682 * < 0                 : the encryption has failed due to other reasons
1683 */
1684int tipc_crypto_xmit(struct net *net, struct sk_buff **skb,
1685                     struct tipc_bearer *b, struct tipc_media_addr *dst,
1686                     struct tipc_node *__dnode)
1687{
1688        struct tipc_crypto *__rx = tipc_node_crypto_rx(__dnode);
1689        struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1690        struct tipc_crypto_stats __percpu *stats = tx->stats;
1691        struct tipc_msg *hdr = buf_msg(*skb);
1692        struct tipc_key key = tx->key;
1693        struct tipc_aead *aead = NULL;
1694        u32 user = msg_user(hdr);
1695        u32 type = msg_type(hdr);
1696        int rc = -ENOKEY;
1697        u8 tx_key = 0;
1698
1699        /* No encryption? */
1700        if (!tx->working)
1701                return 0;
1702
1703        /* Pending key if peer has active on it or probing time */
1704        if (unlikely(key.pending)) {
1705                tx_key = key.pending;
1706                if (!tx->key_master && !key.active)
1707                        goto encrypt;
1708                if (__rx && atomic_read(&__rx->peer_rx_active) == tx_key)
1709                        goto encrypt;
1710                if (TIPC_SKB_CB(*skb)->xmit_type == SKB_PROBING) {
1711                        pr_debug("%s: probing for key[%d]\n", tx->name,
1712                                 key.pending);
1713                        goto encrypt;
1714                }
1715                if (user == LINK_CONFIG || user == LINK_PROTOCOL)
1716                        tipc_crypto_clone_msg(net, *skb, b, dst, __dnode,
1717                                              SKB_PROBING);
1718        }
1719
1720        /* Master key if this is a *vital* message or in grace period */
1721        if (tx->key_master) {
1722                tx_key = KEY_MASTER;
1723                if (!key.active)
1724                        goto encrypt;
1725                if (TIPC_SKB_CB(*skb)->xmit_type == SKB_GRACING) {
1726                        pr_debug("%s: gracing for msg (%d %d)\n", tx->name,
1727                                 user, type);
1728                        goto encrypt;
1729                }
1730                if (user == LINK_CONFIG ||
1731                    (user == LINK_PROTOCOL && type == RESET_MSG) ||
1732                    (user == MSG_CRYPTO && type == KEY_DISTR_MSG) ||
1733                    time_before(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD)) {
1734                        if (__rx && __rx->key_master &&
1735                            !atomic_read(&__rx->peer_rx_active))
1736                                goto encrypt;
1737                        if (!__rx) {
1738                                if (likely(!tx->legacy_user))
1739                                        goto encrypt;
1740                                tipc_crypto_clone_msg(net, *skb, b, dst,
1741                                                      __dnode, SKB_GRACING);
1742                        }
1743                }
1744        }
1745
1746        /* Else, use the active key if any */
1747        if (likely(key.active)) {
1748                tx_key = key.active;
1749                goto encrypt;
1750        }
1751
1752        goto exit;
1753
1754encrypt:
1755        aead = tipc_aead_get(tx->aead[tx_key]);
1756        if (unlikely(!aead))
1757                goto exit;
1758        rc = tipc_ehdr_build(net, aead, tx_key, *skb, __rx);
1759        if (likely(rc > 0))
1760                rc = tipc_aead_encrypt(aead, *skb, b, dst, __dnode);
1761
1762exit:
1763        switch (rc) {
1764        case 0:
1765                this_cpu_inc(stats->stat[STAT_OK]);
1766                break;
1767        case -EINPROGRESS:
1768        case -EBUSY:
1769                this_cpu_inc(stats->stat[STAT_ASYNC]);
1770                *skb = NULL;
1771                return rc;
1772        default:
1773                this_cpu_inc(stats->stat[STAT_NOK]);
1774                if (rc == -ENOKEY)
1775                        this_cpu_inc(stats->stat[STAT_NOKEYS]);
1776                else if (rc == -EKEYREVOKED)
1777                        this_cpu_inc(stats->stat[STAT_BADKEYS]);
1778                kfree_skb(*skb);
1779                *skb = NULL;
1780                break;
1781        }
1782
1783        tipc_aead_put(aead);
1784        return rc;
1785}
1786
1787/**
1788 * tipc_crypto_rcv - Decrypt an encrypted TIPC message from peer
1789 * @net: struct net
1790 * @rx: RX crypto handle
1791 * @skb: input/output message skb pointer
1792 * @b: bearer where the message has been received
1793 *
1794 * If the decryption is successful, the decrypted skb is returned directly or
1795 * as the callback, the encryption header and auth tag will be trimed out
1796 * before forwarding to tipc_rcv() via the tipc_crypto_rcv_complete().
1797 * Otherwise, the skb will be freed!
1798 * Note: RX key(s) can be re-aligned, or in case of no key suitable, TX
1799 * cluster key(s) can be taken for decryption (- recursive).
1800 *
1801 * Return:
1802 * 0                   : the decryption has successfully completed
1803 * -EINPROGRESS/-EBUSY : the decryption is ongoing, a callback will be made
1804 * -ENOKEY             : the decryption has failed due to no key
1805 * -EBADMSG            : the decryption has failed due to bad message
1806 * -ENOMEM             : the decryption has failed due to no memory
1807 * < 0                 : the decryption has failed due to other reasons
1808 */
1809int tipc_crypto_rcv(struct net *net, struct tipc_crypto *rx,
1810                    struct sk_buff **skb, struct tipc_bearer *b)
1811{
1812        struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1813        struct tipc_crypto_stats __percpu *stats;
1814        struct tipc_aead *aead = NULL;
1815        struct tipc_key key;
1816        int rc = -ENOKEY;
1817        u8 tx_key, n;
1818
1819        tx_key = ((struct tipc_ehdr *)(*skb)->data)->tx_key;
1820
1821        /* New peer?
1822         * Let's try with TX key (i.e. cluster mode) & verify the skb first!
1823         */
1824        if (unlikely(!rx || tx_key == KEY_MASTER))
1825                goto pick_tx;
1826
1827        /* Pick RX key according to TX key if any */
1828        key = rx->key;
1829        if (tx_key == key.active || tx_key == key.pending ||
1830            tx_key == key.passive)
1831                goto decrypt;
1832
1833        /* Unknown key, let's try to align RX key(s) */
1834        if (tipc_crypto_key_try_align(rx, tx_key))
1835                goto decrypt;
1836
1837pick_tx:
1838        /* No key suitable? Try to pick one from TX... */
1839        aead = tipc_crypto_key_pick_tx(tx, rx, *skb, tx_key);
1840        if (aead)
1841                goto decrypt;
1842        goto exit;
1843
1844decrypt:
1845        rcu_read_lock();
1846        if (!aead)
1847                aead = tipc_aead_get(rx->aead[tx_key]);
1848        rc = tipc_aead_decrypt(net, aead, *skb, b);
1849        rcu_read_unlock();
1850
1851exit:
1852        stats = ((rx) ?: tx)->stats;
1853        switch (rc) {
1854        case 0:
1855                this_cpu_inc(stats->stat[STAT_OK]);
1856                break;
1857        case -EINPROGRESS:
1858        case -EBUSY:
1859                this_cpu_inc(stats->stat[STAT_ASYNC]);
1860                *skb = NULL;
1861                return rc;
1862        default:
1863                this_cpu_inc(stats->stat[STAT_NOK]);
1864                if (rc == -ENOKEY) {
1865                        kfree_skb(*skb);
1866                        *skb = NULL;
1867                        if (rx) {
1868                                /* Mark rx->nokey only if we dont have a
1869                                 * pending received session key, nor a newer
1870                                 * one i.e. in the next slot.
1871                                 */
1872                                n = key_next(tx_key);
1873                                rx->nokey = !(rx->skey ||
1874                                              rcu_access_pointer(rx->aead[n]));
1875                                pr_debug_ratelimited("%s: nokey %d, key %d/%x\n",
1876                                                     rx->name, rx->nokey,
1877                                                     tx_key, rx->key.keys);
1878                                tipc_node_put(rx->node);
1879                        }
1880                        this_cpu_inc(stats->stat[STAT_NOKEYS]);
1881                        return rc;
1882                } else if (rc == -EBADMSG) {
1883                        this_cpu_inc(stats->stat[STAT_BADMSGS]);
1884                }
1885                break;
1886        }
1887
1888        tipc_crypto_rcv_complete(net, aead, b, skb, rc);
1889        return rc;
1890}
1891
1892static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
1893                                     struct tipc_bearer *b,
1894                                     struct sk_buff **skb, int err)
1895{
1896        struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(*skb);
1897        struct tipc_crypto *rx = aead->crypto;
1898        struct tipc_aead *tmp = NULL;
1899        struct tipc_ehdr *ehdr;
1900        struct tipc_node *n;
1901
1902        /* Is this completed by TX? */
1903        if (unlikely(is_tx(aead->crypto))) {
1904                rx = skb_cb->tx_clone_ctx.rx;
1905                pr_debug("TX->RX(%s): err %d, aead %p, skb->next %p, flags %x\n",
1906                         (rx) ? tipc_node_get_id_str(rx->node) : "-", err, aead,
1907                         (*skb)->next, skb_cb->flags);
1908                pr_debug("skb_cb [recurs %d, last %p], tx->aead [%p %p %p]\n",
1909                         skb_cb->tx_clone_ctx.recurs, skb_cb->tx_clone_ctx.last,
1910                         aead->crypto->aead[1], aead->crypto->aead[2],
1911                         aead->crypto->aead[3]);
1912                if (unlikely(err)) {
1913                        if (err == -EBADMSG && (*skb)->next)
1914                                tipc_rcv(net, (*skb)->next, b);
1915                        goto free_skb;
1916                }
1917
1918                if (likely((*skb)->next)) {
1919                        kfree_skb((*skb)->next);
1920                        (*skb)->next = NULL;
1921                }
1922                ehdr = (struct tipc_ehdr *)(*skb)->data;
1923                if (!rx) {
1924                        WARN_ON(ehdr->user != LINK_CONFIG);
1925                        n = tipc_node_create(net, 0, ehdr->id, 0xffffu, 0,
1926                                             true);
1927                        rx = tipc_node_crypto_rx(n);
1928                        if (unlikely(!rx))
1929                                goto free_skb;
1930                }
1931
1932                /* Ignore cloning if it was TX master key */
1933                if (ehdr->tx_key == KEY_MASTER)
1934                        goto rcv;
1935                if (tipc_aead_clone(&tmp, aead) < 0)
1936                        goto rcv;
1937                if (tipc_crypto_key_attach(rx, tmp, ehdr->tx_key, false) < 0) {
1938                        tipc_aead_free(&tmp->rcu);
1939                        goto rcv;
1940                }
1941                tipc_aead_put(aead);
1942                aead = tipc_aead_get(tmp);
1943        }
1944
1945        if (unlikely(err)) {
1946                tipc_aead_users_dec(aead, INT_MIN);
1947                goto free_skb;
1948        }
1949
1950        /* Set the RX key's user */
1951        tipc_aead_users_set(aead, 1);
1952
1953        /* Mark this point, RX works */
1954        rx->timer1 = jiffies;
1955
1956rcv:
1957        /* Remove ehdr & auth. tag prior to tipc_rcv() */
1958        ehdr = (struct tipc_ehdr *)(*skb)->data;
1959
1960        /* Mark this point, RX passive still works */
1961        if (rx->key.passive && ehdr->tx_key == rx->key.passive)
1962                rx->timer2 = jiffies;
1963
1964        skb_reset_network_header(*skb);
1965        skb_pull(*skb, tipc_ehdr_size(ehdr));
1966        pskb_trim(*skb, (*skb)->len - aead->authsize);
1967
1968        /* Validate TIPCv2 message */
1969        if (unlikely(!tipc_msg_validate(skb))) {
1970                pr_err_ratelimited("Packet dropped after decryption!\n");
1971                goto free_skb;
1972        }
1973
1974        /* Ok, everything's fine, try to synch own keys according to peers' */
1975        tipc_crypto_key_synch(rx, *skb);
1976
1977        /* Mark skb decrypted */
1978        skb_cb->decrypted = 1;
1979
1980        /* Clear clone cxt if any */
1981        if (likely(!skb_cb->tx_clone_deferred))
1982                goto exit;
1983        skb_cb->tx_clone_deferred = 0;
1984        memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1985        goto exit;
1986
1987free_skb:
1988        kfree_skb(*skb);
1989        *skb = NULL;
1990
1991exit:
1992        tipc_aead_put(aead);
1993        if (rx)
1994                tipc_node_put(rx->node);
1995}
1996
1997static void tipc_crypto_do_cmd(struct net *net, int cmd)
1998{
1999        struct tipc_net *tn = tipc_net(net);
2000        struct tipc_crypto *tx = tn->crypto_tx, *rx;
2001        struct list_head *p;
2002        unsigned int stat;
2003        int i, j, cpu;
2004        char buf[200];
2005
2006        /* Currently only one command is supported */
2007        switch (cmd) {
2008        case 0xfff1:
2009                goto print_stats;
2010        default:
2011                return;
2012        }
2013
2014print_stats:
2015        /* Print a header */
2016        pr_info("\n=============== TIPC Crypto Statistics ===============\n\n");
2017
2018        /* Print key status */
2019        pr_info("Key status:\n");
2020        pr_info("TX(%7.7s)\n%s", tipc_own_id_string(net),
2021                tipc_crypto_key_dump(tx, buf));
2022
2023        rcu_read_lock();
2024        for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
2025                rx = tipc_node_crypto_rx_by_list(p);
2026                pr_info("RX(%7.7s)\n%s", tipc_node_get_id_str(rx->node),
2027                        tipc_crypto_key_dump(rx, buf));
2028        }
2029        rcu_read_unlock();
2030
2031        /* Print crypto statistics */
2032        for (i = 0, j = 0; i < MAX_STATS; i++)
2033                j += scnprintf(buf + j, 200 - j, "|%11s ", hstats[i]);
2034        pr_info("Counter     %s", buf);
2035
2036        memset(buf, '-', 115);
2037        buf[115] = '\0';
2038        pr_info("%s\n", buf);
2039
2040        j = scnprintf(buf, 200, "TX(%7.7s) ", tipc_own_id_string(net));
2041        for_each_possible_cpu(cpu) {
2042                for (i = 0; i < MAX_STATS; i++) {
2043                        stat = per_cpu_ptr(tx->stats, cpu)->stat[i];
2044                        j += scnprintf(buf + j, 200 - j, "|%11d ", stat);
2045                }
2046                pr_info("%s", buf);
2047                j = scnprintf(buf, 200, "%12s", " ");
2048        }
2049
2050        rcu_read_lock();
2051        for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
2052                rx = tipc_node_crypto_rx_by_list(p);
2053                j = scnprintf(buf, 200, "RX(%7.7s) ",
2054                              tipc_node_get_id_str(rx->node));
2055                for_each_possible_cpu(cpu) {
2056                        for (i = 0; i < MAX_STATS; i++) {
2057                                stat = per_cpu_ptr(rx->stats, cpu)->stat[i];
2058                                j += scnprintf(buf + j, 200 - j, "|%11d ",
2059                                               stat);
2060                        }
2061                        pr_info("%s", buf);
2062                        j = scnprintf(buf, 200, "%12s", " ");
2063                }
2064        }
2065        rcu_read_unlock();
2066
2067        pr_info("\n======================== Done ========================\n");
2068}
2069
2070static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf)
2071{
2072        struct tipc_key key = c->key;
2073        struct tipc_aead *aead;
2074        int k, i = 0;
2075        char *s;
2076
2077        for (k = KEY_MIN; k <= KEY_MAX; k++) {
2078                if (k == KEY_MASTER) {
2079                        if (is_rx(c))
2080                                continue;
2081                        if (time_before(jiffies,
2082                                        c->timer2 + TIPC_TX_GRACE_PERIOD))
2083                                s = "ACT";
2084                        else
2085                                s = "PAS";
2086                } else {
2087                        if (k == key.passive)
2088                                s = "PAS";
2089                        else if (k == key.active)
2090                                s = "ACT";
2091                        else if (k == key.pending)
2092                                s = "PEN";
2093                        else
2094                                s = "-";
2095                }
2096                i += scnprintf(buf + i, 200 - i, "\tKey%d: %s", k, s);
2097
2098                rcu_read_lock();
2099                aead = rcu_dereference(c->aead[k]);
2100                if (aead)
2101                        i += scnprintf(buf + i, 200 - i,
2102                                       "{\"0x...%s\", \"%s\"}/%d:%d",
2103                                       aead->hint,
2104                                       (aead->mode == CLUSTER_KEY) ? "c" : "p",
2105                                       atomic_read(&aead->users),
2106                                       refcount_read(&aead->refcnt));
2107                rcu_read_unlock();
2108                i += scnprintf(buf + i, 200 - i, "\n");
2109        }
2110
2111        if (is_rx(c))
2112                i += scnprintf(buf + i, 200 - i, "\tPeer RX active: %d\n",
2113                               atomic_read(&c->peer_rx_active));
2114
2115        return buf;
2116}
2117
2118static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
2119                                  char *buf)
2120{
2121        struct tipc_key *key = &old;
2122        int k, i = 0;
2123        char *s;
2124
2125        /* Output format: "[%s %s %s] -> [%s %s %s]", max len = 32 */
2126again:
2127        i += scnprintf(buf + i, 32 - i, "[");
2128        for (k = KEY_1; k <= KEY_3; k++) {
2129                if (k == key->passive)
2130                        s = "pas";
2131                else if (k == key->active)
2132                        s = "act";
2133                else if (k == key->pending)
2134                        s = "pen";
2135                else
2136                        s = "-";
2137                i += scnprintf(buf + i, 32 - i,
2138                               (k != KEY_3) ? "%s " : "%s", s);
2139        }
2140        if (key != &new) {
2141                i += scnprintf(buf + i, 32 - i, "] -> ");
2142                key = &new;
2143                goto again;
2144        }
2145        i += scnprintf(buf + i, 32 - i, "]");
2146        return buf;
2147}
2148
2149/**
2150 * tipc_crypto_msg_rcv - Common 'MSG_CRYPTO' processing point
2151 * @net: the struct net
2152 * @skb: the receiving message buffer
2153 */
2154void tipc_crypto_msg_rcv(struct net *net, struct sk_buff *skb)
2155{
2156        struct tipc_crypto *rx;
2157        struct tipc_msg *hdr;
2158
2159        if (unlikely(skb_linearize(skb)))
2160                goto exit;
2161
2162        hdr = buf_msg(skb);
2163        rx = tipc_node_crypto_rx_by_addr(net, msg_prevnode(hdr));
2164        if (unlikely(!rx))
2165                goto exit;
2166
2167        switch (msg_type(hdr)) {
2168        case KEY_DISTR_MSG:
2169                if (tipc_crypto_key_rcv(rx, hdr))
2170                        goto exit;
2171                break;
2172        default:
2173                break;
2174        }
2175
2176        tipc_node_put(rx->node);
2177
2178exit:
2179        kfree_skb(skb);
2180}
2181
2182/**
2183 * tipc_crypto_key_distr - Distribute a TX key
2184 * @tx: the TX crypto
2185 * @key: the key's index
2186 * @dest: the destination tipc node, = NULL if distributing to all nodes
2187 *
2188 * Return: 0 in case of success, otherwise < 0
2189 */
2190int tipc_crypto_key_distr(struct tipc_crypto *tx, u8 key,
2191                          struct tipc_node *dest)
2192{
2193        struct tipc_aead *aead;
2194        u32 dnode = tipc_node_get_addr(dest);
2195        int rc = -ENOKEY;
2196
2197        if (!sysctl_tipc_key_exchange_enabled)
2198                return 0;
2199
2200        if (key) {
2201                rcu_read_lock();
2202                aead = tipc_aead_get(tx->aead[key]);
2203                if (likely(aead)) {
2204                        rc = tipc_crypto_key_xmit(tx->net, aead->key,
2205                                                  aead->gen, aead->mode,
2206                                                  dnode);
2207                        tipc_aead_put(aead);
2208                }
2209                rcu_read_unlock();
2210        }
2211
2212        return rc;
2213}
2214
2215/**
2216 * tipc_crypto_key_xmit - Send a session key
2217 * @net: the struct net
2218 * @skey: the session key to be sent
2219 * @gen: the key's generation
2220 * @mode: the key's mode
2221 * @dnode: the destination node address, = 0 if broadcasting to all nodes
2222 *
2223 * The session key 'skey' is packed in a TIPC v2 'MSG_CRYPTO/KEY_DISTR_MSG'
2224 * as its data section, then xmit-ed through the uc/bc link.
2225 *
2226 * Return: 0 in case of success, otherwise < 0
2227 */
2228static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
2229                                u16 gen, u8 mode, u32 dnode)
2230{
2231        struct sk_buff_head pkts;
2232        struct tipc_msg *hdr;
2233        struct sk_buff *skb;
2234        u16 size, cong_link_cnt;
2235        u8 *data;
2236        int rc;
2237
2238        size = tipc_aead_key_size(skey);
2239        skb = tipc_buf_acquire(INT_H_SIZE + size, GFP_ATOMIC);
2240        if (!skb)
2241                return -ENOMEM;
2242
2243        hdr = buf_msg(skb);
2244        tipc_msg_init(tipc_own_addr(net), hdr, MSG_CRYPTO, KEY_DISTR_MSG,
2245                      INT_H_SIZE, dnode);
2246        msg_set_size(hdr, INT_H_SIZE + size);
2247        msg_set_key_gen(hdr, gen);
2248        msg_set_key_mode(hdr, mode);
2249
2250        data = msg_data(hdr);
2251        *((__be32 *)(data + TIPC_AEAD_ALG_NAME)) = htonl(skey->keylen);
2252        memcpy(data, skey->alg_name, TIPC_AEAD_ALG_NAME);
2253        memcpy(data + TIPC_AEAD_ALG_NAME + sizeof(__be32), skey->key,
2254               skey->keylen);
2255
2256        __skb_queue_head_init(&pkts);
2257        __skb_queue_tail(&pkts, skb);
2258        if (dnode)
2259                rc = tipc_node_xmit(net, &pkts, dnode, 0);
2260        else
2261                rc = tipc_bcast_xmit(net, &pkts, &cong_link_cnt);
2262
2263        return rc;
2264}
2265
2266/**
2267 * tipc_crypto_key_rcv - Receive a session key
2268 * @rx: the RX crypto
2269 * @hdr: the TIPC v2 message incl. the receiving session key in its data
2270 *
2271 * This function retrieves the session key in the message from peer, then
2272 * schedules a RX work to attach the key to the corresponding RX crypto.
2273 *
2274 * Return: "true" if the key has been scheduled for attaching, otherwise
2275 * "false".
2276 */
2277static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr)
2278{
2279        struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
2280        struct tipc_aead_key *skey = NULL;
2281        u16 key_gen = msg_key_gen(hdr);
2282        u16 size = msg_data_sz(hdr);
2283        u8 *data = msg_data(hdr);
2284
2285        spin_lock(&rx->lock);
2286        if (unlikely(rx->skey || (key_gen == rx->key_gen && rx->key.keys))) {
2287                pr_err("%s: key existed <%p>, gen %d vs %d\n", rx->name,
2288                       rx->skey, key_gen, rx->key_gen);
2289                goto exit;
2290        }
2291
2292        /* Allocate memory for the key */
2293        skey = kmalloc(size, GFP_ATOMIC);
2294        if (unlikely(!skey)) {
2295                pr_err("%s: unable to allocate memory for skey\n", rx->name);
2296                goto exit;
2297        }
2298
2299        /* Copy key from msg data */
2300        skey->keylen = ntohl(*((__be32 *)(data + TIPC_AEAD_ALG_NAME)));
2301        memcpy(skey->alg_name, data, TIPC_AEAD_ALG_NAME);
2302        memcpy(skey->key, data + TIPC_AEAD_ALG_NAME + sizeof(__be32),
2303               skey->keylen);
2304
2305        /* Sanity check */
2306        if (unlikely(size != tipc_aead_key_size(skey))) {
2307                kfree(skey);
2308                skey = NULL;
2309                goto exit;
2310        }
2311
2312        rx->key_gen = key_gen;
2313        rx->skey_mode = msg_key_mode(hdr);
2314        rx->skey = skey;
2315        rx->nokey = 0;
2316        mb(); /* for nokey flag */
2317
2318exit:
2319        spin_unlock(&rx->lock);
2320
2321        /* Schedule the key attaching on this crypto */
2322        if (likely(skey && queue_delayed_work(tx->wq, &rx->work, 0)))
2323                return true;
2324
2325        return false;
2326}
2327
2328/**
2329 * tipc_crypto_work_rx - Scheduled RX works handler
2330 * @work: the struct RX work
2331 *
2332 * The function processes the previous scheduled works i.e. distributing TX key
2333 * or attaching a received session key on RX crypto.
2334 */
2335static void tipc_crypto_work_rx(struct work_struct *work)
2336{
2337        struct delayed_work *dwork = to_delayed_work(work);
2338        struct tipc_crypto *rx = container_of(dwork, struct tipc_crypto, work);
2339        struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
2340        unsigned long delay = msecs_to_jiffies(5000);
2341        bool resched = false;
2342        u8 key;
2343        int rc;
2344
2345        /* Case 1: Distribute TX key to peer if scheduled */
2346        if (atomic_cmpxchg(&rx->key_distr,
2347                           KEY_DISTR_SCHED,
2348                           KEY_DISTR_COMPL) == KEY_DISTR_SCHED) {
2349                /* Always pick the newest one for distributing */
2350                key = tx->key.pending ?: tx->key.active;
2351                rc = tipc_crypto_key_distr(tx, key, rx->node);
2352                if (unlikely(rc))
2353                        pr_warn("%s: unable to distr key[%d] to %s, err %d\n",
2354                                tx->name, key, tipc_node_get_id_str(rx->node),
2355                                rc);
2356
2357                /* Sched for key_distr releasing */
2358                resched = true;
2359        } else {
2360                atomic_cmpxchg(&rx->key_distr, KEY_DISTR_COMPL, 0);
2361        }
2362
2363        /* Case 2: Attach a pending received session key from peer if any */
2364        if (rx->skey) {
2365                rc = tipc_crypto_key_init(rx, rx->skey, rx->skey_mode, false);
2366                if (unlikely(rc < 0))
2367                        pr_warn("%s: unable to attach received skey, err %d\n",
2368                                rx->name, rc);
2369                switch (rc) {
2370                case -EBUSY:
2371                case -ENOMEM:
2372                        /* Resched the key attaching */
2373                        resched = true;
2374                        break;
2375                default:
2376                        synchronize_rcu();
2377                        kfree(rx->skey);
2378                        rx->skey = NULL;
2379                        break;
2380                }
2381        }
2382
2383        if (resched && queue_delayed_work(tx->wq, &rx->work, delay))
2384                return;
2385
2386        tipc_node_put(rx->node);
2387}
2388
2389/**
2390 * tipc_crypto_rekeying_sched - (Re)schedule rekeying w/o new interval
2391 * @tx: TX crypto
2392 * @changed: if the rekeying needs to be rescheduled with new interval
2393 * @new_intv: new rekeying interval (when "changed" = true)
2394 */
2395void tipc_crypto_rekeying_sched(struct tipc_crypto *tx, bool changed,
2396                                u32 new_intv)
2397{
2398        unsigned long delay;
2399        bool now = false;
2400
2401        if (changed) {
2402                if (new_intv == TIPC_REKEYING_NOW)
2403                        now = true;
2404                else
2405                        tx->rekeying_intv = new_intv;
2406                cancel_delayed_work_sync(&tx->work);
2407        }
2408
2409        if (tx->rekeying_intv || now) {
2410                delay = (now) ? 0 : tx->rekeying_intv * 60 * 1000;
2411                queue_delayed_work(tx->wq, &tx->work, msecs_to_jiffies(delay));
2412        }
2413}
2414
2415/**
2416 * tipc_crypto_work_tx - Scheduled TX works handler
2417 * @work: the struct TX work
2418 *
2419 * The function processes the previous scheduled work, i.e. key rekeying, by
2420 * generating a new session key based on current one, then attaching it to the
2421 * TX crypto and finally distributing it to peers. It also re-schedules the
2422 * rekeying if needed.
2423 */
2424static void tipc_crypto_work_tx(struct work_struct *work)
2425{
2426        struct delayed_work *dwork = to_delayed_work(work);
2427        struct tipc_crypto *tx = container_of(dwork, struct tipc_crypto, work);
2428        struct tipc_aead_key *skey = NULL;
2429        struct tipc_key key = tx->key;
2430        struct tipc_aead *aead;
2431        int rc = -ENOMEM;
2432
2433        if (unlikely(key.pending))
2434                goto resched;
2435
2436        /* Take current key as a template */
2437        rcu_read_lock();
2438        aead = rcu_dereference(tx->aead[key.active ?: KEY_MASTER]);
2439        if (unlikely(!aead)) {
2440                rcu_read_unlock();
2441                /* At least one key should exist for securing */
2442                return;
2443        }
2444
2445        /* Lets duplicate it first */
2446        skey = kmemdup(aead->key, tipc_aead_key_size(aead->key), GFP_ATOMIC);
2447        rcu_read_unlock();
2448
2449        /* Now, generate new key, initiate & distribute it */
2450        if (likely(skey)) {
2451                rc = tipc_aead_key_generate(skey) ?:
2452                     tipc_crypto_key_init(tx, skey, PER_NODE_KEY, false);
2453                if (likely(rc > 0))
2454                        rc = tipc_crypto_key_distr(tx, rc, NULL);
2455                kfree_sensitive(skey);
2456        }
2457
2458        if (unlikely(rc))
2459                pr_warn_ratelimited("%s: rekeying returns %d\n", tx->name, rc);
2460
2461resched:
2462        /* Re-schedule rekeying if any */
2463        tipc_crypto_rekeying_sched(tx, false, 0);
2464}
2465