linux/arch/mips/kernel/smp-cps.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2013 Imagination Technologies
   4 * Author: Paul Burton <paul.burton@mips.com>
   5 */
   6
   7#include <linux/cpu.h>
   8#include <linux/delay.h>
   9#include <linux/io.h>
  10#include <linux/sched/task_stack.h>
  11#include <linux/sched/hotplug.h>
  12#include <linux/slab.h>
  13#include <linux/smp.h>
  14#include <linux/types.h>
  15#include <linux/irq.h>
  16
  17#include <asm/bcache.h>
  18#include <asm/mips-cps.h>
  19#include <asm/mips_mt.h>
  20#include <asm/mipsregs.h>
  21#include <asm/pm-cps.h>
  22#include <asm/r4kcache.h>
  23#include <asm/smp-cps.h>
  24#include <asm/time.h>
  25#include <asm/uasm.h>
  26
  27static bool threads_disabled;
  28static DECLARE_BITMAP(core_power, NR_CPUS);
  29
  30struct core_boot_config *mips_cps_core_bootcfg;
  31
  32static int __init setup_nothreads(char *s)
  33{
  34        threads_disabled = true;
  35        return 0;
  36}
  37early_param("nothreads", setup_nothreads);
  38
  39static unsigned core_vpe_count(unsigned int cluster, unsigned core)
  40{
  41        if (threads_disabled)
  42                return 1;
  43
  44        return mips_cps_numvps(cluster, core);
  45}
  46
  47static void __init cps_smp_setup(void)
  48{
  49        unsigned int nclusters, ncores, nvpes, core_vpes;
  50        unsigned long core_entry;
  51        int cl, c, v;
  52
  53        /* Detect & record VPE topology */
  54        nvpes = 0;
  55        nclusters = mips_cps_numclusters();
  56        pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
  57        for (cl = 0; cl < nclusters; cl++) {
  58                if (cl > 0)
  59                        pr_cont(",");
  60                pr_cont("{");
  61
  62                ncores = mips_cps_numcores(cl);
  63                for (c = 0; c < ncores; c++) {
  64                        core_vpes = core_vpe_count(cl, c);
  65
  66                        if (c > 0)
  67                                pr_cont(",");
  68                        pr_cont("%u", core_vpes);
  69
  70                        /* Use the number of VPEs in cluster 0 core 0 for smp_num_siblings */
  71                        if (!cl && !c)
  72                                smp_num_siblings = core_vpes;
  73
  74                        for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
  75                                cpu_set_cluster(&cpu_data[nvpes + v], cl);
  76                                cpu_set_core(&cpu_data[nvpes + v], c);
  77                                cpu_set_vpe_id(&cpu_data[nvpes + v], v);
  78                        }
  79
  80                        nvpes += core_vpes;
  81                }
  82
  83                pr_cont("}");
  84        }
  85        pr_cont(" total %u\n", nvpes);
  86
  87        /* Indicate present CPUs (CPU being synonymous with VPE) */
  88        for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
  89                set_cpu_possible(v, cpu_cluster(&cpu_data[v]) == 0);
  90                set_cpu_present(v, cpu_cluster(&cpu_data[v]) == 0);
  91                __cpu_number_map[v] = v;
  92                __cpu_logical_map[v] = v;
  93        }
  94
  95        /* Set a coherent default CCA (CWB) */
  96        change_c0_config(CONF_CM_CMASK, 0x5);
  97
  98        /* Core 0 is powered up (we're running on it) */
  99        bitmap_set(core_power, 0, 1);
 100
 101        /* Initialise core 0 */
 102        mips_cps_core_init();
 103
 104        /* Make core 0 coherent with everything */
 105        write_gcr_cl_coherence(0xff);
 106
 107        if (mips_cm_revision() >= CM_REV_CM3) {
 108                core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
 109                write_gcr_bev_base(core_entry);
 110        }
 111
 112#ifdef CONFIG_MIPS_MT_FPAFF
 113        /* If we have an FPU, enroll ourselves in the FPU-full mask */
 114        if (cpu_has_fpu)
 115                cpumask_set_cpu(0, &mt_fpu_cpumask);
 116#endif /* CONFIG_MIPS_MT_FPAFF */
 117}
 118
 119static void __init cps_prepare_cpus(unsigned int max_cpus)
 120{
 121        unsigned ncores, core_vpes, c, cca;
 122        bool cca_unsuitable, cores_limited;
 123        u32 *entry_code;
 124
 125        mips_mt_set_cpuoptions();
 126
 127        /* Detect whether the CCA is unsuited to multi-core SMP */
 128        cca = read_c0_config() & CONF_CM_CMASK;
 129        switch (cca) {
 130        case 0x4: /* CWBE */
 131        case 0x5: /* CWB */
 132                /* The CCA is coherent, multi-core is fine */
 133                cca_unsuitable = false;
 134                break;
 135
 136        default:
 137                /* CCA is not coherent, multi-core is not usable */
 138                cca_unsuitable = true;
 139        }
 140
 141        /* Warn the user if the CCA prevents multi-core */
 142        cores_limited = false;
 143        if (cca_unsuitable || cpu_has_dc_aliases) {
 144                for_each_present_cpu(c) {
 145                        if (cpus_are_siblings(smp_processor_id(), c))
 146                                continue;
 147
 148                        set_cpu_present(c, false);
 149                        cores_limited = true;
 150                }
 151        }
 152        if (cores_limited)
 153                pr_warn("Using only one core due to %s%s%s\n",
 154                        cca_unsuitable ? "unsuitable CCA" : "",
 155                        (cca_unsuitable && cpu_has_dc_aliases) ? " & " : "",
 156                        cpu_has_dc_aliases ? "dcache aliasing" : "");
 157
 158        /*
 159         * Patch the start of mips_cps_core_entry to provide:
 160         *
 161         * s0 = kseg0 CCA
 162         */
 163        entry_code = (u32 *)&mips_cps_core_entry;
 164        uasm_i_addiu(&entry_code, 16, 0, cca);
 165        blast_dcache_range((unsigned long)&mips_cps_core_entry,
 166                           (unsigned long)entry_code);
 167        bc_wback_inv((unsigned long)&mips_cps_core_entry,
 168                     (void *)entry_code - (void *)&mips_cps_core_entry);
 169        __sync();
 170
 171        /* Allocate core boot configuration structs */
 172        ncores = mips_cps_numcores(0);
 173        mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
 174                                        GFP_KERNEL);
 175        if (!mips_cps_core_bootcfg) {
 176                pr_err("Failed to allocate boot config for %u cores\n", ncores);
 177                goto err_out;
 178        }
 179
 180        /* Allocate VPE boot configuration structs */
 181        for (c = 0; c < ncores; c++) {
 182                core_vpes = core_vpe_count(0, c);
 183                mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
 184                                sizeof(*mips_cps_core_bootcfg[c].vpe_config),
 185                                GFP_KERNEL);
 186                if (!mips_cps_core_bootcfg[c].vpe_config) {
 187                        pr_err("Failed to allocate %u VPE boot configs\n",
 188                               core_vpes);
 189                        goto err_out;
 190                }
 191        }
 192
 193        /* Mark this CPU as booted */
 194        atomic_set(&mips_cps_core_bootcfg[cpu_core(&current_cpu_data)].vpe_mask,
 195                   1 << cpu_vpe_id(&current_cpu_data));
 196
 197        return;
 198err_out:
 199        /* Clean up allocations */
 200        if (mips_cps_core_bootcfg) {
 201                for (c = 0; c < ncores; c++)
 202                        kfree(mips_cps_core_bootcfg[c].vpe_config);
 203                kfree(mips_cps_core_bootcfg);
 204                mips_cps_core_bootcfg = NULL;
 205        }
 206
 207        /* Effectively disable SMP by declaring CPUs not present */
 208        for_each_possible_cpu(c) {
 209                if (c == 0)
 210                        continue;
 211                set_cpu_present(c, false);
 212        }
 213}
 214
 215static void boot_core(unsigned int core, unsigned int vpe_id)
 216{
 217        u32 stat, seq_state;
 218        unsigned timeout;
 219
 220        /* Select the appropriate core */
 221        mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
 222
 223        /* Set its reset vector */
 224        write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
 225
 226        /* Ensure its coherency is disabled */
 227        write_gcr_co_coherence(0);
 228
 229        /* Start it with the legacy memory map and exception base */
 230        write_gcr_co_reset_ext_base(CM_GCR_Cx_RESET_EXT_BASE_UEB);
 231
 232        /* Ensure the core can access the GCRs */
 233        set_gcr_access(1 << core);
 234
 235        if (mips_cpc_present()) {
 236                /* Reset the core */
 237                mips_cpc_lock_other(core);
 238
 239                if (mips_cm_revision() >= CM_REV_CM3) {
 240                        /* Run only the requested VP following the reset */
 241                        write_cpc_co_vp_stop(0xf);
 242                        write_cpc_co_vp_run(1 << vpe_id);
 243
 244                        /*
 245                         * Ensure that the VP_RUN register is written before the
 246                         * core leaves reset.
 247                         */
 248                        wmb();
 249                }
 250
 251                write_cpc_co_cmd(CPC_Cx_CMD_RESET);
 252
 253                timeout = 100;
 254                while (true) {
 255                        stat = read_cpc_co_stat_conf();
 256                        seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE;
 257                        seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
 258
 259                        /* U6 == coherent execution, ie. the core is up */
 260                        if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
 261                                break;
 262
 263                        /* Delay a little while before we start warning */
 264                        if (timeout) {
 265                                timeout--;
 266                                mdelay(10);
 267                                continue;
 268                        }
 269
 270                        pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
 271                                core, stat);
 272                        mdelay(1000);
 273                }
 274
 275                mips_cpc_unlock_other();
 276        } else {
 277                /* Take the core out of reset */
 278                write_gcr_co_reset_release(0);
 279        }
 280
 281        mips_cm_unlock_other();
 282
 283        /* The core is now powered up */
 284        bitmap_set(core_power, core, 1);
 285}
 286
 287static void remote_vpe_boot(void *dummy)
 288{
 289        unsigned core = cpu_core(&current_cpu_data);
 290        struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
 291
 292        mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
 293}
 294
 295static int cps_boot_secondary(int cpu, struct task_struct *idle)
 296{
 297        unsigned core = cpu_core(&cpu_data[cpu]);
 298        unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
 299        struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
 300        struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
 301        unsigned long core_entry;
 302        unsigned int remote;
 303        int err;
 304
 305        /* We don't yet support booting CPUs in other clusters */
 306        if (cpu_cluster(&cpu_data[cpu]) != cpu_cluster(&raw_current_cpu_data))
 307                return -ENOSYS;
 308
 309        vpe_cfg->pc = (unsigned long)&smp_bootstrap;
 310        vpe_cfg->sp = __KSTK_TOS(idle);
 311        vpe_cfg->gp = (unsigned long)task_thread_info(idle);
 312
 313        atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
 314
 315        preempt_disable();
 316
 317        if (!test_bit(core, core_power)) {
 318                /* Boot a VPE on a powered down core */
 319                boot_core(core, vpe_id);
 320                goto out;
 321        }
 322
 323        if (cpu_has_vp) {
 324                mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
 325                core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
 326                write_gcr_co_reset_base(core_entry);
 327                mips_cm_unlock_other();
 328        }
 329
 330        if (!cpus_are_siblings(cpu, smp_processor_id())) {
 331                /* Boot a VPE on another powered up core */
 332                for (remote = 0; remote < NR_CPUS; remote++) {
 333                        if (!cpus_are_siblings(cpu, remote))
 334                                continue;
 335                        if (cpu_online(remote))
 336                                break;
 337                }
 338                if (remote >= NR_CPUS) {
 339                        pr_crit("No online CPU in core %u to start CPU%d\n",
 340                                core, cpu);
 341                        goto out;
 342                }
 343
 344                err = smp_call_function_single(remote, remote_vpe_boot,
 345                                               NULL, 1);
 346                if (err)
 347                        panic("Failed to call remote CPU\n");
 348                goto out;
 349        }
 350
 351        BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
 352
 353        /* Boot a VPE on this core */
 354        mips_cps_boot_vpes(core_cfg, vpe_id);
 355out:
 356        preempt_enable();
 357        return 0;
 358}
 359
 360static void cps_init_secondary(void)
 361{
 362        /* Disable MT - we only want to run 1 TC per VPE */
 363        if (cpu_has_mipsmt)
 364                dmt();
 365
 366        if (mips_cm_revision() >= CM_REV_CM3) {
 367                unsigned int ident = read_gic_vl_ident();
 368
 369                /*
 370                 * Ensure that our calculation of the VP ID matches up with
 371                 * what the GIC reports, otherwise we'll have configured
 372                 * interrupts incorrectly.
 373                 */
 374                BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
 375        }
 376
 377        if (cpu_has_veic)
 378                clear_c0_status(ST0_IM);
 379        else
 380                change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
 381                                         STATUSF_IP4 | STATUSF_IP5 |
 382                                         STATUSF_IP6 | STATUSF_IP7);
 383}
 384
 385static void cps_smp_finish(void)
 386{
 387        write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
 388
 389#ifdef CONFIG_MIPS_MT_FPAFF
 390        /* If we have an FPU, enroll ourselves in the FPU-full mask */
 391        if (cpu_has_fpu)
 392                cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
 393#endif /* CONFIG_MIPS_MT_FPAFF */
 394
 395        local_irq_enable();
 396}
 397
 398#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_KEXEC)
 399
 400enum cpu_death {
 401        CPU_DEATH_HALT,
 402        CPU_DEATH_POWER,
 403};
 404
 405static void cps_shutdown_this_cpu(enum cpu_death death)
 406{
 407        unsigned int cpu, core, vpe_id;
 408
 409        cpu = smp_processor_id();
 410        core = cpu_core(&cpu_data[cpu]);
 411
 412        if (death == CPU_DEATH_HALT) {
 413                vpe_id = cpu_vpe_id(&cpu_data[cpu]);
 414
 415                pr_debug("Halting core %d VP%d\n", core, vpe_id);
 416                if (cpu_has_mipsmt) {
 417                        /* Halt this TC */
 418                        write_c0_tchalt(TCHALT_H);
 419                        instruction_hazard();
 420                } else if (cpu_has_vp) {
 421                        write_cpc_cl_vp_stop(1 << vpe_id);
 422
 423                        /* Ensure that the VP_STOP register is written */
 424                        wmb();
 425                }
 426        } else {
 427                pr_debug("Gating power to core %d\n", core);
 428                /* Power down the core */
 429                cps_pm_enter_state(CPS_PM_POWER_GATED);
 430        }
 431}
 432
 433#ifdef CONFIG_KEXEC
 434
 435static void cps_kexec_nonboot_cpu(void)
 436{
 437        if (cpu_has_mipsmt || cpu_has_vp)
 438                cps_shutdown_this_cpu(CPU_DEATH_HALT);
 439        else
 440                cps_shutdown_this_cpu(CPU_DEATH_POWER);
 441}
 442
 443#endif /* CONFIG_KEXEC */
 444
 445#endif /* CONFIG_HOTPLUG_CPU || CONFIG_KEXEC */
 446
 447#ifdef CONFIG_HOTPLUG_CPU
 448
 449static int cps_cpu_disable(void)
 450{
 451        unsigned cpu = smp_processor_id();
 452        struct core_boot_config *core_cfg;
 453
 454        if (!cps_pm_support_state(CPS_PM_POWER_GATED))
 455                return -EINVAL;
 456
 457        core_cfg = &mips_cps_core_bootcfg[cpu_core(&current_cpu_data)];
 458        atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
 459        smp_mb__after_atomic();
 460        set_cpu_online(cpu, false);
 461        calculate_cpu_foreign_map();
 462        irq_migrate_all_off_this_cpu();
 463
 464        return 0;
 465}
 466
 467static unsigned cpu_death_sibling;
 468static enum cpu_death cpu_death;
 469
 470void play_dead(void)
 471{
 472        unsigned int cpu;
 473
 474        local_irq_disable();
 475        idle_task_exit();
 476        cpu = smp_processor_id();
 477        cpu_death = CPU_DEATH_POWER;
 478
 479        pr_debug("CPU%d going offline\n", cpu);
 480
 481        if (cpu_has_mipsmt || cpu_has_vp) {
 482                /* Look for another online VPE within the core */
 483                for_each_online_cpu(cpu_death_sibling) {
 484                        if (!cpus_are_siblings(cpu, cpu_death_sibling))
 485                                continue;
 486
 487                        /*
 488                         * There is an online VPE within the core. Just halt
 489                         * this TC and leave the core alone.
 490                         */
 491                        cpu_death = CPU_DEATH_HALT;
 492                        break;
 493                }
 494        }
 495
 496        /* This CPU has chosen its way out */
 497        (void)cpu_report_death();
 498
 499        cps_shutdown_this_cpu(cpu_death);
 500
 501        /* This should never be reached */
 502        panic("Failed to offline CPU %u", cpu);
 503}
 504
 505static void wait_for_sibling_halt(void *ptr_cpu)
 506{
 507        unsigned cpu = (unsigned long)ptr_cpu;
 508        unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
 509        unsigned halted;
 510        unsigned long flags;
 511
 512        do {
 513                local_irq_save(flags);
 514                settc(vpe_id);
 515                halted = read_tc_c0_tchalt();
 516                local_irq_restore(flags);
 517        } while (!(halted & TCHALT_H));
 518}
 519
 520static void cps_cpu_die(unsigned int cpu)
 521{
 522        unsigned core = cpu_core(&cpu_data[cpu]);
 523        unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
 524        ktime_t fail_time;
 525        unsigned stat;
 526        int err;
 527
 528        /* Wait for the cpu to choose its way out */
 529        if (!cpu_wait_death(cpu, 5)) {
 530                pr_err("CPU%u: didn't offline\n", cpu);
 531                return;
 532        }
 533
 534        /*
 535         * Now wait for the CPU to actually offline. Without doing this that
 536         * offlining may race with one or more of:
 537         *
 538         *   - Onlining the CPU again.
 539         *   - Powering down the core if another VPE within it is offlined.
 540         *   - A sibling VPE entering a non-coherent state.
 541         *
 542         * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
 543         * with which we could race, so do nothing.
 544         */
 545        if (cpu_death == CPU_DEATH_POWER) {
 546                /*
 547                 * Wait for the core to enter a powered down or clock gated
 548                 * state, the latter happening when a JTAG probe is connected
 549                 * in which case the CPC will refuse to power down the core.
 550                 */
 551                fail_time = ktime_add_ms(ktime_get(), 2000);
 552                do {
 553                        mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
 554                        mips_cpc_lock_other(core);
 555                        stat = read_cpc_co_stat_conf();
 556                        stat &= CPC_Cx_STAT_CONF_SEQSTATE;
 557                        stat >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
 558                        mips_cpc_unlock_other();
 559                        mips_cm_unlock_other();
 560
 561                        if (stat == CPC_Cx_STAT_CONF_SEQSTATE_D0 ||
 562                            stat == CPC_Cx_STAT_CONF_SEQSTATE_D2 ||
 563                            stat == CPC_Cx_STAT_CONF_SEQSTATE_U2)
 564                                break;
 565
 566                        /*
 567                         * The core ought to have powered down, but didn't &
 568                         * now we don't really know what state it's in. It's
 569                         * likely that its _pwr_up pin has been wired to logic
 570                         * 1 & it powered back up as soon as we powered it
 571                         * down...
 572                         *
 573                         * The best we can do is warn the user & continue in
 574                         * the hope that the core is doing nothing harmful &
 575                         * might behave properly if we online it later.
 576                         */
 577                        if (WARN(ktime_after(ktime_get(), fail_time),
 578                                 "CPU%u hasn't powered down, seq. state %u\n",
 579                                 cpu, stat))
 580                                break;
 581                } while (1);
 582
 583                /* Indicate the core is powered off */
 584                bitmap_clear(core_power, core, 1);
 585        } else if (cpu_has_mipsmt) {
 586                /*
 587                 * Have a CPU with access to the offlined CPUs registers wait
 588                 * for its TC to halt.
 589                 */
 590                err = smp_call_function_single(cpu_death_sibling,
 591                                               wait_for_sibling_halt,
 592                                               (void *)(unsigned long)cpu, 1);
 593                if (err)
 594                        panic("Failed to call remote sibling CPU\n");
 595        } else if (cpu_has_vp) {
 596                do {
 597                        mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
 598                        stat = read_cpc_co_vp_running();
 599                        mips_cm_unlock_other();
 600                } while (stat & (1 << vpe_id));
 601        }
 602}
 603
 604#endif /* CONFIG_HOTPLUG_CPU */
 605
 606static const struct plat_smp_ops cps_smp_ops = {
 607        .smp_setup              = cps_smp_setup,
 608        .prepare_cpus           = cps_prepare_cpus,
 609        .boot_secondary         = cps_boot_secondary,
 610        .init_secondary         = cps_init_secondary,
 611        .smp_finish             = cps_smp_finish,
 612        .send_ipi_single        = mips_smp_send_ipi_single,
 613        .send_ipi_mask          = mips_smp_send_ipi_mask,
 614#ifdef CONFIG_HOTPLUG_CPU
 615        .cpu_disable            = cps_cpu_disable,
 616        .cpu_die                = cps_cpu_die,
 617#endif
 618#ifdef CONFIG_KEXEC
 619        .kexec_nonboot_cpu      = cps_kexec_nonboot_cpu,
 620#endif
 621};
 622
 623bool mips_cps_smp_in_use(void)
 624{
 625        extern const struct plat_smp_ops *mp_ops;
 626        return mp_ops == &cps_smp_ops;
 627}
 628
 629int register_cps_smp_ops(void)
 630{
 631        if (!mips_cm_present()) {
 632                pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
 633                return -ENODEV;
 634        }
 635
 636        /* check we have a GIC - we need one for IPIs */
 637        if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX)) {
 638                pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
 639                return -ENODEV;
 640        }
 641
 642        register_smp_ops(&cps_smp_ops);
 643        return 0;
 644}
 645