linux/drivers/char/agp/isoch.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Setup routines for AGP 3.5 compliant bridges.
   4 */
   5
   6#include <linux/list.h>
   7#include <linux/pci.h>
   8#include <linux/agp_backend.h>
   9#include <linux/module.h>
  10#include <linux/slab.h>
  11
  12#include "agp.h"
  13
  14/* Generic AGP 3.5 enabling routines */
  15
  16struct agp_3_5_dev {
  17        struct list_head list;
  18        u8 capndx;
  19        u32 maxbw;
  20        struct pci_dev *dev;
  21};
  22
  23static void agp_3_5_dev_list_insert(struct list_head *head, struct list_head *new)
  24{
  25        struct agp_3_5_dev *cur, *n = list_entry(new, struct agp_3_5_dev, list);
  26        struct list_head *pos;
  27
  28        list_for_each(pos, head) {
  29                cur = list_entry(pos, struct agp_3_5_dev, list);
  30                if (cur->maxbw > n->maxbw)
  31                        break;
  32        }
  33        list_add_tail(new, pos);
  34}
  35
  36static void agp_3_5_dev_list_sort(struct agp_3_5_dev *list, unsigned int ndevs)
  37{
  38        struct agp_3_5_dev *cur;
  39        struct pci_dev *dev;
  40        struct list_head *pos, *tmp, *head = &list->list, *start = head->next;
  41        u32 nistat;
  42
  43        INIT_LIST_HEAD(head);
  44
  45        for (pos=start; pos!=head; ) {
  46                cur = list_entry(pos, struct agp_3_5_dev, list);
  47                dev = cur->dev;
  48
  49                pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &nistat);
  50                cur->maxbw = (nistat >> 16) & 0xff;
  51
  52                tmp = pos;
  53                pos = pos->next;
  54                agp_3_5_dev_list_insert(head, tmp);
  55        }
  56}
  57
  58/*
  59 * Initialize all isochronous transfer parameters for an AGP 3.0
  60 * node (i.e. a host bridge in combination with the adapters
  61 * lying behind it...)
  62 */
  63
  64static int agp_3_5_isochronous_node_enable(struct agp_bridge_data *bridge,
  65                struct agp_3_5_dev *dev_list, unsigned int ndevs)
  66{
  67        /*
  68         * Convenience structure to make the calculations clearer
  69         * here.  The field names come straight from the AGP 3.0 spec.
  70         */
  71        struct isoch_data {
  72                u32 maxbw;
  73                u32 n;
  74                u32 y;
  75                u32 l;
  76                u32 rq;
  77                struct agp_3_5_dev *dev;
  78        };
  79
  80        struct pci_dev *td = bridge->dev, *dev;
  81        struct list_head *head = &dev_list->list, *pos;
  82        struct agp_3_5_dev *cur;
  83        struct isoch_data *master, target;
  84        unsigned int cdev = 0;
  85        u32 mnistat, tnistat, tstatus, mcmd;
  86        u16 tnicmd, mnicmd;
  87        u32 tot_bw = 0, tot_n = 0, tot_rq = 0, y_max, rq_isoch, rq_async;
  88        u32 step, rem, rem_isoch, rem_async;
  89        int ret = 0;
  90
  91        /*
  92         * We'll work with an array of isoch_data's (one for each
  93         * device in dev_list) throughout this function.
  94         */
  95        master = kmalloc_array(ndevs, sizeof(*master), GFP_KERNEL);
  96        if (master == NULL) {
  97                ret = -ENOMEM;
  98                goto get_out;
  99        }
 100
 101        /*
 102         * Sort the device list by maxbw.  We need to do this because the
 103         * spec suggests that the devices with the smallest requirements
 104         * have their resources allocated first, with all remaining resources
 105         * falling to the device with the largest requirement.
 106         *
 107         * We don't exactly do this, we divide target resources by ndevs
 108         * and split them amongst the AGP 3.0 devices.  The remainder of such
 109         * division operations are dropped on the last device, sort of like
 110         * the spec mentions it should be done.
 111         *
 112         * We can't do this sort when we initially construct the dev_list
 113         * because we don't know until this function whether isochronous
 114         * transfers are enabled and consequently whether maxbw will mean
 115         * anything.
 116         */
 117        agp_3_5_dev_list_sort(dev_list, ndevs);
 118
 119        pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
 120        pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
 121
 122        /* Extract power-on defaults from the target */
 123        target.maxbw = (tnistat >> 16) & 0xff;
 124        target.n     = (tnistat >> 8)  & 0xff;
 125        target.y     = (tnistat >> 6)  & 0x3;
 126        target.l     = (tnistat >> 3)  & 0x7;
 127        target.rq    = (tstatus >> 24) & 0xff;
 128
 129        y_max = target.y;
 130
 131        /*
 132         * Extract power-on defaults for each device in dev_list.  Along
 133         * the way, calculate the total isochronous bandwidth required
 134         * by these devices and the largest requested payload size.
 135         */
 136        list_for_each(pos, head) {
 137                cur = list_entry(pos, struct agp_3_5_dev, list);
 138                dev = cur->dev;
 139
 140                pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &mnistat);
 141
 142                master[cdev].maxbw = (mnistat >> 16) & 0xff;
 143                master[cdev].n     = (mnistat >> 8)  & 0xff;
 144                master[cdev].y     = (mnistat >> 6)  & 0x3;
 145                master[cdev].dev   = cur;
 146
 147                tot_bw += master[cdev].maxbw;
 148                y_max = max(y_max, master[cdev].y);
 149
 150                cdev++;
 151        }
 152
 153        /* Check if this configuration has any chance of working */
 154        if (tot_bw > target.maxbw) {
 155                dev_err(&td->dev, "isochronous bandwidth required "
 156                        "by AGP 3.0 devices exceeds that which is supported by "
 157                        "the AGP 3.0 bridge!\n");
 158                ret = -ENODEV;
 159                goto free_and_exit;
 160        }
 161
 162        target.y = y_max;
 163
 164        /*
 165         * Write the calculated payload size into the target's NICMD
 166         * register.  Doing this directly effects the ISOCH_N value
 167         * in the target's NISTAT register, so we need to do this now
 168         * to get an accurate value for ISOCH_N later.
 169         */
 170        pci_read_config_word(td, bridge->capndx+AGPNICMD, &tnicmd);
 171        tnicmd &= ~(0x3 << 6);
 172        tnicmd |= target.y << 6;
 173        pci_write_config_word(td, bridge->capndx+AGPNICMD, tnicmd);
 174
 175        /* Reread the target's ISOCH_N */
 176        pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
 177        target.n = (tnistat >> 8) & 0xff;
 178
 179        /* Calculate the minimum ISOCH_N needed by each master */
 180        for (cdev=0; cdev<ndevs; cdev++) {
 181                master[cdev].y = target.y;
 182                master[cdev].n = master[cdev].maxbw / (master[cdev].y + 1);
 183
 184                tot_n += master[cdev].n;
 185        }
 186
 187        /* Exit if the minimal ISOCH_N allocation among the masters is more
 188         * than the target can handle. */
 189        if (tot_n > target.n) {
 190                dev_err(&td->dev, "number of isochronous "
 191                        "transactions per period required by AGP 3.0 devices "
 192                        "exceeds that which is supported by the AGP 3.0 "
 193                        "bridge!\n");
 194                ret = -ENODEV;
 195                goto free_and_exit;
 196        }
 197
 198        /* Calculate left over ISOCH_N capability in the target.  We'll give
 199         * this to the hungriest device (as per the spec) */
 200        rem  = target.n - tot_n;
 201
 202        /*
 203         * Calculate the minimum isochronous RQ depth needed by each master.
 204         * Along the way, distribute the extra ISOCH_N capability calculated
 205         * above.
 206         */
 207        for (cdev=0; cdev<ndevs; cdev++) {
 208                /*
 209                 * This is a little subtle.  If ISOCH_Y > 64B, then ISOCH_Y
 210                 * byte isochronous writes will be broken into 64B pieces.
 211                 * This means we need to budget more RQ depth to account for
 212                 * these kind of writes (each isochronous write is actually
 213                 * many writes on the AGP bus).
 214                 */
 215                master[cdev].rq = master[cdev].n;
 216                if (master[cdev].y > 0x1)
 217                        master[cdev].rq *= (1 << (master[cdev].y - 1));
 218
 219                tot_rq += master[cdev].rq;
 220        }
 221        master[ndevs-1].n += rem;
 222
 223        /* Figure the number of isochronous and asynchronous RQ slots the
 224         * target is providing. */
 225        rq_isoch = (target.y > 0x1) ? target.n * (1 << (target.y - 1)) : target.n;
 226        rq_async = target.rq - rq_isoch;
 227
 228        /* Exit if the minimal RQ needs of the masters exceeds what the target
 229         * can provide. */
 230        if (tot_rq > rq_isoch) {
 231                dev_err(&td->dev, "number of request queue slots "
 232                        "required by the isochronous bandwidth requested by "
 233                        "AGP 3.0 devices exceeds the number provided by the "
 234                        "AGP 3.0 bridge!\n");
 235                ret = -ENODEV;
 236                goto free_and_exit;
 237        }
 238
 239        /* Calculate asynchronous RQ capability in the target (per master) as
 240         * well as the total number of leftover isochronous RQ slots. */
 241        step      = rq_async / ndevs;
 242        rem_async = step + (rq_async % ndevs);
 243        rem_isoch = rq_isoch - tot_rq;
 244
 245        /* Distribute the extra RQ slots calculated above and write our
 246         * isochronous settings out to the actual devices. */
 247        for (cdev=0; cdev<ndevs; cdev++) {
 248                cur = master[cdev].dev;
 249                dev = cur->dev;
 250
 251                master[cdev].rq += (cdev == ndevs - 1)
 252                              ? (rem_async + rem_isoch) : step;
 253
 254                pci_read_config_word(dev, cur->capndx+AGPNICMD, &mnicmd);
 255                pci_read_config_dword(dev, cur->capndx+AGPCMD, &mcmd);
 256
 257                mnicmd &= ~(0xff << 8);
 258                mnicmd &= ~(0x3  << 6);
 259                mcmd   &= ~(0xff << 24);
 260
 261                mnicmd |= master[cdev].n  << 8;
 262                mnicmd |= master[cdev].y  << 6;
 263                mcmd   |= master[cdev].rq << 24;
 264
 265                pci_write_config_dword(dev, cur->capndx+AGPCMD, mcmd);
 266                pci_write_config_word(dev, cur->capndx+AGPNICMD, mnicmd);
 267        }
 268
 269free_and_exit:
 270        kfree(master);
 271
 272get_out:
 273        return ret;
 274}
 275
 276/*
 277 * This function basically allocates request queue slots among the
 278 * AGP 3.0 systems in nonisochronous nodes.  The algorithm is
 279 * pretty stupid, divide the total number of RQ slots provided by the
 280 * target by ndevs.  Distribute this many slots to each AGP 3.0 device,
 281 * giving any left over slots to the last device in dev_list.
 282 */
 283static void agp_3_5_nonisochronous_node_enable(struct agp_bridge_data *bridge,
 284                struct agp_3_5_dev *dev_list, unsigned int ndevs)
 285{
 286        struct agp_3_5_dev *cur;
 287        struct list_head *head = &dev_list->list, *pos;
 288        u32 tstatus, mcmd;
 289        u32 trq, mrq, rem;
 290        unsigned int cdev = 0;
 291
 292        pci_read_config_dword(bridge->dev, bridge->capndx+AGPSTAT, &tstatus);
 293
 294        trq = (tstatus >> 24) & 0xff;
 295        mrq = trq / ndevs;
 296
 297        rem = mrq + (trq % ndevs);
 298
 299        for (pos=head->next; cdev<ndevs; cdev++, pos=pos->next) {
 300                cur = list_entry(pos, struct agp_3_5_dev, list);
 301
 302                pci_read_config_dword(cur->dev, cur->capndx+AGPCMD, &mcmd);
 303                mcmd &= ~(0xff << 24);
 304                mcmd |= ((cdev == ndevs - 1) ? rem : mrq) << 24;
 305                pci_write_config_dword(cur->dev, cur->capndx+AGPCMD, mcmd);
 306        }
 307}
 308
 309/*
 310 * Fully configure and enable an AGP 3.0 host bridge and all the devices
 311 * lying behind it.
 312 */
 313int agp_3_5_enable(struct agp_bridge_data *bridge)
 314{
 315        struct pci_dev *td = bridge->dev, *dev = NULL;
 316        u8 mcapndx;
 317        u32 isoch;
 318        u32 tstatus, mstatus, ncapid;
 319        u32 mmajor;
 320        u16 mpstat;
 321        struct agp_3_5_dev *dev_list, *cur;
 322        struct list_head *head, *pos;
 323        unsigned int ndevs = 0;
 324        int ret = 0;
 325
 326        /* Extract some power-on defaults from the target */
 327        pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
 328        isoch     = (tstatus >> 17) & 0x1;
 329        if (isoch == 0) /* isoch xfers not available, bail out. */
 330                return -ENODEV;
 331
 332        /*
 333         * Allocate a head for our AGP 3.5 device list
 334         * (multiple AGP v3 devices are allowed behind a single bridge).
 335         */
 336        if ((dev_list = kmalloc(sizeof(*dev_list), GFP_KERNEL)) == NULL) {
 337                ret = -ENOMEM;
 338                goto get_out;
 339        }
 340        head = &dev_list->list;
 341        INIT_LIST_HEAD(head);
 342
 343        /* Find all AGP devices, and add them to dev_list. */
 344        for_each_pci_dev(dev) {
 345                mcapndx = pci_find_capability(dev, PCI_CAP_ID_AGP);
 346                if (mcapndx == 0)
 347                        continue;
 348
 349                switch ((dev->class >>8) & 0xff00) {
 350                        case 0x0600:    /* Bridge */
 351                                /* Skip bridges. We should call this function for each one. */
 352                                continue;
 353
 354                        case 0x0001:    /* Unclassified device */
 355                                /* Don't know what this is, but log it for investigation. */
 356                                if (mcapndx != 0) {
 357                                        dev_info(&td->dev, "wacky, found unclassified AGP device %s [%04x/%04x]\n",
 358                                                 pci_name(dev),
 359                                                 dev->vendor, dev->device);
 360                                }
 361                                continue;
 362
 363                        case 0x0300:    /* Display controller */
 364                        case 0x0400:    /* Multimedia controller */
 365                                if ((cur = kmalloc(sizeof(*cur), GFP_KERNEL)) == NULL) {
 366                                        ret = -ENOMEM;
 367                                        goto free_and_exit;
 368                                }
 369                                cur->dev = dev;
 370
 371                                pos = &cur->list;
 372                                list_add(pos, head);
 373                                ndevs++;
 374                                continue;
 375
 376                        default:
 377                                continue;
 378                }
 379        }
 380
 381        /*
 382         * Take an initial pass through the devices lying behind our host
 383         * bridge.  Make sure each one is actually an AGP 3.0 device, otherwise
 384         * exit with an error message.  Along the way store the AGP 3.0
 385         * cap_ptr for each device
 386         */
 387        list_for_each(pos, head) {
 388                cur = list_entry(pos, struct agp_3_5_dev, list);
 389                dev = cur->dev;
 390
 391                pci_read_config_word(dev, PCI_STATUS, &mpstat);
 392                if ((mpstat & PCI_STATUS_CAP_LIST) == 0)
 393                        continue;
 394
 395                pci_read_config_byte(dev, PCI_CAPABILITY_LIST, &mcapndx);
 396                if (mcapndx != 0) {
 397                        do {
 398                                pci_read_config_dword(dev, mcapndx, &ncapid);
 399                                if ((ncapid & 0xff) != 2)
 400                                        mcapndx = (ncapid >> 8) & 0xff;
 401                        }
 402                        while (((ncapid & 0xff) != 2) && (mcapndx != 0));
 403                }
 404
 405                if (mcapndx == 0) {
 406                        dev_err(&td->dev, "woah!  Non-AGP device %s on "
 407                                "secondary bus of AGP 3.5 bridge!\n",
 408                                pci_name(dev));
 409                        ret = -ENODEV;
 410                        goto free_and_exit;
 411                }
 412
 413                mmajor = (ncapid >> AGP_MAJOR_VERSION_SHIFT) & 0xf;
 414                if (mmajor < 3) {
 415                        dev_err(&td->dev, "woah!  AGP 2.0 device %s on "
 416                                "secondary bus of AGP 3.5 bridge operating "
 417                                "with AGP 3.0 electricals!\n", pci_name(dev));
 418                        ret = -ENODEV;
 419                        goto free_and_exit;
 420                }
 421
 422                cur->capndx = mcapndx;
 423
 424                pci_read_config_dword(dev, cur->capndx+AGPSTAT, &mstatus);
 425
 426                if (((mstatus >> 3) & 0x1) == 0) {
 427                        dev_err(&td->dev, "woah!  AGP 3.x device %s not "
 428                                "operating in AGP 3.x mode on secondary bus "
 429                                "of AGP 3.5 bridge operating with AGP 3.0 "
 430                                "electricals!\n", pci_name(dev));
 431                        ret = -ENODEV;
 432                        goto free_and_exit;
 433                }
 434        }               
 435
 436        /*
 437         * Call functions to divide target resources amongst the AGP 3.0
 438         * masters.  This process is dramatically different depending on
 439         * whether isochronous transfers are supported.
 440         */
 441        if (isoch) {
 442                ret = agp_3_5_isochronous_node_enable(bridge, dev_list, ndevs);
 443                if (ret) {
 444                        dev_info(&td->dev, "something bad happened setting "
 445                                 "up isochronous xfers; falling back to "
 446                                 "non-isochronous xfer mode\n");
 447                } else {
 448                        goto free_and_exit;
 449                }
 450        }
 451        agp_3_5_nonisochronous_node_enable(bridge, dev_list, ndevs);
 452
 453free_and_exit:
 454        /* Be sure to free the dev_list */
 455        for (pos=head->next; pos!=head; ) {
 456                cur = list_entry(pos, struct agp_3_5_dev, list);
 457
 458                pos = pos->next;
 459                kfree(cur);
 460        }
 461        kfree(dev_list);
 462
 463get_out:
 464        return ret;
 465}
 466