linux/arch/arm64/kvm/sys_regs.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012,2013 - ARM Ltd
   4 * Author: Marc Zyngier <marc.zyngier@arm.com>
   5 *
   6 * Derived from arch/arm/kvm/coproc.c:
   7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
   8 * Authors: Rusty Russell <rusty@rustcorp.com.au>
   9 *          Christoffer Dall <c.dall@virtualopensystems.com>
  10 */
  11
  12#include <linux/bitfield.h>
  13#include <linux/bsearch.h>
  14#include <linux/kvm_host.h>
  15#include <linux/mm.h>
  16#include <linux/printk.h>
  17#include <linux/uaccess.h>
  18
  19#include <asm/cacheflush.h>
  20#include <asm/cputype.h>
  21#include <asm/debug-monitors.h>
  22#include <asm/esr.h>
  23#include <asm/kvm_arm.h>
  24#include <asm/kvm_emulate.h>
  25#include <asm/kvm_hyp.h>
  26#include <asm/kvm_mmu.h>
  27#include <asm/perf_event.h>
  28#include <asm/sysreg.h>
  29
  30#include <trace/events/kvm.h>
  31
  32#include "sys_regs.h"
  33
  34#include "trace.h"
  35
  36/*
  37 * All of this file is extremely similar to the ARM coproc.c, but the
  38 * types are different. My gut feeling is that it should be pretty
  39 * easy to merge, but that would be an ABI breakage -- again. VFP
  40 * would also need to be abstracted.
  41 *
  42 * For AArch32, we only take care of what is being trapped. Anything
  43 * that has to do with init and userspace access has to go via the
  44 * 64bit interface.
  45 */
  46
  47static bool read_from_write_only(struct kvm_vcpu *vcpu,
  48                                 struct sys_reg_params *params,
  49                                 const struct sys_reg_desc *r)
  50{
  51        WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
  52        print_sys_reg_instr(params);
  53        kvm_inject_undefined(vcpu);
  54        return false;
  55}
  56
  57static bool write_to_read_only(struct kvm_vcpu *vcpu,
  58                               struct sys_reg_params *params,
  59                               const struct sys_reg_desc *r)
  60{
  61        WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
  62        print_sys_reg_instr(params);
  63        kvm_inject_undefined(vcpu);
  64        return false;
  65}
  66
  67u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
  68{
  69        u64 val = 0x8badf00d8badf00d;
  70
  71        if (vcpu->arch.sysregs_loaded_on_cpu &&
  72            __vcpu_read_sys_reg_from_cpu(reg, &val))
  73                return val;
  74
  75        return __vcpu_sys_reg(vcpu, reg);
  76}
  77
  78void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
  79{
  80        if (vcpu->arch.sysregs_loaded_on_cpu &&
  81            __vcpu_write_sys_reg_to_cpu(val, reg))
  82                return;
  83
  84         __vcpu_sys_reg(vcpu, reg) = val;
  85}
  86
  87/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
  88static u32 cache_levels;
  89
  90/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
  91#define CSSELR_MAX 14
  92
  93/* Which cache CCSIDR represents depends on CSSELR value. */
  94static u32 get_ccsidr(u32 csselr)
  95{
  96        u32 ccsidr;
  97
  98        /* Make sure noone else changes CSSELR during this! */
  99        local_irq_disable();
 100        write_sysreg(csselr, csselr_el1);
 101        isb();
 102        ccsidr = read_sysreg(ccsidr_el1);
 103        local_irq_enable();
 104
 105        return ccsidr;
 106}
 107
 108/*
 109 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 110 */
 111static bool access_dcsw(struct kvm_vcpu *vcpu,
 112                        struct sys_reg_params *p,
 113                        const struct sys_reg_desc *r)
 114{
 115        if (!p->is_write)
 116                return read_from_write_only(vcpu, p, r);
 117
 118        /*
 119         * Only track S/W ops if we don't have FWB. It still indicates
 120         * that the guest is a bit broken (S/W operations should only
 121         * be done by firmware, knowing that there is only a single
 122         * CPU left in the system, and certainly not from non-secure
 123         * software).
 124         */
 125        if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
 126                kvm_set_way_flush(vcpu);
 127
 128        return true;
 129}
 130
 131static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
 132{
 133        switch (r->aarch32_map) {
 134        case AA32_LO:
 135                *mask = GENMASK_ULL(31, 0);
 136                *shift = 0;
 137                break;
 138        case AA32_HI:
 139                *mask = GENMASK_ULL(63, 32);
 140                *shift = 32;
 141                break;
 142        default:
 143                *mask = GENMASK_ULL(63, 0);
 144                *shift = 0;
 145                break;
 146        }
 147}
 148
 149/*
 150 * Generic accessor for VM registers. Only called as long as HCR_TVM
 151 * is set. If the guest enables the MMU, we stop trapping the VM
 152 * sys_regs and leave it in complete control of the caches.
 153 */
 154static bool access_vm_reg(struct kvm_vcpu *vcpu,
 155                          struct sys_reg_params *p,
 156                          const struct sys_reg_desc *r)
 157{
 158        bool was_enabled = vcpu_has_cache_enabled(vcpu);
 159        u64 val, mask, shift;
 160
 161        BUG_ON(!p->is_write);
 162
 163        get_access_mask(r, &mask, &shift);
 164
 165        if (~mask) {
 166                val = vcpu_read_sys_reg(vcpu, r->reg);
 167                val &= ~mask;
 168        } else {
 169                val = 0;
 170        }
 171
 172        val |= (p->regval & (mask >> shift)) << shift;
 173        vcpu_write_sys_reg(vcpu, val, r->reg);
 174
 175        kvm_toggle_cache(vcpu, was_enabled);
 176        return true;
 177}
 178
 179static bool access_actlr(struct kvm_vcpu *vcpu,
 180                         struct sys_reg_params *p,
 181                         const struct sys_reg_desc *r)
 182{
 183        u64 mask, shift;
 184
 185        if (p->is_write)
 186                return ignore_write(vcpu, p);
 187
 188        get_access_mask(r, &mask, &shift);
 189        p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
 190
 191        return true;
 192}
 193
 194/*
 195 * Trap handler for the GICv3 SGI generation system register.
 196 * Forward the request to the VGIC emulation.
 197 * The cp15_64 code makes sure this automatically works
 198 * for both AArch64 and AArch32 accesses.
 199 */
 200static bool access_gic_sgi(struct kvm_vcpu *vcpu,
 201                           struct sys_reg_params *p,
 202                           const struct sys_reg_desc *r)
 203{
 204        bool g1;
 205
 206        if (!p->is_write)
 207                return read_from_write_only(vcpu, p, r);
 208
 209        /*
 210         * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
 211         * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
 212         * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
 213         * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
 214         * group.
 215         */
 216        if (p->Op0 == 0) {              /* AArch32 */
 217                switch (p->Op1) {
 218                default:                /* Keep GCC quiet */
 219                case 0:                 /* ICC_SGI1R */
 220                        g1 = true;
 221                        break;
 222                case 1:                 /* ICC_ASGI1R */
 223                case 2:                 /* ICC_SGI0R */
 224                        g1 = false;
 225                        break;
 226                }
 227        } else {                        /* AArch64 */
 228                switch (p->Op2) {
 229                default:                /* Keep GCC quiet */
 230                case 5:                 /* ICC_SGI1R_EL1 */
 231                        g1 = true;
 232                        break;
 233                case 6:                 /* ICC_ASGI1R_EL1 */
 234                case 7:                 /* ICC_SGI0R_EL1 */
 235                        g1 = false;
 236                        break;
 237                }
 238        }
 239
 240        vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
 241
 242        return true;
 243}
 244
 245static bool access_gic_sre(struct kvm_vcpu *vcpu,
 246                           struct sys_reg_params *p,
 247                           const struct sys_reg_desc *r)
 248{
 249        if (p->is_write)
 250                return ignore_write(vcpu, p);
 251
 252        p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
 253        return true;
 254}
 255
 256static bool trap_raz_wi(struct kvm_vcpu *vcpu,
 257                        struct sys_reg_params *p,
 258                        const struct sys_reg_desc *r)
 259{
 260        if (p->is_write)
 261                return ignore_write(vcpu, p);
 262        else
 263                return read_zero(vcpu, p);
 264}
 265
 266/*
 267 * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
 268 * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
 269 * system, these registers should UNDEF. LORID_EL1 being a RO register, we
 270 * treat it separately.
 271 */
 272static bool trap_loregion(struct kvm_vcpu *vcpu,
 273                          struct sys_reg_params *p,
 274                          const struct sys_reg_desc *r)
 275{
 276        u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
 277        u32 sr = reg_to_encoding(r);
 278
 279        if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
 280                kvm_inject_undefined(vcpu);
 281                return false;
 282        }
 283
 284        if (p->is_write && sr == SYS_LORID_EL1)
 285                return write_to_read_only(vcpu, p, r);
 286
 287        return trap_raz_wi(vcpu, p, r);
 288}
 289
 290static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
 291                           struct sys_reg_params *p,
 292                           const struct sys_reg_desc *r)
 293{
 294        if (p->is_write) {
 295                return ignore_write(vcpu, p);
 296        } else {
 297                p->regval = (1 << 3);
 298                return true;
 299        }
 300}
 301
 302static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
 303                                   struct sys_reg_params *p,
 304                                   const struct sys_reg_desc *r)
 305{
 306        if (p->is_write) {
 307                return ignore_write(vcpu, p);
 308        } else {
 309                p->regval = read_sysreg(dbgauthstatus_el1);
 310                return true;
 311        }
 312}
 313
 314/*
 315 * We want to avoid world-switching all the DBG registers all the
 316 * time:
 317 *
 318 * - If we've touched any debug register, it is likely that we're
 319 *   going to touch more of them. It then makes sense to disable the
 320 *   traps and start doing the save/restore dance
 321 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
 322 *   then mandatory to save/restore the registers, as the guest
 323 *   depends on them.
 324 *
 325 * For this, we use a DIRTY bit, indicating the guest has modified the
 326 * debug registers, used as follow:
 327 *
 328 * On guest entry:
 329 * - If the dirty bit is set (because we're coming back from trapping),
 330 *   disable the traps, save host registers, restore guest registers.
 331 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
 332 *   set the dirty bit, disable the traps, save host registers,
 333 *   restore guest registers.
 334 * - Otherwise, enable the traps
 335 *
 336 * On guest exit:
 337 * - If the dirty bit is set, save guest registers, restore host
 338 *   registers and clear the dirty bit. This ensure that the host can
 339 *   now use the debug registers.
 340 */
 341static bool trap_debug_regs(struct kvm_vcpu *vcpu,
 342                            struct sys_reg_params *p,
 343                            const struct sys_reg_desc *r)
 344{
 345        if (p->is_write) {
 346                vcpu_write_sys_reg(vcpu, p->regval, r->reg);
 347                vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
 348        } else {
 349                p->regval = vcpu_read_sys_reg(vcpu, r->reg);
 350        }
 351
 352        trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
 353
 354        return true;
 355}
 356
 357/*
 358 * reg_to_dbg/dbg_to_reg
 359 *
 360 * A 32 bit write to a debug register leave top bits alone
 361 * A 32 bit read from a debug register only returns the bottom bits
 362 *
 363 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
 364 * hyp.S code switches between host and guest values in future.
 365 */
 366static void reg_to_dbg(struct kvm_vcpu *vcpu,
 367                       struct sys_reg_params *p,
 368                       const struct sys_reg_desc *rd,
 369                       u64 *dbg_reg)
 370{
 371        u64 mask, shift, val;
 372
 373        get_access_mask(rd, &mask, &shift);
 374
 375        val = *dbg_reg;
 376        val &= ~mask;
 377        val |= (p->regval & (mask >> shift)) << shift;
 378        *dbg_reg = val;
 379
 380        vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
 381}
 382
 383static void dbg_to_reg(struct kvm_vcpu *vcpu,
 384                       struct sys_reg_params *p,
 385                       const struct sys_reg_desc *rd,
 386                       u64 *dbg_reg)
 387{
 388        u64 mask, shift;
 389
 390        get_access_mask(rd, &mask, &shift);
 391        p->regval = (*dbg_reg & mask) >> shift;
 392}
 393
 394static bool trap_bvr(struct kvm_vcpu *vcpu,
 395                     struct sys_reg_params *p,
 396                     const struct sys_reg_desc *rd)
 397{
 398        u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
 399
 400        if (p->is_write)
 401                reg_to_dbg(vcpu, p, rd, dbg_reg);
 402        else
 403                dbg_to_reg(vcpu, p, rd, dbg_reg);
 404
 405        trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
 406
 407        return true;
 408}
 409
 410static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 411                const struct kvm_one_reg *reg, void __user *uaddr)
 412{
 413        __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
 414
 415        if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
 416                return -EFAULT;
 417        return 0;
 418}
 419
 420static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 421        const struct kvm_one_reg *reg, void __user *uaddr)
 422{
 423        __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
 424
 425        if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
 426                return -EFAULT;
 427        return 0;
 428}
 429
 430static void reset_bvr(struct kvm_vcpu *vcpu,
 431                      const struct sys_reg_desc *rd)
 432{
 433        vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
 434}
 435
 436static bool trap_bcr(struct kvm_vcpu *vcpu,
 437                     struct sys_reg_params *p,
 438                     const struct sys_reg_desc *rd)
 439{
 440        u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
 441
 442        if (p->is_write)
 443                reg_to_dbg(vcpu, p, rd, dbg_reg);
 444        else
 445                dbg_to_reg(vcpu, p, rd, dbg_reg);
 446
 447        trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
 448
 449        return true;
 450}
 451
 452static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 453                const struct kvm_one_reg *reg, void __user *uaddr)
 454{
 455        __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
 456
 457        if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
 458                return -EFAULT;
 459
 460        return 0;
 461}
 462
 463static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 464        const struct kvm_one_reg *reg, void __user *uaddr)
 465{
 466        __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
 467
 468        if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
 469                return -EFAULT;
 470        return 0;
 471}
 472
 473static void reset_bcr(struct kvm_vcpu *vcpu,
 474                      const struct sys_reg_desc *rd)
 475{
 476        vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
 477}
 478
 479static bool trap_wvr(struct kvm_vcpu *vcpu,
 480                     struct sys_reg_params *p,
 481                     const struct sys_reg_desc *rd)
 482{
 483        u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
 484
 485        if (p->is_write)
 486                reg_to_dbg(vcpu, p, rd, dbg_reg);
 487        else
 488                dbg_to_reg(vcpu, p, rd, dbg_reg);
 489
 490        trace_trap_reg(__func__, rd->CRm, p->is_write,
 491                vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
 492
 493        return true;
 494}
 495
 496static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 497                const struct kvm_one_reg *reg, void __user *uaddr)
 498{
 499        __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
 500
 501        if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
 502                return -EFAULT;
 503        return 0;
 504}
 505
 506static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 507        const struct kvm_one_reg *reg, void __user *uaddr)
 508{
 509        __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
 510
 511        if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
 512                return -EFAULT;
 513        return 0;
 514}
 515
 516static void reset_wvr(struct kvm_vcpu *vcpu,
 517                      const struct sys_reg_desc *rd)
 518{
 519        vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
 520}
 521
 522static bool trap_wcr(struct kvm_vcpu *vcpu,
 523                     struct sys_reg_params *p,
 524                     const struct sys_reg_desc *rd)
 525{
 526        u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
 527
 528        if (p->is_write)
 529                reg_to_dbg(vcpu, p, rd, dbg_reg);
 530        else
 531                dbg_to_reg(vcpu, p, rd, dbg_reg);
 532
 533        trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
 534
 535        return true;
 536}
 537
 538static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 539                const struct kvm_one_reg *reg, void __user *uaddr)
 540{
 541        __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
 542
 543        if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
 544                return -EFAULT;
 545        return 0;
 546}
 547
 548static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 549        const struct kvm_one_reg *reg, void __user *uaddr)
 550{
 551        __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
 552
 553        if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
 554                return -EFAULT;
 555        return 0;
 556}
 557
 558static void reset_wcr(struct kvm_vcpu *vcpu,
 559                      const struct sys_reg_desc *rd)
 560{
 561        vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
 562}
 563
 564static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
 565{
 566        u64 amair = read_sysreg(amair_el1);
 567        vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
 568}
 569
 570static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
 571{
 572        u64 actlr = read_sysreg(actlr_el1);
 573        vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
 574}
 575
 576static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
 577{
 578        u64 mpidr;
 579
 580        /*
 581         * Map the vcpu_id into the first three affinity level fields of
 582         * the MPIDR. We limit the number of VCPUs in level 0 due to a
 583         * limitation to 16 CPUs in that level in the ICC_SGIxR registers
 584         * of the GICv3 to be able to address each CPU directly when
 585         * sending IPIs.
 586         */
 587        mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
 588        mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
 589        mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
 590        vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
 591}
 592
 593static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
 594                                   const struct sys_reg_desc *r)
 595{
 596        if (kvm_vcpu_has_pmu(vcpu))
 597                return 0;
 598
 599        return REG_HIDDEN;
 600}
 601
 602static void reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
 603{
 604        u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX);
 605
 606        /* No PMU available, any PMU reg may UNDEF... */
 607        if (!kvm_arm_support_pmu_v3())
 608                return;
 609
 610        n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT;
 611        n &= ARMV8_PMU_PMCR_N_MASK;
 612        if (n)
 613                mask |= GENMASK(n - 1, 0);
 614
 615        reset_unknown(vcpu, r);
 616        __vcpu_sys_reg(vcpu, r->reg) &= mask;
 617}
 618
 619static void reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
 620{
 621        reset_unknown(vcpu, r);
 622        __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
 623}
 624
 625static void reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
 626{
 627        reset_unknown(vcpu, r);
 628        __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK;
 629}
 630
 631static void reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
 632{
 633        reset_unknown(vcpu, r);
 634        __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
 635}
 636
 637static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
 638{
 639        u64 pmcr, val;
 640
 641        /* No PMU available, PMCR_EL0 may UNDEF... */
 642        if (!kvm_arm_support_pmu_v3())
 643                return;
 644
 645        pmcr = read_sysreg(pmcr_el0);
 646        /*
 647         * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
 648         * except PMCR.E resetting to zero.
 649         */
 650        val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
 651               | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
 652        if (!system_supports_32bit_el0())
 653                val |= ARMV8_PMU_PMCR_LC;
 654        __vcpu_sys_reg(vcpu, r->reg) = val;
 655}
 656
 657static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
 658{
 659        u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
 660        bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
 661
 662        if (!enabled)
 663                kvm_inject_undefined(vcpu);
 664
 665        return !enabled;
 666}
 667
 668static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
 669{
 670        return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
 671}
 672
 673static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
 674{
 675        return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
 676}
 677
 678static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
 679{
 680        return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
 681}
 682
 683static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
 684{
 685        return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
 686}
 687
 688static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 689                        const struct sys_reg_desc *r)
 690{
 691        u64 val;
 692
 693        if (pmu_access_el0_disabled(vcpu))
 694                return false;
 695
 696        if (p->is_write) {
 697                /* Only update writeable bits of PMCR */
 698                val = __vcpu_sys_reg(vcpu, PMCR_EL0);
 699                val &= ~ARMV8_PMU_PMCR_MASK;
 700                val |= p->regval & ARMV8_PMU_PMCR_MASK;
 701                if (!system_supports_32bit_el0())
 702                        val |= ARMV8_PMU_PMCR_LC;
 703                __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
 704                kvm_pmu_handle_pmcr(vcpu, val);
 705                kvm_vcpu_pmu_restore_guest(vcpu);
 706        } else {
 707                /* PMCR.P & PMCR.C are RAZ */
 708                val = __vcpu_sys_reg(vcpu, PMCR_EL0)
 709                      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
 710                p->regval = val;
 711        }
 712
 713        return true;
 714}
 715
 716static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 717                          const struct sys_reg_desc *r)
 718{
 719        if (pmu_access_event_counter_el0_disabled(vcpu))
 720                return false;
 721
 722        if (p->is_write)
 723                __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
 724        else
 725                /* return PMSELR.SEL field */
 726                p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
 727                            & ARMV8_PMU_COUNTER_MASK;
 728
 729        return true;
 730}
 731
 732static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 733                          const struct sys_reg_desc *r)
 734{
 735        u64 pmceid, mask, shift;
 736
 737        BUG_ON(p->is_write);
 738
 739        if (pmu_access_el0_disabled(vcpu))
 740                return false;
 741
 742        get_access_mask(r, &mask, &shift);
 743
 744        pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
 745        pmceid &= mask;
 746        pmceid >>= shift;
 747
 748        p->regval = pmceid;
 749
 750        return true;
 751}
 752
 753static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
 754{
 755        u64 pmcr, val;
 756
 757        pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
 758        val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
 759        if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
 760                kvm_inject_undefined(vcpu);
 761                return false;
 762        }
 763
 764        return true;
 765}
 766
 767static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
 768                              struct sys_reg_params *p,
 769                              const struct sys_reg_desc *r)
 770{
 771        u64 idx = ~0UL;
 772
 773        if (r->CRn == 9 && r->CRm == 13) {
 774                if (r->Op2 == 2) {
 775                        /* PMXEVCNTR_EL0 */
 776                        if (pmu_access_event_counter_el0_disabled(vcpu))
 777                                return false;
 778
 779                        idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
 780                              & ARMV8_PMU_COUNTER_MASK;
 781                } else if (r->Op2 == 0) {
 782                        /* PMCCNTR_EL0 */
 783                        if (pmu_access_cycle_counter_el0_disabled(vcpu))
 784                                return false;
 785
 786                        idx = ARMV8_PMU_CYCLE_IDX;
 787                }
 788        } else if (r->CRn == 0 && r->CRm == 9) {
 789                /* PMCCNTR */
 790                if (pmu_access_event_counter_el0_disabled(vcpu))
 791                        return false;
 792
 793                idx = ARMV8_PMU_CYCLE_IDX;
 794        } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
 795                /* PMEVCNTRn_EL0 */
 796                if (pmu_access_event_counter_el0_disabled(vcpu))
 797                        return false;
 798
 799                idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
 800        }
 801
 802        /* Catch any decoding mistake */
 803        WARN_ON(idx == ~0UL);
 804
 805        if (!pmu_counter_idx_valid(vcpu, idx))
 806                return false;
 807
 808        if (p->is_write) {
 809                if (pmu_access_el0_disabled(vcpu))
 810                        return false;
 811
 812                kvm_pmu_set_counter_value(vcpu, idx, p->regval);
 813        } else {
 814                p->regval = kvm_pmu_get_counter_value(vcpu, idx);
 815        }
 816
 817        return true;
 818}
 819
 820static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 821                               const struct sys_reg_desc *r)
 822{
 823        u64 idx, reg;
 824
 825        if (pmu_access_el0_disabled(vcpu))
 826                return false;
 827
 828        if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
 829                /* PMXEVTYPER_EL0 */
 830                idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
 831                reg = PMEVTYPER0_EL0 + idx;
 832        } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
 833                idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
 834                if (idx == ARMV8_PMU_CYCLE_IDX)
 835                        reg = PMCCFILTR_EL0;
 836                else
 837                        /* PMEVTYPERn_EL0 */
 838                        reg = PMEVTYPER0_EL0 + idx;
 839        } else {
 840                BUG();
 841        }
 842
 843        if (!pmu_counter_idx_valid(vcpu, idx))
 844                return false;
 845
 846        if (p->is_write) {
 847                kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
 848                __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
 849                kvm_vcpu_pmu_restore_guest(vcpu);
 850        } else {
 851                p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
 852        }
 853
 854        return true;
 855}
 856
 857static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 858                           const struct sys_reg_desc *r)
 859{
 860        u64 val, mask;
 861
 862        if (pmu_access_el0_disabled(vcpu))
 863                return false;
 864
 865        mask = kvm_pmu_valid_counter_mask(vcpu);
 866        if (p->is_write) {
 867                val = p->regval & mask;
 868                if (r->Op2 & 0x1) {
 869                        /* accessing PMCNTENSET_EL0 */
 870                        __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
 871                        kvm_pmu_enable_counter_mask(vcpu, val);
 872                        kvm_vcpu_pmu_restore_guest(vcpu);
 873                } else {
 874                        /* accessing PMCNTENCLR_EL0 */
 875                        __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
 876                        kvm_pmu_disable_counter_mask(vcpu, val);
 877                }
 878        } else {
 879                p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
 880        }
 881
 882        return true;
 883}
 884
 885static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 886                           const struct sys_reg_desc *r)
 887{
 888        u64 mask = kvm_pmu_valid_counter_mask(vcpu);
 889
 890        if (check_pmu_access_disabled(vcpu, 0))
 891                return false;
 892
 893        if (p->is_write) {
 894                u64 val = p->regval & mask;
 895
 896                if (r->Op2 & 0x1)
 897                        /* accessing PMINTENSET_EL1 */
 898                        __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
 899                else
 900                        /* accessing PMINTENCLR_EL1 */
 901                        __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
 902        } else {
 903                p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
 904        }
 905
 906        return true;
 907}
 908
 909static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 910                         const struct sys_reg_desc *r)
 911{
 912        u64 mask = kvm_pmu_valid_counter_mask(vcpu);
 913
 914        if (pmu_access_el0_disabled(vcpu))
 915                return false;
 916
 917        if (p->is_write) {
 918                if (r->CRm & 0x2)
 919                        /* accessing PMOVSSET_EL0 */
 920                        __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
 921                else
 922                        /* accessing PMOVSCLR_EL0 */
 923                        __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
 924        } else {
 925                p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
 926        }
 927
 928        return true;
 929}
 930
 931static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 932                           const struct sys_reg_desc *r)
 933{
 934        u64 mask;
 935
 936        if (!p->is_write)
 937                return read_from_write_only(vcpu, p, r);
 938
 939        if (pmu_write_swinc_el0_disabled(vcpu))
 940                return false;
 941
 942        mask = kvm_pmu_valid_counter_mask(vcpu);
 943        kvm_pmu_software_increment(vcpu, p->regval & mask);
 944        return true;
 945}
 946
 947static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 948                             const struct sys_reg_desc *r)
 949{
 950        if (p->is_write) {
 951                if (!vcpu_mode_priv(vcpu)) {
 952                        kvm_inject_undefined(vcpu);
 953                        return false;
 954                }
 955
 956                __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
 957                               p->regval & ARMV8_PMU_USERENR_MASK;
 958        } else {
 959                p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
 960                            & ARMV8_PMU_USERENR_MASK;
 961        }
 962
 963        return true;
 964}
 965
 966/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
 967#define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
 968        { SYS_DESC(SYS_DBGBVRn_EL1(n)),                                 \
 969          trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },                \
 970        { SYS_DESC(SYS_DBGBCRn_EL1(n)),                                 \
 971          trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },                \
 972        { SYS_DESC(SYS_DBGWVRn_EL1(n)),                                 \
 973          trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },               \
 974        { SYS_DESC(SYS_DBGWCRn_EL1(n)),                                 \
 975          trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
 976
 977#define PMU_SYS_REG(r)                                          \
 978        SYS_DESC(r), .reset = reset_pmu_reg, .visibility = pmu_visibility
 979
 980/* Macro to expand the PMEVCNTRn_EL0 register */
 981#define PMU_PMEVCNTR_EL0(n)                                             \
 982        { PMU_SYS_REG(SYS_PMEVCNTRn_EL0(n)),                            \
 983          .reset = reset_pmevcntr,                                      \
 984          .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
 985
 986/* Macro to expand the PMEVTYPERn_EL0 register */
 987#define PMU_PMEVTYPER_EL0(n)                                            \
 988        { PMU_SYS_REG(SYS_PMEVTYPERn_EL0(n)),                           \
 989          .reset = reset_pmevtyper,                                     \
 990          .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
 991
 992static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 993                         const struct sys_reg_desc *r)
 994{
 995        kvm_inject_undefined(vcpu);
 996
 997        return false;
 998}
 999
1000/* Macro to expand the AMU counter and type registers*/
1001#define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1002#define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1003#define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1004#define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1005
1006static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1007                        const struct sys_reg_desc *rd)
1008{
1009        return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1010}
1011
1012/*
1013 * If we land here on a PtrAuth access, that is because we didn't
1014 * fixup the access on exit by allowing the PtrAuth sysregs. The only
1015 * way this happens is when the guest does not have PtrAuth support
1016 * enabled.
1017 */
1018#define __PTRAUTH_KEY(k)                                                \
1019        { SYS_DESC(SYS_## k), undef_access, reset_unknown, k,           \
1020        .visibility = ptrauth_visibility}
1021
1022#define PTRAUTH_KEY(k)                                                  \
1023        __PTRAUTH_KEY(k ## KEYLO_EL1),                                  \
1024        __PTRAUTH_KEY(k ## KEYHI_EL1)
1025
1026static bool access_arch_timer(struct kvm_vcpu *vcpu,
1027                              struct sys_reg_params *p,
1028                              const struct sys_reg_desc *r)
1029{
1030        enum kvm_arch_timers tmr;
1031        enum kvm_arch_timer_regs treg;
1032        u64 reg = reg_to_encoding(r);
1033
1034        switch (reg) {
1035        case SYS_CNTP_TVAL_EL0:
1036        case SYS_AARCH32_CNTP_TVAL:
1037                tmr = TIMER_PTIMER;
1038                treg = TIMER_REG_TVAL;
1039                break;
1040        case SYS_CNTP_CTL_EL0:
1041        case SYS_AARCH32_CNTP_CTL:
1042                tmr = TIMER_PTIMER;
1043                treg = TIMER_REG_CTL;
1044                break;
1045        case SYS_CNTP_CVAL_EL0:
1046        case SYS_AARCH32_CNTP_CVAL:
1047                tmr = TIMER_PTIMER;
1048                treg = TIMER_REG_CVAL;
1049                break;
1050        default:
1051                BUG();
1052        }
1053
1054        if (p->is_write)
1055                kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1056        else
1057                p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1058
1059        return true;
1060}
1061
1062/* Read a sanitised cpufeature ID register by sys_reg_desc */
1063static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1064                struct sys_reg_desc const *r, bool raz)
1065{
1066        u32 id = reg_to_encoding(r);
1067        u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1068
1069        switch (id) {
1070        case SYS_ID_AA64PFR0_EL1:
1071                if (!vcpu_has_sve(vcpu))
1072                        val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_SVE);
1073                val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_AMU);
1074                val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_CSV2);
1075                val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_CSV2), (u64)vcpu->kvm->arch.pfr0_csv2);
1076                val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_CSV3);
1077                val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_CSV3), (u64)vcpu->kvm->arch.pfr0_csv3);
1078                break;
1079        case SYS_ID_AA64PFR1_EL1:
1080                val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_MTE);
1081                if (kvm_has_mte(vcpu->kvm)) {
1082                        u64 pfr, mte;
1083
1084                        pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
1085                        mte = cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR1_MTE_SHIFT);
1086                        val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR1_MTE), mte);
1087                }
1088                break;
1089        case SYS_ID_AA64ISAR1_EL1:
1090                if (!vcpu_has_ptrauth(vcpu))
1091                        val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_APA) |
1092                                 ARM64_FEATURE_MASK(ID_AA64ISAR1_API) |
1093                                 ARM64_FEATURE_MASK(ID_AA64ISAR1_GPA) |
1094                                 ARM64_FEATURE_MASK(ID_AA64ISAR1_GPI));
1095                break;
1096        case SYS_ID_AA64DFR0_EL1:
1097                /* Limit debug to ARMv8.0 */
1098                val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_DEBUGVER);
1099                val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_DEBUGVER), 6);
1100                /* Limit guests to PMUv3 for ARMv8.4 */
1101                val = cpuid_feature_cap_perfmon_field(val,
1102                                                      ID_AA64DFR0_PMUVER_SHIFT,
1103                                                      kvm_vcpu_has_pmu(vcpu) ? ID_AA64DFR0_PMUVER_8_4 : 0);
1104                /* Hide SPE from guests */
1105                val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_PMSVER);
1106                break;
1107        case SYS_ID_DFR0_EL1:
1108                /* Limit guests to PMUv3 for ARMv8.4 */
1109                val = cpuid_feature_cap_perfmon_field(val,
1110                                                      ID_DFR0_PERFMON_SHIFT,
1111                                                      kvm_vcpu_has_pmu(vcpu) ? ID_DFR0_PERFMON_8_4 : 0);
1112                break;
1113        }
1114
1115        return val;
1116}
1117
1118static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1119                                  const struct sys_reg_desc *r)
1120{
1121        u32 id = reg_to_encoding(r);
1122
1123        switch (id) {
1124        case SYS_ID_AA64ZFR0_EL1:
1125                if (!vcpu_has_sve(vcpu))
1126                        return REG_RAZ;
1127                break;
1128        }
1129
1130        return 0;
1131}
1132
1133/* cpufeature ID register access trap handlers */
1134
1135static bool __access_id_reg(struct kvm_vcpu *vcpu,
1136                            struct sys_reg_params *p,
1137                            const struct sys_reg_desc *r,
1138                            bool raz)
1139{
1140        if (p->is_write)
1141                return write_to_read_only(vcpu, p, r);
1142
1143        p->regval = read_id_reg(vcpu, r, raz);
1144        return true;
1145}
1146
1147static bool access_id_reg(struct kvm_vcpu *vcpu,
1148                          struct sys_reg_params *p,
1149                          const struct sys_reg_desc *r)
1150{
1151        bool raz = sysreg_visible_as_raz(vcpu, r);
1152
1153        return __access_id_reg(vcpu, p, r, raz);
1154}
1155
1156static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1157                              struct sys_reg_params *p,
1158                              const struct sys_reg_desc *r)
1159{
1160        return __access_id_reg(vcpu, p, r, true);
1161}
1162
1163static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1164static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1165static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1166
1167/* Visibility overrides for SVE-specific control registers */
1168static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1169                                   const struct sys_reg_desc *rd)
1170{
1171        if (vcpu_has_sve(vcpu))
1172                return 0;
1173
1174        return REG_HIDDEN;
1175}
1176
1177static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1178                               const struct sys_reg_desc *rd,
1179                               const struct kvm_one_reg *reg, void __user *uaddr)
1180{
1181        const u64 id = sys_reg_to_index(rd);
1182        u8 csv2, csv3;
1183        int err;
1184        u64 val;
1185
1186        err = reg_from_user(&val, uaddr, id);
1187        if (err)
1188                return err;
1189
1190        /*
1191         * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
1192         * it doesn't promise more than what is actually provided (the
1193         * guest could otherwise be covered in ectoplasmic residue).
1194         */
1195        csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV2_SHIFT);
1196        if (csv2 > 1 ||
1197            (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED))
1198                return -EINVAL;
1199
1200        /* Same thing for CSV3 */
1201        csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV3_SHIFT);
1202        if (csv3 > 1 ||
1203            (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED))
1204                return -EINVAL;
1205
1206        /* We can only differ with CSV[23], and anything else is an error */
1207        val ^= read_id_reg(vcpu, rd, false);
1208        val &= ~((0xFUL << ID_AA64PFR0_CSV2_SHIFT) |
1209                 (0xFUL << ID_AA64PFR0_CSV3_SHIFT));
1210        if (val)
1211                return -EINVAL;
1212
1213        vcpu->kvm->arch.pfr0_csv2 = csv2;
1214        vcpu->kvm->arch.pfr0_csv3 = csv3 ;
1215
1216        return 0;
1217}
1218
1219/*
1220 * cpufeature ID register user accessors
1221 *
1222 * For now, these registers are immutable for userspace, so no values
1223 * are stored, and for set_id_reg() we don't allow the effective value
1224 * to be changed.
1225 */
1226static int __get_id_reg(const struct kvm_vcpu *vcpu,
1227                        const struct sys_reg_desc *rd, void __user *uaddr,
1228                        bool raz)
1229{
1230        const u64 id = sys_reg_to_index(rd);
1231        const u64 val = read_id_reg(vcpu, rd, raz);
1232
1233        return reg_to_user(uaddr, &val, id);
1234}
1235
1236static int __set_id_reg(const struct kvm_vcpu *vcpu,
1237                        const struct sys_reg_desc *rd, void __user *uaddr,
1238                        bool raz)
1239{
1240        const u64 id = sys_reg_to_index(rd);
1241        int err;
1242        u64 val;
1243
1244        err = reg_from_user(&val, uaddr, id);
1245        if (err)
1246                return err;
1247
1248        /* This is what we mean by invariant: you can't change it. */
1249        if (val != read_id_reg(vcpu, rd, raz))
1250                return -EINVAL;
1251
1252        return 0;
1253}
1254
1255static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1256                      const struct kvm_one_reg *reg, void __user *uaddr)
1257{
1258        bool raz = sysreg_visible_as_raz(vcpu, rd);
1259
1260        return __get_id_reg(vcpu, rd, uaddr, raz);
1261}
1262
1263static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1264                      const struct kvm_one_reg *reg, void __user *uaddr)
1265{
1266        bool raz = sysreg_visible_as_raz(vcpu, rd);
1267
1268        return __set_id_reg(vcpu, rd, uaddr, raz);
1269}
1270
1271static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1272                          const struct kvm_one_reg *reg, void __user *uaddr)
1273{
1274        return __get_id_reg(vcpu, rd, uaddr, true);
1275}
1276
1277static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1278                          const struct kvm_one_reg *reg, void __user *uaddr)
1279{
1280        return __set_id_reg(vcpu, rd, uaddr, true);
1281}
1282
1283static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1284                      const struct kvm_one_reg *reg, void __user *uaddr)
1285{
1286        int err;
1287        u64 val;
1288
1289        /* Perform the access even if we are going to ignore the value */
1290        err = reg_from_user(&val, uaddr, sys_reg_to_index(rd));
1291        if (err)
1292                return err;
1293
1294        return 0;
1295}
1296
1297static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1298                       const struct sys_reg_desc *r)
1299{
1300        if (p->is_write)
1301                return write_to_read_only(vcpu, p, r);
1302
1303        p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1304        return true;
1305}
1306
1307static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1308                         const struct sys_reg_desc *r)
1309{
1310        if (p->is_write)
1311                return write_to_read_only(vcpu, p, r);
1312
1313        p->regval = read_sysreg(clidr_el1);
1314        return true;
1315}
1316
1317static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1318                          const struct sys_reg_desc *r)
1319{
1320        int reg = r->reg;
1321
1322        if (p->is_write)
1323                vcpu_write_sys_reg(vcpu, p->regval, reg);
1324        else
1325                p->regval = vcpu_read_sys_reg(vcpu, reg);
1326        return true;
1327}
1328
1329static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1330                          const struct sys_reg_desc *r)
1331{
1332        u32 csselr;
1333
1334        if (p->is_write)
1335                return write_to_read_only(vcpu, p, r);
1336
1337        csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1338        p->regval = get_ccsidr(csselr);
1339
1340        /*
1341         * Guests should not be doing cache operations by set/way at all, and
1342         * for this reason, we trap them and attempt to infer the intent, so
1343         * that we can flush the entire guest's address space at the appropriate
1344         * time.
1345         * To prevent this trapping from causing performance problems, let's
1346         * expose the geometry of all data and unified caches (which are
1347         * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1348         * [If guests should attempt to infer aliasing properties from the
1349         * geometry (which is not permitted by the architecture), they would
1350         * only do so for virtually indexed caches.]
1351         */
1352        if (!(csselr & 1)) // data or unified cache
1353                p->regval &= ~GENMASK(27, 3);
1354        return true;
1355}
1356
1357static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
1358                                   const struct sys_reg_desc *rd)
1359{
1360        if (kvm_has_mte(vcpu->kvm))
1361                return 0;
1362
1363        return REG_HIDDEN;
1364}
1365
1366#define MTE_REG(name) {                         \
1367        SYS_DESC(SYS_##name),                   \
1368        .access = undef_access,                 \
1369        .reset = reset_unknown,                 \
1370        .reg = name,                            \
1371        .visibility = mte_visibility,           \
1372}
1373
1374/* sys_reg_desc initialiser for known cpufeature ID registers */
1375#define ID_SANITISED(name) {                    \
1376        SYS_DESC(SYS_##name),                   \
1377        .access = access_id_reg,                \
1378        .get_user = get_id_reg,                 \
1379        .set_user = set_id_reg,                 \
1380        .visibility = id_visibility,            \
1381}
1382
1383/*
1384 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1385 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1386 * (1 <= crm < 8, 0 <= Op2 < 8).
1387 */
1388#define ID_UNALLOCATED(crm, op2) {                      \
1389        Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),     \
1390        .access = access_raz_id_reg,                    \
1391        .get_user = get_raz_id_reg,                     \
1392        .set_user = set_raz_id_reg,                     \
1393}
1394
1395/*
1396 * sys_reg_desc initialiser for known ID registers that we hide from guests.
1397 * For now, these are exposed just like unallocated ID regs: they appear
1398 * RAZ for the guest.
1399 */
1400#define ID_HIDDEN(name) {                       \
1401        SYS_DESC(SYS_##name),                   \
1402        .access = access_raz_id_reg,            \
1403        .get_user = get_raz_id_reg,             \
1404        .set_user = set_raz_id_reg,             \
1405}
1406
1407/*
1408 * Architected system registers.
1409 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1410 *
1411 * Debug handling: We do trap most, if not all debug related system
1412 * registers. The implementation is good enough to ensure that a guest
1413 * can use these with minimal performance degradation. The drawback is
1414 * that we don't implement any of the external debug, none of the
1415 * OSlock protocol. This should be revisited if we ever encounter a
1416 * more demanding guest...
1417 */
1418static const struct sys_reg_desc sys_reg_descs[] = {
1419        { SYS_DESC(SYS_DC_ISW), access_dcsw },
1420        { SYS_DESC(SYS_DC_CSW), access_dcsw },
1421        { SYS_DESC(SYS_DC_CISW), access_dcsw },
1422
1423        DBG_BCR_BVR_WCR_WVR_EL1(0),
1424        DBG_BCR_BVR_WCR_WVR_EL1(1),
1425        { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1426        { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1427        DBG_BCR_BVR_WCR_WVR_EL1(2),
1428        DBG_BCR_BVR_WCR_WVR_EL1(3),
1429        DBG_BCR_BVR_WCR_WVR_EL1(4),
1430        DBG_BCR_BVR_WCR_WVR_EL1(5),
1431        DBG_BCR_BVR_WCR_WVR_EL1(6),
1432        DBG_BCR_BVR_WCR_WVR_EL1(7),
1433        DBG_BCR_BVR_WCR_WVR_EL1(8),
1434        DBG_BCR_BVR_WCR_WVR_EL1(9),
1435        DBG_BCR_BVR_WCR_WVR_EL1(10),
1436        DBG_BCR_BVR_WCR_WVR_EL1(11),
1437        DBG_BCR_BVR_WCR_WVR_EL1(12),
1438        DBG_BCR_BVR_WCR_WVR_EL1(13),
1439        DBG_BCR_BVR_WCR_WVR_EL1(14),
1440        DBG_BCR_BVR_WCR_WVR_EL1(15),
1441
1442        { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1443        { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1444        { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1445        { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1446        { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1447        { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1448        { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1449        { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1450
1451        { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1452        { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1453        // DBGDTR[TR]X_EL0 share the same encoding
1454        { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1455
1456        { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1457
1458        { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1459
1460        /*
1461         * ID regs: all ID_SANITISED() entries here must have corresponding
1462         * entries in arm64_ftr_regs[].
1463         */
1464
1465        /* AArch64 mappings of the AArch32 ID registers */
1466        /* CRm=1 */
1467        ID_SANITISED(ID_PFR0_EL1),
1468        ID_SANITISED(ID_PFR1_EL1),
1469        ID_SANITISED(ID_DFR0_EL1),
1470        ID_HIDDEN(ID_AFR0_EL1),
1471        ID_SANITISED(ID_MMFR0_EL1),
1472        ID_SANITISED(ID_MMFR1_EL1),
1473        ID_SANITISED(ID_MMFR2_EL1),
1474        ID_SANITISED(ID_MMFR3_EL1),
1475
1476        /* CRm=2 */
1477        ID_SANITISED(ID_ISAR0_EL1),
1478        ID_SANITISED(ID_ISAR1_EL1),
1479        ID_SANITISED(ID_ISAR2_EL1),
1480        ID_SANITISED(ID_ISAR3_EL1),
1481        ID_SANITISED(ID_ISAR4_EL1),
1482        ID_SANITISED(ID_ISAR5_EL1),
1483        ID_SANITISED(ID_MMFR4_EL1),
1484        ID_SANITISED(ID_ISAR6_EL1),
1485
1486        /* CRm=3 */
1487        ID_SANITISED(MVFR0_EL1),
1488        ID_SANITISED(MVFR1_EL1),
1489        ID_SANITISED(MVFR2_EL1),
1490        ID_UNALLOCATED(3,3),
1491        ID_SANITISED(ID_PFR2_EL1),
1492        ID_HIDDEN(ID_DFR1_EL1),
1493        ID_SANITISED(ID_MMFR5_EL1),
1494        ID_UNALLOCATED(3,7),
1495
1496        /* AArch64 ID registers */
1497        /* CRm=4 */
1498        { SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg,
1499          .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, },
1500        ID_SANITISED(ID_AA64PFR1_EL1),
1501        ID_UNALLOCATED(4,2),
1502        ID_UNALLOCATED(4,3),
1503        ID_SANITISED(ID_AA64ZFR0_EL1),
1504        ID_UNALLOCATED(4,5),
1505        ID_UNALLOCATED(4,6),
1506        ID_UNALLOCATED(4,7),
1507
1508        /* CRm=5 */
1509        ID_SANITISED(ID_AA64DFR0_EL1),
1510        ID_SANITISED(ID_AA64DFR1_EL1),
1511        ID_UNALLOCATED(5,2),
1512        ID_UNALLOCATED(5,3),
1513        ID_HIDDEN(ID_AA64AFR0_EL1),
1514        ID_HIDDEN(ID_AA64AFR1_EL1),
1515        ID_UNALLOCATED(5,6),
1516        ID_UNALLOCATED(5,7),
1517
1518        /* CRm=6 */
1519        ID_SANITISED(ID_AA64ISAR0_EL1),
1520        ID_SANITISED(ID_AA64ISAR1_EL1),
1521        ID_UNALLOCATED(6,2),
1522        ID_UNALLOCATED(6,3),
1523        ID_UNALLOCATED(6,4),
1524        ID_UNALLOCATED(6,5),
1525        ID_UNALLOCATED(6,6),
1526        ID_UNALLOCATED(6,7),
1527
1528        /* CRm=7 */
1529        ID_SANITISED(ID_AA64MMFR0_EL1),
1530        ID_SANITISED(ID_AA64MMFR1_EL1),
1531        ID_SANITISED(ID_AA64MMFR2_EL1),
1532        ID_UNALLOCATED(7,3),
1533        ID_UNALLOCATED(7,4),
1534        ID_UNALLOCATED(7,5),
1535        ID_UNALLOCATED(7,6),
1536        ID_UNALLOCATED(7,7),
1537
1538        { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1539        { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1540        { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1541
1542        MTE_REG(RGSR_EL1),
1543        MTE_REG(GCR_EL1),
1544
1545        { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1546        { SYS_DESC(SYS_TRFCR_EL1), undef_access },
1547        { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1548        { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1549        { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1550
1551        PTRAUTH_KEY(APIA),
1552        PTRAUTH_KEY(APIB),
1553        PTRAUTH_KEY(APDA),
1554        PTRAUTH_KEY(APDB),
1555        PTRAUTH_KEY(APGA),
1556
1557        { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1558        { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1559        { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1560
1561        { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1562        { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1563        { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1564        { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1565        { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1566        { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1567        { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1568        { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1569
1570        MTE_REG(TFSR_EL1),
1571        MTE_REG(TFSRE0_EL1),
1572
1573        { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1574        { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1575
1576        { SYS_DESC(SYS_PMSCR_EL1), undef_access },
1577        { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
1578        { SYS_DESC(SYS_PMSICR_EL1), undef_access },
1579        { SYS_DESC(SYS_PMSIRR_EL1), undef_access },
1580        { SYS_DESC(SYS_PMSFCR_EL1), undef_access },
1581        { SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
1582        { SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
1583        { SYS_DESC(SYS_PMSIDR_EL1), undef_access },
1584        { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
1585        { SYS_DESC(SYS_PMBPTR_EL1), undef_access },
1586        { SYS_DESC(SYS_PMBSR_EL1), undef_access },
1587        /* PMBIDR_EL1 is not trapped */
1588
1589        { PMU_SYS_REG(SYS_PMINTENSET_EL1),
1590          .access = access_pminten, .reg = PMINTENSET_EL1 },
1591        { PMU_SYS_REG(SYS_PMINTENCLR_EL1),
1592          .access = access_pminten, .reg = PMINTENSET_EL1 },
1593        { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
1594
1595        { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1596        { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1597
1598        { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1599        { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1600        { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1601        { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1602        { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1603
1604        { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1605        { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1606
1607        { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1608        { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1609        { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1610        { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1611        { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1612        { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1613        { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1614        { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1615        { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1616        { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1617        { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1618        { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1619
1620        { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1621        { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1622
1623        { SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
1624
1625        { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1626
1627        { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1628        { SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1629        { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1630        { SYS_DESC(SYS_CTR_EL0), access_ctr },
1631
1632        { PMU_SYS_REG(SYS_PMCR_EL0), .access = access_pmcr,
1633          .reset = reset_pmcr, .reg = PMCR_EL0 },
1634        { PMU_SYS_REG(SYS_PMCNTENSET_EL0),
1635          .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1636        { PMU_SYS_REG(SYS_PMCNTENCLR_EL0),
1637          .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1638        { PMU_SYS_REG(SYS_PMOVSCLR_EL0),
1639          .access = access_pmovs, .reg = PMOVSSET_EL0 },
1640        /*
1641         * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
1642         * previously (and pointlessly) advertised in the past...
1643         */
1644        { PMU_SYS_REG(SYS_PMSWINC_EL0),
1645          .get_user = get_raz_id_reg, .set_user = set_wi_reg,
1646          .access = access_pmswinc, .reset = NULL },
1647        { PMU_SYS_REG(SYS_PMSELR_EL0),
1648          .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
1649        { PMU_SYS_REG(SYS_PMCEID0_EL0),
1650          .access = access_pmceid, .reset = NULL },
1651        { PMU_SYS_REG(SYS_PMCEID1_EL0),
1652          .access = access_pmceid, .reset = NULL },
1653        { PMU_SYS_REG(SYS_PMCCNTR_EL0),
1654          .access = access_pmu_evcntr, .reset = reset_unknown, .reg = PMCCNTR_EL0 },
1655        { PMU_SYS_REG(SYS_PMXEVTYPER_EL0),
1656          .access = access_pmu_evtyper, .reset = NULL },
1657        { PMU_SYS_REG(SYS_PMXEVCNTR_EL0),
1658          .access = access_pmu_evcntr, .reset = NULL },
1659        /*
1660         * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1661         * in 32bit mode. Here we choose to reset it as zero for consistency.
1662         */
1663        { PMU_SYS_REG(SYS_PMUSERENR_EL0), .access = access_pmuserenr,
1664          .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
1665        { PMU_SYS_REG(SYS_PMOVSSET_EL0),
1666          .access = access_pmovs, .reg = PMOVSSET_EL0 },
1667
1668        { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1669        { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1670
1671        { SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
1672
1673        { SYS_DESC(SYS_AMCR_EL0), undef_access },
1674        { SYS_DESC(SYS_AMCFGR_EL0), undef_access },
1675        { SYS_DESC(SYS_AMCGCR_EL0), undef_access },
1676        { SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
1677        { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
1678        { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
1679        { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
1680        { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
1681        AMU_AMEVCNTR0_EL0(0),
1682        AMU_AMEVCNTR0_EL0(1),
1683        AMU_AMEVCNTR0_EL0(2),
1684        AMU_AMEVCNTR0_EL0(3),
1685        AMU_AMEVCNTR0_EL0(4),
1686        AMU_AMEVCNTR0_EL0(5),
1687        AMU_AMEVCNTR0_EL0(6),
1688        AMU_AMEVCNTR0_EL0(7),
1689        AMU_AMEVCNTR0_EL0(8),
1690        AMU_AMEVCNTR0_EL0(9),
1691        AMU_AMEVCNTR0_EL0(10),
1692        AMU_AMEVCNTR0_EL0(11),
1693        AMU_AMEVCNTR0_EL0(12),
1694        AMU_AMEVCNTR0_EL0(13),
1695        AMU_AMEVCNTR0_EL0(14),
1696        AMU_AMEVCNTR0_EL0(15),
1697        AMU_AMEVTYPER0_EL0(0),
1698        AMU_AMEVTYPER0_EL0(1),
1699        AMU_AMEVTYPER0_EL0(2),
1700        AMU_AMEVTYPER0_EL0(3),
1701        AMU_AMEVTYPER0_EL0(4),
1702        AMU_AMEVTYPER0_EL0(5),
1703        AMU_AMEVTYPER0_EL0(6),
1704        AMU_AMEVTYPER0_EL0(7),
1705        AMU_AMEVTYPER0_EL0(8),
1706        AMU_AMEVTYPER0_EL0(9),
1707        AMU_AMEVTYPER0_EL0(10),
1708        AMU_AMEVTYPER0_EL0(11),
1709        AMU_AMEVTYPER0_EL0(12),
1710        AMU_AMEVTYPER0_EL0(13),
1711        AMU_AMEVTYPER0_EL0(14),
1712        AMU_AMEVTYPER0_EL0(15),
1713        AMU_AMEVCNTR1_EL0(0),
1714        AMU_AMEVCNTR1_EL0(1),
1715        AMU_AMEVCNTR1_EL0(2),
1716        AMU_AMEVCNTR1_EL0(3),
1717        AMU_AMEVCNTR1_EL0(4),
1718        AMU_AMEVCNTR1_EL0(5),
1719        AMU_AMEVCNTR1_EL0(6),
1720        AMU_AMEVCNTR1_EL0(7),
1721        AMU_AMEVCNTR1_EL0(8),
1722        AMU_AMEVCNTR1_EL0(9),
1723        AMU_AMEVCNTR1_EL0(10),
1724        AMU_AMEVCNTR1_EL0(11),
1725        AMU_AMEVCNTR1_EL0(12),
1726        AMU_AMEVCNTR1_EL0(13),
1727        AMU_AMEVCNTR1_EL0(14),
1728        AMU_AMEVCNTR1_EL0(15),
1729        AMU_AMEVTYPER1_EL0(0),
1730        AMU_AMEVTYPER1_EL0(1),
1731        AMU_AMEVTYPER1_EL0(2),
1732        AMU_AMEVTYPER1_EL0(3),
1733        AMU_AMEVTYPER1_EL0(4),
1734        AMU_AMEVTYPER1_EL0(5),
1735        AMU_AMEVTYPER1_EL0(6),
1736        AMU_AMEVTYPER1_EL0(7),
1737        AMU_AMEVTYPER1_EL0(8),
1738        AMU_AMEVTYPER1_EL0(9),
1739        AMU_AMEVTYPER1_EL0(10),
1740        AMU_AMEVTYPER1_EL0(11),
1741        AMU_AMEVTYPER1_EL0(12),
1742        AMU_AMEVTYPER1_EL0(13),
1743        AMU_AMEVTYPER1_EL0(14),
1744        AMU_AMEVTYPER1_EL0(15),
1745
1746        { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1747        { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1748        { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1749
1750        /* PMEVCNTRn_EL0 */
1751        PMU_PMEVCNTR_EL0(0),
1752        PMU_PMEVCNTR_EL0(1),
1753        PMU_PMEVCNTR_EL0(2),
1754        PMU_PMEVCNTR_EL0(3),
1755        PMU_PMEVCNTR_EL0(4),
1756        PMU_PMEVCNTR_EL0(5),
1757        PMU_PMEVCNTR_EL0(6),
1758        PMU_PMEVCNTR_EL0(7),
1759        PMU_PMEVCNTR_EL0(8),
1760        PMU_PMEVCNTR_EL0(9),
1761        PMU_PMEVCNTR_EL0(10),
1762        PMU_PMEVCNTR_EL0(11),
1763        PMU_PMEVCNTR_EL0(12),
1764        PMU_PMEVCNTR_EL0(13),
1765        PMU_PMEVCNTR_EL0(14),
1766        PMU_PMEVCNTR_EL0(15),
1767        PMU_PMEVCNTR_EL0(16),
1768        PMU_PMEVCNTR_EL0(17),
1769        PMU_PMEVCNTR_EL0(18),
1770        PMU_PMEVCNTR_EL0(19),
1771        PMU_PMEVCNTR_EL0(20),
1772        PMU_PMEVCNTR_EL0(21),
1773        PMU_PMEVCNTR_EL0(22),
1774        PMU_PMEVCNTR_EL0(23),
1775        PMU_PMEVCNTR_EL0(24),
1776        PMU_PMEVCNTR_EL0(25),
1777        PMU_PMEVCNTR_EL0(26),
1778        PMU_PMEVCNTR_EL0(27),
1779        PMU_PMEVCNTR_EL0(28),
1780        PMU_PMEVCNTR_EL0(29),
1781        PMU_PMEVCNTR_EL0(30),
1782        /* PMEVTYPERn_EL0 */
1783        PMU_PMEVTYPER_EL0(0),
1784        PMU_PMEVTYPER_EL0(1),
1785        PMU_PMEVTYPER_EL0(2),
1786        PMU_PMEVTYPER_EL0(3),
1787        PMU_PMEVTYPER_EL0(4),
1788        PMU_PMEVTYPER_EL0(5),
1789        PMU_PMEVTYPER_EL0(6),
1790        PMU_PMEVTYPER_EL0(7),
1791        PMU_PMEVTYPER_EL0(8),
1792        PMU_PMEVTYPER_EL0(9),
1793        PMU_PMEVTYPER_EL0(10),
1794        PMU_PMEVTYPER_EL0(11),
1795        PMU_PMEVTYPER_EL0(12),
1796        PMU_PMEVTYPER_EL0(13),
1797        PMU_PMEVTYPER_EL0(14),
1798        PMU_PMEVTYPER_EL0(15),
1799        PMU_PMEVTYPER_EL0(16),
1800        PMU_PMEVTYPER_EL0(17),
1801        PMU_PMEVTYPER_EL0(18),
1802        PMU_PMEVTYPER_EL0(19),
1803        PMU_PMEVTYPER_EL0(20),
1804        PMU_PMEVTYPER_EL0(21),
1805        PMU_PMEVTYPER_EL0(22),
1806        PMU_PMEVTYPER_EL0(23),
1807        PMU_PMEVTYPER_EL0(24),
1808        PMU_PMEVTYPER_EL0(25),
1809        PMU_PMEVTYPER_EL0(26),
1810        PMU_PMEVTYPER_EL0(27),
1811        PMU_PMEVTYPER_EL0(28),
1812        PMU_PMEVTYPER_EL0(29),
1813        PMU_PMEVTYPER_EL0(30),
1814        /*
1815         * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1816         * in 32bit mode. Here we choose to reset it as zero for consistency.
1817         */
1818        { PMU_SYS_REG(SYS_PMCCFILTR_EL0), .access = access_pmu_evtyper,
1819          .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
1820
1821        { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1822        { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1823        { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1824};
1825
1826static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
1827                        struct sys_reg_params *p,
1828                        const struct sys_reg_desc *r)
1829{
1830        if (p->is_write) {
1831                return ignore_write(vcpu, p);
1832        } else {
1833                u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1834                u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1835                u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1836
1837                p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1838                             (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1839                             (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1840                             | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12));
1841                return true;
1842        }
1843}
1844
1845/*
1846 * AArch32 debug register mappings
1847 *
1848 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1849 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1850 *
1851 * None of the other registers share their location, so treat them as
1852 * if they were 64bit.
1853 */
1854#define DBG_BCR_BVR_WCR_WVR(n)                                                \
1855        /* DBGBVRn */                                                         \
1856        { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1857        /* DBGBCRn */                                                         \
1858        { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },           \
1859        /* DBGWVRn */                                                         \
1860        { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },           \
1861        /* DBGWCRn */                                                         \
1862        { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1863
1864#define DBGBXVR(n)                                                            \
1865        { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
1866
1867/*
1868 * Trapped cp14 registers. We generally ignore most of the external
1869 * debug, on the principle that they don't really make sense to a
1870 * guest. Revisit this one day, would this principle change.
1871 */
1872static const struct sys_reg_desc cp14_regs[] = {
1873        /* DBGDIDR */
1874        { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
1875        /* DBGDTRRXext */
1876        { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1877
1878        DBG_BCR_BVR_WCR_WVR(0),
1879        /* DBGDSCRint */
1880        { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1881        DBG_BCR_BVR_WCR_WVR(1),
1882        /* DBGDCCINT */
1883        { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
1884        /* DBGDSCRext */
1885        { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
1886        DBG_BCR_BVR_WCR_WVR(2),
1887        /* DBGDTR[RT]Xint */
1888        { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1889        /* DBGDTR[RT]Xext */
1890        { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1891        DBG_BCR_BVR_WCR_WVR(3),
1892        DBG_BCR_BVR_WCR_WVR(4),
1893        DBG_BCR_BVR_WCR_WVR(5),
1894        /* DBGWFAR */
1895        { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1896        /* DBGOSECCR */
1897        { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1898        DBG_BCR_BVR_WCR_WVR(6),
1899        /* DBGVCR */
1900        { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
1901        DBG_BCR_BVR_WCR_WVR(7),
1902        DBG_BCR_BVR_WCR_WVR(8),
1903        DBG_BCR_BVR_WCR_WVR(9),
1904        DBG_BCR_BVR_WCR_WVR(10),
1905        DBG_BCR_BVR_WCR_WVR(11),
1906        DBG_BCR_BVR_WCR_WVR(12),
1907        DBG_BCR_BVR_WCR_WVR(13),
1908        DBG_BCR_BVR_WCR_WVR(14),
1909        DBG_BCR_BVR_WCR_WVR(15),
1910
1911        /* DBGDRAR (32bit) */
1912        { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1913
1914        DBGBXVR(0),
1915        /* DBGOSLAR */
1916        { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1917        DBGBXVR(1),
1918        /* DBGOSLSR */
1919        { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1920        DBGBXVR(2),
1921        DBGBXVR(3),
1922        /* DBGOSDLR */
1923        { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1924        DBGBXVR(4),
1925        /* DBGPRCR */
1926        { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1927        DBGBXVR(5),
1928        DBGBXVR(6),
1929        DBGBXVR(7),
1930        DBGBXVR(8),
1931        DBGBXVR(9),
1932        DBGBXVR(10),
1933        DBGBXVR(11),
1934        DBGBXVR(12),
1935        DBGBXVR(13),
1936        DBGBXVR(14),
1937        DBGBXVR(15),
1938
1939        /* DBGDSAR (32bit) */
1940        { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1941
1942        /* DBGDEVID2 */
1943        { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1944        /* DBGDEVID1 */
1945        { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1946        /* DBGDEVID */
1947        { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1948        /* DBGCLAIMSET */
1949        { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1950        /* DBGCLAIMCLR */
1951        { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1952        /* DBGAUTHSTATUS */
1953        { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1954};
1955
1956/* Trapped cp14 64bit registers */
1957static const struct sys_reg_desc cp14_64_regs[] = {
1958        /* DBGDRAR (64bit) */
1959        { Op1( 0), CRm( 1), .access = trap_raz_wi },
1960
1961        /* DBGDSAR (64bit) */
1962        { Op1( 0), CRm( 2), .access = trap_raz_wi },
1963};
1964
1965/* Macro to expand the PMEVCNTRn register */
1966#define PMU_PMEVCNTR(n)                                                 \
1967        /* PMEVCNTRn */                                                 \
1968        { Op1(0), CRn(0b1110),                                          \
1969          CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1970          access_pmu_evcntr }
1971
1972/* Macro to expand the PMEVTYPERn register */
1973#define PMU_PMEVTYPER(n)                                                \
1974        /* PMEVTYPERn */                                                \
1975        { Op1(0), CRn(0b1110),                                          \
1976          CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1977          access_pmu_evtyper }
1978
1979/*
1980 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1981 * depending on the way they are accessed (as a 32bit or a 64bit
1982 * register).
1983 */
1984static const struct sys_reg_desc cp15_regs[] = {
1985        { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1986        { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
1987        /* ACTLR */
1988        { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
1989        /* ACTLR2 */
1990        { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
1991        { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
1992        { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
1993        /* TTBCR */
1994        { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
1995        /* TTBCR2 */
1996        { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
1997        { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
1998        /* DFSR */
1999        { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
2000        { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
2001        /* ADFSR */
2002        { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
2003        /* AIFSR */
2004        { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
2005        /* DFAR */
2006        { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
2007        /* IFAR */
2008        { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
2009
2010        /*
2011         * DC{C,I,CI}SW operations:
2012         */
2013        { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2014        { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2015        { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2016
2017        /* PMU */
2018        { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
2019        { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
2020        { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
2021        { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
2022        { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
2023        { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
2024        { AA32(LO), Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
2025        { AA32(LO), Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
2026        { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
2027        { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
2028        { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
2029        { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
2030        { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
2031        { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
2032        { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
2033        { AA32(HI), Op1( 0), CRn( 9), CRm(14), Op2( 4), access_pmceid },
2034        { AA32(HI), Op1( 0), CRn( 9), CRm(14), Op2( 5), access_pmceid },
2035        /* PMMIR */
2036        { Op1( 0), CRn( 9), CRm(14), Op2( 6), trap_raz_wi },
2037
2038        /* PRRR/MAIR0 */
2039        { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
2040        /* NMRR/MAIR1 */
2041        { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
2042        /* AMAIR0 */
2043        { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
2044        /* AMAIR1 */
2045        { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
2046
2047        /* ICC_SRE */
2048        { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2049
2050        { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
2051
2052        /* Arch Tmers */
2053        { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2054        { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2055
2056        /* PMEVCNTRn */
2057        PMU_PMEVCNTR(0),
2058        PMU_PMEVCNTR(1),
2059        PMU_PMEVCNTR(2),
2060        PMU_PMEVCNTR(3),
2061        PMU_PMEVCNTR(4),
2062        PMU_PMEVCNTR(5),
2063        PMU_PMEVCNTR(6),
2064        PMU_PMEVCNTR(7),
2065        PMU_PMEVCNTR(8),
2066        PMU_PMEVCNTR(9),
2067        PMU_PMEVCNTR(10),
2068        PMU_PMEVCNTR(11),
2069        PMU_PMEVCNTR(12),
2070        PMU_PMEVCNTR(13),
2071        PMU_PMEVCNTR(14),
2072        PMU_PMEVCNTR(15),
2073        PMU_PMEVCNTR(16),
2074        PMU_PMEVCNTR(17),
2075        PMU_PMEVCNTR(18),
2076        PMU_PMEVCNTR(19),
2077        PMU_PMEVCNTR(20),
2078        PMU_PMEVCNTR(21),
2079        PMU_PMEVCNTR(22),
2080        PMU_PMEVCNTR(23),
2081        PMU_PMEVCNTR(24),
2082        PMU_PMEVCNTR(25),
2083        PMU_PMEVCNTR(26),
2084        PMU_PMEVCNTR(27),
2085        PMU_PMEVCNTR(28),
2086        PMU_PMEVCNTR(29),
2087        PMU_PMEVCNTR(30),
2088        /* PMEVTYPERn */
2089        PMU_PMEVTYPER(0),
2090        PMU_PMEVTYPER(1),
2091        PMU_PMEVTYPER(2),
2092        PMU_PMEVTYPER(3),
2093        PMU_PMEVTYPER(4),
2094        PMU_PMEVTYPER(5),
2095        PMU_PMEVTYPER(6),
2096        PMU_PMEVTYPER(7),
2097        PMU_PMEVTYPER(8),
2098        PMU_PMEVTYPER(9),
2099        PMU_PMEVTYPER(10),
2100        PMU_PMEVTYPER(11),
2101        PMU_PMEVTYPER(12),
2102        PMU_PMEVTYPER(13),
2103        PMU_PMEVTYPER(14),
2104        PMU_PMEVTYPER(15),
2105        PMU_PMEVTYPER(16),
2106        PMU_PMEVTYPER(17),
2107        PMU_PMEVTYPER(18),
2108        PMU_PMEVTYPER(19),
2109        PMU_PMEVTYPER(20),
2110        PMU_PMEVTYPER(21),
2111        PMU_PMEVTYPER(22),
2112        PMU_PMEVTYPER(23),
2113        PMU_PMEVTYPER(24),
2114        PMU_PMEVTYPER(25),
2115        PMU_PMEVTYPER(26),
2116        PMU_PMEVTYPER(27),
2117        PMU_PMEVTYPER(28),
2118        PMU_PMEVTYPER(29),
2119        PMU_PMEVTYPER(30),
2120        /* PMCCFILTR */
2121        { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
2122
2123        { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2124        { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2125        { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
2126};
2127
2128static const struct sys_reg_desc cp15_64_regs[] = {
2129        { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2130        { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
2131        { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2132        { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
2133        { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2134        { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2135        { SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2136};
2137
2138static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2139                              bool is_32)
2140{
2141        unsigned int i;
2142
2143        for (i = 0; i < n; i++) {
2144                if (!is_32 && table[i].reg && !table[i].reset) {
2145                        kvm_err("sys_reg table %p entry %d has lacks reset\n",
2146                                table, i);
2147                        return 1;
2148                }
2149
2150                if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2151                        kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2152                        return 1;
2153                }
2154        }
2155
2156        return 0;
2157}
2158
2159int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2160{
2161        kvm_inject_undefined(vcpu);
2162        return 1;
2163}
2164
2165static void perform_access(struct kvm_vcpu *vcpu,
2166                           struct sys_reg_params *params,
2167                           const struct sys_reg_desc *r)
2168{
2169        trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2170
2171        /* Check for regs disabled by runtime config */
2172        if (sysreg_hidden(vcpu, r)) {
2173                kvm_inject_undefined(vcpu);
2174                return;
2175        }
2176
2177        /*
2178         * Not having an accessor means that we have configured a trap
2179         * that we don't know how to handle. This certainly qualifies
2180         * as a gross bug that should be fixed right away.
2181         */
2182        BUG_ON(!r->access);
2183
2184        /* Skip instruction if instructed so */
2185        if (likely(r->access(vcpu, params, r)))
2186                kvm_incr_pc(vcpu);
2187}
2188
2189/*
2190 * emulate_cp --  tries to match a sys_reg access in a handling table, and
2191 *                call the corresponding trap handler.
2192 *
2193 * @params: pointer to the descriptor of the access
2194 * @table: array of trap descriptors
2195 * @num: size of the trap descriptor array
2196 *
2197 * Return 0 if the access has been handled, and -1 if not.
2198 */
2199static int emulate_cp(struct kvm_vcpu *vcpu,
2200                      struct sys_reg_params *params,
2201                      const struct sys_reg_desc *table,
2202                      size_t num)
2203{
2204        const struct sys_reg_desc *r;
2205
2206        if (!table)
2207                return -1;      /* Not handled */
2208
2209        r = find_reg(params, table, num);
2210
2211        if (r) {
2212                perform_access(vcpu, params, r);
2213                return 0;
2214        }
2215
2216        /* Not handled */
2217        return -1;
2218}
2219
2220static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2221                                struct sys_reg_params *params)
2222{
2223        u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2224        int cp = -1;
2225
2226        switch (esr_ec) {
2227        case ESR_ELx_EC_CP15_32:
2228        case ESR_ELx_EC_CP15_64:
2229                cp = 15;
2230                break;
2231        case ESR_ELx_EC_CP14_MR:
2232        case ESR_ELx_EC_CP14_64:
2233                cp = 14;
2234                break;
2235        default:
2236                WARN_ON(1);
2237        }
2238
2239        print_sys_reg_msg(params,
2240                          "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2241                          cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2242        kvm_inject_undefined(vcpu);
2243}
2244
2245/**
2246 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2247 * @vcpu: The VCPU pointer
2248 * @run:  The kvm_run struct
2249 */
2250static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2251                            const struct sys_reg_desc *global,
2252                            size_t nr_global)
2253{
2254        struct sys_reg_params params;
2255        u32 esr = kvm_vcpu_get_esr(vcpu);
2256        int Rt = kvm_vcpu_sys_get_rt(vcpu);
2257        int Rt2 = (esr >> 10) & 0x1f;
2258
2259        params.CRm = (esr >> 1) & 0xf;
2260        params.is_write = ((esr & 1) == 0);
2261
2262        params.Op0 = 0;
2263        params.Op1 = (esr >> 16) & 0xf;
2264        params.Op2 = 0;
2265        params.CRn = 0;
2266
2267        /*
2268         * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2269         * backends between AArch32 and AArch64, we get away with it.
2270         */
2271        if (params.is_write) {
2272                params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2273                params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2274        }
2275
2276        /*
2277         * If the table contains a handler, handle the
2278         * potential register operation in the case of a read and return
2279         * with success.
2280         */
2281        if (!emulate_cp(vcpu, &params, global, nr_global)) {
2282                /* Split up the value between registers for the read side */
2283                if (!params.is_write) {
2284                        vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2285                        vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2286                }
2287
2288                return 1;
2289        }
2290
2291        unhandled_cp_access(vcpu, &params);
2292        return 1;
2293}
2294
2295/**
2296 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2297 * @vcpu: The VCPU pointer
2298 * @run:  The kvm_run struct
2299 */
2300static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2301                            const struct sys_reg_desc *global,
2302                            size_t nr_global)
2303{
2304        struct sys_reg_params params;
2305        u32 esr = kvm_vcpu_get_esr(vcpu);
2306        int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2307
2308        params.CRm = (esr >> 1) & 0xf;
2309        params.regval = vcpu_get_reg(vcpu, Rt);
2310        params.is_write = ((esr & 1) == 0);
2311        params.CRn = (esr >> 10) & 0xf;
2312        params.Op0 = 0;
2313        params.Op1 = (esr >> 14) & 0x7;
2314        params.Op2 = (esr >> 17) & 0x7;
2315
2316        if (!emulate_cp(vcpu, &params, global, nr_global)) {
2317                if (!params.is_write)
2318                        vcpu_set_reg(vcpu, Rt, params.regval);
2319                return 1;
2320        }
2321
2322        unhandled_cp_access(vcpu, &params);
2323        return 1;
2324}
2325
2326int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2327{
2328        return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2329}
2330
2331int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2332{
2333        return kvm_handle_cp_32(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
2334}
2335
2336int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2337{
2338        return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2339}
2340
2341int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2342{
2343        return kvm_handle_cp_32(vcpu, cp14_regs, ARRAY_SIZE(cp14_regs));
2344}
2345
2346static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2347{
2348        // See ARM DDI 0487E.a, section D12.3.2
2349        return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2350}
2351
2352static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2353                           struct sys_reg_params *params)
2354{
2355        const struct sys_reg_desc *r;
2356
2357        r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2358
2359        if (likely(r)) {
2360                perform_access(vcpu, params, r);
2361        } else if (is_imp_def_sys_reg(params)) {
2362                kvm_inject_undefined(vcpu);
2363        } else {
2364                print_sys_reg_msg(params,
2365                                  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2366                                  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2367                kvm_inject_undefined(vcpu);
2368        }
2369        return 1;
2370}
2371
2372/**
2373 * kvm_reset_sys_regs - sets system registers to reset value
2374 * @vcpu: The VCPU pointer
2375 *
2376 * This function finds the right table above and sets the registers on the
2377 * virtual CPU struct to their architecturally defined reset values.
2378 */
2379void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2380{
2381        unsigned long i;
2382
2383        for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2384                if (sys_reg_descs[i].reset)
2385                        sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2386}
2387
2388/**
2389 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2390 * @vcpu: The VCPU pointer
2391 */
2392int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2393{
2394        struct sys_reg_params params;
2395        unsigned long esr = kvm_vcpu_get_esr(vcpu);
2396        int Rt = kvm_vcpu_sys_get_rt(vcpu);
2397        int ret;
2398
2399        trace_kvm_handle_sys_reg(esr);
2400
2401        params = esr_sys64_to_params(esr);
2402        params.regval = vcpu_get_reg(vcpu, Rt);
2403
2404        ret = emulate_sys_reg(vcpu, &params);
2405
2406        if (!params.is_write)
2407                vcpu_set_reg(vcpu, Rt, params.regval);
2408        return ret;
2409}
2410
2411/******************************************************************************
2412 * Userspace API
2413 *****************************************************************************/
2414
2415static bool index_to_params(u64 id, struct sys_reg_params *params)
2416{
2417        switch (id & KVM_REG_SIZE_MASK) {
2418        case KVM_REG_SIZE_U64:
2419                /* Any unused index bits means it's not valid. */
2420                if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2421                              | KVM_REG_ARM_COPROC_MASK
2422                              | KVM_REG_ARM64_SYSREG_OP0_MASK
2423                              | KVM_REG_ARM64_SYSREG_OP1_MASK
2424                              | KVM_REG_ARM64_SYSREG_CRN_MASK
2425                              | KVM_REG_ARM64_SYSREG_CRM_MASK
2426                              | KVM_REG_ARM64_SYSREG_OP2_MASK))
2427                        return false;
2428                params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2429                               >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2430                params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2431                               >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2432                params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2433                               >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2434                params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2435                               >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2436                params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2437                               >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2438                return true;
2439        default:
2440                return false;
2441        }
2442}
2443
2444const struct sys_reg_desc *find_reg_by_id(u64 id,
2445                                          struct sys_reg_params *params,
2446                                          const struct sys_reg_desc table[],
2447                                          unsigned int num)
2448{
2449        if (!index_to_params(id, params))
2450                return NULL;
2451
2452        return find_reg(params, table, num);
2453}
2454
2455/* Decode an index value, and find the sys_reg_desc entry. */
2456static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2457                                                    u64 id)
2458{
2459        const struct sys_reg_desc *r;
2460        struct sys_reg_params params;
2461
2462        /* We only do sys_reg for now. */
2463        if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2464                return NULL;
2465
2466        if (!index_to_params(id, &params))
2467                return NULL;
2468
2469        r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2470
2471        /* Not saved in the sys_reg array and not otherwise accessible? */
2472        if (r && !(r->reg || r->get_user))
2473                r = NULL;
2474
2475        return r;
2476}
2477
2478/*
2479 * These are the invariant sys_reg registers: we let the guest see the
2480 * host versions of these, so they're part of the guest state.
2481 *
2482 * A future CPU may provide a mechanism to present different values to
2483 * the guest, or a future kvm may trap them.
2484 */
2485
2486#define FUNCTION_INVARIANT(reg)                                         \
2487        static void get_##reg(struct kvm_vcpu *v,                       \
2488                              const struct sys_reg_desc *r)             \
2489        {                                                               \
2490                ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
2491        }
2492
2493FUNCTION_INVARIANT(midr_el1)
2494FUNCTION_INVARIANT(revidr_el1)
2495FUNCTION_INVARIANT(clidr_el1)
2496FUNCTION_INVARIANT(aidr_el1)
2497
2498static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2499{
2500        ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2501}
2502
2503/* ->val is filled in by kvm_sys_reg_table_init() */
2504static struct sys_reg_desc invariant_sys_regs[] = {
2505        { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2506        { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2507        { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2508        { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2509        { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2510};
2511
2512static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2513{
2514        if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2515                return -EFAULT;
2516        return 0;
2517}
2518
2519static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2520{
2521        if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2522                return -EFAULT;
2523        return 0;
2524}
2525
2526static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2527{
2528        struct sys_reg_params params;
2529        const struct sys_reg_desc *r;
2530
2531        r = find_reg_by_id(id, &params, invariant_sys_regs,
2532                           ARRAY_SIZE(invariant_sys_regs));
2533        if (!r)
2534                return -ENOENT;
2535
2536        return reg_to_user(uaddr, &r->val, id);
2537}
2538
2539static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2540{
2541        struct sys_reg_params params;
2542        const struct sys_reg_desc *r;
2543        int err;
2544        u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2545
2546        r = find_reg_by_id(id, &params, invariant_sys_regs,
2547                           ARRAY_SIZE(invariant_sys_regs));
2548        if (!r)
2549                return -ENOENT;
2550
2551        err = reg_from_user(&val, uaddr, id);
2552        if (err)
2553                return err;
2554
2555        /* This is what we mean by invariant: you can't change it. */
2556        if (r->val != val)
2557                return -EINVAL;
2558
2559        return 0;
2560}
2561
2562static bool is_valid_cache(u32 val)
2563{
2564        u32 level, ctype;
2565
2566        if (val >= CSSELR_MAX)
2567                return false;
2568
2569        /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2570        level = (val >> 1);
2571        ctype = (cache_levels >> (level * 3)) & 7;
2572
2573        switch (ctype) {
2574        case 0: /* No cache */
2575                return false;
2576        case 1: /* Instruction cache only */
2577                return (val & 1);
2578        case 2: /* Data cache only */
2579        case 4: /* Unified cache */
2580                return !(val & 1);
2581        case 3: /* Separate instruction and data caches */
2582                return true;
2583        default: /* Reserved: we can't know instruction or data. */
2584                return false;
2585        }
2586}
2587
2588static int demux_c15_get(u64 id, void __user *uaddr)
2589{
2590        u32 val;
2591        u32 __user *uval = uaddr;
2592
2593        /* Fail if we have unknown bits set. */
2594        if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2595                   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2596                return -ENOENT;
2597
2598        switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2599        case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2600                if (KVM_REG_SIZE(id) != 4)
2601                        return -ENOENT;
2602                val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2603                        >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2604                if (!is_valid_cache(val))
2605                        return -ENOENT;
2606
2607                return put_user(get_ccsidr(val), uval);
2608        default:
2609                return -ENOENT;
2610        }
2611}
2612
2613static int demux_c15_set(u64 id, void __user *uaddr)
2614{
2615        u32 val, newval;
2616        u32 __user *uval = uaddr;
2617
2618        /* Fail if we have unknown bits set. */
2619        if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2620                   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2621                return -ENOENT;
2622
2623        switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2624        case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2625                if (KVM_REG_SIZE(id) != 4)
2626                        return -ENOENT;
2627                val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2628                        >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2629                if (!is_valid_cache(val))
2630                        return -ENOENT;
2631
2632                if (get_user(newval, uval))
2633                        return -EFAULT;
2634
2635                /* This is also invariant: you can't change it. */
2636                if (newval != get_ccsidr(val))
2637                        return -EINVAL;
2638                return 0;
2639        default:
2640                return -ENOENT;
2641        }
2642}
2643
2644int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2645{
2646        const struct sys_reg_desc *r;
2647        void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2648
2649        if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2650                return demux_c15_get(reg->id, uaddr);
2651
2652        if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2653                return -ENOENT;
2654
2655        r = index_to_sys_reg_desc(vcpu, reg->id);
2656        if (!r)
2657                return get_invariant_sys_reg(reg->id, uaddr);
2658
2659        /* Check for regs disabled by runtime config */
2660        if (sysreg_hidden(vcpu, r))
2661                return -ENOENT;
2662
2663        if (r->get_user)
2664                return (r->get_user)(vcpu, r, reg, uaddr);
2665
2666        return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2667}
2668
2669int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2670{
2671        const struct sys_reg_desc *r;
2672        void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2673
2674        if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2675                return demux_c15_set(reg->id, uaddr);
2676
2677        if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2678                return -ENOENT;
2679
2680        r = index_to_sys_reg_desc(vcpu, reg->id);
2681        if (!r)
2682                return set_invariant_sys_reg(reg->id, uaddr);
2683
2684        /* Check for regs disabled by runtime config */
2685        if (sysreg_hidden(vcpu, r))
2686                return -ENOENT;
2687
2688        if (r->set_user)
2689                return (r->set_user)(vcpu, r, reg, uaddr);
2690
2691        return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2692}
2693
2694static unsigned int num_demux_regs(void)
2695{
2696        unsigned int i, count = 0;
2697
2698        for (i = 0; i < CSSELR_MAX; i++)
2699                if (is_valid_cache(i))
2700                        count++;
2701
2702        return count;
2703}
2704
2705static int write_demux_regids(u64 __user *uindices)
2706{
2707        u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2708        unsigned int i;
2709
2710        val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2711        for (i = 0; i < CSSELR_MAX; i++) {
2712                if (!is_valid_cache(i))
2713                        continue;
2714                if (put_user(val | i, uindices))
2715                        return -EFAULT;
2716                uindices++;
2717        }
2718        return 0;
2719}
2720
2721static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2722{
2723        return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2724                KVM_REG_ARM64_SYSREG |
2725                (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2726                (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2727                (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2728                (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2729                (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2730}
2731
2732static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2733{
2734        if (!*uind)
2735                return true;
2736
2737        if (put_user(sys_reg_to_index(reg), *uind))
2738                return false;
2739
2740        (*uind)++;
2741        return true;
2742}
2743
2744static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2745                            const struct sys_reg_desc *rd,
2746                            u64 __user **uind,
2747                            unsigned int *total)
2748{
2749        /*
2750         * Ignore registers we trap but don't save,
2751         * and for which no custom user accessor is provided.
2752         */
2753        if (!(rd->reg || rd->get_user))
2754                return 0;
2755
2756        if (sysreg_hidden(vcpu, rd))
2757                return 0;
2758
2759        if (!copy_reg_to_user(rd, uind))
2760                return -EFAULT;
2761
2762        (*total)++;
2763        return 0;
2764}
2765
2766/* Assumed ordered tables, see kvm_sys_reg_table_init. */
2767static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2768{
2769        const struct sys_reg_desc *i2, *end2;
2770        unsigned int total = 0;
2771        int err;
2772
2773        i2 = sys_reg_descs;
2774        end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2775
2776        while (i2 != end2) {
2777                err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
2778                if (err)
2779                        return err;
2780        }
2781        return total;
2782}
2783
2784unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2785{
2786        return ARRAY_SIZE(invariant_sys_regs)
2787                + num_demux_regs()
2788                + walk_sys_regs(vcpu, (u64 __user *)NULL);
2789}
2790
2791int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2792{
2793        unsigned int i;
2794        int err;
2795
2796        /* Then give them all the invariant registers' indices. */
2797        for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2798                if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2799                        return -EFAULT;
2800                uindices++;
2801        }
2802
2803        err = walk_sys_regs(vcpu, uindices);
2804        if (err < 0)
2805                return err;
2806        uindices += err;
2807
2808        return write_demux_regids(uindices);
2809}
2810
2811void kvm_sys_reg_table_init(void)
2812{
2813        unsigned int i;
2814        struct sys_reg_desc clidr;
2815
2816        /* Make sure tables are unique and in order. */
2817        BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false));
2818        BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true));
2819        BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true));
2820        BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true));
2821        BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true));
2822        BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false));
2823
2824        /* We abuse the reset function to overwrite the table itself. */
2825        for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2826                invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2827
2828        /*
2829         * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2830         *
2831         *   If software reads the Cache Type fields from Ctype1
2832         *   upwards, once it has seen a value of 0b000, no caches
2833         *   exist at further-out levels of the hierarchy. So, for
2834         *   example, if Ctype3 is the first Cache Type field with a
2835         *   value of 0b000, the values of Ctype4 to Ctype7 must be
2836         *   ignored.
2837         */
2838        get_clidr_el1(NULL, &clidr); /* Ugly... */
2839        cache_levels = clidr.val;
2840        for (i = 0; i < 7; i++)
2841                if (((cache_levels >> (i*3)) & 7) == 0)
2842                        break;
2843        /* Clear all higher bits. */
2844        cache_levels &= (1 << (i*3))-1;
2845}
2846