linux/drivers/base/arch_topology.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Arch specific cpu topology information
   4 *
   5 * Copyright (C) 2016, ARM Ltd.
   6 * Written by: Juri Lelli, ARM Ltd.
   7 */
   8
   9#include <linux/acpi.h>
  10#include <linux/cpu.h>
  11#include <linux/cpufreq.h>
  12#include <linux/device.h>
  13#include <linux/of.h>
  14#include <linux/slab.h>
  15#include <linux/string.h>
  16#include <linux/sched/topology.h>
  17#include <linux/cpuset.h>
  18#include <linux/cpumask.h>
  19#include <linux/init.h>
  20#include <linux/percpu.h>
  21#include <linux/rcupdate.h>
  22#include <linux/sched.h>
  23#include <linux/smp.h>
  24
  25static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data);
  26static struct cpumask scale_freq_counters_mask;
  27static bool scale_freq_invariant;
  28
  29static bool supports_scale_freq_counters(const struct cpumask *cpus)
  30{
  31        return cpumask_subset(cpus, &scale_freq_counters_mask);
  32}
  33
  34bool topology_scale_freq_invariant(void)
  35{
  36        return cpufreq_supports_freq_invariance() ||
  37               supports_scale_freq_counters(cpu_online_mask);
  38}
  39
  40static void update_scale_freq_invariant(bool status)
  41{
  42        if (scale_freq_invariant == status)
  43                return;
  44
  45        /*
  46         * Task scheduler behavior depends on frequency invariance support,
  47         * either cpufreq or counter driven. If the support status changes as
  48         * a result of counter initialisation and use, retrigger the build of
  49         * scheduling domains to ensure the information is propagated properly.
  50         */
  51        if (topology_scale_freq_invariant() == status) {
  52                scale_freq_invariant = status;
  53                rebuild_sched_domains_energy();
  54        }
  55}
  56
  57void topology_set_scale_freq_source(struct scale_freq_data *data,
  58                                    const struct cpumask *cpus)
  59{
  60        struct scale_freq_data *sfd;
  61        int cpu;
  62
  63        /*
  64         * Avoid calling rebuild_sched_domains() unnecessarily if FIE is
  65         * supported by cpufreq.
  66         */
  67        if (cpumask_empty(&scale_freq_counters_mask))
  68                scale_freq_invariant = topology_scale_freq_invariant();
  69
  70        rcu_read_lock();
  71
  72        for_each_cpu(cpu, cpus) {
  73                sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
  74
  75                /* Use ARCH provided counters whenever possible */
  76                if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) {
  77                        rcu_assign_pointer(per_cpu(sft_data, cpu), data);
  78                        cpumask_set_cpu(cpu, &scale_freq_counters_mask);
  79                }
  80        }
  81
  82        rcu_read_unlock();
  83
  84        update_scale_freq_invariant(true);
  85}
  86EXPORT_SYMBOL_GPL(topology_set_scale_freq_source);
  87
  88void topology_clear_scale_freq_source(enum scale_freq_source source,
  89                                      const struct cpumask *cpus)
  90{
  91        struct scale_freq_data *sfd;
  92        int cpu;
  93
  94        rcu_read_lock();
  95
  96        for_each_cpu(cpu, cpus) {
  97                sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
  98
  99                if (sfd && sfd->source == source) {
 100                        rcu_assign_pointer(per_cpu(sft_data, cpu), NULL);
 101                        cpumask_clear_cpu(cpu, &scale_freq_counters_mask);
 102                }
 103        }
 104
 105        rcu_read_unlock();
 106
 107        /*
 108         * Make sure all references to previous sft_data are dropped to avoid
 109         * use-after-free races.
 110         */
 111        synchronize_rcu();
 112
 113        update_scale_freq_invariant(false);
 114}
 115EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source);
 116
 117void topology_scale_freq_tick(void)
 118{
 119        struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data));
 120
 121        if (sfd)
 122                sfd->set_freq_scale();
 123}
 124
 125DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
 126EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
 127
 128void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
 129                             unsigned long max_freq)
 130{
 131        unsigned long scale;
 132        int i;
 133
 134        if (WARN_ON_ONCE(!cur_freq || !max_freq))
 135                return;
 136
 137        /*
 138         * If the use of counters for FIE is enabled, just return as we don't
 139         * want to update the scale factor with information from CPUFREQ.
 140         * Instead the scale factor will be updated from arch_scale_freq_tick.
 141         */
 142        if (supports_scale_freq_counters(cpus))
 143                return;
 144
 145        scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
 146
 147        for_each_cpu(i, cpus)
 148                per_cpu(arch_freq_scale, i) = scale;
 149}
 150
 151DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
 152EXPORT_PER_CPU_SYMBOL_GPL(cpu_scale);
 153
 154void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
 155{
 156        per_cpu(cpu_scale, cpu) = capacity;
 157}
 158
 159DEFINE_PER_CPU(unsigned long, thermal_pressure);
 160
 161void topology_set_thermal_pressure(const struct cpumask *cpus,
 162                               unsigned long th_pressure)
 163{
 164        int cpu;
 165
 166        for_each_cpu(cpu, cpus)
 167                WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
 168}
 169EXPORT_SYMBOL_GPL(topology_set_thermal_pressure);
 170
 171static ssize_t cpu_capacity_show(struct device *dev,
 172                                 struct device_attribute *attr,
 173                                 char *buf)
 174{
 175        struct cpu *cpu = container_of(dev, struct cpu, dev);
 176
 177        return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
 178}
 179
 180static void update_topology_flags_workfn(struct work_struct *work);
 181static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
 182
 183static DEVICE_ATTR_RO(cpu_capacity);
 184
 185static int register_cpu_capacity_sysctl(void)
 186{
 187        int i;
 188        struct device *cpu;
 189
 190        for_each_possible_cpu(i) {
 191                cpu = get_cpu_device(i);
 192                if (!cpu) {
 193                        pr_err("%s: too early to get CPU%d device!\n",
 194                               __func__, i);
 195                        continue;
 196                }
 197                device_create_file(cpu, &dev_attr_cpu_capacity);
 198        }
 199
 200        return 0;
 201}
 202subsys_initcall(register_cpu_capacity_sysctl);
 203
 204static int update_topology;
 205
 206int topology_update_cpu_topology(void)
 207{
 208        return update_topology;
 209}
 210
 211/*
 212 * Updating the sched_domains can't be done directly from cpufreq callbacks
 213 * due to locking, so queue the work for later.
 214 */
 215static void update_topology_flags_workfn(struct work_struct *work)
 216{
 217        update_topology = 1;
 218        rebuild_sched_domains();
 219        pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
 220        update_topology = 0;
 221}
 222
 223static DEFINE_PER_CPU(u32, freq_factor) = 1;
 224static u32 *raw_capacity;
 225
 226static int free_raw_capacity(void)
 227{
 228        kfree(raw_capacity);
 229        raw_capacity = NULL;
 230
 231        return 0;
 232}
 233
 234void topology_normalize_cpu_scale(void)
 235{
 236        u64 capacity;
 237        u64 capacity_scale;
 238        int cpu;
 239
 240        if (!raw_capacity)
 241                return;
 242
 243        capacity_scale = 1;
 244        for_each_possible_cpu(cpu) {
 245                capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
 246                capacity_scale = max(capacity, capacity_scale);
 247        }
 248
 249        pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
 250        for_each_possible_cpu(cpu) {
 251                capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
 252                capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
 253                        capacity_scale);
 254                topology_set_cpu_scale(cpu, capacity);
 255                pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
 256                        cpu, topology_get_cpu_scale(cpu));
 257        }
 258}
 259
 260bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
 261{
 262        struct clk *cpu_clk;
 263        static bool cap_parsing_failed;
 264        int ret;
 265        u32 cpu_capacity;
 266
 267        if (cap_parsing_failed)
 268                return false;
 269
 270        ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
 271                                   &cpu_capacity);
 272        if (!ret) {
 273                if (!raw_capacity) {
 274                        raw_capacity = kcalloc(num_possible_cpus(),
 275                                               sizeof(*raw_capacity),
 276                                               GFP_KERNEL);
 277                        if (!raw_capacity) {
 278                                cap_parsing_failed = true;
 279                                return false;
 280                        }
 281                }
 282                raw_capacity[cpu] = cpu_capacity;
 283                pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
 284                        cpu_node, raw_capacity[cpu]);
 285
 286                /*
 287                 * Update freq_factor for calculating early boot cpu capacities.
 288                 * For non-clk CPU DVFS mechanism, there's no way to get the
 289                 * frequency value now, assuming they are running at the same
 290                 * frequency (by keeping the initial freq_factor value).
 291                 */
 292                cpu_clk = of_clk_get(cpu_node, 0);
 293                if (!PTR_ERR_OR_ZERO(cpu_clk)) {
 294                        per_cpu(freq_factor, cpu) =
 295                                clk_get_rate(cpu_clk) / 1000;
 296                        clk_put(cpu_clk);
 297                }
 298        } else {
 299                if (raw_capacity) {
 300                        pr_err("cpu_capacity: missing %pOF raw capacity\n",
 301                                cpu_node);
 302                        pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
 303                }
 304                cap_parsing_failed = true;
 305                free_raw_capacity();
 306        }
 307
 308        return !ret;
 309}
 310
 311#ifdef CONFIG_CPU_FREQ
 312static cpumask_var_t cpus_to_visit;
 313static void parsing_done_workfn(struct work_struct *work);
 314static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
 315
 316static int
 317init_cpu_capacity_callback(struct notifier_block *nb,
 318                           unsigned long val,
 319                           void *data)
 320{
 321        struct cpufreq_policy *policy = data;
 322        int cpu;
 323
 324        if (!raw_capacity)
 325                return 0;
 326
 327        if (val != CPUFREQ_CREATE_POLICY)
 328                return 0;
 329
 330        pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
 331                 cpumask_pr_args(policy->related_cpus),
 332                 cpumask_pr_args(cpus_to_visit));
 333
 334        cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
 335
 336        for_each_cpu(cpu, policy->related_cpus)
 337                per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000;
 338
 339        if (cpumask_empty(cpus_to_visit)) {
 340                topology_normalize_cpu_scale();
 341                schedule_work(&update_topology_flags_work);
 342                free_raw_capacity();
 343                pr_debug("cpu_capacity: parsing done\n");
 344                schedule_work(&parsing_done_work);
 345        }
 346
 347        return 0;
 348}
 349
 350static struct notifier_block init_cpu_capacity_notifier = {
 351        .notifier_call = init_cpu_capacity_callback,
 352};
 353
 354static int __init register_cpufreq_notifier(void)
 355{
 356        int ret;
 357
 358        /*
 359         * on ACPI-based systems we need to use the default cpu capacity
 360         * until we have the necessary code to parse the cpu capacity, so
 361         * skip registering cpufreq notifier.
 362         */
 363        if (!acpi_disabled || !raw_capacity)
 364                return -EINVAL;
 365
 366        if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
 367                return -ENOMEM;
 368
 369        cpumask_copy(cpus_to_visit, cpu_possible_mask);
 370
 371        ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
 372                                        CPUFREQ_POLICY_NOTIFIER);
 373
 374        if (ret)
 375                free_cpumask_var(cpus_to_visit);
 376
 377        return ret;
 378}
 379core_initcall(register_cpufreq_notifier);
 380
 381static void parsing_done_workfn(struct work_struct *work)
 382{
 383        cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
 384                                         CPUFREQ_POLICY_NOTIFIER);
 385        free_cpumask_var(cpus_to_visit);
 386}
 387
 388#else
 389core_initcall(free_raw_capacity);
 390#endif
 391
 392#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
 393/*
 394 * This function returns the logic cpu number of the node.
 395 * There are basically three kinds of return values:
 396 * (1) logic cpu number which is > 0.
 397 * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
 398 * there is no possible logical CPU in the kernel to match. This happens
 399 * when CONFIG_NR_CPUS is configure to be smaller than the number of
 400 * CPU nodes in DT. We need to just ignore this case.
 401 * (3) -1 if the node does not exist in the device tree
 402 */
 403static int __init get_cpu_for_node(struct device_node *node)
 404{
 405        struct device_node *cpu_node;
 406        int cpu;
 407
 408        cpu_node = of_parse_phandle(node, "cpu", 0);
 409        if (!cpu_node)
 410                return -1;
 411
 412        cpu = of_cpu_node_to_id(cpu_node);
 413        if (cpu >= 0)
 414                topology_parse_cpu_capacity(cpu_node, cpu);
 415        else
 416                pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
 417                        cpu_node, cpumask_pr_args(cpu_possible_mask));
 418
 419        of_node_put(cpu_node);
 420        return cpu;
 421}
 422
 423static int __init parse_core(struct device_node *core, int package_id,
 424                             int core_id)
 425{
 426        char name[20];
 427        bool leaf = true;
 428        int i = 0;
 429        int cpu;
 430        struct device_node *t;
 431
 432        do {
 433                snprintf(name, sizeof(name), "thread%d", i);
 434                t = of_get_child_by_name(core, name);
 435                if (t) {
 436                        leaf = false;
 437                        cpu = get_cpu_for_node(t);
 438                        if (cpu >= 0) {
 439                                cpu_topology[cpu].package_id = package_id;
 440                                cpu_topology[cpu].core_id = core_id;
 441                                cpu_topology[cpu].thread_id = i;
 442                        } else if (cpu != -ENODEV) {
 443                                pr_err("%pOF: Can't get CPU for thread\n", t);
 444                                of_node_put(t);
 445                                return -EINVAL;
 446                        }
 447                        of_node_put(t);
 448                }
 449                i++;
 450        } while (t);
 451
 452        cpu = get_cpu_for_node(core);
 453        if (cpu >= 0) {
 454                if (!leaf) {
 455                        pr_err("%pOF: Core has both threads and CPU\n",
 456                               core);
 457                        return -EINVAL;
 458                }
 459
 460                cpu_topology[cpu].package_id = package_id;
 461                cpu_topology[cpu].core_id = core_id;
 462        } else if (leaf && cpu != -ENODEV) {
 463                pr_err("%pOF: Can't get CPU for leaf core\n", core);
 464                return -EINVAL;
 465        }
 466
 467        return 0;
 468}
 469
 470static int __init parse_cluster(struct device_node *cluster, int depth)
 471{
 472        char name[20];
 473        bool leaf = true;
 474        bool has_cores = false;
 475        struct device_node *c;
 476        static int package_id __initdata;
 477        int core_id = 0;
 478        int i, ret;
 479
 480        /*
 481         * First check for child clusters; we currently ignore any
 482         * information about the nesting of clusters and present the
 483         * scheduler with a flat list of them.
 484         */
 485        i = 0;
 486        do {
 487                snprintf(name, sizeof(name), "cluster%d", i);
 488                c = of_get_child_by_name(cluster, name);
 489                if (c) {
 490                        leaf = false;
 491                        ret = parse_cluster(c, depth + 1);
 492                        of_node_put(c);
 493                        if (ret != 0)
 494                                return ret;
 495                }
 496                i++;
 497        } while (c);
 498
 499        /* Now check for cores */
 500        i = 0;
 501        do {
 502                snprintf(name, sizeof(name), "core%d", i);
 503                c = of_get_child_by_name(cluster, name);
 504                if (c) {
 505                        has_cores = true;
 506
 507                        if (depth == 0) {
 508                                pr_err("%pOF: cpu-map children should be clusters\n",
 509                                       c);
 510                                of_node_put(c);
 511                                return -EINVAL;
 512                        }
 513
 514                        if (leaf) {
 515                                ret = parse_core(c, package_id, core_id++);
 516                        } else {
 517                                pr_err("%pOF: Non-leaf cluster with core %s\n",
 518                                       cluster, name);
 519                                ret = -EINVAL;
 520                        }
 521
 522                        of_node_put(c);
 523                        if (ret != 0)
 524                                return ret;
 525                }
 526                i++;
 527        } while (c);
 528
 529        if (leaf && !has_cores)
 530                pr_warn("%pOF: empty cluster\n", cluster);
 531
 532        if (leaf)
 533                package_id++;
 534
 535        return 0;
 536}
 537
 538static int __init parse_dt_topology(void)
 539{
 540        struct device_node *cn, *map;
 541        int ret = 0;
 542        int cpu;
 543
 544        cn = of_find_node_by_path("/cpus");
 545        if (!cn) {
 546                pr_err("No CPU information found in DT\n");
 547                return 0;
 548        }
 549
 550        /*
 551         * When topology is provided cpu-map is essentially a root
 552         * cluster with restricted subnodes.
 553         */
 554        map = of_get_child_by_name(cn, "cpu-map");
 555        if (!map)
 556                goto out;
 557
 558        ret = parse_cluster(map, 0);
 559        if (ret != 0)
 560                goto out_map;
 561
 562        topology_normalize_cpu_scale();
 563
 564        /*
 565         * Check that all cores are in the topology; the SMP code will
 566         * only mark cores described in the DT as possible.
 567         */
 568        for_each_possible_cpu(cpu)
 569                if (cpu_topology[cpu].package_id == -1)
 570                        ret = -EINVAL;
 571
 572out_map:
 573        of_node_put(map);
 574out:
 575        of_node_put(cn);
 576        return ret;
 577}
 578#endif
 579
 580/*
 581 * cpu topology table
 582 */
 583struct cpu_topology cpu_topology[NR_CPUS];
 584EXPORT_SYMBOL_GPL(cpu_topology);
 585
 586const struct cpumask *cpu_coregroup_mask(int cpu)
 587{
 588        const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
 589
 590        /* Find the smaller of NUMA, core or LLC siblings */
 591        if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
 592                /* not numa in package, lets use the package siblings */
 593                core_mask = &cpu_topology[cpu].core_sibling;
 594        }
 595        if (cpu_topology[cpu].llc_id != -1) {
 596                if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
 597                        core_mask = &cpu_topology[cpu].llc_sibling;
 598        }
 599
 600        return core_mask;
 601}
 602
 603void update_siblings_masks(unsigned int cpuid)
 604{
 605        struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
 606        int cpu;
 607
 608        /* update core and thread sibling masks */
 609        for_each_online_cpu(cpu) {
 610                cpu_topo = &cpu_topology[cpu];
 611
 612                if (cpuid_topo->llc_id == cpu_topo->llc_id) {
 613                        cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
 614                        cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
 615                }
 616
 617                if (cpuid_topo->package_id != cpu_topo->package_id)
 618                        continue;
 619
 620                cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
 621                cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
 622
 623                if (cpuid_topo->core_id != cpu_topo->core_id)
 624                        continue;
 625
 626                cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
 627                cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
 628        }
 629}
 630
 631static void clear_cpu_topology(int cpu)
 632{
 633        struct cpu_topology *cpu_topo = &cpu_topology[cpu];
 634
 635        cpumask_clear(&cpu_topo->llc_sibling);
 636        cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
 637
 638        cpumask_clear(&cpu_topo->core_sibling);
 639        cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
 640        cpumask_clear(&cpu_topo->thread_sibling);
 641        cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
 642}
 643
 644void __init reset_cpu_topology(void)
 645{
 646        unsigned int cpu;
 647
 648        for_each_possible_cpu(cpu) {
 649                struct cpu_topology *cpu_topo = &cpu_topology[cpu];
 650
 651                cpu_topo->thread_id = -1;
 652                cpu_topo->core_id = -1;
 653                cpu_topo->package_id = -1;
 654                cpu_topo->llc_id = -1;
 655
 656                clear_cpu_topology(cpu);
 657        }
 658}
 659
 660void remove_cpu_topology(unsigned int cpu)
 661{
 662        int sibling;
 663
 664        for_each_cpu(sibling, topology_core_cpumask(cpu))
 665                cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
 666        for_each_cpu(sibling, topology_sibling_cpumask(cpu))
 667                cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
 668        for_each_cpu(sibling, topology_llc_cpumask(cpu))
 669                cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
 670
 671        clear_cpu_topology(cpu);
 672}
 673
 674__weak int __init parse_acpi_topology(void)
 675{
 676        return 0;
 677}
 678
 679#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
 680void __init init_cpu_topology(void)
 681{
 682        reset_cpu_topology();
 683
 684        /*
 685         * Discard anything that was parsed if we hit an error so we
 686         * don't use partial information.
 687         */
 688        if (parse_acpi_topology())
 689                reset_cpu_topology();
 690        else if (of_have_populated_dt() && parse_dt_topology())
 691                reset_cpu_topology();
 692}
 693#endif
 694