linux/arch/parisc/kernel/time.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/arch/parisc/kernel/time.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
   6 *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
   7 *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
   8 *
   9 * 1994-07-02  Alan Modra
  10 *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
  11 * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
  12 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
  13 */
  14#include <linux/errno.h>
  15#include <linux/module.h>
  16#include <linux/rtc.h>
  17#include <linux/sched.h>
  18#include <linux/sched/clock.h>
  19#include <linux/sched_clock.h>
  20#include <linux/kernel.h>
  21#include <linux/param.h>
  22#include <linux/string.h>
  23#include <linux/mm.h>
  24#include <linux/interrupt.h>
  25#include <linux/time.h>
  26#include <linux/init.h>
  27#include <linux/smp.h>
  28#include <linux/profile.h>
  29#include <linux/clocksource.h>
  30#include <linux/platform_device.h>
  31#include <linux/ftrace.h>
  32
  33#include <linux/uaccess.h>
  34#include <asm/io.h>
  35#include <asm/irq.h>
  36#include <asm/page.h>
  37#include <asm/param.h>
  38#include <asm/pdc.h>
  39#include <asm/led.h>
  40
  41#include <linux/timex.h>
  42
  43static unsigned long clocktick __ro_after_init; /* timer cycles per tick */
  44
  45/*
  46 * We keep time on PA-RISC Linux by using the Interval Timer which is
  47 * a pair of registers; one is read-only and one is write-only; both
  48 * accessed through CR16.  The read-only register is 32 or 64 bits wide,
  49 * and increments by 1 every CPU clock tick.  The architecture only
  50 * guarantees us a rate between 0.5 and 2, but all implementations use a
  51 * rate of 1.  The write-only register is 32-bits wide.  When the lowest
  52 * 32 bits of the read-only register compare equal to the write-only
  53 * register, it raises a maskable external interrupt.  Each processor has
  54 * an Interval Timer of its own and they are not synchronised.  
  55 *
  56 * We want to generate an interrupt every 1/HZ seconds.  So we program
  57 * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data
  58 * is programmed with the intended time of the next tick.  We can be
  59 * held off for an arbitrarily long period of time by interrupts being
  60 * disabled, so we may miss one or more ticks.
  61 */
  62irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
  63{
  64        unsigned long now;
  65        unsigned long next_tick;
  66        unsigned long ticks_elapsed = 0;
  67        unsigned int cpu = smp_processor_id();
  68        struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
  69
  70        /* gcc can optimize for "read-only" case with a local clocktick */
  71        unsigned long cpt = clocktick;
  72
  73        /* Initialize next_tick to the old expected tick time. */
  74        next_tick = cpuinfo->it_value;
  75
  76        /* Calculate how many ticks have elapsed. */
  77        now = mfctl(16);
  78        do {
  79                ++ticks_elapsed;
  80                next_tick += cpt;
  81        } while (next_tick - now > cpt);
  82
  83        /* Store (in CR16 cycles) up to when we are accounting right now. */
  84        cpuinfo->it_value = next_tick;
  85
  86        /* Go do system house keeping. */
  87        if (cpu != 0)
  88                ticks_elapsed = 0;
  89        legacy_timer_tick(ticks_elapsed);
  90
  91        /* Skip clockticks on purpose if we know we would miss those.
  92         * The new CR16 must be "later" than current CR16 otherwise
  93         * itimer would not fire until CR16 wrapped - e.g 4 seconds
  94         * later on a 1Ghz processor. We'll account for the missed
  95         * ticks on the next timer interrupt.
  96         * We want IT to fire modulo clocktick even if we miss/skip some.
  97         * But those interrupts don't in fact get delivered that regularly.
  98         *
  99         * "next_tick - now" will always give the difference regardless
 100         * if one or the other wrapped. If "now" is "bigger" we'll end up
 101         * with a very large unsigned number.
 102         */
 103        now = mfctl(16);
 104        while (next_tick - now > cpt)
 105                next_tick += cpt;
 106
 107        /* Program the IT when to deliver the next interrupt.
 108         * Only bottom 32-bits of next_tick are writable in CR16!
 109         * Timer interrupt will be delivered at least a few hundred cycles
 110         * after the IT fires, so if we are too close (<= 8000 cycles) to the
 111         * next cycle, simply skip it.
 112         */
 113        if (next_tick - now <= 8000)
 114                next_tick += cpt;
 115        mtctl(next_tick, 16);
 116
 117        return IRQ_HANDLED;
 118}
 119
 120
 121unsigned long profile_pc(struct pt_regs *regs)
 122{
 123        unsigned long pc = instruction_pointer(regs);
 124
 125        if (regs->gr[0] & PSW_N)
 126                pc -= 4;
 127
 128#ifdef CONFIG_SMP
 129        if (in_lock_functions(pc))
 130                pc = regs->gr[2];
 131#endif
 132
 133        return pc;
 134}
 135EXPORT_SYMBOL(profile_pc);
 136
 137
 138/* clock source code */
 139
 140static u64 notrace read_cr16(struct clocksource *cs)
 141{
 142        return get_cycles();
 143}
 144
 145static struct clocksource clocksource_cr16 = {
 146        .name                   = "cr16",
 147        .rating                 = 300,
 148        .read                   = read_cr16,
 149        .mask                   = CLOCKSOURCE_MASK(BITS_PER_LONG),
 150        .flags                  = CLOCK_SOURCE_IS_CONTINUOUS,
 151};
 152
 153void __init start_cpu_itimer(void)
 154{
 155        unsigned int cpu = smp_processor_id();
 156        unsigned long next_tick = mfctl(16) + clocktick;
 157
 158        mtctl(next_tick, 16);           /* kick off Interval Timer (CR16) */
 159
 160        per_cpu(cpu_data, cpu).it_value = next_tick;
 161}
 162
 163#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
 164static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
 165{
 166        struct pdc_tod tod_data;
 167
 168        memset(tm, 0, sizeof(*tm));
 169        if (pdc_tod_read(&tod_data) < 0)
 170                return -EOPNOTSUPP;
 171
 172        /* we treat tod_sec as unsigned, so this can work until year 2106 */
 173        rtc_time64_to_tm(tod_data.tod_sec, tm);
 174        return 0;
 175}
 176
 177static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
 178{
 179        time64_t secs = rtc_tm_to_time64(tm);
 180        int ret;
 181
 182        /* hppa has Y2K38 problem: pdc_tod_set() takes an u32 value! */
 183        ret = pdc_tod_set(secs, 0);
 184        if (ret != 0) {
 185                pr_warn("pdc_tod_set(%lld) returned error %d\n", secs, ret);
 186                if (ret == PDC_INVALID_ARG)
 187                        return -EINVAL;
 188                return -EOPNOTSUPP;
 189        }
 190
 191        return 0;
 192}
 193
 194static const struct rtc_class_ops rtc_generic_ops = {
 195        .read_time = rtc_generic_get_time,
 196        .set_time = rtc_generic_set_time,
 197};
 198
 199static int __init rtc_init(void)
 200{
 201        struct platform_device *pdev;
 202
 203        pdev = platform_device_register_data(NULL, "rtc-generic", -1,
 204                                             &rtc_generic_ops,
 205                                             sizeof(rtc_generic_ops));
 206
 207        return PTR_ERR_OR_ZERO(pdev);
 208}
 209device_initcall(rtc_init);
 210#endif
 211
 212void read_persistent_clock64(struct timespec64 *ts)
 213{
 214        static struct pdc_tod tod_data;
 215        if (pdc_tod_read(&tod_data) == 0) {
 216                ts->tv_sec = tod_data.tod_sec;
 217                ts->tv_nsec = tod_data.tod_usec * 1000;
 218        } else {
 219                printk(KERN_ERR "Error reading tod clock\n");
 220                ts->tv_sec = 0;
 221                ts->tv_nsec = 0;
 222        }
 223}
 224
 225
 226static u64 notrace read_cr16_sched_clock(void)
 227{
 228        return get_cycles();
 229}
 230
 231
 232/*
 233 * timer interrupt and sched_clock() initialization
 234 */
 235
 236void __init time_init(void)
 237{
 238        unsigned long cr16_hz;
 239
 240        clocktick = (100 * PAGE0->mem_10msec) / HZ;
 241        start_cpu_itimer();     /* get CPU 0 started */
 242
 243        cr16_hz = 100 * PAGE0->mem_10msec;  /* Hz */
 244
 245        /* register as sched_clock source */
 246        sched_clock_register(read_cr16_sched_clock, BITS_PER_LONG, cr16_hz);
 247}
 248
 249static int __init init_cr16_clocksource(void)
 250{
 251        /*
 252         * The cr16 interval timers are not syncronized across CPUs on
 253         * different sockets, so mark them unstable and lower rating on
 254         * multi-socket SMP systems.
 255         */
 256        if (num_online_cpus() > 1 && !running_on_qemu) {
 257                int cpu;
 258                unsigned long cpu0_loc;
 259                cpu0_loc = per_cpu(cpu_data, 0).cpu_loc;
 260
 261                for_each_online_cpu(cpu) {
 262                        if (cpu == 0)
 263                                continue;
 264                        if ((cpu0_loc != 0) &&
 265                            (cpu0_loc == per_cpu(cpu_data, cpu).cpu_loc))
 266                                continue;
 267
 268                        /* mark sched_clock unstable */
 269                        clear_sched_clock_stable();
 270
 271                        clocksource_cr16.name = "cr16_unstable";
 272                        clocksource_cr16.flags = CLOCK_SOURCE_UNSTABLE;
 273                        clocksource_cr16.rating = 0;
 274                        break;
 275                }
 276        }
 277
 278        /* register at clocksource framework */
 279        clocksource_register_hz(&clocksource_cr16,
 280                100 * PAGE0->mem_10msec);
 281
 282        return 0;
 283}
 284
 285device_initcall(init_cr16_clocksource);
 286