linux/arch/arm/probes/decode.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/*
   3 * arch/arm/probes/decode.h
   4 *
   5 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
   6 *
   7 * Some contents moved here from arch/arm/include/asm/kprobes.h which is
   8 * Copyright (C) 2006, 2007 Motorola Inc.
   9 */
  10
  11#ifndef _ARM_KERNEL_PROBES_H
  12#define  _ARM_KERNEL_PROBES_H
  13
  14#include <linux/types.h>
  15#include <linux/stddef.h>
  16#include <asm/probes.h>
  17#include <asm/kprobes.h>
  18
  19void __init arm_probes_decode_init(void);
  20
  21extern probes_check_cc * const probes_condition_checks[16];
  22
  23#if __LINUX_ARM_ARCH__ >= 7
  24
  25/* str_pc_offset is architecturally defined from ARMv7 onwards */
  26#define str_pc_offset 8
  27#define find_str_pc_offset()
  28
  29#else /* __LINUX_ARM_ARCH__ < 7 */
  30
  31/* We need a run-time check to determine str_pc_offset */
  32extern int str_pc_offset;
  33void __init find_str_pc_offset(void);
  34
  35#endif
  36
  37
  38/*
  39 * Update ITSTATE after normal execution of an IT block instruction.
  40 *
  41 * The 8 IT state bits are split into two parts in CPSR:
  42 *      ITSTATE<1:0> are in CPSR<26:25>
  43 *      ITSTATE<7:2> are in CPSR<15:10>
  44 */
  45static inline unsigned long it_advance(unsigned long cpsr)
  46        {
  47        if ((cpsr & 0x06000400) == 0) {
  48                /* ITSTATE<2:0> == 0 means end of IT block, so clear IT state */
  49                cpsr &= ~PSR_IT_MASK;
  50        } else {
  51                /* We need to shift left ITSTATE<4:0> */
  52                const unsigned long mask = 0x06001c00;  /* Mask ITSTATE<4:0> */
  53                unsigned long it = cpsr & mask;
  54                it <<= 1;
  55                it |= it >> (27 - 10);  /* Carry ITSTATE<2> to correct place */
  56                it &= mask;
  57                cpsr &= ~mask;
  58                cpsr |= it;
  59        }
  60        return cpsr;
  61}
  62
  63static inline void __kprobes bx_write_pc(long pcv, struct pt_regs *regs)
  64{
  65        long cpsr = regs->ARM_cpsr;
  66        if (pcv & 0x1) {
  67                cpsr |= PSR_T_BIT;
  68                pcv &= ~0x1;
  69        } else {
  70                cpsr &= ~PSR_T_BIT;
  71                pcv &= ~0x2;    /* Avoid UNPREDICTABLE address allignment */
  72        }
  73        regs->ARM_cpsr = cpsr;
  74        regs->ARM_pc = pcv;
  75}
  76
  77
  78#if __LINUX_ARM_ARCH__ >= 6
  79
  80/* Kernels built for >= ARMv6 should never run on <= ARMv5 hardware, so... */
  81#define load_write_pc_interworks true
  82#define test_load_write_pc_interworking()
  83
  84#else /* __LINUX_ARM_ARCH__ < 6 */
  85
  86/* We need run-time testing to determine if load_write_pc() should interwork. */
  87extern bool load_write_pc_interworks;
  88void __init test_load_write_pc_interworking(void);
  89
  90#endif
  91
  92static inline void __kprobes load_write_pc(long pcv, struct pt_regs *regs)
  93{
  94        if (load_write_pc_interworks)
  95                bx_write_pc(pcv, regs);
  96        else
  97                regs->ARM_pc = pcv;
  98}
  99
 100
 101#if __LINUX_ARM_ARCH__ >= 7
 102
 103#define alu_write_pc_interworks true
 104#define test_alu_write_pc_interworking()
 105
 106#elif __LINUX_ARM_ARCH__ <= 5
 107
 108/* Kernels built for <= ARMv5 should never run on >= ARMv6 hardware, so... */
 109#define alu_write_pc_interworks false
 110#define test_alu_write_pc_interworking()
 111
 112#else /* __LINUX_ARM_ARCH__ == 6 */
 113
 114/* We could be an ARMv6 binary on ARMv7 hardware so we need a run-time check. */
 115extern bool alu_write_pc_interworks;
 116void __init test_alu_write_pc_interworking(void);
 117
 118#endif /* __LINUX_ARM_ARCH__ == 6 */
 119
 120static inline void __kprobes alu_write_pc(long pcv, struct pt_regs *regs)
 121{
 122        if (alu_write_pc_interworks)
 123                bx_write_pc(pcv, regs);
 124        else
 125                regs->ARM_pc = pcv;
 126}
 127
 128
 129/*
 130 * Test if load/store instructions writeback the address register.
 131 * if P (bit 24) == 0 or W (bit 21) == 1
 132 */
 133#define is_writeback(insn) ((insn ^ 0x01000000) & 0x01200000)
 134
 135/*
 136 * The following definitions and macros are used to build instruction
 137 * decoding tables for use by probes_decode_insn.
 138 *
 139 * These tables are a concatenation of entries each of which consist of one of
 140 * the decode_* structs. All of the fields in every type of decode structure
 141 * are of the union type decode_item, therefore the entire decode table can be
 142 * viewed as an array of these and declared like:
 143 *
 144 *      static const union decode_item table_name[] = {};
 145 *
 146 * In order to construct each entry in the table, macros are used to
 147 * initialise a number of sequential decode_item values in a layout which
 148 * matches the relevant struct. E.g. DECODE_SIMULATE initialise a struct
 149 * decode_simulate by initialising four decode_item objects like this...
 150 *
 151 *      {.bits = _type},
 152 *      {.bits = _mask},
 153 *      {.bits = _value},
 154 *      {.action = _handler},
 155 *
 156 * Initialising a specified member of the union means that the compiler
 157 * will produce a warning if the argument is of an incorrect type.
 158 *
 159 * Below is a list of each of the macros used to initialise entries and a
 160 * description of the action performed when that entry is matched to an
 161 * instruction. A match is found when (instruction & mask) == value.
 162 *
 163 * DECODE_TABLE(mask, value, table)
 164 *      Instruction decoding jumps to parsing the new sub-table 'table'.
 165 *
 166 * DECODE_CUSTOM(mask, value, decoder)
 167 *      The value of 'decoder' is used as an index into the array of
 168 *      action functions, and the retrieved decoder function is invoked
 169 *      to complete decoding of the instruction.
 170 *
 171 * DECODE_SIMULATE(mask, value, handler)
 172 *      The probes instruction handler is set to the value found by
 173 *      indexing into the action array using the value of 'handler'. This
 174 *      will be used to simulate the instruction when the probe is hit.
 175 *      Decoding returns with INSN_GOOD_NO_SLOT.
 176 *
 177 * DECODE_EMULATE(mask, value, handler)
 178 *      The probes instruction handler is set to the value found by
 179 *      indexing into the action array using the value of 'handler'. This
 180 *      will be used to emulate the instruction when the probe is hit. The
 181 *      modified instruction (see below) is placed in the probes instruction
 182 *      slot so it may be called by the emulation code. Decoding returns
 183 *      with INSN_GOOD.
 184 *
 185 * DECODE_REJECT(mask, value)
 186 *      Instruction decoding fails with INSN_REJECTED
 187 *
 188 * DECODE_OR(mask, value)
 189 *      This allows the mask/value test of multiple table entries to be
 190 *      logically ORed. Once an 'or' entry is matched the decoding action to
 191 *      be performed is that of the next entry which isn't an 'or'. E.g.
 192 *
 193 *              DECODE_OR       (mask1, value1)
 194 *              DECODE_OR       (mask2, value2)
 195 *              DECODE_SIMULATE (mask3, value3, simulation_handler)
 196 *
 197 *      This means that if any of the three mask/value pairs match the
 198 *      instruction being decoded, then 'simulation_handler' will be used
 199 *      for it.
 200 *
 201 * Both the SIMULATE and EMULATE macros have a second form which take an
 202 * additional 'regs' argument.
 203 *
 204 *      DECODE_SIMULATEX(mask, value, handler, regs)
 205 *      DECODE_EMULATEX (mask, value, handler, regs)
 206 *
 207 * These are used to specify what kind of CPU register is encoded in each of the
 208 * least significant 5 nibbles of the instruction being decoded. The regs value
 209 * is specified using the REGS macro, this takes any of the REG_TYPE_* values
 210 * from enum decode_reg_type as arguments; only the '*' part of the name is
 211 * given. E.g.
 212 *
 213 *      REGS(0, ANY, NOPC, 0, ANY)
 214 *
 215 * This indicates an instruction is encoded like:
 216 *
 217 *      bits 19..16     ignore
 218 *      bits 15..12     any register allowed here
 219 *      bits 11.. 8     any register except PC allowed here
 220 *      bits  7.. 4     ignore
 221 *      bits  3.. 0     any register allowed here
 222 *
 223 * This register specification is checked after a decode table entry is found to
 224 * match an instruction (through the mask/value test). Any invalid register then
 225 * found in the instruction will cause decoding to fail with INSN_REJECTED. In
 226 * the above example this would happen if bits 11..8 of the instruction were
 227 * 1111, indicating R15 or PC.
 228 *
 229 * As well as checking for legal combinations of registers, this data is also
 230 * used to modify the registers encoded in the instructions so that an
 231 * emulation routines can use it. (See decode_regs() and INSN_NEW_BITS.)
 232 *
 233 * Here is a real example which matches ARM instructions of the form
 234 * "AND <Rd>,<Rn>,<Rm>,<shift> <Rs>"
 235 *
 236 *      DECODE_EMULATEX (0x0e000090, 0x00000010, PROBES_DATA_PROCESSING_REG,
 237 *                                               REGS(ANY, ANY, NOPC, 0, ANY)),
 238 *                                                    ^    ^    ^        ^
 239 *                                                    Rn   Rd   Rs       Rm
 240 *
 241 * Decoding the instruction "AND R4, R5, R6, ASL R15" will be rejected because
 242 * Rs == R15
 243 *
 244 * Decoding the instruction "AND R4, R5, R6, ASL R7" will be accepted and the
 245 * instruction will be modified to "AND R0, R2, R3, ASL R1" and then placed into
 246 * the kprobes instruction slot. This can then be called later by the handler
 247 * function emulate_rd12rn16rm0rs8_rwflags (a pointer to which is retrieved from
 248 * the indicated slot in the action array), in order to simulate the instruction.
 249 */
 250
 251enum decode_type {
 252        DECODE_TYPE_END,
 253        DECODE_TYPE_TABLE,
 254        DECODE_TYPE_CUSTOM,
 255        DECODE_TYPE_SIMULATE,
 256        DECODE_TYPE_EMULATE,
 257        DECODE_TYPE_OR,
 258        DECODE_TYPE_REJECT,
 259        NUM_DECODE_TYPES /* Must be last enum */
 260};
 261
 262#define DECODE_TYPE_BITS        4
 263#define DECODE_TYPE_MASK        ((1 << DECODE_TYPE_BITS) - 1)
 264
 265enum decode_reg_type {
 266        REG_TYPE_NONE = 0, /* Not a register, ignore */
 267        REG_TYPE_ANY,      /* Any register allowed */
 268        REG_TYPE_SAMEAS16, /* Register should be same as that at bits 19..16 */
 269        REG_TYPE_SP,       /* Register must be SP */
 270        REG_TYPE_PC,       /* Register must be PC */
 271        REG_TYPE_NOSP,     /* Register must not be SP */
 272        REG_TYPE_NOSPPC,   /* Register must not be SP or PC */
 273        REG_TYPE_NOPC,     /* Register must not be PC */
 274        REG_TYPE_NOPCWB,   /* No PC if load/store write-back flag also set */
 275
 276        /* The following types are used when the encoding for PC indicates
 277         * another instruction form. This distiction only matters for test
 278         * case coverage checks.
 279         */
 280        REG_TYPE_NOPCX,    /* Register must not be PC */
 281        REG_TYPE_NOSPPCX,  /* Register must not be SP or PC */
 282
 283        /* Alias to allow '0' arg to be used in REGS macro. */
 284        REG_TYPE_0 = REG_TYPE_NONE
 285};
 286
 287#define REGS(r16, r12, r8, r4, r0)      \
 288        (((REG_TYPE_##r16) << 16) +     \
 289        ((REG_TYPE_##r12) << 12) +      \
 290        ((REG_TYPE_##r8) << 8) +        \
 291        ((REG_TYPE_##r4) << 4) +        \
 292        (REG_TYPE_##r0))
 293
 294union decode_item {
 295        u32                     bits;
 296        const union decode_item *table;
 297        int                     action;
 298};
 299
 300struct decode_header;
 301typedef enum probes_insn (probes_custom_decode_t)(probes_opcode_t,
 302                                                  struct arch_probes_insn *,
 303                                                  const struct decode_header *);
 304
 305union decode_action {
 306        probes_insn_handler_t   *handler;
 307        probes_custom_decode_t  *decoder;
 308};
 309
 310typedef enum probes_insn (probes_check_t)(probes_opcode_t,
 311                                           struct arch_probes_insn *,
 312                                           const struct decode_header *);
 313
 314struct decode_checker {
 315        probes_check_t  *checker;
 316};
 317
 318#define DECODE_END                      \
 319        {.bits = DECODE_TYPE_END}
 320
 321
 322struct decode_header {
 323        union decode_item       type_regs;
 324        union decode_item       mask;
 325        union decode_item       value;
 326};
 327
 328#define DECODE_HEADER(_type, _mask, _value, _regs)              \
 329        {.bits = (_type) | ((_regs) << DECODE_TYPE_BITS)},      \
 330        {.bits = (_mask)},                                      \
 331        {.bits = (_value)}
 332
 333
 334struct decode_table {
 335        struct decode_header    header;
 336        union decode_item       table;
 337};
 338
 339#define DECODE_TABLE(_mask, _value, _table)                     \
 340        DECODE_HEADER(DECODE_TYPE_TABLE, _mask, _value, 0),     \
 341        {.table = (_table)}
 342
 343
 344struct decode_custom {
 345        struct decode_header    header;
 346        union decode_item       decoder;
 347};
 348
 349#define DECODE_CUSTOM(_mask, _value, _decoder)                  \
 350        DECODE_HEADER(DECODE_TYPE_CUSTOM, _mask, _value, 0),    \
 351        {.action = (_decoder)}
 352
 353
 354struct decode_simulate {
 355        struct decode_header    header;
 356        union decode_item       handler;
 357};
 358
 359#define DECODE_SIMULATEX(_mask, _value, _handler, _regs)                \
 360        DECODE_HEADER(DECODE_TYPE_SIMULATE, _mask, _value, _regs),      \
 361        {.action = (_handler)}
 362
 363#define DECODE_SIMULATE(_mask, _value, _handler)        \
 364        DECODE_SIMULATEX(_mask, _value, _handler, 0)
 365
 366
 367struct decode_emulate {
 368        struct decode_header    header;
 369        union decode_item       handler;
 370};
 371
 372#define DECODE_EMULATEX(_mask, _value, _handler, _regs)                 \
 373        DECODE_HEADER(DECODE_TYPE_EMULATE, _mask, _value, _regs),       \
 374        {.action = (_handler)}
 375
 376#define DECODE_EMULATE(_mask, _value, _handler)         \
 377        DECODE_EMULATEX(_mask, _value, _handler, 0)
 378
 379
 380struct decode_or {
 381        struct decode_header    header;
 382};
 383
 384#define DECODE_OR(_mask, _value)                                \
 385        DECODE_HEADER(DECODE_TYPE_OR, _mask, _value, 0)
 386
 387enum probes_insn {
 388        INSN_REJECTED,
 389        INSN_GOOD,
 390        INSN_GOOD_NO_SLOT
 391};
 392
 393struct decode_reject {
 394        struct decode_header    header;
 395};
 396
 397#define DECODE_REJECT(_mask, _value)                            \
 398        DECODE_HEADER(DECODE_TYPE_REJECT, _mask, _value, 0)
 399
 400probes_insn_handler_t probes_simulate_nop;
 401probes_insn_handler_t probes_emulate_none;
 402
 403int __kprobes
 404probes_decode_insn(probes_opcode_t insn, struct arch_probes_insn *asi,
 405                const union decode_item *table, bool thumb, bool emulate,
 406                const union decode_action *actions,
 407                const struct decode_checker **checkers);
 408
 409#endif
 410