linux/arch/arm64/kernel/sdei.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2// Copyright (C) 2017 Arm Ltd.
   3#define pr_fmt(fmt) "sdei: " fmt
   4
   5#include <linux/arm-smccc.h>
   6#include <linux/arm_sdei.h>
   7#include <linux/hardirq.h>
   8#include <linux/irqflags.h>
   9#include <linux/sched/task_stack.h>
  10#include <linux/scs.h>
  11#include <linux/uaccess.h>
  12
  13#include <asm/alternative.h>
  14#include <asm/exception.h>
  15#include <asm/kprobes.h>
  16#include <asm/mmu.h>
  17#include <asm/ptrace.h>
  18#include <asm/sections.h>
  19#include <asm/stacktrace.h>
  20#include <asm/sysreg.h>
  21#include <asm/vmap_stack.h>
  22
  23unsigned long sdei_exit_mode;
  24
  25/*
  26 * VMAP'd stacks checking for stack overflow on exception using sp as a scratch
  27 * register, meaning SDEI has to switch to its own stack. We need two stacks as
  28 * a critical event may interrupt a normal event that has just taken a
  29 * synchronous exception, and is using sp as scratch register. For a critical
  30 * event interrupting a normal event, we can't reliably tell if we were on the
  31 * sdei stack.
  32 * For now, we allocate stacks when the driver is probed.
  33 */
  34DECLARE_PER_CPU(unsigned long *, sdei_stack_normal_ptr);
  35DECLARE_PER_CPU(unsigned long *, sdei_stack_critical_ptr);
  36
  37#ifdef CONFIG_VMAP_STACK
  38DEFINE_PER_CPU(unsigned long *, sdei_stack_normal_ptr);
  39DEFINE_PER_CPU(unsigned long *, sdei_stack_critical_ptr);
  40#endif
  41
  42DECLARE_PER_CPU(unsigned long *, sdei_shadow_call_stack_normal_ptr);
  43DECLARE_PER_CPU(unsigned long *, sdei_shadow_call_stack_critical_ptr);
  44
  45#ifdef CONFIG_SHADOW_CALL_STACK
  46DEFINE_PER_CPU(unsigned long *, sdei_shadow_call_stack_normal_ptr);
  47DEFINE_PER_CPU(unsigned long *, sdei_shadow_call_stack_critical_ptr);
  48#endif
  49
  50static void _free_sdei_stack(unsigned long * __percpu *ptr, int cpu)
  51{
  52        unsigned long *p;
  53
  54        p = per_cpu(*ptr, cpu);
  55        if (p) {
  56                per_cpu(*ptr, cpu) = NULL;
  57                vfree(p);
  58        }
  59}
  60
  61static void free_sdei_stacks(void)
  62{
  63        int cpu;
  64
  65        if (!IS_ENABLED(CONFIG_VMAP_STACK))
  66                return;
  67
  68        for_each_possible_cpu(cpu) {
  69                _free_sdei_stack(&sdei_stack_normal_ptr, cpu);
  70                _free_sdei_stack(&sdei_stack_critical_ptr, cpu);
  71        }
  72}
  73
  74static int _init_sdei_stack(unsigned long * __percpu *ptr, int cpu)
  75{
  76        unsigned long *p;
  77
  78        p = arch_alloc_vmap_stack(SDEI_STACK_SIZE, cpu_to_node(cpu));
  79        if (!p)
  80                return -ENOMEM;
  81        per_cpu(*ptr, cpu) = p;
  82
  83        return 0;
  84}
  85
  86static int init_sdei_stacks(void)
  87{
  88        int cpu;
  89        int err = 0;
  90
  91        if (!IS_ENABLED(CONFIG_VMAP_STACK))
  92                return 0;
  93
  94        for_each_possible_cpu(cpu) {
  95                err = _init_sdei_stack(&sdei_stack_normal_ptr, cpu);
  96                if (err)
  97                        break;
  98                err = _init_sdei_stack(&sdei_stack_critical_ptr, cpu);
  99                if (err)
 100                        break;
 101        }
 102
 103        if (err)
 104                free_sdei_stacks();
 105
 106        return err;
 107}
 108
 109static void _free_sdei_scs(unsigned long * __percpu *ptr, int cpu)
 110{
 111        void *s;
 112
 113        s = per_cpu(*ptr, cpu);
 114        if (s) {
 115                per_cpu(*ptr, cpu) = NULL;
 116                scs_free(s);
 117        }
 118}
 119
 120static void free_sdei_scs(void)
 121{
 122        int cpu;
 123
 124        for_each_possible_cpu(cpu) {
 125                _free_sdei_scs(&sdei_shadow_call_stack_normal_ptr, cpu);
 126                _free_sdei_scs(&sdei_shadow_call_stack_critical_ptr, cpu);
 127        }
 128}
 129
 130static int _init_sdei_scs(unsigned long * __percpu *ptr, int cpu)
 131{
 132        void *s;
 133
 134        s = scs_alloc(cpu_to_node(cpu));
 135        if (!s)
 136                return -ENOMEM;
 137        per_cpu(*ptr, cpu) = s;
 138
 139        return 0;
 140}
 141
 142static int init_sdei_scs(void)
 143{
 144        int cpu;
 145        int err = 0;
 146
 147        if (!IS_ENABLED(CONFIG_SHADOW_CALL_STACK))
 148                return 0;
 149
 150        for_each_possible_cpu(cpu) {
 151                err = _init_sdei_scs(&sdei_shadow_call_stack_normal_ptr, cpu);
 152                if (err)
 153                        break;
 154                err = _init_sdei_scs(&sdei_shadow_call_stack_critical_ptr, cpu);
 155                if (err)
 156                        break;
 157        }
 158
 159        if (err)
 160                free_sdei_scs();
 161
 162        return err;
 163}
 164
 165static bool on_sdei_normal_stack(unsigned long sp, unsigned long size,
 166                                 struct stack_info *info)
 167{
 168        unsigned long low = (unsigned long)raw_cpu_read(sdei_stack_normal_ptr);
 169        unsigned long high = low + SDEI_STACK_SIZE;
 170
 171        return on_stack(sp, size, low, high, STACK_TYPE_SDEI_NORMAL, info);
 172}
 173
 174static bool on_sdei_critical_stack(unsigned long sp, unsigned long size,
 175                                   struct stack_info *info)
 176{
 177        unsigned long low = (unsigned long)raw_cpu_read(sdei_stack_critical_ptr);
 178        unsigned long high = low + SDEI_STACK_SIZE;
 179
 180        return on_stack(sp, size, low, high, STACK_TYPE_SDEI_CRITICAL, info);
 181}
 182
 183bool _on_sdei_stack(unsigned long sp, unsigned long size, struct stack_info *info)
 184{
 185        if (!IS_ENABLED(CONFIG_VMAP_STACK))
 186                return false;
 187
 188        if (on_sdei_critical_stack(sp, size, info))
 189                return true;
 190
 191        if (on_sdei_normal_stack(sp, size, info))
 192                return true;
 193
 194        return false;
 195}
 196
 197unsigned long sdei_arch_get_entry_point(int conduit)
 198{
 199        /*
 200         * SDEI works between adjacent exception levels. If we booted at EL1 we
 201         * assume a hypervisor is marshalling events. If we booted at EL2 and
 202         * dropped to EL1 because we don't support VHE, then we can't support
 203         * SDEI.
 204         */
 205        if (is_hyp_mode_available() && !is_kernel_in_hyp_mode()) {
 206                pr_err("Not supported on this hardware/boot configuration\n");
 207                goto out_err;
 208        }
 209
 210        if (init_sdei_stacks())
 211                goto out_err;
 212
 213        if (init_sdei_scs())
 214                goto out_err_free_stacks;
 215
 216        sdei_exit_mode = (conduit == SMCCC_CONDUIT_HVC) ? SDEI_EXIT_HVC : SDEI_EXIT_SMC;
 217
 218#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
 219        if (arm64_kernel_unmapped_at_el0()) {
 220                unsigned long offset;
 221
 222                offset = (unsigned long)__sdei_asm_entry_trampoline -
 223                         (unsigned long)__entry_tramp_text_start;
 224                return TRAMP_VALIAS + offset;
 225        } else
 226#endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
 227                return (unsigned long)__sdei_asm_handler;
 228
 229out_err_free_stacks:
 230        free_sdei_stacks();
 231out_err:
 232        return 0;
 233}
 234
 235/*
 236 * do_sdei_event() returns one of:
 237 *  SDEI_EV_HANDLED -  success, return to the interrupted context.
 238 *  SDEI_EV_FAILED  -  failure, return this error code to firmare.
 239 *  virtual-address -  success, return to this address.
 240 */
 241unsigned long __kprobes do_sdei_event(struct pt_regs *regs,
 242                                      struct sdei_registered_event *arg)
 243{
 244        u32 mode;
 245        int i, err = 0;
 246        int clobbered_registers = 4;
 247        u64 elr = read_sysreg(elr_el1);
 248        u32 kernel_mode = read_sysreg(CurrentEL) | 1;   /* +SPSel */
 249        unsigned long vbar = read_sysreg(vbar_el1);
 250
 251        if (arm64_kernel_unmapped_at_el0())
 252                clobbered_registers++;
 253
 254        /* Retrieve the missing registers values */
 255        for (i = 0; i < clobbered_registers; i++) {
 256                /* from within the handler, this call always succeeds */
 257                sdei_api_event_context(i, &regs->regs[i]);
 258        }
 259
 260        err = sdei_event_handler(regs, arg);
 261        if (err)
 262                return SDEI_EV_FAILED;
 263
 264        if (elr != read_sysreg(elr_el1)) {
 265                /*
 266                 * We took a synchronous exception from the SDEI handler.
 267                 * This could deadlock, and if you interrupt KVM it will
 268                 * hyp-panic instead.
 269                 */
 270                pr_warn("unsafe: exception during handler\n");
 271        }
 272
 273        mode = regs->pstate & (PSR_MODE32_BIT | PSR_MODE_MASK);
 274
 275        /*
 276         * If we interrupted the kernel with interrupts masked, we always go
 277         * back to wherever we came from.
 278         */
 279        if (mode == kernel_mode && !interrupts_enabled(regs))
 280                return SDEI_EV_HANDLED;
 281
 282        /*
 283         * Otherwise, we pretend this was an IRQ. This lets user space tasks
 284         * receive signals before we return to them, and KVM to invoke it's
 285         * world switch to do the same.
 286         *
 287         * See DDI0487B.a Table D1-7 'Vector offsets from vector table base
 288         * address'.
 289         */
 290        if (mode == kernel_mode)
 291                return vbar + 0x280;
 292        else if (mode & PSR_MODE32_BIT)
 293                return vbar + 0x680;
 294
 295        return vbar + 0x480;
 296}
 297