1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * arch/arm/probes/decode.h 4 * 5 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>. 6 * 7 * Some contents moved here from arch/arm/include/asm/kprobes.h which is 8 * Copyright (C) 2006, 2007 Motorola Inc. 9 */ 10 11#ifndef _ARM_KERNEL_PROBES_H 12#define _ARM_KERNEL_PROBES_H 13 14#include <linux/types.h> 15#include <linux/stddef.h> 16#include <asm/probes.h> 17#include <asm/kprobes.h> 18 19void __init arm_probes_decode_init(void); 20 21extern probes_check_cc * const probes_condition_checks[16]; 22 23#if __LINUX_ARM_ARCH__ >= 7 24 25/* str_pc_offset is architecturally defined from ARMv7 onwards */ 26#define str_pc_offset 8 27#define find_str_pc_offset() 28 29#else /* __LINUX_ARM_ARCH__ < 7 */ 30 31/* We need a run-time check to determine str_pc_offset */ 32extern int str_pc_offset; 33void __init find_str_pc_offset(void); 34 35#endif 36 37 38/* 39 * Update ITSTATE after normal execution of an IT block instruction. 40 * 41 * The 8 IT state bits are split into two parts in CPSR: 42 * ITSTATE<1:0> are in CPSR<26:25> 43 * ITSTATE<7:2> are in CPSR<15:10> 44 */ 45static inline unsigned long it_advance(unsigned long cpsr) 46 { 47 if ((cpsr & 0x06000400) == 0) { 48 /* ITSTATE<2:0> == 0 means end of IT block, so clear IT state */ 49 cpsr &= ~PSR_IT_MASK; 50 } else { 51 /* We need to shift left ITSTATE<4:0> */ 52 const unsigned long mask = 0x06001c00; /* Mask ITSTATE<4:0> */ 53 unsigned long it = cpsr & mask; 54 it <<= 1; 55 it |= it >> (27 - 10); /* Carry ITSTATE<2> to correct place */ 56 it &= mask; 57 cpsr &= ~mask; 58 cpsr |= it; 59 } 60 return cpsr; 61} 62 63static inline void __kprobes bx_write_pc(long pcv, struct pt_regs *regs) 64{ 65 long cpsr = regs->ARM_cpsr; 66 if (pcv & 0x1) { 67 cpsr |= PSR_T_BIT; 68 pcv &= ~0x1; 69 } else { 70 cpsr &= ~PSR_T_BIT; 71 pcv &= ~0x2; /* Avoid UNPREDICTABLE address allignment */ 72 } 73 regs->ARM_cpsr = cpsr; 74 regs->ARM_pc = pcv; 75} 76 77 78#if __LINUX_ARM_ARCH__ >= 6 79 80/* Kernels built for >= ARMv6 should never run on <= ARMv5 hardware, so... */ 81#define load_write_pc_interworks true 82#define test_load_write_pc_interworking() 83 84#else /* __LINUX_ARM_ARCH__ < 6 */ 85 86/* We need run-time testing to determine if load_write_pc() should interwork. */ 87extern bool load_write_pc_interworks; 88void __init test_load_write_pc_interworking(void); 89 90#endif 91 92static inline void __kprobes load_write_pc(long pcv, struct pt_regs *regs) 93{ 94 if (load_write_pc_interworks) 95 bx_write_pc(pcv, regs); 96 else 97 regs->ARM_pc = pcv; 98} 99 100 101#if __LINUX_ARM_ARCH__ >= 7 102 103#define alu_write_pc_interworks true 104#define test_alu_write_pc_interworking() 105 106#elif __LINUX_ARM_ARCH__ <= 5 107 108/* Kernels built for <= ARMv5 should never run on >= ARMv6 hardware, so... */ 109#define alu_write_pc_interworks false 110#define test_alu_write_pc_interworking() 111 112#else /* __LINUX_ARM_ARCH__ == 6 */ 113 114/* We could be an ARMv6 binary on ARMv7 hardware so we need a run-time check. */ 115extern bool alu_write_pc_interworks; 116void __init test_alu_write_pc_interworking(void); 117 118#endif /* __LINUX_ARM_ARCH__ == 6 */ 119 120static inline void __kprobes alu_write_pc(long pcv, struct pt_regs *regs) 121{ 122 if (alu_write_pc_interworks) 123 bx_write_pc(pcv, regs); 124 else 125 regs->ARM_pc = pcv; 126} 127 128 129/* 130 * Test if load/store instructions writeback the address register. 131 * if P (bit 24) == 0 or W (bit 21) == 1 132 */ 133#define is_writeback(insn) ((insn ^ 0x01000000) & 0x01200000) 134 135/* 136 * The following definitions and macros are used to build instruction 137 * decoding tables for use by probes_decode_insn. 138 * 139 * These tables are a concatenation of entries each of which consist of one of 140 * the decode_* structs. All of the fields in every type of decode structure 141 * are of the union type decode_item, therefore the entire decode table can be 142 * viewed as an array of these and declared like: 143 * 144 * static const union decode_item table_name[] = {}; 145 * 146 * In order to construct each entry in the table, macros are used to 147 * initialise a number of sequential decode_item values in a layout which 148 * matches the relevant struct. E.g. DECODE_SIMULATE initialise a struct 149 * decode_simulate by initialising four decode_item objects like this... 150 * 151 * {.bits = _type}, 152 * {.bits = _mask}, 153 * {.bits = _value}, 154 * {.action = _handler}, 155 * 156 * Initialising a specified member of the union means that the compiler 157 * will produce a warning if the argument is of an incorrect type. 158 * 159 * Below is a list of each of the macros used to initialise entries and a 160 * description of the action performed when that entry is matched to an 161 * instruction. A match is found when (instruction & mask) == value. 162 * 163 * DECODE_TABLE(mask, value, table) 164 * Instruction decoding jumps to parsing the new sub-table 'table'. 165 * 166 * DECODE_CUSTOM(mask, value, decoder) 167 * The value of 'decoder' is used as an index into the array of 168 * action functions, and the retrieved decoder function is invoked 169 * to complete decoding of the instruction. 170 * 171 * DECODE_SIMULATE(mask, value, handler) 172 * The probes instruction handler is set to the value found by 173 * indexing into the action array using the value of 'handler'. This 174 * will be used to simulate the instruction when the probe is hit. 175 * Decoding returns with INSN_GOOD_NO_SLOT. 176 * 177 * DECODE_EMULATE(mask, value, handler) 178 * The probes instruction handler is set to the value found by 179 * indexing into the action array using the value of 'handler'. This 180 * will be used to emulate the instruction when the probe is hit. The 181 * modified instruction (see below) is placed in the probes instruction 182 * slot so it may be called by the emulation code. Decoding returns 183 * with INSN_GOOD. 184 * 185 * DECODE_REJECT(mask, value) 186 * Instruction decoding fails with INSN_REJECTED 187 * 188 * DECODE_OR(mask, value) 189 * This allows the mask/value test of multiple table entries to be 190 * logically ORed. Once an 'or' entry is matched the decoding action to 191 * be performed is that of the next entry which isn't an 'or'. E.g. 192 * 193 * DECODE_OR (mask1, value1) 194 * DECODE_OR (mask2, value2) 195 * DECODE_SIMULATE (mask3, value3, simulation_handler) 196 * 197 * This means that if any of the three mask/value pairs match the 198 * instruction being decoded, then 'simulation_handler' will be used 199 * for it. 200 * 201 * Both the SIMULATE and EMULATE macros have a second form which take an 202 * additional 'regs' argument. 203 * 204 * DECODE_SIMULATEX(mask, value, handler, regs) 205 * DECODE_EMULATEX (mask, value, handler, regs) 206 * 207 * These are used to specify what kind of CPU register is encoded in each of the 208 * least significant 5 nibbles of the instruction being decoded. The regs value 209 * is specified using the REGS macro, this takes any of the REG_TYPE_* values 210 * from enum decode_reg_type as arguments; only the '*' part of the name is 211 * given. E.g. 212 * 213 * REGS(0, ANY, NOPC, 0, ANY) 214 * 215 * This indicates an instruction is encoded like: 216 * 217 * bits 19..16 ignore 218 * bits 15..12 any register allowed here 219 * bits 11.. 8 any register except PC allowed here 220 * bits 7.. 4 ignore 221 * bits 3.. 0 any register allowed here 222 * 223 * This register specification is checked after a decode table entry is found to 224 * match an instruction (through the mask/value test). Any invalid register then 225 * found in the instruction will cause decoding to fail with INSN_REJECTED. In 226 * the above example this would happen if bits 11..8 of the instruction were 227 * 1111, indicating R15 or PC. 228 * 229 * As well as checking for legal combinations of registers, this data is also 230 * used to modify the registers encoded in the instructions so that an 231 * emulation routines can use it. (See decode_regs() and INSN_NEW_BITS.) 232 * 233 * Here is a real example which matches ARM instructions of the form 234 * "AND <Rd>,<Rn>,<Rm>,<shift> <Rs>" 235 * 236 * DECODE_EMULATEX (0x0e000090, 0x00000010, PROBES_DATA_PROCESSING_REG, 237 * REGS(ANY, ANY, NOPC, 0, ANY)), 238 * ^ ^ ^ ^ 239 * Rn Rd Rs Rm 240 * 241 * Decoding the instruction "AND R4, R5, R6, ASL R15" will be rejected because 242 * Rs == R15 243 * 244 * Decoding the instruction "AND R4, R5, R6, ASL R7" will be accepted and the 245 * instruction will be modified to "AND R0, R2, R3, ASL R1" and then placed into 246 * the kprobes instruction slot. This can then be called later by the handler 247 * function emulate_rd12rn16rm0rs8_rwflags (a pointer to which is retrieved from 248 * the indicated slot in the action array), in order to simulate the instruction. 249 */ 250 251enum decode_type { 252 DECODE_TYPE_END, 253 DECODE_TYPE_TABLE, 254 DECODE_TYPE_CUSTOM, 255 DECODE_TYPE_SIMULATE, 256 DECODE_TYPE_EMULATE, 257 DECODE_TYPE_OR, 258 DECODE_TYPE_REJECT, 259 NUM_DECODE_TYPES /* Must be last enum */ 260}; 261 262#define DECODE_TYPE_BITS 4 263#define DECODE_TYPE_MASK ((1 << DECODE_TYPE_BITS) - 1) 264 265enum decode_reg_type { 266 REG_TYPE_NONE = 0, /* Not a register, ignore */ 267 REG_TYPE_ANY, /* Any register allowed */ 268 REG_TYPE_SAMEAS16, /* Register should be same as that at bits 19..16 */ 269 REG_TYPE_SP, /* Register must be SP */ 270 REG_TYPE_PC, /* Register must be PC */ 271 REG_TYPE_NOSP, /* Register must not be SP */ 272 REG_TYPE_NOSPPC, /* Register must not be SP or PC */ 273 REG_TYPE_NOPC, /* Register must not be PC */ 274 REG_TYPE_NOPCWB, /* No PC if load/store write-back flag also set */ 275 276 /* The following types are used when the encoding for PC indicates 277 * another instruction form. This distiction only matters for test 278 * case coverage checks. 279 */ 280 REG_TYPE_NOPCX, /* Register must not be PC */ 281 REG_TYPE_NOSPPCX, /* Register must not be SP or PC */ 282 283 /* Alias to allow '0' arg to be used in REGS macro. */ 284 REG_TYPE_0 = REG_TYPE_NONE 285}; 286 287#define REGS(r16, r12, r8, r4, r0) \ 288 (((REG_TYPE_##r16) << 16) + \ 289 ((REG_TYPE_##r12) << 12) + \ 290 ((REG_TYPE_##r8) << 8) + \ 291 ((REG_TYPE_##r4) << 4) + \ 292 (REG_TYPE_##r0)) 293 294union decode_item { 295 u32 bits; 296 const union decode_item *table; 297 int action; 298}; 299 300struct decode_header; 301typedef enum probes_insn (probes_custom_decode_t)(probes_opcode_t, 302 struct arch_probes_insn *, 303 const struct decode_header *); 304 305union decode_action { 306 probes_insn_handler_t *handler; 307 probes_custom_decode_t *decoder; 308}; 309 310typedef enum probes_insn (probes_check_t)(probes_opcode_t, 311 struct arch_probes_insn *, 312 const struct decode_header *); 313 314struct decode_checker { 315 probes_check_t *checker; 316}; 317 318#define DECODE_END \ 319 {.bits = DECODE_TYPE_END} 320 321 322struct decode_header { 323 union decode_item type_regs; 324 union decode_item mask; 325 union decode_item value; 326}; 327 328#define DECODE_HEADER(_type, _mask, _value, _regs) \ 329 {.bits = (_type) | ((_regs) << DECODE_TYPE_BITS)}, \ 330 {.bits = (_mask)}, \ 331 {.bits = (_value)} 332 333 334struct decode_table { 335 struct decode_header header; 336 union decode_item table; 337}; 338 339#define DECODE_TABLE(_mask, _value, _table) \ 340 DECODE_HEADER(DECODE_TYPE_TABLE, _mask, _value, 0), \ 341 {.table = (_table)} 342 343 344struct decode_custom { 345 struct decode_header header; 346 union decode_item decoder; 347}; 348 349#define DECODE_CUSTOM(_mask, _value, _decoder) \ 350 DECODE_HEADER(DECODE_TYPE_CUSTOM, _mask, _value, 0), \ 351 {.action = (_decoder)} 352 353 354struct decode_simulate { 355 struct decode_header header; 356 union decode_item handler; 357}; 358 359#define DECODE_SIMULATEX(_mask, _value, _handler, _regs) \ 360 DECODE_HEADER(DECODE_TYPE_SIMULATE, _mask, _value, _regs), \ 361 {.action = (_handler)} 362 363#define DECODE_SIMULATE(_mask, _value, _handler) \ 364 DECODE_SIMULATEX(_mask, _value, _handler, 0) 365 366 367struct decode_emulate { 368 struct decode_header header; 369 union decode_item handler; 370}; 371 372#define DECODE_EMULATEX(_mask, _value, _handler, _regs) \ 373 DECODE_HEADER(DECODE_TYPE_EMULATE, _mask, _value, _regs), \ 374 {.action = (_handler)} 375 376#define DECODE_EMULATE(_mask, _value, _handler) \ 377 DECODE_EMULATEX(_mask, _value, _handler, 0) 378 379 380struct decode_or { 381 struct decode_header header; 382}; 383 384#define DECODE_OR(_mask, _value) \ 385 DECODE_HEADER(DECODE_TYPE_OR, _mask, _value, 0) 386 387enum probes_insn { 388 INSN_REJECTED, 389 INSN_GOOD, 390 INSN_GOOD_NO_SLOT 391}; 392 393struct decode_reject { 394 struct decode_header header; 395}; 396 397#define DECODE_REJECT(_mask, _value) \ 398 DECODE_HEADER(DECODE_TYPE_REJECT, _mask, _value, 0) 399 400probes_insn_handler_t probes_simulate_nop; 401probes_insn_handler_t probes_emulate_none; 402 403int __kprobes 404probes_decode_insn(probes_opcode_t insn, struct arch_probes_insn *asi, 405 const union decode_item *table, bool thumb, bool emulate, 406 const union decode_action *actions, 407 const struct decode_checker **checkers); 408 409#endif 410