linux/security/keys/key.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Basic authentication token and access key management
   3 *
   4 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
   5 * Written by David Howells (dhowells@redhat.com)
   6 */
   7
   8#include <linux/export.h>
   9#include <linux/init.h>
  10#include <linux/poison.h>
  11#include <linux/sched.h>
  12#include <linux/slab.h>
  13#include <linux/security.h>
  14#include <linux/workqueue.h>
  15#include <linux/random.h>
  16#include <linux/ima.h>
  17#include <linux/err.h>
  18#include "internal.h"
  19
  20struct kmem_cache *key_jar;
  21struct rb_root          key_serial_tree; /* tree of keys indexed by serial */
  22DEFINE_SPINLOCK(key_serial_lock);
  23
  24struct rb_root  key_user_tree; /* tree of quota records indexed by UID */
  25DEFINE_SPINLOCK(key_user_lock);
  26
  27unsigned int key_quota_root_maxkeys = 1000000;  /* root's key count quota */
  28unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
  29unsigned int key_quota_maxkeys = 200;           /* general key count quota */
  30unsigned int key_quota_maxbytes = 20000;        /* general key space quota */
  31
  32static LIST_HEAD(key_types_list);
  33static DECLARE_RWSEM(key_types_sem);
  34
  35/* We serialise key instantiation and link */
  36DEFINE_MUTEX(key_construction_mutex);
  37
  38#ifdef KEY_DEBUGGING
  39void __key_check(const struct key *key)
  40{
  41        printk("__key_check: key %p {%08x} should be {%08x}\n",
  42               key, key->magic, KEY_DEBUG_MAGIC);
  43        BUG();
  44}
  45#endif
  46
  47/*
  48 * Get the key quota record for a user, allocating a new record if one doesn't
  49 * already exist.
  50 */
  51struct key_user *key_user_lookup(kuid_t uid)
  52{
  53        struct key_user *candidate = NULL, *user;
  54        struct rb_node *parent, **p;
  55
  56try_again:
  57        parent = NULL;
  58        p = &key_user_tree.rb_node;
  59        spin_lock(&key_user_lock);
  60
  61        /* search the tree for a user record with a matching UID */
  62        while (*p) {
  63                parent = *p;
  64                user = rb_entry(parent, struct key_user, node);
  65
  66                if (uid_lt(uid, user->uid))
  67                        p = &(*p)->rb_left;
  68                else if (uid_gt(uid, user->uid))
  69                        p = &(*p)->rb_right;
  70                else
  71                        goto found;
  72        }
  73
  74        /* if we get here, we failed to find a match in the tree */
  75        if (!candidate) {
  76                /* allocate a candidate user record if we don't already have
  77                 * one */
  78                spin_unlock(&key_user_lock);
  79
  80                user = NULL;
  81                candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
  82                if (unlikely(!candidate))
  83                        goto out;
  84
  85                /* the allocation may have scheduled, so we need to repeat the
  86                 * search lest someone else added the record whilst we were
  87                 * asleep */
  88                goto try_again;
  89        }
  90
  91        /* if we get here, then the user record still hadn't appeared on the
  92         * second pass - so we use the candidate record */
  93        refcount_set(&candidate->usage, 1);
  94        atomic_set(&candidate->nkeys, 0);
  95        atomic_set(&candidate->nikeys, 0);
  96        candidate->uid = uid;
  97        candidate->qnkeys = 0;
  98        candidate->qnbytes = 0;
  99        spin_lock_init(&candidate->lock);
 100        mutex_init(&candidate->cons_lock);
 101
 102        rb_link_node(&candidate->node, parent, p);
 103        rb_insert_color(&candidate->node, &key_user_tree);
 104        spin_unlock(&key_user_lock);
 105        user = candidate;
 106        goto out;
 107
 108        /* okay - we found a user record for this UID */
 109found:
 110        refcount_inc(&user->usage);
 111        spin_unlock(&key_user_lock);
 112        kfree(candidate);
 113out:
 114        return user;
 115}
 116
 117/*
 118 * Dispose of a user structure
 119 */
 120void key_user_put(struct key_user *user)
 121{
 122        if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
 123                rb_erase(&user->node, &key_user_tree);
 124                spin_unlock(&key_user_lock);
 125
 126                kfree(user);
 127        }
 128}
 129
 130/*
 131 * Allocate a serial number for a key.  These are assigned randomly to avoid
 132 * security issues through covert channel problems.
 133 */
 134static inline void key_alloc_serial(struct key *key)
 135{
 136        struct rb_node *parent, **p;
 137        struct key *xkey;
 138
 139        /* propose a random serial number and look for a hole for it in the
 140         * serial number tree */
 141        do {
 142                get_random_bytes(&key->serial, sizeof(key->serial));
 143
 144                key->serial >>= 1; /* negative numbers are not permitted */
 145        } while (key->serial < 3);
 146
 147        spin_lock(&key_serial_lock);
 148
 149attempt_insertion:
 150        parent = NULL;
 151        p = &key_serial_tree.rb_node;
 152
 153        while (*p) {
 154                parent = *p;
 155                xkey = rb_entry(parent, struct key, serial_node);
 156
 157                if (key->serial < xkey->serial)
 158                        p = &(*p)->rb_left;
 159                else if (key->serial > xkey->serial)
 160                        p = &(*p)->rb_right;
 161                else
 162                        goto serial_exists;
 163        }
 164
 165        /* we've found a suitable hole - arrange for this key to occupy it */
 166        rb_link_node(&key->serial_node, parent, p);
 167        rb_insert_color(&key->serial_node, &key_serial_tree);
 168
 169        spin_unlock(&key_serial_lock);
 170        return;
 171
 172        /* we found a key with the proposed serial number - walk the tree from
 173         * that point looking for the next unused serial number */
 174serial_exists:
 175        for (;;) {
 176                key->serial++;
 177                if (key->serial < 3) {
 178                        key->serial = 3;
 179                        goto attempt_insertion;
 180                }
 181
 182                parent = rb_next(parent);
 183                if (!parent)
 184                        goto attempt_insertion;
 185
 186                xkey = rb_entry(parent, struct key, serial_node);
 187                if (key->serial < xkey->serial)
 188                        goto attempt_insertion;
 189        }
 190}
 191
 192/**
 193 * key_alloc - Allocate a key of the specified type.
 194 * @type: The type of key to allocate.
 195 * @desc: The key description to allow the key to be searched out.
 196 * @uid: The owner of the new key.
 197 * @gid: The group ID for the new key's group permissions.
 198 * @cred: The credentials specifying UID namespace.
 199 * @perm: The permissions mask of the new key.
 200 * @flags: Flags specifying quota properties.
 201 * @restrict_link: Optional link restriction for new keyrings.
 202 *
 203 * Allocate a key of the specified type with the attributes given.  The key is
 204 * returned in an uninstantiated state and the caller needs to instantiate the
 205 * key before returning.
 206 *
 207 * The restrict_link structure (if not NULL) will be freed when the
 208 * keyring is destroyed, so it must be dynamically allocated.
 209 *
 210 * The user's key count quota is updated to reflect the creation of the key and
 211 * the user's key data quota has the default for the key type reserved.  The
 212 * instantiation function should amend this as necessary.  If insufficient
 213 * quota is available, -EDQUOT will be returned.
 214 *
 215 * The LSM security modules can prevent a key being created, in which case
 216 * -EACCES will be returned.
 217 *
 218 * Returns a pointer to the new key if successful and an error code otherwise.
 219 *
 220 * Note that the caller needs to ensure the key type isn't uninstantiated.
 221 * Internally this can be done by locking key_types_sem.  Externally, this can
 222 * be done by either never unregistering the key type, or making sure
 223 * key_alloc() calls don't race with module unloading.
 224 */
 225struct key *key_alloc(struct key_type *type, const char *desc,
 226                      kuid_t uid, kgid_t gid, const struct cred *cred,
 227                      key_perm_t perm, unsigned long flags,
 228                      struct key_restriction *restrict_link)
 229{
 230        struct key_user *user = NULL;
 231        struct key *key;
 232        size_t desclen, quotalen;
 233        int ret;
 234
 235        key = ERR_PTR(-EINVAL);
 236        if (!desc || !*desc)
 237                goto error;
 238
 239        if (type->vet_description) {
 240                ret = type->vet_description(desc);
 241                if (ret < 0) {
 242                        key = ERR_PTR(ret);
 243                        goto error;
 244                }
 245        }
 246
 247        desclen = strlen(desc);
 248        quotalen = desclen + 1 + type->def_datalen;
 249
 250        /* get hold of the key tracking for this user */
 251        user = key_user_lookup(uid);
 252        if (!user)
 253                goto no_memory_1;
 254
 255        /* check that the user's quota permits allocation of another key and
 256         * its description */
 257        if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 258                unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
 259                        key_quota_root_maxkeys : key_quota_maxkeys;
 260                unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
 261                        key_quota_root_maxbytes : key_quota_maxbytes;
 262
 263                spin_lock(&user->lock);
 264                if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
 265                        if (user->qnkeys + 1 > maxkeys ||
 266                            user->qnbytes + quotalen > maxbytes ||
 267                            user->qnbytes + quotalen < user->qnbytes)
 268                                goto no_quota;
 269                }
 270
 271                user->qnkeys++;
 272                user->qnbytes += quotalen;
 273                spin_unlock(&user->lock);
 274        }
 275
 276        /* allocate and initialise the key and its description */
 277        key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
 278        if (!key)
 279                goto no_memory_2;
 280
 281        key->index_key.desc_len = desclen;
 282        key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
 283        if (!key->index_key.description)
 284                goto no_memory_3;
 285        key->index_key.type = type;
 286        key_set_index_key(&key->index_key);
 287
 288        refcount_set(&key->usage, 1);
 289        init_rwsem(&key->sem);
 290        lockdep_set_class(&key->sem, &type->lock_class);
 291        key->user = user;
 292        key->quotalen = quotalen;
 293        key->datalen = type->def_datalen;
 294        key->uid = uid;
 295        key->gid = gid;
 296        key->perm = perm;
 297        key->restrict_link = restrict_link;
 298        key->last_used_at = ktime_get_real_seconds();
 299
 300        if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
 301                key->flags |= 1 << KEY_FLAG_IN_QUOTA;
 302        if (flags & KEY_ALLOC_BUILT_IN)
 303                key->flags |= 1 << KEY_FLAG_BUILTIN;
 304        if (flags & KEY_ALLOC_UID_KEYRING)
 305                key->flags |= 1 << KEY_FLAG_UID_KEYRING;
 306
 307#ifdef KEY_DEBUGGING
 308        key->magic = KEY_DEBUG_MAGIC;
 309#endif
 310
 311        /* let the security module know about the key */
 312        ret = security_key_alloc(key, cred, flags);
 313        if (ret < 0)
 314                goto security_error;
 315
 316        /* publish the key by giving it a serial number */
 317        refcount_inc(&key->domain_tag->usage);
 318        atomic_inc(&user->nkeys);
 319        key_alloc_serial(key);
 320
 321error:
 322        return key;
 323
 324security_error:
 325        kfree(key->description);
 326        kmem_cache_free(key_jar, key);
 327        if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 328                spin_lock(&user->lock);
 329                user->qnkeys--;
 330                user->qnbytes -= quotalen;
 331                spin_unlock(&user->lock);
 332        }
 333        key_user_put(user);
 334        key = ERR_PTR(ret);
 335        goto error;
 336
 337no_memory_3:
 338        kmem_cache_free(key_jar, key);
 339no_memory_2:
 340        if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 341                spin_lock(&user->lock);
 342                user->qnkeys--;
 343                user->qnbytes -= quotalen;
 344                spin_unlock(&user->lock);
 345        }
 346        key_user_put(user);
 347no_memory_1:
 348        key = ERR_PTR(-ENOMEM);
 349        goto error;
 350
 351no_quota:
 352        spin_unlock(&user->lock);
 353        key_user_put(user);
 354        key = ERR_PTR(-EDQUOT);
 355        goto error;
 356}
 357EXPORT_SYMBOL(key_alloc);
 358
 359/**
 360 * key_payload_reserve - Adjust data quota reservation for the key's payload
 361 * @key: The key to make the reservation for.
 362 * @datalen: The amount of data payload the caller now wants.
 363 *
 364 * Adjust the amount of the owning user's key data quota that a key reserves.
 365 * If the amount is increased, then -EDQUOT may be returned if there isn't
 366 * enough free quota available.
 367 *
 368 * If successful, 0 is returned.
 369 */
 370int key_payload_reserve(struct key *key, size_t datalen)
 371{
 372        int delta = (int)datalen - key->datalen;
 373        int ret = 0;
 374
 375        key_check(key);
 376
 377        /* contemplate the quota adjustment */
 378        if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 379                unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
 380                        key_quota_root_maxbytes : key_quota_maxbytes;
 381
 382                spin_lock(&key->user->lock);
 383
 384                if (delta > 0 &&
 385                    (key->user->qnbytes + delta > maxbytes ||
 386                     key->user->qnbytes + delta < key->user->qnbytes)) {
 387                        ret = -EDQUOT;
 388                }
 389                else {
 390                        key->user->qnbytes += delta;
 391                        key->quotalen += delta;
 392                }
 393                spin_unlock(&key->user->lock);
 394        }
 395
 396        /* change the recorded data length if that didn't generate an error */
 397        if (ret == 0)
 398                key->datalen = datalen;
 399
 400        return ret;
 401}
 402EXPORT_SYMBOL(key_payload_reserve);
 403
 404/*
 405 * Change the key state to being instantiated.
 406 */
 407static void mark_key_instantiated(struct key *key, int reject_error)
 408{
 409        /* Commit the payload before setting the state; barrier versus
 410         * key_read_state().
 411         */
 412        smp_store_release(&key->state,
 413                          (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
 414}
 415
 416/*
 417 * Instantiate a key and link it into the target keyring atomically.  Must be
 418 * called with the target keyring's semaphore writelocked.  The target key's
 419 * semaphore need not be locked as instantiation is serialised by
 420 * key_construction_mutex.
 421 */
 422static int __key_instantiate_and_link(struct key *key,
 423                                      struct key_preparsed_payload *prep,
 424                                      struct key *keyring,
 425                                      struct key *authkey,
 426                                      struct assoc_array_edit **_edit)
 427{
 428        int ret, awaken;
 429
 430        key_check(key);
 431        key_check(keyring);
 432
 433        awaken = 0;
 434        ret = -EBUSY;
 435
 436        mutex_lock(&key_construction_mutex);
 437
 438        /* can't instantiate twice */
 439        if (key->state == KEY_IS_UNINSTANTIATED) {
 440                /* instantiate the key */
 441                ret = key->type->instantiate(key, prep);
 442
 443                if (ret == 0) {
 444                        /* mark the key as being instantiated */
 445                        atomic_inc(&key->user->nikeys);
 446                        mark_key_instantiated(key, 0);
 447                        notify_key(key, NOTIFY_KEY_INSTANTIATED, 0);
 448
 449                        if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 450                                awaken = 1;
 451
 452                        /* and link it into the destination keyring */
 453                        if (keyring) {
 454                                if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
 455                                        set_bit(KEY_FLAG_KEEP, &key->flags);
 456
 457                                __key_link(keyring, key, _edit);
 458                        }
 459
 460                        /* disable the authorisation key */
 461                        if (authkey)
 462                                key_invalidate(authkey);
 463
 464                        if (prep->expiry != TIME64_MAX) {
 465                                key->expiry = prep->expiry;
 466                                key_schedule_gc(prep->expiry + key_gc_delay);
 467                        }
 468                }
 469        }
 470
 471        mutex_unlock(&key_construction_mutex);
 472
 473        /* wake up anyone waiting for a key to be constructed */
 474        if (awaken)
 475                wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 476
 477        return ret;
 478}
 479
 480/**
 481 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
 482 * @key: The key to instantiate.
 483 * @data: The data to use to instantiate the keyring.
 484 * @datalen: The length of @data.
 485 * @keyring: Keyring to create a link in on success (or NULL).
 486 * @authkey: The authorisation token permitting instantiation.
 487 *
 488 * Instantiate a key that's in the uninstantiated state using the provided data
 489 * and, if successful, link it in to the destination keyring if one is
 490 * supplied.
 491 *
 492 * If successful, 0 is returned, the authorisation token is revoked and anyone
 493 * waiting for the key is woken up.  If the key was already instantiated,
 494 * -EBUSY will be returned.
 495 */
 496int key_instantiate_and_link(struct key *key,
 497                             const void *data,
 498                             size_t datalen,
 499                             struct key *keyring,
 500                             struct key *authkey)
 501{
 502        struct key_preparsed_payload prep;
 503        struct assoc_array_edit *edit = NULL;
 504        int ret;
 505
 506        memset(&prep, 0, sizeof(prep));
 507        prep.data = data;
 508        prep.datalen = datalen;
 509        prep.quotalen = key->type->def_datalen;
 510        prep.expiry = TIME64_MAX;
 511        if (key->type->preparse) {
 512                ret = key->type->preparse(&prep);
 513                if (ret < 0)
 514                        goto error;
 515        }
 516
 517        if (keyring) {
 518                ret = __key_link_lock(keyring, &key->index_key);
 519                if (ret < 0)
 520                        goto error;
 521
 522                ret = __key_link_begin(keyring, &key->index_key, &edit);
 523                if (ret < 0)
 524                        goto error_link_end;
 525
 526                if (keyring->restrict_link && keyring->restrict_link->check) {
 527                        struct key_restriction *keyres = keyring->restrict_link;
 528
 529                        ret = keyres->check(keyring, key->type, &prep.payload,
 530                                            keyres->key);
 531                        if (ret < 0)
 532                                goto error_link_end;
 533                }
 534        }
 535
 536        ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
 537
 538error_link_end:
 539        if (keyring)
 540                __key_link_end(keyring, &key->index_key, edit);
 541
 542error:
 543        if (key->type->preparse)
 544                key->type->free_preparse(&prep);
 545        return ret;
 546}
 547
 548EXPORT_SYMBOL(key_instantiate_and_link);
 549
 550/**
 551 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
 552 * @key: The key to instantiate.
 553 * @timeout: The timeout on the negative key.
 554 * @error: The error to return when the key is hit.
 555 * @keyring: Keyring to create a link in on success (or NULL).
 556 * @authkey: The authorisation token permitting instantiation.
 557 *
 558 * Negatively instantiate a key that's in the uninstantiated state and, if
 559 * successful, set its timeout and stored error and link it in to the
 560 * destination keyring if one is supplied.  The key and any links to the key
 561 * will be automatically garbage collected after the timeout expires.
 562 *
 563 * Negative keys are used to rate limit repeated request_key() calls by causing
 564 * them to return the stored error code (typically ENOKEY) until the negative
 565 * key expires.
 566 *
 567 * If successful, 0 is returned, the authorisation token is revoked and anyone
 568 * waiting for the key is woken up.  If the key was already instantiated,
 569 * -EBUSY will be returned.
 570 */
 571int key_reject_and_link(struct key *key,
 572                        unsigned timeout,
 573                        unsigned error,
 574                        struct key *keyring,
 575                        struct key *authkey)
 576{
 577        struct assoc_array_edit *edit = NULL;
 578        int ret, awaken, link_ret = 0;
 579
 580        key_check(key);
 581        key_check(keyring);
 582
 583        awaken = 0;
 584        ret = -EBUSY;
 585
 586        if (keyring) {
 587                if (keyring->restrict_link)
 588                        return -EPERM;
 589
 590                link_ret = __key_link_lock(keyring, &key->index_key);
 591                if (link_ret == 0) {
 592                        link_ret = __key_link_begin(keyring, &key->index_key, &edit);
 593                        if (link_ret < 0)
 594                                __key_link_end(keyring, &key->index_key, edit);
 595                }
 596        }
 597
 598        mutex_lock(&key_construction_mutex);
 599
 600        /* can't instantiate twice */
 601        if (key->state == KEY_IS_UNINSTANTIATED) {
 602                /* mark the key as being negatively instantiated */
 603                atomic_inc(&key->user->nikeys);
 604                mark_key_instantiated(key, -error);
 605                notify_key(key, NOTIFY_KEY_INSTANTIATED, -error);
 606                key->expiry = ktime_get_real_seconds() + timeout;
 607                key_schedule_gc(key->expiry + key_gc_delay);
 608
 609                if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 610                        awaken = 1;
 611
 612                ret = 0;
 613
 614                /* and link it into the destination keyring */
 615                if (keyring && link_ret == 0)
 616                        __key_link(keyring, key, &edit);
 617
 618                /* disable the authorisation key */
 619                if (authkey)
 620                        key_invalidate(authkey);
 621        }
 622
 623        mutex_unlock(&key_construction_mutex);
 624
 625        if (keyring && link_ret == 0)
 626                __key_link_end(keyring, &key->index_key, edit);
 627
 628        /* wake up anyone waiting for a key to be constructed */
 629        if (awaken)
 630                wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 631
 632        return ret == 0 ? link_ret : ret;
 633}
 634EXPORT_SYMBOL(key_reject_and_link);
 635
 636/**
 637 * key_put - Discard a reference to a key.
 638 * @key: The key to discard a reference from.
 639 *
 640 * Discard a reference to a key, and when all the references are gone, we
 641 * schedule the cleanup task to come and pull it out of the tree in process
 642 * context at some later time.
 643 */
 644void key_put(struct key *key)
 645{
 646        if (key) {
 647                key_check(key);
 648
 649                if (refcount_dec_and_test(&key->usage))
 650                        schedule_work(&key_gc_work);
 651        }
 652}
 653EXPORT_SYMBOL(key_put);
 654
 655/*
 656 * Find a key by its serial number.
 657 */
 658struct key *key_lookup(key_serial_t id)
 659{
 660        struct rb_node *n;
 661        struct key *key;
 662
 663        spin_lock(&key_serial_lock);
 664
 665        /* search the tree for the specified key */
 666        n = key_serial_tree.rb_node;
 667        while (n) {
 668                key = rb_entry(n, struct key, serial_node);
 669
 670                if (id < key->serial)
 671                        n = n->rb_left;
 672                else if (id > key->serial)
 673                        n = n->rb_right;
 674                else
 675                        goto found;
 676        }
 677
 678not_found:
 679        key = ERR_PTR(-ENOKEY);
 680        goto error;
 681
 682found:
 683        /* A key is allowed to be looked up only if someone still owns a
 684         * reference to it - otherwise it's awaiting the gc.
 685         */
 686        if (!refcount_inc_not_zero(&key->usage))
 687                goto not_found;
 688
 689error:
 690        spin_unlock(&key_serial_lock);
 691        return key;
 692}
 693
 694/*
 695 * Find and lock the specified key type against removal.
 696 *
 697 * We return with the sem read-locked if successful.  If the type wasn't
 698 * available -ENOKEY is returned instead.
 699 */
 700struct key_type *key_type_lookup(const char *type)
 701{
 702        struct key_type *ktype;
 703
 704        down_read(&key_types_sem);
 705
 706        /* look up the key type to see if it's one of the registered kernel
 707         * types */
 708        list_for_each_entry(ktype, &key_types_list, link) {
 709                if (strcmp(ktype->name, type) == 0)
 710                        goto found_kernel_type;
 711        }
 712
 713        up_read(&key_types_sem);
 714        ktype = ERR_PTR(-ENOKEY);
 715
 716found_kernel_type:
 717        return ktype;
 718}
 719
 720void key_set_timeout(struct key *key, unsigned timeout)
 721{
 722        time64_t expiry = 0;
 723
 724        /* make the changes with the locks held to prevent races */
 725        down_write(&key->sem);
 726
 727        if (timeout > 0)
 728                expiry = ktime_get_real_seconds() + timeout;
 729
 730        key->expiry = expiry;
 731        key_schedule_gc(key->expiry + key_gc_delay);
 732
 733        up_write(&key->sem);
 734}
 735EXPORT_SYMBOL_GPL(key_set_timeout);
 736
 737/*
 738 * Unlock a key type locked by key_type_lookup().
 739 */
 740void key_type_put(struct key_type *ktype)
 741{
 742        up_read(&key_types_sem);
 743}
 744
 745/*
 746 * Attempt to update an existing key.
 747 *
 748 * The key is given to us with an incremented refcount that we need to discard
 749 * if we get an error.
 750 */
 751static inline key_ref_t __key_update(key_ref_t key_ref,
 752                                     struct key_preparsed_payload *prep)
 753{
 754        struct key *key = key_ref_to_ptr(key_ref);
 755        int ret;
 756
 757        /* need write permission on the key to update it */
 758        ret = key_permission(key_ref, KEY_NEED_WRITE);
 759        if (ret < 0)
 760                goto error;
 761
 762        ret = -EEXIST;
 763        if (!key->type->update)
 764                goto error;
 765
 766        down_write(&key->sem);
 767
 768        ret = key->type->update(key, prep);
 769        if (ret == 0) {
 770                /* Updating a negative key positively instantiates it */
 771                mark_key_instantiated(key, 0);
 772                notify_key(key, NOTIFY_KEY_UPDATED, 0);
 773        }
 774
 775        up_write(&key->sem);
 776
 777        if (ret < 0)
 778                goto error;
 779out:
 780        return key_ref;
 781
 782error:
 783        key_put(key);
 784        key_ref = ERR_PTR(ret);
 785        goto out;
 786}
 787
 788/**
 789 * key_create_or_update - Update or create and instantiate a key.
 790 * @keyring_ref: A pointer to the destination keyring with possession flag.
 791 * @type: The type of key.
 792 * @description: The searchable description for the key.
 793 * @payload: The data to use to instantiate or update the key.
 794 * @plen: The length of @payload.
 795 * @perm: The permissions mask for a new key.
 796 * @flags: The quota flags for a new key.
 797 *
 798 * Search the destination keyring for a key of the same description and if one
 799 * is found, update it, otherwise create and instantiate a new one and create a
 800 * link to it from that keyring.
 801 *
 802 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
 803 * concocted.
 804 *
 805 * Returns a pointer to the new key if successful, -ENODEV if the key type
 806 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
 807 * caller isn't permitted to modify the keyring or the LSM did not permit
 808 * creation of the key.
 809 *
 810 * On success, the possession flag from the keyring ref will be tacked on to
 811 * the key ref before it is returned.
 812 */
 813key_ref_t key_create_or_update(key_ref_t keyring_ref,
 814                               const char *type,
 815                               const char *description,
 816                               const void *payload,
 817                               size_t plen,
 818                               key_perm_t perm,
 819                               unsigned long flags)
 820{
 821        struct keyring_index_key index_key = {
 822                .description    = description,
 823        };
 824        struct key_preparsed_payload prep;
 825        struct assoc_array_edit *edit = NULL;
 826        const struct cred *cred = current_cred();
 827        struct key *keyring, *key = NULL;
 828        key_ref_t key_ref;
 829        int ret;
 830        struct key_restriction *restrict_link = NULL;
 831
 832        /* look up the key type to see if it's one of the registered kernel
 833         * types */
 834        index_key.type = key_type_lookup(type);
 835        if (IS_ERR(index_key.type)) {
 836                key_ref = ERR_PTR(-ENODEV);
 837                goto error;
 838        }
 839
 840        key_ref = ERR_PTR(-EINVAL);
 841        if (!index_key.type->instantiate ||
 842            (!index_key.description && !index_key.type->preparse))
 843                goto error_put_type;
 844
 845        keyring = key_ref_to_ptr(keyring_ref);
 846
 847        key_check(keyring);
 848
 849        if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
 850                restrict_link = keyring->restrict_link;
 851
 852        key_ref = ERR_PTR(-ENOTDIR);
 853        if (keyring->type != &key_type_keyring)
 854                goto error_put_type;
 855
 856        memset(&prep, 0, sizeof(prep));
 857        prep.data = payload;
 858        prep.datalen = plen;
 859        prep.quotalen = index_key.type->def_datalen;
 860        prep.expiry = TIME64_MAX;
 861        if (index_key.type->preparse) {
 862                ret = index_key.type->preparse(&prep);
 863                if (ret < 0) {
 864                        key_ref = ERR_PTR(ret);
 865                        goto error_free_prep;
 866                }
 867                if (!index_key.description)
 868                        index_key.description = prep.description;
 869                key_ref = ERR_PTR(-EINVAL);
 870                if (!index_key.description)
 871                        goto error_free_prep;
 872        }
 873        index_key.desc_len = strlen(index_key.description);
 874        key_set_index_key(&index_key);
 875
 876        ret = __key_link_lock(keyring, &index_key);
 877        if (ret < 0) {
 878                key_ref = ERR_PTR(ret);
 879                goto error_free_prep;
 880        }
 881
 882        ret = __key_link_begin(keyring, &index_key, &edit);
 883        if (ret < 0) {
 884                key_ref = ERR_PTR(ret);
 885                goto error_link_end;
 886        }
 887
 888        if (restrict_link && restrict_link->check) {
 889                ret = restrict_link->check(keyring, index_key.type,
 890                                           &prep.payload, restrict_link->key);
 891                if (ret < 0) {
 892                        key_ref = ERR_PTR(ret);
 893                        goto error_link_end;
 894                }
 895        }
 896
 897        /* if we're going to allocate a new key, we're going to have
 898         * to modify the keyring */
 899        ret = key_permission(keyring_ref, KEY_NEED_WRITE);
 900        if (ret < 0) {
 901                key_ref = ERR_PTR(ret);
 902                goto error_link_end;
 903        }
 904
 905        /* if it's possible to update this type of key, search for an existing
 906         * key of the same type and description in the destination keyring and
 907         * update that instead if possible
 908         */
 909        if (index_key.type->update) {
 910                key_ref = find_key_to_update(keyring_ref, &index_key);
 911                if (key_ref)
 912                        goto found_matching_key;
 913        }
 914
 915        /* if the client doesn't provide, decide on the permissions we want */
 916        if (perm == KEY_PERM_UNDEF) {
 917                perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
 918                perm |= KEY_USR_VIEW;
 919
 920                if (index_key.type->read)
 921                        perm |= KEY_POS_READ;
 922
 923                if (index_key.type == &key_type_keyring ||
 924                    index_key.type->update)
 925                        perm |= KEY_POS_WRITE;
 926        }
 927
 928        /* allocate a new key */
 929        key = key_alloc(index_key.type, index_key.description,
 930                        cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
 931        if (IS_ERR(key)) {
 932                key_ref = ERR_CAST(key);
 933                goto error_link_end;
 934        }
 935
 936        /* instantiate it and link it into the target keyring */
 937        ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
 938        if (ret < 0) {
 939                key_put(key);
 940                key_ref = ERR_PTR(ret);
 941                goto error_link_end;
 942        }
 943
 944        ima_post_key_create_or_update(keyring, key, payload, plen,
 945                                      flags, true);
 946
 947        key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
 948
 949error_link_end:
 950        __key_link_end(keyring, &index_key, edit);
 951error_free_prep:
 952        if (index_key.type->preparse)
 953                index_key.type->free_preparse(&prep);
 954error_put_type:
 955        key_type_put(index_key.type);
 956error:
 957        return key_ref;
 958
 959 found_matching_key:
 960        /* we found a matching key, so we're going to try to update it
 961         * - we can drop the locks first as we have the key pinned
 962         */
 963        __key_link_end(keyring, &index_key, edit);
 964
 965        key = key_ref_to_ptr(key_ref);
 966        if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
 967                ret = wait_for_key_construction(key, true);
 968                if (ret < 0) {
 969                        key_ref_put(key_ref);
 970                        key_ref = ERR_PTR(ret);
 971                        goto error_free_prep;
 972                }
 973        }
 974
 975        key_ref = __key_update(key_ref, &prep);
 976
 977        if (!IS_ERR(key_ref))
 978                ima_post_key_create_or_update(keyring, key,
 979                                              payload, plen,
 980                                              flags, false);
 981
 982        goto error_free_prep;
 983}
 984EXPORT_SYMBOL(key_create_or_update);
 985
 986/**
 987 * key_update - Update a key's contents.
 988 * @key_ref: The pointer (plus possession flag) to the key.
 989 * @payload: The data to be used to update the key.
 990 * @plen: The length of @payload.
 991 *
 992 * Attempt to update the contents of a key with the given payload data.  The
 993 * caller must be granted Write permission on the key.  Negative keys can be
 994 * instantiated by this method.
 995 *
 996 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
 997 * type does not support updating.  The key type may return other errors.
 998 */
 999int key_update(key_ref_t key_ref, const void *payload, size_t plen)
1000{
1001        struct key_preparsed_payload prep;
1002        struct key *key = key_ref_to_ptr(key_ref);
1003        int ret;
1004
1005        key_check(key);
1006
1007        /* the key must be writable */
1008        ret = key_permission(key_ref, KEY_NEED_WRITE);
1009        if (ret < 0)
1010                return ret;
1011
1012        /* attempt to update it if supported */
1013        if (!key->type->update)
1014                return -EOPNOTSUPP;
1015
1016        memset(&prep, 0, sizeof(prep));
1017        prep.data = payload;
1018        prep.datalen = plen;
1019        prep.quotalen = key->type->def_datalen;
1020        prep.expiry = TIME64_MAX;
1021        if (key->type->preparse) {
1022                ret = key->type->preparse(&prep);
1023                if (ret < 0)
1024                        goto error;
1025        }
1026
1027        down_write(&key->sem);
1028
1029        ret = key->type->update(key, &prep);
1030        if (ret == 0) {
1031                /* Updating a negative key positively instantiates it */
1032                mark_key_instantiated(key, 0);
1033                notify_key(key, NOTIFY_KEY_UPDATED, 0);
1034        }
1035
1036        up_write(&key->sem);
1037
1038error:
1039        if (key->type->preparse)
1040                key->type->free_preparse(&prep);
1041        return ret;
1042}
1043EXPORT_SYMBOL(key_update);
1044
1045/**
1046 * key_revoke - Revoke a key.
1047 * @key: The key to be revoked.
1048 *
1049 * Mark a key as being revoked and ask the type to free up its resources.  The
1050 * revocation timeout is set and the key and all its links will be
1051 * automatically garbage collected after key_gc_delay amount of time if they
1052 * are not manually dealt with first.
1053 */
1054void key_revoke(struct key *key)
1055{
1056        time64_t time;
1057
1058        key_check(key);
1059
1060        /* make sure no one's trying to change or use the key when we mark it
1061         * - we tell lockdep that we might nest because we might be revoking an
1062         *   authorisation key whilst holding the sem on a key we've just
1063         *   instantiated
1064         */
1065        down_write_nested(&key->sem, 1);
1066        if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags)) {
1067                notify_key(key, NOTIFY_KEY_REVOKED, 0);
1068                if (key->type->revoke)
1069                        key->type->revoke(key);
1070
1071                /* set the death time to no more than the expiry time */
1072                time = ktime_get_real_seconds();
1073                if (key->revoked_at == 0 || key->revoked_at > time) {
1074                        key->revoked_at = time;
1075                        key_schedule_gc(key->revoked_at + key_gc_delay);
1076                }
1077        }
1078
1079        up_write(&key->sem);
1080}
1081EXPORT_SYMBOL(key_revoke);
1082
1083/**
1084 * key_invalidate - Invalidate a key.
1085 * @key: The key to be invalidated.
1086 *
1087 * Mark a key as being invalidated and have it cleaned up immediately.  The key
1088 * is ignored by all searches and other operations from this point.
1089 */
1090void key_invalidate(struct key *key)
1091{
1092        kenter("%d", key_serial(key));
1093
1094        key_check(key);
1095
1096        if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1097                down_write_nested(&key->sem, 1);
1098                if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1099                        notify_key(key, NOTIFY_KEY_INVALIDATED, 0);
1100                        key_schedule_gc_links();
1101                }
1102                up_write(&key->sem);
1103        }
1104}
1105EXPORT_SYMBOL(key_invalidate);
1106
1107/**
1108 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1109 * @key: The key to be instantiated
1110 * @prep: The preparsed data to load.
1111 *
1112 * Instantiate a key from preparsed data.  We assume we can just copy the data
1113 * in directly and clear the old pointers.
1114 *
1115 * This can be pointed to directly by the key type instantiate op pointer.
1116 */
1117int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1118{
1119        int ret;
1120
1121        pr_devel("==>%s()\n", __func__);
1122
1123        ret = key_payload_reserve(key, prep->quotalen);
1124        if (ret == 0) {
1125                rcu_assign_keypointer(key, prep->payload.data[0]);
1126                key->payload.data[1] = prep->payload.data[1];
1127                key->payload.data[2] = prep->payload.data[2];
1128                key->payload.data[3] = prep->payload.data[3];
1129                prep->payload.data[0] = NULL;
1130                prep->payload.data[1] = NULL;
1131                prep->payload.data[2] = NULL;
1132                prep->payload.data[3] = NULL;
1133        }
1134        pr_devel("<==%s() = %d\n", __func__, ret);
1135        return ret;
1136}
1137EXPORT_SYMBOL(generic_key_instantiate);
1138
1139/**
1140 * register_key_type - Register a type of key.
1141 * @ktype: The new key type.
1142 *
1143 * Register a new key type.
1144 *
1145 * Returns 0 on success or -EEXIST if a type of this name already exists.
1146 */
1147int register_key_type(struct key_type *ktype)
1148{
1149        struct key_type *p;
1150        int ret;
1151
1152        memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1153
1154        ret = -EEXIST;
1155        down_write(&key_types_sem);
1156
1157        /* disallow key types with the same name */
1158        list_for_each_entry(p, &key_types_list, link) {
1159                if (strcmp(p->name, ktype->name) == 0)
1160                        goto out;
1161        }
1162
1163        /* store the type */
1164        list_add(&ktype->link, &key_types_list);
1165
1166        pr_notice("Key type %s registered\n", ktype->name);
1167        ret = 0;
1168
1169out:
1170        up_write(&key_types_sem);
1171        return ret;
1172}
1173EXPORT_SYMBOL(register_key_type);
1174
1175/**
1176 * unregister_key_type - Unregister a type of key.
1177 * @ktype: The key type.
1178 *
1179 * Unregister a key type and mark all the extant keys of this type as dead.
1180 * Those keys of this type are then destroyed to get rid of their payloads and
1181 * they and their links will be garbage collected as soon as possible.
1182 */
1183void unregister_key_type(struct key_type *ktype)
1184{
1185        down_write(&key_types_sem);
1186        list_del_init(&ktype->link);
1187        downgrade_write(&key_types_sem);
1188        key_gc_keytype(ktype);
1189        pr_notice("Key type %s unregistered\n", ktype->name);
1190        up_read(&key_types_sem);
1191}
1192EXPORT_SYMBOL(unregister_key_type);
1193
1194/*
1195 * Initialise the key management state.
1196 */
1197void __init key_init(void)
1198{
1199        /* allocate a slab in which we can store keys */
1200        key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1201                        0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1202
1203        /* add the special key types */
1204        list_add_tail(&key_type_keyring.link, &key_types_list);
1205        list_add_tail(&key_type_dead.link, &key_types_list);
1206        list_add_tail(&key_type_user.link, &key_types_list);
1207        list_add_tail(&key_type_logon.link, &key_types_list);
1208
1209        /* record the root user tracking */
1210        rb_link_node(&root_key_user.node,
1211                     NULL,
1212                     &key_user_tree.rb_node);
1213
1214        rb_insert_color(&root_key_user.node,
1215                        &key_user_tree);
1216}
1217