linux/drivers/dma/stm32-dma.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for STM32 DMA controller
   4 *
   5 * Inspired by dma-jz4740.c and tegra20-apb-dma.c
   6 *
   7 * Copyright (C) M'boumba Cedric Madianga 2015
   8 * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
   9 *         Pierre-Yves Mordret <pierre-yves.mordret@st.com>
  10 */
  11
  12#include <linux/clk.h>
  13#include <linux/delay.h>
  14#include <linux/dmaengine.h>
  15#include <linux/dma-mapping.h>
  16#include <linux/err.h>
  17#include <linux/init.h>
  18#include <linux/iopoll.h>
  19#include <linux/jiffies.h>
  20#include <linux/list.h>
  21#include <linux/module.h>
  22#include <linux/of.h>
  23#include <linux/of_device.h>
  24#include <linux/of_dma.h>
  25#include <linux/platform_device.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/reset.h>
  28#include <linux/sched.h>
  29#include <linux/slab.h>
  30
  31#include "virt-dma.h"
  32
  33#define STM32_DMA_LISR                  0x0000 /* DMA Low Int Status Reg */
  34#define STM32_DMA_HISR                  0x0004 /* DMA High Int Status Reg */
  35#define STM32_DMA_LIFCR                 0x0008 /* DMA Low Int Flag Clear Reg */
  36#define STM32_DMA_HIFCR                 0x000c /* DMA High Int Flag Clear Reg */
  37#define STM32_DMA_TCI                   BIT(5) /* Transfer Complete Interrupt */
  38#define STM32_DMA_HTI                   BIT(4) /* Half Transfer Interrupt */
  39#define STM32_DMA_TEI                   BIT(3) /* Transfer Error Interrupt */
  40#define STM32_DMA_DMEI                  BIT(2) /* Direct Mode Error Interrupt */
  41#define STM32_DMA_FEI                   BIT(0) /* FIFO Error Interrupt */
  42#define STM32_DMA_MASKI                 (STM32_DMA_TCI \
  43                                         | STM32_DMA_TEI \
  44                                         | STM32_DMA_DMEI \
  45                                         | STM32_DMA_FEI)
  46
  47/* DMA Stream x Configuration Register */
  48#define STM32_DMA_SCR(x)                (0x0010 + 0x18 * (x)) /* x = 0..7 */
  49#define STM32_DMA_SCR_REQ(n)            ((n & 0x7) << 25)
  50#define STM32_DMA_SCR_MBURST_MASK       GENMASK(24, 23)
  51#define STM32_DMA_SCR_MBURST(n)         ((n & 0x3) << 23)
  52#define STM32_DMA_SCR_PBURST_MASK       GENMASK(22, 21)
  53#define STM32_DMA_SCR_PBURST(n)         ((n & 0x3) << 21)
  54#define STM32_DMA_SCR_PL_MASK           GENMASK(17, 16)
  55#define STM32_DMA_SCR_PL(n)             ((n & 0x3) << 16)
  56#define STM32_DMA_SCR_MSIZE_MASK        GENMASK(14, 13)
  57#define STM32_DMA_SCR_MSIZE(n)          ((n & 0x3) << 13)
  58#define STM32_DMA_SCR_PSIZE_MASK        GENMASK(12, 11)
  59#define STM32_DMA_SCR_PSIZE(n)          ((n & 0x3) << 11)
  60#define STM32_DMA_SCR_PSIZE_GET(n)      ((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
  61#define STM32_DMA_SCR_DIR_MASK          GENMASK(7, 6)
  62#define STM32_DMA_SCR_DIR(n)            ((n & 0x3) << 6)
  63#define STM32_DMA_SCR_TRBUFF            BIT(20) /* Bufferable transfer for USART/UART */
  64#define STM32_DMA_SCR_CT                BIT(19) /* Target in double buffer */
  65#define STM32_DMA_SCR_DBM               BIT(18) /* Double Buffer Mode */
  66#define STM32_DMA_SCR_PINCOS            BIT(15) /* Peripheral inc offset size */
  67#define STM32_DMA_SCR_MINC              BIT(10) /* Memory increment mode */
  68#define STM32_DMA_SCR_PINC              BIT(9) /* Peripheral increment mode */
  69#define STM32_DMA_SCR_CIRC              BIT(8) /* Circular mode */
  70#define STM32_DMA_SCR_PFCTRL            BIT(5) /* Peripheral Flow Controller */
  71#define STM32_DMA_SCR_TCIE              BIT(4) /* Transfer Complete Int Enable
  72                                                */
  73#define STM32_DMA_SCR_TEIE              BIT(2) /* Transfer Error Int Enable */
  74#define STM32_DMA_SCR_DMEIE             BIT(1) /* Direct Mode Err Int Enable */
  75#define STM32_DMA_SCR_EN                BIT(0) /* Stream Enable */
  76#define STM32_DMA_SCR_CFG_MASK          (STM32_DMA_SCR_PINC \
  77                                        | STM32_DMA_SCR_MINC \
  78                                        | STM32_DMA_SCR_PINCOS \
  79                                        | STM32_DMA_SCR_PL_MASK)
  80#define STM32_DMA_SCR_IRQ_MASK          (STM32_DMA_SCR_TCIE \
  81                                        | STM32_DMA_SCR_TEIE \
  82                                        | STM32_DMA_SCR_DMEIE)
  83
  84/* DMA Stream x number of data register */
  85#define STM32_DMA_SNDTR(x)              (0x0014 + 0x18 * (x))
  86
  87/* DMA stream peripheral address register */
  88#define STM32_DMA_SPAR(x)               (0x0018 + 0x18 * (x))
  89
  90/* DMA stream x memory 0 address register */
  91#define STM32_DMA_SM0AR(x)              (0x001c + 0x18 * (x))
  92
  93/* DMA stream x memory 1 address register */
  94#define STM32_DMA_SM1AR(x)              (0x0020 + 0x18 * (x))
  95
  96/* DMA stream x FIFO control register */
  97#define STM32_DMA_SFCR(x)               (0x0024 + 0x18 * (x))
  98#define STM32_DMA_SFCR_FTH_MASK         GENMASK(1, 0)
  99#define STM32_DMA_SFCR_FTH(n)           (n & STM32_DMA_SFCR_FTH_MASK)
 100#define STM32_DMA_SFCR_FEIE             BIT(7) /* FIFO error interrupt enable */
 101#define STM32_DMA_SFCR_DMDIS            BIT(2) /* Direct mode disable */
 102#define STM32_DMA_SFCR_MASK             (STM32_DMA_SFCR_FEIE \
 103                                        | STM32_DMA_SFCR_DMDIS)
 104
 105/* DMA direction */
 106#define STM32_DMA_DEV_TO_MEM            0x00
 107#define STM32_DMA_MEM_TO_DEV            0x01
 108#define STM32_DMA_MEM_TO_MEM            0x02
 109
 110/* DMA priority level */
 111#define STM32_DMA_PRIORITY_LOW          0x00
 112#define STM32_DMA_PRIORITY_MEDIUM       0x01
 113#define STM32_DMA_PRIORITY_HIGH         0x02
 114#define STM32_DMA_PRIORITY_VERY_HIGH    0x03
 115
 116/* DMA FIFO threshold selection */
 117#define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL           0x00
 118#define STM32_DMA_FIFO_THRESHOLD_HALFFULL               0x01
 119#define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL          0x02
 120#define STM32_DMA_FIFO_THRESHOLD_FULL                   0x03
 121#define STM32_DMA_FIFO_THRESHOLD_NONE                   0x04
 122
 123#define STM32_DMA_MAX_DATA_ITEMS        0xffff
 124/*
 125 * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
 126 * gather at boundary. Thus it's safer to round down this value on FIFO
 127 * size (16 Bytes)
 128 */
 129#define STM32_DMA_ALIGNED_MAX_DATA_ITEMS        \
 130        ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
 131#define STM32_DMA_MAX_CHANNELS          0x08
 132#define STM32_DMA_MAX_REQUEST_ID        0x08
 133#define STM32_DMA_MAX_DATA_PARAM        0x03
 134#define STM32_DMA_FIFO_SIZE             16      /* FIFO is 16 bytes */
 135#define STM32_DMA_MIN_BURST             4
 136#define STM32_DMA_MAX_BURST             16
 137
 138/* DMA Features */
 139#define STM32_DMA_THRESHOLD_FTR_MASK    GENMASK(1, 0)
 140#define STM32_DMA_THRESHOLD_FTR_GET(n)  ((n) & STM32_DMA_THRESHOLD_FTR_MASK)
 141#define STM32_DMA_DIRECT_MODE_MASK      BIT(2)
 142#define STM32_DMA_DIRECT_MODE_GET(n)    (((n) & STM32_DMA_DIRECT_MODE_MASK) >> 2)
 143#define STM32_DMA_ALT_ACK_MODE_MASK     BIT(4)
 144#define STM32_DMA_ALT_ACK_MODE_GET(n)   (((n) & STM32_DMA_ALT_ACK_MODE_MASK) >> 4)
 145
 146enum stm32_dma_width {
 147        STM32_DMA_BYTE,
 148        STM32_DMA_HALF_WORD,
 149        STM32_DMA_WORD,
 150};
 151
 152enum stm32_dma_burst_size {
 153        STM32_DMA_BURST_SINGLE,
 154        STM32_DMA_BURST_INCR4,
 155        STM32_DMA_BURST_INCR8,
 156        STM32_DMA_BURST_INCR16,
 157};
 158
 159/**
 160 * struct stm32_dma_cfg - STM32 DMA custom configuration
 161 * @channel_id: channel ID
 162 * @request_line: DMA request
 163 * @stream_config: 32bit mask specifying the DMA channel configuration
 164 * @features: 32bit mask specifying the DMA Feature list
 165 */
 166struct stm32_dma_cfg {
 167        u32 channel_id;
 168        u32 request_line;
 169        u32 stream_config;
 170        u32 features;
 171};
 172
 173struct stm32_dma_chan_reg {
 174        u32 dma_lisr;
 175        u32 dma_hisr;
 176        u32 dma_lifcr;
 177        u32 dma_hifcr;
 178        u32 dma_scr;
 179        u32 dma_sndtr;
 180        u32 dma_spar;
 181        u32 dma_sm0ar;
 182        u32 dma_sm1ar;
 183        u32 dma_sfcr;
 184};
 185
 186struct stm32_dma_sg_req {
 187        u32 len;
 188        struct stm32_dma_chan_reg chan_reg;
 189};
 190
 191struct stm32_dma_desc {
 192        struct virt_dma_desc vdesc;
 193        bool cyclic;
 194        u32 num_sgs;
 195        struct stm32_dma_sg_req sg_req[];
 196};
 197
 198struct stm32_dma_chan {
 199        struct virt_dma_chan vchan;
 200        bool config_init;
 201        bool busy;
 202        u32 id;
 203        u32 irq;
 204        struct stm32_dma_desc *desc;
 205        u32 next_sg;
 206        struct dma_slave_config dma_sconfig;
 207        struct stm32_dma_chan_reg chan_reg;
 208        u32 threshold;
 209        u32 mem_burst;
 210        u32 mem_width;
 211};
 212
 213struct stm32_dma_device {
 214        struct dma_device ddev;
 215        void __iomem *base;
 216        struct clk *clk;
 217        bool mem2mem;
 218        struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
 219};
 220
 221static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
 222{
 223        return container_of(chan->vchan.chan.device, struct stm32_dma_device,
 224                            ddev);
 225}
 226
 227static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
 228{
 229        return container_of(c, struct stm32_dma_chan, vchan.chan);
 230}
 231
 232static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
 233{
 234        return container_of(vdesc, struct stm32_dma_desc, vdesc);
 235}
 236
 237static struct device *chan2dev(struct stm32_dma_chan *chan)
 238{
 239        return &chan->vchan.chan.dev->device;
 240}
 241
 242static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
 243{
 244        return readl_relaxed(dmadev->base + reg);
 245}
 246
 247static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
 248{
 249        writel_relaxed(val, dmadev->base + reg);
 250}
 251
 252static int stm32_dma_get_width(struct stm32_dma_chan *chan,
 253                               enum dma_slave_buswidth width)
 254{
 255        switch (width) {
 256        case DMA_SLAVE_BUSWIDTH_1_BYTE:
 257                return STM32_DMA_BYTE;
 258        case DMA_SLAVE_BUSWIDTH_2_BYTES:
 259                return STM32_DMA_HALF_WORD;
 260        case DMA_SLAVE_BUSWIDTH_4_BYTES:
 261                return STM32_DMA_WORD;
 262        default:
 263                dev_err(chan2dev(chan), "Dma bus width not supported\n");
 264                return -EINVAL;
 265        }
 266}
 267
 268static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
 269                                                       dma_addr_t buf_addr,
 270                                                       u32 threshold)
 271{
 272        enum dma_slave_buswidth max_width;
 273        u64 addr = buf_addr;
 274
 275        if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
 276                max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 277        else
 278                max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 279
 280        while ((buf_len < max_width  || buf_len % max_width) &&
 281               max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
 282                max_width = max_width >> 1;
 283
 284        if (do_div(addr, max_width))
 285                max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 286
 287        return max_width;
 288}
 289
 290static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
 291                                                enum dma_slave_buswidth width)
 292{
 293        u32 remaining;
 294
 295        if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
 296                return false;
 297
 298        if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
 299                if (burst != 0) {
 300                        /*
 301                         * If number of beats fit in several whole bursts
 302                         * this configuration is allowed.
 303                         */
 304                        remaining = ((STM32_DMA_FIFO_SIZE / width) *
 305                                     (threshold + 1) / 4) % burst;
 306
 307                        if (remaining == 0)
 308                                return true;
 309                } else {
 310                        return true;
 311                }
 312        }
 313
 314        return false;
 315}
 316
 317static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
 318{
 319        /* If FIFO direct mode, burst is not possible */
 320        if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
 321                return false;
 322
 323        /*
 324         * Buffer or period length has to be aligned on FIFO depth.
 325         * Otherwise bytes may be stuck within FIFO at buffer or period
 326         * length.
 327         */
 328        return ((buf_len % ((threshold + 1) * 4)) == 0);
 329}
 330
 331static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
 332                                    enum dma_slave_buswidth width)
 333{
 334        u32 best_burst = max_burst;
 335
 336        if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
 337                return 0;
 338
 339        while ((buf_len < best_burst * width && best_burst > 1) ||
 340               !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
 341                                                    width)) {
 342                if (best_burst > STM32_DMA_MIN_BURST)
 343                        best_burst = best_burst >> 1;
 344                else
 345                        best_burst = 0;
 346        }
 347
 348        return best_burst;
 349}
 350
 351static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
 352{
 353        switch (maxburst) {
 354        case 0:
 355        case 1:
 356                return STM32_DMA_BURST_SINGLE;
 357        case 4:
 358                return STM32_DMA_BURST_INCR4;
 359        case 8:
 360                return STM32_DMA_BURST_INCR8;
 361        case 16:
 362                return STM32_DMA_BURST_INCR16;
 363        default:
 364                dev_err(chan2dev(chan), "Dma burst size not supported\n");
 365                return -EINVAL;
 366        }
 367}
 368
 369static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
 370                                      u32 src_burst, u32 dst_burst)
 371{
 372        chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
 373        chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
 374
 375        if (!src_burst && !dst_burst) {
 376                /* Using direct mode */
 377                chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
 378        } else {
 379                /* Using FIFO mode */
 380                chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
 381        }
 382}
 383
 384static int stm32_dma_slave_config(struct dma_chan *c,
 385                                  struct dma_slave_config *config)
 386{
 387        struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 388
 389        memcpy(&chan->dma_sconfig, config, sizeof(*config));
 390
 391        chan->config_init = true;
 392
 393        return 0;
 394}
 395
 396static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
 397{
 398        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 399        u32 flags, dma_isr;
 400
 401        /*
 402         * Read "flags" from DMA_xISR register corresponding to the selected
 403         * DMA channel at the correct bit offset inside that register.
 404         *
 405         * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
 406         * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
 407         */
 408
 409        if (chan->id & 4)
 410                dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR);
 411        else
 412                dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR);
 413
 414        flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
 415
 416        return flags & STM32_DMA_MASKI;
 417}
 418
 419static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
 420{
 421        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 422        u32 dma_ifcr;
 423
 424        /*
 425         * Write "flags" to the DMA_xIFCR register corresponding to the selected
 426         * DMA channel at the correct bit offset inside that register.
 427         *
 428         * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
 429         * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
 430         */
 431        flags &= STM32_DMA_MASKI;
 432        dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
 433
 434        if (chan->id & 4)
 435                stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr);
 436        else
 437                stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr);
 438}
 439
 440static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
 441{
 442        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 443        u32 dma_scr, id, reg;
 444
 445        id = chan->id;
 446        reg = STM32_DMA_SCR(id);
 447        dma_scr = stm32_dma_read(dmadev, reg);
 448
 449        if (dma_scr & STM32_DMA_SCR_EN) {
 450                dma_scr &= ~STM32_DMA_SCR_EN;
 451                stm32_dma_write(dmadev, reg, dma_scr);
 452
 453                return readl_relaxed_poll_timeout_atomic(dmadev->base + reg,
 454                                        dma_scr, !(dma_scr & STM32_DMA_SCR_EN),
 455                                        10, 1000000);
 456        }
 457
 458        return 0;
 459}
 460
 461static void stm32_dma_stop(struct stm32_dma_chan *chan)
 462{
 463        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 464        u32 dma_scr, dma_sfcr, status;
 465        int ret;
 466
 467        /* Disable interrupts */
 468        dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
 469        dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
 470        stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
 471        dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
 472        dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
 473        stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
 474
 475        /* Disable DMA */
 476        ret = stm32_dma_disable_chan(chan);
 477        if (ret < 0)
 478                return;
 479
 480        /* Clear interrupt status if it is there */
 481        status = stm32_dma_irq_status(chan);
 482        if (status) {
 483                dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
 484                        __func__, status);
 485                stm32_dma_irq_clear(chan, status);
 486        }
 487
 488        chan->busy = false;
 489}
 490
 491static int stm32_dma_terminate_all(struct dma_chan *c)
 492{
 493        struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 494        unsigned long flags;
 495        LIST_HEAD(head);
 496
 497        spin_lock_irqsave(&chan->vchan.lock, flags);
 498
 499        if (chan->desc) {
 500                vchan_terminate_vdesc(&chan->desc->vdesc);
 501                if (chan->busy)
 502                        stm32_dma_stop(chan);
 503                chan->desc = NULL;
 504        }
 505
 506        vchan_get_all_descriptors(&chan->vchan, &head);
 507        spin_unlock_irqrestore(&chan->vchan.lock, flags);
 508        vchan_dma_desc_free_list(&chan->vchan, &head);
 509
 510        return 0;
 511}
 512
 513static void stm32_dma_synchronize(struct dma_chan *c)
 514{
 515        struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 516
 517        vchan_synchronize(&chan->vchan);
 518}
 519
 520static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
 521{
 522        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 523        u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
 524        u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
 525        u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
 526        u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
 527        u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
 528        u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
 529
 530        dev_dbg(chan2dev(chan), "SCR:   0x%08x\n", scr);
 531        dev_dbg(chan2dev(chan), "NDTR:  0x%08x\n", ndtr);
 532        dev_dbg(chan2dev(chan), "SPAR:  0x%08x\n", spar);
 533        dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
 534        dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
 535        dev_dbg(chan2dev(chan), "SFCR:  0x%08x\n", sfcr);
 536}
 537
 538static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
 539
 540static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
 541{
 542        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 543        struct virt_dma_desc *vdesc;
 544        struct stm32_dma_sg_req *sg_req;
 545        struct stm32_dma_chan_reg *reg;
 546        u32 status;
 547        int ret;
 548
 549        ret = stm32_dma_disable_chan(chan);
 550        if (ret < 0)
 551                return;
 552
 553        if (!chan->desc) {
 554                vdesc = vchan_next_desc(&chan->vchan);
 555                if (!vdesc)
 556                        return;
 557
 558                list_del(&vdesc->node);
 559
 560                chan->desc = to_stm32_dma_desc(vdesc);
 561                chan->next_sg = 0;
 562        }
 563
 564        if (chan->next_sg == chan->desc->num_sgs)
 565                chan->next_sg = 0;
 566
 567        sg_req = &chan->desc->sg_req[chan->next_sg];
 568        reg = &sg_req->chan_reg;
 569
 570        reg->dma_scr &= ~STM32_DMA_SCR_EN;
 571        stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
 572        stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
 573        stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
 574        stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
 575        stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
 576        stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
 577
 578        chan->next_sg++;
 579
 580        /* Clear interrupt status if it is there */
 581        status = stm32_dma_irq_status(chan);
 582        if (status)
 583                stm32_dma_irq_clear(chan, status);
 584
 585        if (chan->desc->cyclic)
 586                stm32_dma_configure_next_sg(chan);
 587
 588        stm32_dma_dump_reg(chan);
 589
 590        /* Start DMA */
 591        reg->dma_scr |= STM32_DMA_SCR_EN;
 592        stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
 593
 594        chan->busy = true;
 595
 596        dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
 597}
 598
 599static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
 600{
 601        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 602        struct stm32_dma_sg_req *sg_req;
 603        u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
 604
 605        id = chan->id;
 606        dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
 607
 608        if (dma_scr & STM32_DMA_SCR_DBM) {
 609                if (chan->next_sg == chan->desc->num_sgs)
 610                        chan->next_sg = 0;
 611
 612                sg_req = &chan->desc->sg_req[chan->next_sg];
 613
 614                if (dma_scr & STM32_DMA_SCR_CT) {
 615                        dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
 616                        stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
 617                        dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
 618                                stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
 619                } else {
 620                        dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
 621                        stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
 622                        dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
 623                                stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
 624                }
 625        }
 626}
 627
 628static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan)
 629{
 630        if (chan->desc) {
 631                if (chan->desc->cyclic) {
 632                        vchan_cyclic_callback(&chan->desc->vdesc);
 633                        chan->next_sg++;
 634                        stm32_dma_configure_next_sg(chan);
 635                } else {
 636                        chan->busy = false;
 637                        if (chan->next_sg == chan->desc->num_sgs) {
 638                                vchan_cookie_complete(&chan->desc->vdesc);
 639                                chan->desc = NULL;
 640                        }
 641                        stm32_dma_start_transfer(chan);
 642                }
 643        }
 644}
 645
 646static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
 647{
 648        struct stm32_dma_chan *chan = devid;
 649        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 650        u32 status, scr, sfcr;
 651
 652        spin_lock(&chan->vchan.lock);
 653
 654        status = stm32_dma_irq_status(chan);
 655        scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
 656        sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
 657
 658        if (status & STM32_DMA_FEI) {
 659                stm32_dma_irq_clear(chan, STM32_DMA_FEI);
 660                status &= ~STM32_DMA_FEI;
 661                if (sfcr & STM32_DMA_SFCR_FEIE) {
 662                        if (!(scr & STM32_DMA_SCR_EN) &&
 663                            !(status & STM32_DMA_TCI))
 664                                dev_err(chan2dev(chan), "FIFO Error\n");
 665                        else
 666                                dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
 667                }
 668        }
 669        if (status & STM32_DMA_DMEI) {
 670                stm32_dma_irq_clear(chan, STM32_DMA_DMEI);
 671                status &= ~STM32_DMA_DMEI;
 672                if (sfcr & STM32_DMA_SCR_DMEIE)
 673                        dev_dbg(chan2dev(chan), "Direct mode overrun\n");
 674        }
 675
 676        if (status & STM32_DMA_TCI) {
 677                stm32_dma_irq_clear(chan, STM32_DMA_TCI);
 678                if (scr & STM32_DMA_SCR_TCIE)
 679                        stm32_dma_handle_chan_done(chan);
 680                status &= ~STM32_DMA_TCI;
 681        }
 682
 683        if (status & STM32_DMA_HTI) {
 684                stm32_dma_irq_clear(chan, STM32_DMA_HTI);
 685                status &= ~STM32_DMA_HTI;
 686        }
 687
 688        if (status) {
 689                stm32_dma_irq_clear(chan, status);
 690                dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
 691                if (!(scr & STM32_DMA_SCR_EN))
 692                        dev_err(chan2dev(chan), "chan disabled by HW\n");
 693        }
 694
 695        spin_unlock(&chan->vchan.lock);
 696
 697        return IRQ_HANDLED;
 698}
 699
 700static void stm32_dma_issue_pending(struct dma_chan *c)
 701{
 702        struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 703        unsigned long flags;
 704
 705        spin_lock_irqsave(&chan->vchan.lock, flags);
 706        if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
 707                dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
 708                stm32_dma_start_transfer(chan);
 709
 710        }
 711        spin_unlock_irqrestore(&chan->vchan.lock, flags);
 712}
 713
 714static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
 715                                    enum dma_transfer_direction direction,
 716                                    enum dma_slave_buswidth *buswidth,
 717                                    u32 buf_len, dma_addr_t buf_addr)
 718{
 719        enum dma_slave_buswidth src_addr_width, dst_addr_width;
 720        int src_bus_width, dst_bus_width;
 721        int src_burst_size, dst_burst_size;
 722        u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
 723        u32 dma_scr, fifoth;
 724
 725        src_addr_width = chan->dma_sconfig.src_addr_width;
 726        dst_addr_width = chan->dma_sconfig.dst_addr_width;
 727        src_maxburst = chan->dma_sconfig.src_maxburst;
 728        dst_maxburst = chan->dma_sconfig.dst_maxburst;
 729        fifoth = chan->threshold;
 730
 731        switch (direction) {
 732        case DMA_MEM_TO_DEV:
 733                /* Set device data size */
 734                dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
 735                if (dst_bus_width < 0)
 736                        return dst_bus_width;
 737
 738                /* Set device burst size */
 739                dst_best_burst = stm32_dma_get_best_burst(buf_len,
 740                                                          dst_maxburst,
 741                                                          fifoth,
 742                                                          dst_addr_width);
 743
 744                dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
 745                if (dst_burst_size < 0)
 746                        return dst_burst_size;
 747
 748                /* Set memory data size */
 749                src_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
 750                                                         fifoth);
 751                chan->mem_width = src_addr_width;
 752                src_bus_width = stm32_dma_get_width(chan, src_addr_width);
 753                if (src_bus_width < 0)
 754                        return src_bus_width;
 755
 756                /* Set memory burst size */
 757                src_maxburst = STM32_DMA_MAX_BURST;
 758                src_best_burst = stm32_dma_get_best_burst(buf_len,
 759                                                          src_maxburst,
 760                                                          fifoth,
 761                                                          src_addr_width);
 762                src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
 763                if (src_burst_size < 0)
 764                        return src_burst_size;
 765
 766                dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) |
 767                        STM32_DMA_SCR_PSIZE(dst_bus_width) |
 768                        STM32_DMA_SCR_MSIZE(src_bus_width) |
 769                        STM32_DMA_SCR_PBURST(dst_burst_size) |
 770                        STM32_DMA_SCR_MBURST(src_burst_size);
 771
 772                /* Set FIFO threshold */
 773                chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
 774                if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
 775                        chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
 776
 777                /* Set peripheral address */
 778                chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
 779                *buswidth = dst_addr_width;
 780                break;
 781
 782        case DMA_DEV_TO_MEM:
 783                /* Set device data size */
 784                src_bus_width = stm32_dma_get_width(chan, src_addr_width);
 785                if (src_bus_width < 0)
 786                        return src_bus_width;
 787
 788                /* Set device burst size */
 789                src_best_burst = stm32_dma_get_best_burst(buf_len,
 790                                                          src_maxburst,
 791                                                          fifoth,
 792                                                          src_addr_width);
 793                chan->mem_burst = src_best_burst;
 794                src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
 795                if (src_burst_size < 0)
 796                        return src_burst_size;
 797
 798                /* Set memory data size */
 799                dst_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
 800                                                         fifoth);
 801                chan->mem_width = dst_addr_width;
 802                dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
 803                if (dst_bus_width < 0)
 804                        return dst_bus_width;
 805
 806                /* Set memory burst size */
 807                dst_maxburst = STM32_DMA_MAX_BURST;
 808                dst_best_burst = stm32_dma_get_best_burst(buf_len,
 809                                                          dst_maxburst,
 810                                                          fifoth,
 811                                                          dst_addr_width);
 812                chan->mem_burst = dst_best_burst;
 813                dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
 814                if (dst_burst_size < 0)
 815                        return dst_burst_size;
 816
 817                dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) |
 818                        STM32_DMA_SCR_PSIZE(src_bus_width) |
 819                        STM32_DMA_SCR_MSIZE(dst_bus_width) |
 820                        STM32_DMA_SCR_PBURST(src_burst_size) |
 821                        STM32_DMA_SCR_MBURST(dst_burst_size);
 822
 823                /* Set FIFO threshold */
 824                chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
 825                if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
 826                        chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
 827
 828                /* Set peripheral address */
 829                chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
 830                *buswidth = chan->dma_sconfig.src_addr_width;
 831                break;
 832
 833        default:
 834                dev_err(chan2dev(chan), "Dma direction is not supported\n");
 835                return -EINVAL;
 836        }
 837
 838        stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
 839
 840        /* Set DMA control register */
 841        chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
 842                        STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
 843                        STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
 844        chan->chan_reg.dma_scr |= dma_scr;
 845
 846        return 0;
 847}
 848
 849static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
 850{
 851        memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
 852}
 853
 854static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
 855        struct dma_chan *c, struct scatterlist *sgl,
 856        u32 sg_len, enum dma_transfer_direction direction,
 857        unsigned long flags, void *context)
 858{
 859        struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 860        struct stm32_dma_desc *desc;
 861        struct scatterlist *sg;
 862        enum dma_slave_buswidth buswidth;
 863        u32 nb_data_items;
 864        int i, ret;
 865
 866        if (!chan->config_init) {
 867                dev_err(chan2dev(chan), "dma channel is not configured\n");
 868                return NULL;
 869        }
 870
 871        if (sg_len < 1) {
 872                dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
 873                return NULL;
 874        }
 875
 876        desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
 877        if (!desc)
 878                return NULL;
 879
 880        /* Set peripheral flow controller */
 881        if (chan->dma_sconfig.device_fc)
 882                chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
 883        else
 884                chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
 885
 886        for_each_sg(sgl, sg, sg_len, i) {
 887                ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
 888                                               sg_dma_len(sg),
 889                                               sg_dma_address(sg));
 890                if (ret < 0)
 891                        goto err;
 892
 893                desc->sg_req[i].len = sg_dma_len(sg);
 894
 895                nb_data_items = desc->sg_req[i].len / buswidth;
 896                if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
 897                        dev_err(chan2dev(chan), "nb items not supported\n");
 898                        goto err;
 899                }
 900
 901                stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
 902                desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
 903                desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
 904                desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
 905                desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
 906                desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
 907                desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
 908        }
 909
 910        desc->num_sgs = sg_len;
 911        desc->cyclic = false;
 912
 913        return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
 914
 915err:
 916        kfree(desc);
 917        return NULL;
 918}
 919
 920static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
 921        struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
 922        size_t period_len, enum dma_transfer_direction direction,
 923        unsigned long flags)
 924{
 925        struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 926        struct stm32_dma_desc *desc;
 927        enum dma_slave_buswidth buswidth;
 928        u32 num_periods, nb_data_items;
 929        int i, ret;
 930
 931        if (!buf_len || !period_len) {
 932                dev_err(chan2dev(chan), "Invalid buffer/period len\n");
 933                return NULL;
 934        }
 935
 936        if (!chan->config_init) {
 937                dev_err(chan2dev(chan), "dma channel is not configured\n");
 938                return NULL;
 939        }
 940
 941        if (buf_len % period_len) {
 942                dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
 943                return NULL;
 944        }
 945
 946        /*
 947         * We allow to take more number of requests till DMA is
 948         * not started. The driver will loop over all requests.
 949         * Once DMA is started then new requests can be queued only after
 950         * terminating the DMA.
 951         */
 952        if (chan->busy) {
 953                dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
 954                return NULL;
 955        }
 956
 957        ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len,
 958                                       buf_addr);
 959        if (ret < 0)
 960                return NULL;
 961
 962        nb_data_items = period_len / buswidth;
 963        if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
 964                dev_err(chan2dev(chan), "number of items not supported\n");
 965                return NULL;
 966        }
 967
 968        /*  Enable Circular mode or double buffer mode */
 969        if (buf_len == period_len)
 970                chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
 971        else
 972                chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
 973
 974        /* Clear periph ctrl if client set it */
 975        chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
 976
 977        num_periods = buf_len / period_len;
 978
 979        desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
 980        if (!desc)
 981                return NULL;
 982
 983        for (i = 0; i < num_periods; i++) {
 984                desc->sg_req[i].len = period_len;
 985
 986                stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
 987                desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
 988                desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
 989                desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
 990                desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
 991                desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
 992                desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
 993                buf_addr += period_len;
 994        }
 995
 996        desc->num_sgs = num_periods;
 997        desc->cyclic = true;
 998
 999        return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1000}
1001
1002static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
1003        struct dma_chan *c, dma_addr_t dest,
1004        dma_addr_t src, size_t len, unsigned long flags)
1005{
1006        struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1007        enum dma_slave_buswidth max_width;
1008        struct stm32_dma_desc *desc;
1009        size_t xfer_count, offset;
1010        u32 num_sgs, best_burst, dma_burst, threshold;
1011        int i;
1012
1013        num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1014        desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
1015        if (!desc)
1016                return NULL;
1017
1018        threshold = chan->threshold;
1019
1020        for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
1021                xfer_count = min_t(size_t, len - offset,
1022                                   STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1023
1024                /* Compute best burst size */
1025                max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1026                best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
1027                                                      threshold, max_width);
1028                dma_burst = stm32_dma_get_burst(chan, best_burst);
1029
1030                stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1031                desc->sg_req[i].chan_reg.dma_scr =
1032                        STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
1033                        STM32_DMA_SCR_PBURST(dma_burst) |
1034                        STM32_DMA_SCR_MBURST(dma_burst) |
1035                        STM32_DMA_SCR_MINC |
1036                        STM32_DMA_SCR_PINC |
1037                        STM32_DMA_SCR_TCIE |
1038                        STM32_DMA_SCR_TEIE;
1039                desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1040                desc->sg_req[i].chan_reg.dma_sfcr |=
1041                        STM32_DMA_SFCR_FTH(threshold);
1042                desc->sg_req[i].chan_reg.dma_spar = src + offset;
1043                desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1044                desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1045                desc->sg_req[i].len = xfer_count;
1046        }
1047
1048        desc->num_sgs = num_sgs;
1049        desc->cyclic = false;
1050
1051        return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1052}
1053
1054static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1055{
1056        u32 dma_scr, width, ndtr;
1057        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1058
1059        dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1060        width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
1061        ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1062
1063        return ndtr << width;
1064}
1065
1066/**
1067 * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1068 * @chan: dma channel
1069 *
1070 * This function called when IRQ are disable, checks that the hardware has not
1071 * switched on the next transfer in double buffer mode. The test is done by
1072 * comparing the next_sg memory address with the hardware related register
1073 * (based on CT bit value).
1074 *
1075 * Returns true if expected current transfer is still running or double
1076 * buffer mode is not activated.
1077 */
1078static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1079{
1080        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1081        struct stm32_dma_sg_req *sg_req;
1082        u32 dma_scr, dma_smar, id;
1083
1084        id = chan->id;
1085        dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1086
1087        if (!(dma_scr & STM32_DMA_SCR_DBM))
1088                return true;
1089
1090        sg_req = &chan->desc->sg_req[chan->next_sg];
1091
1092        if (dma_scr & STM32_DMA_SCR_CT) {
1093                dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1094                return (dma_smar == sg_req->chan_reg.dma_sm0ar);
1095        }
1096
1097        dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1098
1099        return (dma_smar == sg_req->chan_reg.dma_sm1ar);
1100}
1101
1102static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1103                                     struct stm32_dma_desc *desc,
1104                                     u32 next_sg)
1105{
1106        u32 modulo, burst_size;
1107        u32 residue;
1108        u32 n_sg = next_sg;
1109        struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1110        int i;
1111
1112        /*
1113         * Calculate the residue means compute the descriptors
1114         * information:
1115         * - the sg_req currently transferred
1116         * - the Hardware remaining position in this sg (NDTR bits field).
1117         *
1118         * A race condition may occur if DMA is running in cyclic or double
1119         * buffer mode, since the DMA register are automatically reloaded at end
1120         * of period transfer. The hardware may have switched to the next
1121         * transfer (CT bit updated) just before the position (SxNDTR reg) is
1122         * read.
1123         * In this case the SxNDTR reg could (or not) correspond to the new
1124         * transfer position, and not the expected one.
1125         * The strategy implemented in the stm32 driver is to:
1126         *  - read the SxNDTR register
1127         *  - crosscheck that hardware is still in current transfer.
1128         * In case of switch, we can assume that the DMA is at the beginning of
1129         * the next transfer. So we approximate the residue in consequence, by
1130         * pointing on the beginning of next transfer.
1131         *
1132         * This race condition doesn't apply for none cyclic mode, as double
1133         * buffer is not used. In such situation registers are updated by the
1134         * software.
1135         */
1136
1137        residue = stm32_dma_get_remaining_bytes(chan);
1138
1139        if (!stm32_dma_is_current_sg(chan)) {
1140                n_sg++;
1141                if (n_sg == chan->desc->num_sgs)
1142                        n_sg = 0;
1143                residue = sg_req->len;
1144        }
1145
1146        /*
1147         * In cyclic mode, for the last period, residue = remaining bytes
1148         * from NDTR,
1149         * else for all other periods in cyclic mode, and in sg mode,
1150         * residue = remaining bytes from NDTR + remaining
1151         * periods/sg to be transferred
1152         */
1153        if (!chan->desc->cyclic || n_sg != 0)
1154                for (i = n_sg; i < desc->num_sgs; i++)
1155                        residue += desc->sg_req[i].len;
1156
1157        if (!chan->mem_burst)
1158                return residue;
1159
1160        burst_size = chan->mem_burst * chan->mem_width;
1161        modulo = residue % burst_size;
1162        if (modulo)
1163                residue = residue - modulo + burst_size;
1164
1165        return residue;
1166}
1167
1168static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1169                                           dma_cookie_t cookie,
1170                                           struct dma_tx_state *state)
1171{
1172        struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1173        struct virt_dma_desc *vdesc;
1174        enum dma_status status;
1175        unsigned long flags;
1176        u32 residue = 0;
1177
1178        status = dma_cookie_status(c, cookie, state);
1179        if (status == DMA_COMPLETE || !state)
1180                return status;
1181
1182        spin_lock_irqsave(&chan->vchan.lock, flags);
1183        vdesc = vchan_find_desc(&chan->vchan, cookie);
1184        if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1185                residue = stm32_dma_desc_residue(chan, chan->desc,
1186                                                 chan->next_sg);
1187        else if (vdesc)
1188                residue = stm32_dma_desc_residue(chan,
1189                                                 to_stm32_dma_desc(vdesc), 0);
1190        dma_set_residue(state, residue);
1191
1192        spin_unlock_irqrestore(&chan->vchan.lock, flags);
1193
1194        return status;
1195}
1196
1197static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1198{
1199        struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1200        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1201        int ret;
1202
1203        chan->config_init = false;
1204
1205        ret = pm_runtime_resume_and_get(dmadev->ddev.dev);
1206        if (ret < 0)
1207                return ret;
1208
1209        ret = stm32_dma_disable_chan(chan);
1210        if (ret < 0)
1211                pm_runtime_put(dmadev->ddev.dev);
1212
1213        return ret;
1214}
1215
1216static void stm32_dma_free_chan_resources(struct dma_chan *c)
1217{
1218        struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1219        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1220        unsigned long flags;
1221
1222        dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1223
1224        if (chan->busy) {
1225                spin_lock_irqsave(&chan->vchan.lock, flags);
1226                stm32_dma_stop(chan);
1227                chan->desc = NULL;
1228                spin_unlock_irqrestore(&chan->vchan.lock, flags);
1229        }
1230
1231        pm_runtime_put(dmadev->ddev.dev);
1232
1233        vchan_free_chan_resources(to_virt_chan(c));
1234        stm32_dma_clear_reg(&chan->chan_reg);
1235        chan->threshold = 0;
1236}
1237
1238static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1239{
1240        kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1241}
1242
1243static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1244                                 struct stm32_dma_cfg *cfg)
1245{
1246        stm32_dma_clear_reg(&chan->chan_reg);
1247
1248        chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1249        chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);
1250
1251        /* Enable Interrupts  */
1252        chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1253
1254        chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features);
1255        if (STM32_DMA_DIRECT_MODE_GET(cfg->features))
1256                chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE;
1257        if (STM32_DMA_ALT_ACK_MODE_GET(cfg->features))
1258                chan->chan_reg.dma_scr |= STM32_DMA_SCR_TRBUFF;
1259}
1260
1261static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1262                                           struct of_dma *ofdma)
1263{
1264        struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1265        struct device *dev = dmadev->ddev.dev;
1266        struct stm32_dma_cfg cfg;
1267        struct stm32_dma_chan *chan;
1268        struct dma_chan *c;
1269
1270        if (dma_spec->args_count < 4) {
1271                dev_err(dev, "Bad number of cells\n");
1272                return NULL;
1273        }
1274
1275        cfg.channel_id = dma_spec->args[0];
1276        cfg.request_line = dma_spec->args[1];
1277        cfg.stream_config = dma_spec->args[2];
1278        cfg.features = dma_spec->args[3];
1279
1280        if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1281            cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1282                dev_err(dev, "Bad channel and/or request id\n");
1283                return NULL;
1284        }
1285
1286        chan = &dmadev->chan[cfg.channel_id];
1287
1288        c = dma_get_slave_channel(&chan->vchan.chan);
1289        if (!c) {
1290                dev_err(dev, "No more channels available\n");
1291                return NULL;
1292        }
1293
1294        stm32_dma_set_config(chan, &cfg);
1295
1296        return c;
1297}
1298
1299static const struct of_device_id stm32_dma_of_match[] = {
1300        { .compatible = "st,stm32-dma", },
1301        { /* sentinel */ },
1302};
1303MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1304
1305static int stm32_dma_probe(struct platform_device *pdev)
1306{
1307        struct stm32_dma_chan *chan;
1308        struct stm32_dma_device *dmadev;
1309        struct dma_device *dd;
1310        const struct of_device_id *match;
1311        struct resource *res;
1312        struct reset_control *rst;
1313        int i, ret;
1314
1315        match = of_match_device(stm32_dma_of_match, &pdev->dev);
1316        if (!match) {
1317                dev_err(&pdev->dev, "Error: No device match found\n");
1318                return -ENODEV;
1319        }
1320
1321        dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1322        if (!dmadev)
1323                return -ENOMEM;
1324
1325        dd = &dmadev->ddev;
1326
1327        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1328        dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1329        if (IS_ERR(dmadev->base))
1330                return PTR_ERR(dmadev->base);
1331
1332        dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1333        if (IS_ERR(dmadev->clk))
1334                return dev_err_probe(&pdev->dev, PTR_ERR(dmadev->clk), "Can't get clock\n");
1335
1336        ret = clk_prepare_enable(dmadev->clk);
1337        if (ret < 0) {
1338                dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1339                return ret;
1340        }
1341
1342        dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1343                                                "st,mem2mem");
1344
1345        rst = devm_reset_control_get(&pdev->dev, NULL);
1346        if (IS_ERR(rst)) {
1347                ret = PTR_ERR(rst);
1348                if (ret == -EPROBE_DEFER)
1349                        goto clk_free;
1350        } else {
1351                reset_control_assert(rst);
1352                udelay(2);
1353                reset_control_deassert(rst);
1354        }
1355
1356        dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1357
1358        dma_cap_set(DMA_SLAVE, dd->cap_mask);
1359        dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1360        dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1361        dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1362        dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1363        dd->device_tx_status = stm32_dma_tx_status;
1364        dd->device_issue_pending = stm32_dma_issue_pending;
1365        dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1366        dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1367        dd->device_config = stm32_dma_slave_config;
1368        dd->device_terminate_all = stm32_dma_terminate_all;
1369        dd->device_synchronize = stm32_dma_synchronize;
1370        dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1371                BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1372                BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1373        dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1374                BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1375                BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1376        dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1377        dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1378        dd->copy_align = DMAENGINE_ALIGN_32_BYTES;
1379        dd->max_burst = STM32_DMA_MAX_BURST;
1380        dd->descriptor_reuse = true;
1381        dd->dev = &pdev->dev;
1382        INIT_LIST_HEAD(&dd->channels);
1383
1384        if (dmadev->mem2mem) {
1385                dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1386                dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1387                dd->directions |= BIT(DMA_MEM_TO_MEM);
1388        }
1389
1390        for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1391                chan = &dmadev->chan[i];
1392                chan->id = i;
1393                chan->vchan.desc_free = stm32_dma_desc_free;
1394                vchan_init(&chan->vchan, dd);
1395        }
1396
1397        ret = dma_async_device_register(dd);
1398        if (ret)
1399                goto clk_free;
1400
1401        for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1402                chan = &dmadev->chan[i];
1403                ret = platform_get_irq(pdev, i);
1404                if (ret < 0)
1405                        goto err_unregister;
1406                chan->irq = ret;
1407
1408                ret = devm_request_irq(&pdev->dev, chan->irq,
1409                                       stm32_dma_chan_irq, 0,
1410                                       dev_name(chan2dev(chan)), chan);
1411                if (ret) {
1412                        dev_err(&pdev->dev,
1413                                "request_irq failed with err %d channel %d\n",
1414                                ret, i);
1415                        goto err_unregister;
1416                }
1417        }
1418
1419        ret = of_dma_controller_register(pdev->dev.of_node,
1420                                         stm32_dma_of_xlate, dmadev);
1421        if (ret < 0) {
1422                dev_err(&pdev->dev,
1423                        "STM32 DMA DMA OF registration failed %d\n", ret);
1424                goto err_unregister;
1425        }
1426
1427        platform_set_drvdata(pdev, dmadev);
1428
1429        pm_runtime_set_active(&pdev->dev);
1430        pm_runtime_enable(&pdev->dev);
1431        pm_runtime_get_noresume(&pdev->dev);
1432        pm_runtime_put(&pdev->dev);
1433
1434        dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1435
1436        return 0;
1437
1438err_unregister:
1439        dma_async_device_unregister(dd);
1440clk_free:
1441        clk_disable_unprepare(dmadev->clk);
1442
1443        return ret;
1444}
1445
1446#ifdef CONFIG_PM
1447static int stm32_dma_runtime_suspend(struct device *dev)
1448{
1449        struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1450
1451        clk_disable_unprepare(dmadev->clk);
1452
1453        return 0;
1454}
1455
1456static int stm32_dma_runtime_resume(struct device *dev)
1457{
1458        struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1459        int ret;
1460
1461        ret = clk_prepare_enable(dmadev->clk);
1462        if (ret) {
1463                dev_err(dev, "failed to prepare_enable clock\n");
1464                return ret;
1465        }
1466
1467        return 0;
1468}
1469#endif
1470
1471#ifdef CONFIG_PM_SLEEP
1472static int stm32_dma_suspend(struct device *dev)
1473{
1474        struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1475        int id, ret, scr;
1476
1477        ret = pm_runtime_resume_and_get(dev);
1478        if (ret < 0)
1479                return ret;
1480
1481        for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) {
1482                scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1483                if (scr & STM32_DMA_SCR_EN) {
1484                        dev_warn(dev, "Suspend is prevented by Chan %i\n", id);
1485                        return -EBUSY;
1486                }
1487        }
1488
1489        pm_runtime_put_sync(dev);
1490
1491        pm_runtime_force_suspend(dev);
1492
1493        return 0;
1494}
1495
1496static int stm32_dma_resume(struct device *dev)
1497{
1498        return pm_runtime_force_resume(dev);
1499}
1500#endif
1501
1502static const struct dev_pm_ops stm32_dma_pm_ops = {
1503        SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_suspend, stm32_dma_resume)
1504        SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1505                           stm32_dma_runtime_resume, NULL)
1506};
1507
1508static struct platform_driver stm32_dma_driver = {
1509        .driver = {
1510                .name = "stm32-dma",
1511                .of_match_table = stm32_dma_of_match,
1512                .pm = &stm32_dma_pm_ops,
1513        },
1514        .probe = stm32_dma_probe,
1515};
1516
1517static int __init stm32_dma_init(void)
1518{
1519        return platform_driver_register(&stm32_dma_driver);
1520}
1521subsys_initcall(stm32_dma_init);
1522