linux/drivers/block/brd.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Ram backed block device driver.
   4 *
   5 * Copyright (C) 2007 Nick Piggin
   6 * Copyright (C) 2007 Novell Inc.
   7 *
   8 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
   9 * of their respective owners.
  10 */
  11
  12#include <linux/init.h>
  13#include <linux/initrd.h>
  14#include <linux/module.h>
  15#include <linux/moduleparam.h>
  16#include <linux/major.h>
  17#include <linux/blkdev.h>
  18#include <linux/bio.h>
  19#include <linux/highmem.h>
  20#include <linux/mutex.h>
  21#include <linux/pagemap.h>
  22#include <linux/radix-tree.h>
  23#include <linux/fs.h>
  24#include <linux/slab.h>
  25#include <linux/backing-dev.h>
  26#include <linux/debugfs.h>
  27
  28#include <linux/uaccess.h>
  29
  30/*
  31 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
  32 * the pages containing the block device's contents. A brd page's ->index is
  33 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
  34 * with, the kernel's pagecache or buffer cache (which sit above our block
  35 * device).
  36 */
  37struct brd_device {
  38        int                     brd_number;
  39        struct gendisk          *brd_disk;
  40        struct list_head        brd_list;
  41
  42        /*
  43         * Backing store of pages and lock to protect it. This is the contents
  44         * of the block device.
  45         */
  46        spinlock_t              brd_lock;
  47        struct radix_tree_root  brd_pages;
  48        u64                     brd_nr_pages;
  49};
  50
  51/*
  52 * Look up and return a brd's page for a given sector.
  53 */
  54static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
  55{
  56        pgoff_t idx;
  57        struct page *page;
  58
  59        /*
  60         * The page lifetime is protected by the fact that we have opened the
  61         * device node -- brd pages will never be deleted under us, so we
  62         * don't need any further locking or refcounting.
  63         *
  64         * This is strictly true for the radix-tree nodes as well (ie. we
  65         * don't actually need the rcu_read_lock()), however that is not a
  66         * documented feature of the radix-tree API so it is better to be
  67         * safe here (we don't have total exclusion from radix tree updates
  68         * here, only deletes).
  69         */
  70        rcu_read_lock();
  71        idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
  72        page = radix_tree_lookup(&brd->brd_pages, idx);
  73        rcu_read_unlock();
  74
  75        BUG_ON(page && page->index != idx);
  76
  77        return page;
  78}
  79
  80/*
  81 * Look up and return a brd's page for a given sector.
  82 * If one does not exist, allocate an empty page, and insert that. Then
  83 * return it.
  84 */
  85static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
  86{
  87        pgoff_t idx;
  88        struct page *page;
  89        gfp_t gfp_flags;
  90
  91        page = brd_lookup_page(brd, sector);
  92        if (page)
  93                return page;
  94
  95        /*
  96         * Must use NOIO because we don't want to recurse back into the
  97         * block or filesystem layers from page reclaim.
  98         */
  99        gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM;
 100        page = alloc_page(gfp_flags);
 101        if (!page)
 102                return NULL;
 103
 104        if (radix_tree_preload(GFP_NOIO)) {
 105                __free_page(page);
 106                return NULL;
 107        }
 108
 109        spin_lock(&brd->brd_lock);
 110        idx = sector >> PAGE_SECTORS_SHIFT;
 111        page->index = idx;
 112        if (radix_tree_insert(&brd->brd_pages, idx, page)) {
 113                __free_page(page);
 114                page = radix_tree_lookup(&brd->brd_pages, idx);
 115                BUG_ON(!page);
 116                BUG_ON(page->index != idx);
 117        } else {
 118                brd->brd_nr_pages++;
 119        }
 120        spin_unlock(&brd->brd_lock);
 121
 122        radix_tree_preload_end();
 123
 124        return page;
 125}
 126
 127/*
 128 * Free all backing store pages and radix tree. This must only be called when
 129 * there are no other users of the device.
 130 */
 131#define FREE_BATCH 16
 132static void brd_free_pages(struct brd_device *brd)
 133{
 134        unsigned long pos = 0;
 135        struct page *pages[FREE_BATCH];
 136        int nr_pages;
 137
 138        do {
 139                int i;
 140
 141                nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
 142                                (void **)pages, pos, FREE_BATCH);
 143
 144                for (i = 0; i < nr_pages; i++) {
 145                        void *ret;
 146
 147                        BUG_ON(pages[i]->index < pos);
 148                        pos = pages[i]->index;
 149                        ret = radix_tree_delete(&brd->brd_pages, pos);
 150                        BUG_ON(!ret || ret != pages[i]);
 151                        __free_page(pages[i]);
 152                }
 153
 154                pos++;
 155
 156                /*
 157                 * It takes 3.4 seconds to remove 80GiB ramdisk.
 158                 * So, we need cond_resched to avoid stalling the CPU.
 159                 */
 160                cond_resched();
 161
 162                /*
 163                 * This assumes radix_tree_gang_lookup always returns as
 164                 * many pages as possible. If the radix-tree code changes,
 165                 * so will this have to.
 166                 */
 167        } while (nr_pages == FREE_BATCH);
 168}
 169
 170/*
 171 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
 172 */
 173static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
 174{
 175        unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
 176        size_t copy;
 177
 178        copy = min_t(size_t, n, PAGE_SIZE - offset);
 179        if (!brd_insert_page(brd, sector))
 180                return -ENOSPC;
 181        if (copy < n) {
 182                sector += copy >> SECTOR_SHIFT;
 183                if (!brd_insert_page(brd, sector))
 184                        return -ENOSPC;
 185        }
 186        return 0;
 187}
 188
 189/*
 190 * Copy n bytes from src to the brd starting at sector. Does not sleep.
 191 */
 192static void copy_to_brd(struct brd_device *brd, const void *src,
 193                        sector_t sector, size_t n)
 194{
 195        struct page *page;
 196        void *dst;
 197        unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
 198        size_t copy;
 199
 200        copy = min_t(size_t, n, PAGE_SIZE - offset);
 201        page = brd_lookup_page(brd, sector);
 202        BUG_ON(!page);
 203
 204        dst = kmap_atomic(page);
 205        memcpy(dst + offset, src, copy);
 206        kunmap_atomic(dst);
 207
 208        if (copy < n) {
 209                src += copy;
 210                sector += copy >> SECTOR_SHIFT;
 211                copy = n - copy;
 212                page = brd_lookup_page(brd, sector);
 213                BUG_ON(!page);
 214
 215                dst = kmap_atomic(page);
 216                memcpy(dst, src, copy);
 217                kunmap_atomic(dst);
 218        }
 219}
 220
 221/*
 222 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
 223 */
 224static void copy_from_brd(void *dst, struct brd_device *brd,
 225                        sector_t sector, size_t n)
 226{
 227        struct page *page;
 228        void *src;
 229        unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
 230        size_t copy;
 231
 232        copy = min_t(size_t, n, PAGE_SIZE - offset);
 233        page = brd_lookup_page(brd, sector);
 234        if (page) {
 235                src = kmap_atomic(page);
 236                memcpy(dst, src + offset, copy);
 237                kunmap_atomic(src);
 238        } else
 239                memset(dst, 0, copy);
 240
 241        if (copy < n) {
 242                dst += copy;
 243                sector += copy >> SECTOR_SHIFT;
 244                copy = n - copy;
 245                page = brd_lookup_page(brd, sector);
 246                if (page) {
 247                        src = kmap_atomic(page);
 248                        memcpy(dst, src, copy);
 249                        kunmap_atomic(src);
 250                } else
 251                        memset(dst, 0, copy);
 252        }
 253}
 254
 255/*
 256 * Process a single bvec of a bio.
 257 */
 258static int brd_do_bvec(struct brd_device *brd, struct page *page,
 259                        unsigned int len, unsigned int off, unsigned int op,
 260                        sector_t sector)
 261{
 262        void *mem;
 263        int err = 0;
 264
 265        if (op_is_write(op)) {
 266                err = copy_to_brd_setup(brd, sector, len);
 267                if (err)
 268                        goto out;
 269        }
 270
 271        mem = kmap_atomic(page);
 272        if (!op_is_write(op)) {
 273                copy_from_brd(mem + off, brd, sector, len);
 274                flush_dcache_page(page);
 275        } else {
 276                flush_dcache_page(page);
 277                copy_to_brd(brd, mem + off, sector, len);
 278        }
 279        kunmap_atomic(mem);
 280
 281out:
 282        return err;
 283}
 284
 285static blk_qc_t brd_submit_bio(struct bio *bio)
 286{
 287        struct brd_device *brd = bio->bi_bdev->bd_disk->private_data;
 288        sector_t sector = bio->bi_iter.bi_sector;
 289        struct bio_vec bvec;
 290        struct bvec_iter iter;
 291
 292        bio_for_each_segment(bvec, bio, iter) {
 293                unsigned int len = bvec.bv_len;
 294                int err;
 295
 296                /* Don't support un-aligned buffer */
 297                WARN_ON_ONCE((bvec.bv_offset & (SECTOR_SIZE - 1)) ||
 298                                (len & (SECTOR_SIZE - 1)));
 299
 300                err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
 301                                  bio_op(bio), sector);
 302                if (err)
 303                        goto io_error;
 304                sector += len >> SECTOR_SHIFT;
 305        }
 306
 307        bio_endio(bio);
 308        return BLK_QC_T_NONE;
 309io_error:
 310        bio_io_error(bio);
 311        return BLK_QC_T_NONE;
 312}
 313
 314static int brd_rw_page(struct block_device *bdev, sector_t sector,
 315                       struct page *page, unsigned int op)
 316{
 317        struct brd_device *brd = bdev->bd_disk->private_data;
 318        int err;
 319
 320        if (PageTransHuge(page))
 321                return -ENOTSUPP;
 322        err = brd_do_bvec(brd, page, PAGE_SIZE, 0, op, sector);
 323        page_endio(page, op_is_write(op), err);
 324        return err;
 325}
 326
 327static const struct block_device_operations brd_fops = {
 328        .owner =                THIS_MODULE,
 329        .submit_bio =           brd_submit_bio,
 330        .rw_page =              brd_rw_page,
 331};
 332
 333/*
 334 * And now the modules code and kernel interface.
 335 */
 336static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
 337module_param(rd_nr, int, 0444);
 338MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
 339
 340unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
 341module_param(rd_size, ulong, 0444);
 342MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
 343
 344static int max_part = 1;
 345module_param(max_part, int, 0444);
 346MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
 347
 348MODULE_LICENSE("GPL");
 349MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
 350MODULE_ALIAS("rd");
 351
 352#ifndef MODULE
 353/* Legacy boot options - nonmodular */
 354static int __init ramdisk_size(char *str)
 355{
 356        rd_size = simple_strtol(str, NULL, 0);
 357        return 1;
 358}
 359__setup("ramdisk_size=", ramdisk_size);
 360#endif
 361
 362/*
 363 * The device scheme is derived from loop.c. Keep them in synch where possible
 364 * (should share code eventually).
 365 */
 366static LIST_HEAD(brd_devices);
 367static DEFINE_MUTEX(brd_devices_mutex);
 368static struct dentry *brd_debugfs_dir;
 369
 370static int brd_alloc(int i)
 371{
 372        struct brd_device *brd;
 373        struct gendisk *disk;
 374        char buf[DISK_NAME_LEN];
 375
 376        mutex_lock(&brd_devices_mutex);
 377        list_for_each_entry(brd, &brd_devices, brd_list) {
 378                if (brd->brd_number == i) {
 379                        mutex_unlock(&brd_devices_mutex);
 380                        return -EEXIST;
 381                }
 382        }
 383        brd = kzalloc(sizeof(*brd), GFP_KERNEL);
 384        if (!brd) {
 385                mutex_unlock(&brd_devices_mutex);
 386                return -ENOMEM;
 387        }
 388        brd->brd_number         = i;
 389        list_add_tail(&brd->brd_list, &brd_devices);
 390        mutex_unlock(&brd_devices_mutex);
 391
 392        spin_lock_init(&brd->brd_lock);
 393        INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
 394
 395        snprintf(buf, DISK_NAME_LEN, "ram%d", i);
 396        if (!IS_ERR_OR_NULL(brd_debugfs_dir))
 397                debugfs_create_u64(buf, 0444, brd_debugfs_dir,
 398                                &brd->brd_nr_pages);
 399
 400        disk = brd->brd_disk = blk_alloc_disk(NUMA_NO_NODE);
 401        if (!disk)
 402                goto out_free_dev;
 403
 404        disk->major             = RAMDISK_MAJOR;
 405        disk->first_minor       = i * max_part;
 406        disk->minors            = max_part;
 407        disk->fops              = &brd_fops;
 408        disk->private_data      = brd;
 409        disk->flags             = GENHD_FL_EXT_DEVT;
 410        strlcpy(disk->disk_name, buf, DISK_NAME_LEN);
 411        set_capacity(disk, rd_size * 2);
 412        
 413        /*
 414         * This is so fdisk will align partitions on 4k, because of
 415         * direct_access API needing 4k alignment, returning a PFN
 416         * (This is only a problem on very small devices <= 4M,
 417         *  otherwise fdisk will align on 1M. Regardless this call
 418         *  is harmless)
 419         */
 420        blk_queue_physical_block_size(disk->queue, PAGE_SIZE);
 421
 422        /* Tell the block layer that this is not a rotational device */
 423        blk_queue_flag_set(QUEUE_FLAG_NONROT, disk->queue);
 424        blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, disk->queue);
 425        add_disk(disk);
 426
 427        return 0;
 428
 429out_free_dev:
 430        mutex_lock(&brd_devices_mutex);
 431        list_del(&brd->brd_list);
 432        mutex_unlock(&brd_devices_mutex);
 433        kfree(brd);
 434        return -ENOMEM;
 435}
 436
 437static void brd_probe(dev_t dev)
 438{
 439        brd_alloc(MINOR(dev) / max_part);
 440}
 441
 442static void brd_del_one(struct brd_device *brd)
 443{
 444        del_gendisk(brd->brd_disk);
 445        blk_cleanup_disk(brd->brd_disk);
 446        brd_free_pages(brd);
 447        mutex_lock(&brd_devices_mutex);
 448        list_del(&brd->brd_list);
 449        mutex_unlock(&brd_devices_mutex);
 450        kfree(brd);
 451}
 452
 453static inline void brd_check_and_reset_par(void)
 454{
 455        if (unlikely(!max_part))
 456                max_part = 1;
 457
 458        /*
 459         * make sure 'max_part' can be divided exactly by (1U << MINORBITS),
 460         * otherwise, it is possiable to get same dev_t when adding partitions.
 461         */
 462        if ((1U << MINORBITS) % max_part != 0)
 463                max_part = 1UL << fls(max_part);
 464
 465        if (max_part > DISK_MAX_PARTS) {
 466                pr_info("brd: max_part can't be larger than %d, reset max_part = %d.\n",
 467                        DISK_MAX_PARTS, DISK_MAX_PARTS);
 468                max_part = DISK_MAX_PARTS;
 469        }
 470}
 471
 472static int __init brd_init(void)
 473{
 474        struct brd_device *brd, *next;
 475        int err, i;
 476
 477        /*
 478         * brd module now has a feature to instantiate underlying device
 479         * structure on-demand, provided that there is an access dev node.
 480         *
 481         * (1) if rd_nr is specified, create that many upfront. else
 482         *     it defaults to CONFIG_BLK_DEV_RAM_COUNT
 483         * (2) User can further extend brd devices by create dev node themselves
 484         *     and have kernel automatically instantiate actual device
 485         *     on-demand. Example:
 486         *              mknod /path/devnod_name b 1 X   # 1 is the rd major
 487         *              fdisk -l /path/devnod_name
 488         *      If (X / max_part) was not already created it will be created
 489         *      dynamically.
 490         */
 491
 492        if (__register_blkdev(RAMDISK_MAJOR, "ramdisk", brd_probe))
 493                return -EIO;
 494
 495        brd_check_and_reset_par();
 496
 497        brd_debugfs_dir = debugfs_create_dir("ramdisk_pages", NULL);
 498
 499        for (i = 0; i < rd_nr; i++) {
 500                err = brd_alloc(i);
 501                if (err)
 502                        goto out_free;
 503        }
 504
 505        pr_info("brd: module loaded\n");
 506        return 0;
 507
 508out_free:
 509        unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
 510        debugfs_remove_recursive(brd_debugfs_dir);
 511
 512        list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
 513                brd_del_one(brd);
 514
 515        pr_info("brd: module NOT loaded !!!\n");
 516        return err;
 517}
 518
 519static void __exit brd_exit(void)
 520{
 521        struct brd_device *brd, *next;
 522
 523        unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
 524        debugfs_remove_recursive(brd_debugfs_dir);
 525
 526        list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
 527                brd_del_one(brd);
 528
 529        pr_info("brd: module unloaded\n");
 530}
 531
 532module_init(brd_init);
 533module_exit(brd_exit);
 534
 535