linux/arch/x86/kvm/mmu/spte.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 *
   5 * Macros and functions to access KVM PTEs (also known as SPTEs)
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright 2020 Red Hat, Inc. and/or its affiliates.
   9 */
  10
  11
  12#include <linux/kvm_host.h>
  13#include "mmu.h"
  14#include "mmu_internal.h"
  15#include "x86.h"
  16#include "spte.h"
  17
  18#include <asm/e820/api.h>
  19#include <asm/vmx.h>
  20
  21static bool __read_mostly enable_mmio_caching = true;
  22module_param_named(mmio_caching, enable_mmio_caching, bool, 0444);
  23
  24u64 __read_mostly shadow_host_writable_mask;
  25u64 __read_mostly shadow_mmu_writable_mask;
  26u64 __read_mostly shadow_nx_mask;
  27u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  28u64 __read_mostly shadow_user_mask;
  29u64 __read_mostly shadow_accessed_mask;
  30u64 __read_mostly shadow_dirty_mask;
  31u64 __read_mostly shadow_mmio_value;
  32u64 __read_mostly shadow_mmio_mask;
  33u64 __read_mostly shadow_mmio_access_mask;
  34u64 __read_mostly shadow_present_mask;
  35u64 __read_mostly shadow_me_mask;
  36u64 __read_mostly shadow_acc_track_mask;
  37
  38u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
  39u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
  40
  41u8 __read_mostly shadow_phys_bits;
  42
  43static u64 generation_mmio_spte_mask(u64 gen)
  44{
  45        u64 mask;
  46
  47        WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
  48
  49        mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK;
  50        mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK;
  51        return mask;
  52}
  53
  54u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
  55{
  56        u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
  57        u64 spte = generation_mmio_spte_mask(gen);
  58        u64 gpa = gfn << PAGE_SHIFT;
  59
  60        WARN_ON_ONCE(!shadow_mmio_value);
  61
  62        access &= shadow_mmio_access_mask;
  63        spte |= shadow_mmio_value | access;
  64        spte |= gpa | shadow_nonpresent_or_rsvd_mask;
  65        spte |= (gpa & shadow_nonpresent_or_rsvd_mask)
  66                << SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
  67
  68        return spte;
  69}
  70
  71static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
  72{
  73        if (pfn_valid(pfn))
  74                return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
  75                        /*
  76                         * Some reserved pages, such as those from NVDIMM
  77                         * DAX devices, are not for MMIO, and can be mapped
  78                         * with cached memory type for better performance.
  79                         * However, the above check misconceives those pages
  80                         * as MMIO, and results in KVM mapping them with UC
  81                         * memory type, which would hurt the performance.
  82                         * Therefore, we check the host memory type in addition
  83                         * and only treat UC/UC-/WC pages as MMIO.
  84                         */
  85                        (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
  86
  87        return !e820__mapped_raw_any(pfn_to_hpa(pfn),
  88                                     pfn_to_hpa(pfn + 1) - 1,
  89                                     E820_TYPE_RAM);
  90}
  91
  92int make_spte(struct kvm_vcpu *vcpu, unsigned int pte_access, int level,
  93                     gfn_t gfn, kvm_pfn_t pfn, u64 old_spte, bool speculative,
  94                     bool can_unsync, bool host_writable, bool ad_disabled,
  95                     u64 *new_spte)
  96{
  97        u64 spte = SPTE_MMU_PRESENT_MASK;
  98        int ret = 0;
  99
 100        if (ad_disabled)
 101                spte |= SPTE_TDP_AD_DISABLED_MASK;
 102        else if (kvm_vcpu_ad_need_write_protect(vcpu))
 103                spte |= SPTE_TDP_AD_WRPROT_ONLY_MASK;
 104
 105        /*
 106         * For the EPT case, shadow_present_mask is 0 if hardware
 107         * supports exec-only page table entries.  In that case,
 108         * ACC_USER_MASK and shadow_user_mask are used to represent
 109         * read access.  See FNAME(gpte_access) in paging_tmpl.h.
 110         */
 111        spte |= shadow_present_mask;
 112        if (!speculative)
 113                spte |= spte_shadow_accessed_mask(spte);
 114
 115        if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
 116            is_nx_huge_page_enabled()) {
 117                pte_access &= ~ACC_EXEC_MASK;
 118        }
 119
 120        if (pte_access & ACC_EXEC_MASK)
 121                spte |= shadow_x_mask;
 122        else
 123                spte |= shadow_nx_mask;
 124
 125        if (pte_access & ACC_USER_MASK)
 126                spte |= shadow_user_mask;
 127
 128        if (level > PG_LEVEL_4K)
 129                spte |= PT_PAGE_SIZE_MASK;
 130        if (tdp_enabled)
 131                spte |= static_call(kvm_x86_get_mt_mask)(vcpu, gfn,
 132                        kvm_is_mmio_pfn(pfn));
 133
 134        if (host_writable)
 135                spte |= shadow_host_writable_mask;
 136        else
 137                pte_access &= ~ACC_WRITE_MASK;
 138
 139        if (!kvm_is_mmio_pfn(pfn))
 140                spte |= shadow_me_mask;
 141
 142        spte |= (u64)pfn << PAGE_SHIFT;
 143
 144        if (pte_access & ACC_WRITE_MASK) {
 145                spte |= PT_WRITABLE_MASK | shadow_mmu_writable_mask;
 146
 147                /*
 148                 * Optimization: for pte sync, if spte was writable the hash
 149                 * lookup is unnecessary (and expensive). Write protection
 150                 * is responsibility of kvm_mmu_get_page / kvm_mmu_sync_roots.
 151                 * Same reasoning can be applied to dirty page accounting.
 152                 */
 153                if (!can_unsync && is_writable_pte(old_spte))
 154                        goto out;
 155
 156                /*
 157                 * Unsync shadow pages that are reachable by the new, writable
 158                 * SPTE.  Write-protect the SPTE if the page can't be unsync'd,
 159                 * e.g. it's write-tracked (upper-level SPs) or has one or more
 160                 * shadow pages and unsync'ing pages is not allowed.
 161                 */
 162                if (mmu_try_to_unsync_pages(vcpu, gfn, can_unsync)) {
 163                        pgprintk("%s: found shadow page for %llx, marking ro\n",
 164                                 __func__, gfn);
 165                        ret |= SET_SPTE_WRITE_PROTECTED_PT;
 166                        pte_access &= ~ACC_WRITE_MASK;
 167                        spte &= ~(PT_WRITABLE_MASK | shadow_mmu_writable_mask);
 168                }
 169        }
 170
 171        if (pte_access & ACC_WRITE_MASK)
 172                spte |= spte_shadow_dirty_mask(spte);
 173
 174        if (speculative)
 175                spte = mark_spte_for_access_track(spte);
 176
 177out:
 178        WARN_ONCE(is_rsvd_spte(&vcpu->arch.mmu->shadow_zero_check, spte, level),
 179                  "spte = 0x%llx, level = %d, rsvd bits = 0x%llx", spte, level,
 180                  get_rsvd_bits(&vcpu->arch.mmu->shadow_zero_check, spte, level));
 181
 182        *new_spte = spte;
 183        return ret;
 184}
 185
 186u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled)
 187{
 188        u64 spte = SPTE_MMU_PRESENT_MASK;
 189
 190        spte |= __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK |
 191                shadow_user_mask | shadow_x_mask | shadow_me_mask;
 192
 193        if (ad_disabled)
 194                spte |= SPTE_TDP_AD_DISABLED_MASK;
 195        else
 196                spte |= shadow_accessed_mask;
 197
 198        return spte;
 199}
 200
 201u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn)
 202{
 203        u64 new_spte;
 204
 205        new_spte = old_spte & ~PT64_BASE_ADDR_MASK;
 206        new_spte |= (u64)new_pfn << PAGE_SHIFT;
 207
 208        new_spte &= ~PT_WRITABLE_MASK;
 209        new_spte &= ~shadow_host_writable_mask;
 210
 211        new_spte = mark_spte_for_access_track(new_spte);
 212
 213        return new_spte;
 214}
 215
 216static u8 kvm_get_shadow_phys_bits(void)
 217{
 218        /*
 219         * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
 220         * in CPU detection code, but the processor treats those reduced bits as
 221         * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
 222         * the physical address bits reported by CPUID.
 223         */
 224        if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
 225                return cpuid_eax(0x80000008) & 0xff;
 226
 227        /*
 228         * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
 229         * custom CPUID.  Proceed with whatever the kernel found since these features
 230         * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
 231         */
 232        return boot_cpu_data.x86_phys_bits;
 233}
 234
 235u64 mark_spte_for_access_track(u64 spte)
 236{
 237        if (spte_ad_enabled(spte))
 238                return spte & ~shadow_accessed_mask;
 239
 240        if (is_access_track_spte(spte))
 241                return spte;
 242
 243        /*
 244         * Making an Access Tracking PTE will result in removal of write access
 245         * from the PTE. So, verify that we will be able to restore the write
 246         * access in the fast page fault path later on.
 247         */
 248        WARN_ONCE((spte & PT_WRITABLE_MASK) &&
 249                  !spte_can_locklessly_be_made_writable(spte),
 250                  "kvm: Writable SPTE is not locklessly dirty-trackable\n");
 251
 252        WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
 253                          SHADOW_ACC_TRACK_SAVED_BITS_SHIFT),
 254                  "kvm: Access Tracking saved bit locations are not zero\n");
 255
 256        spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) <<
 257                SHADOW_ACC_TRACK_SAVED_BITS_SHIFT;
 258        spte &= ~shadow_acc_track_mask;
 259
 260        return spte;
 261}
 262
 263void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask)
 264{
 265        BUG_ON((u64)(unsigned)access_mask != access_mask);
 266        WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
 267
 268        if (!enable_mmio_caching)
 269                mmio_value = 0;
 270
 271        /*
 272         * Disable MMIO caching if the MMIO value collides with the bits that
 273         * are used to hold the relocated GFN when the L1TF mitigation is
 274         * enabled.  This should never fire as there is no known hardware that
 275         * can trigger this condition, e.g. SME/SEV CPUs that require a custom
 276         * MMIO value are not susceptible to L1TF.
 277         */
 278        if (WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask <<
 279                                  SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)))
 280                mmio_value = 0;
 281
 282        /*
 283         * The masked MMIO value must obviously match itself and a removed SPTE
 284         * must not get a false positive.  Removed SPTEs and MMIO SPTEs should
 285         * never collide as MMIO must set some RWX bits, and removed SPTEs must
 286         * not set any RWX bits.
 287         */
 288        if (WARN_ON((mmio_value & mmio_mask) != mmio_value) ||
 289            WARN_ON(mmio_value && (REMOVED_SPTE & mmio_mask) == mmio_value))
 290                mmio_value = 0;
 291
 292        shadow_mmio_value = mmio_value;
 293        shadow_mmio_mask  = mmio_mask;
 294        shadow_mmio_access_mask = access_mask;
 295}
 296EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
 297
 298void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only)
 299{
 300        shadow_user_mask        = VMX_EPT_READABLE_MASK;
 301        shadow_accessed_mask    = has_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull;
 302        shadow_dirty_mask       = has_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull;
 303        shadow_nx_mask          = 0ull;
 304        shadow_x_mask           = VMX_EPT_EXECUTABLE_MASK;
 305        shadow_present_mask     = has_exec_only ? 0ull : VMX_EPT_READABLE_MASK;
 306        shadow_acc_track_mask   = VMX_EPT_RWX_MASK;
 307        shadow_me_mask          = 0ull;
 308
 309        shadow_host_writable_mask = EPT_SPTE_HOST_WRITABLE;
 310        shadow_mmu_writable_mask  = EPT_SPTE_MMU_WRITABLE;
 311
 312        /*
 313         * EPT Misconfigurations are generated if the value of bits 2:0
 314         * of an EPT paging-structure entry is 110b (write/execute).
 315         */
 316        kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE,
 317                                   VMX_EPT_RWX_MASK, 0);
 318}
 319EXPORT_SYMBOL_GPL(kvm_mmu_set_ept_masks);
 320
 321void kvm_mmu_reset_all_pte_masks(void)
 322{
 323        u8 low_phys_bits;
 324        u64 mask;
 325
 326        shadow_phys_bits = kvm_get_shadow_phys_bits();
 327
 328        /*
 329         * If the CPU has 46 or less physical address bits, then set an
 330         * appropriate mask to guard against L1TF attacks. Otherwise, it is
 331         * assumed that the CPU is not vulnerable to L1TF.
 332         *
 333         * Some Intel CPUs address the L1 cache using more PA bits than are
 334         * reported by CPUID. Use the PA width of the L1 cache when possible
 335         * to achieve more effective mitigation, e.g. if system RAM overlaps
 336         * the most significant bits of legal physical address space.
 337         */
 338        shadow_nonpresent_or_rsvd_mask = 0;
 339        low_phys_bits = boot_cpu_data.x86_phys_bits;
 340        if (boot_cpu_has_bug(X86_BUG_L1TF) &&
 341            !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
 342                          52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) {
 343                low_phys_bits = boot_cpu_data.x86_cache_bits
 344                        - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
 345                shadow_nonpresent_or_rsvd_mask =
 346                        rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
 347        }
 348
 349        shadow_nonpresent_or_rsvd_lower_gfn_mask =
 350                GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
 351
 352        shadow_user_mask        = PT_USER_MASK;
 353        shadow_accessed_mask    = PT_ACCESSED_MASK;
 354        shadow_dirty_mask       = PT_DIRTY_MASK;
 355        shadow_nx_mask          = PT64_NX_MASK;
 356        shadow_x_mask           = 0;
 357        shadow_present_mask     = PT_PRESENT_MASK;
 358        shadow_acc_track_mask   = 0;
 359        shadow_me_mask          = sme_me_mask;
 360
 361        shadow_host_writable_mask = DEFAULT_SPTE_HOST_WRITEABLE;
 362        shadow_mmu_writable_mask  = DEFAULT_SPTE_MMU_WRITEABLE;
 363
 364        /*
 365         * Set a reserved PA bit in MMIO SPTEs to generate page faults with
 366         * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
 367         * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
 368         * 52-bit physical addresses then there are no reserved PA bits in the
 369         * PTEs and so the reserved PA approach must be disabled.
 370         */
 371        if (shadow_phys_bits < 52)
 372                mask = BIT_ULL(51) | PT_PRESENT_MASK;
 373        else
 374                mask = 0;
 375
 376        kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
 377}
 378