linux/drivers/edac/fsl_ddr_edac.c
<<
>>
Prefs
   1/*
   2 * Freescale Memory Controller kernel module
   3 *
   4 * Support Power-based SoCs including MPC85xx, MPC86xx, MPC83xx and
   5 * ARM-based Layerscape SoCs including LS2xxx and LS1021A. Originally
   6 * split out from mpc85xx_edac EDAC driver.
   7 *
   8 * Parts Copyrighted (c) 2013 by Freescale Semiconductor, Inc.
   9 *
  10 * Author: Dave Jiang <djiang@mvista.com>
  11 *
  12 * 2006-2007 (c) MontaVista Software, Inc. This file is licensed under
  13 * the terms of the GNU General Public License version 2. This program
  14 * is licensed "as is" without any warranty of any kind, whether express
  15 * or implied.
  16 */
  17#include <linux/module.h>
  18#include <linux/init.h>
  19#include <linux/interrupt.h>
  20#include <linux/ctype.h>
  21#include <linux/io.h>
  22#include <linux/mod_devicetable.h>
  23#include <linux/edac.h>
  24#include <linux/smp.h>
  25#include <linux/gfp.h>
  26
  27#include <linux/of_platform.h>
  28#include <linux/of_device.h>
  29#include <linux/of_address.h>
  30#include "edac_module.h"
  31#include "fsl_ddr_edac.h"
  32
  33#define EDAC_MOD_STR    "fsl_ddr_edac"
  34
  35static int edac_mc_idx;
  36
  37static u32 orig_ddr_err_disable;
  38static u32 orig_ddr_err_sbe;
  39static bool little_endian;
  40
  41static inline u32 ddr_in32(void __iomem *addr)
  42{
  43        return little_endian ? ioread32(addr) : ioread32be(addr);
  44}
  45
  46static inline void ddr_out32(void __iomem *addr, u32 value)
  47{
  48        if (little_endian)
  49                iowrite32(value, addr);
  50        else
  51                iowrite32be(value, addr);
  52}
  53
  54#ifdef CONFIG_EDAC_DEBUG
  55/************************ MC SYSFS parts ***********************************/
  56
  57#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
  58
  59static ssize_t fsl_mc_inject_data_hi_show(struct device *dev,
  60                                          struct device_attribute *mattr,
  61                                          char *data)
  62{
  63        struct mem_ctl_info *mci = to_mci(dev);
  64        struct fsl_mc_pdata *pdata = mci->pvt_info;
  65        return sprintf(data, "0x%08x",
  66                       ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI));
  67}
  68
  69static ssize_t fsl_mc_inject_data_lo_show(struct device *dev,
  70                                          struct device_attribute *mattr,
  71                                              char *data)
  72{
  73        struct mem_ctl_info *mci = to_mci(dev);
  74        struct fsl_mc_pdata *pdata = mci->pvt_info;
  75        return sprintf(data, "0x%08x",
  76                       ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO));
  77}
  78
  79static ssize_t fsl_mc_inject_ctrl_show(struct device *dev,
  80                                       struct device_attribute *mattr,
  81                                           char *data)
  82{
  83        struct mem_ctl_info *mci = to_mci(dev);
  84        struct fsl_mc_pdata *pdata = mci->pvt_info;
  85        return sprintf(data, "0x%08x",
  86                       ddr_in32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT));
  87}
  88
  89static ssize_t fsl_mc_inject_data_hi_store(struct device *dev,
  90                                           struct device_attribute *mattr,
  91                                               const char *data, size_t count)
  92{
  93        struct mem_ctl_info *mci = to_mci(dev);
  94        struct fsl_mc_pdata *pdata = mci->pvt_info;
  95        unsigned long val;
  96        int rc;
  97
  98        if (isdigit(*data)) {
  99                rc = kstrtoul(data, 0, &val);
 100                if (rc)
 101                        return rc;
 102
 103                ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI, val);
 104                return count;
 105        }
 106        return 0;
 107}
 108
 109static ssize_t fsl_mc_inject_data_lo_store(struct device *dev,
 110                                           struct device_attribute *mattr,
 111                                               const char *data, size_t count)
 112{
 113        struct mem_ctl_info *mci = to_mci(dev);
 114        struct fsl_mc_pdata *pdata = mci->pvt_info;
 115        unsigned long val;
 116        int rc;
 117
 118        if (isdigit(*data)) {
 119                rc = kstrtoul(data, 0, &val);
 120                if (rc)
 121                        return rc;
 122
 123                ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO, val);
 124                return count;
 125        }
 126        return 0;
 127}
 128
 129static ssize_t fsl_mc_inject_ctrl_store(struct device *dev,
 130                                        struct device_attribute *mattr,
 131                                               const char *data, size_t count)
 132{
 133        struct mem_ctl_info *mci = to_mci(dev);
 134        struct fsl_mc_pdata *pdata = mci->pvt_info;
 135        unsigned long val;
 136        int rc;
 137
 138        if (isdigit(*data)) {
 139                rc = kstrtoul(data, 0, &val);
 140                if (rc)
 141                        return rc;
 142
 143                ddr_out32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT, val);
 144                return count;
 145        }
 146        return 0;
 147}
 148
 149static DEVICE_ATTR(inject_data_hi, S_IRUGO | S_IWUSR,
 150                   fsl_mc_inject_data_hi_show, fsl_mc_inject_data_hi_store);
 151static DEVICE_ATTR(inject_data_lo, S_IRUGO | S_IWUSR,
 152                   fsl_mc_inject_data_lo_show, fsl_mc_inject_data_lo_store);
 153static DEVICE_ATTR(inject_ctrl, S_IRUGO | S_IWUSR,
 154                   fsl_mc_inject_ctrl_show, fsl_mc_inject_ctrl_store);
 155#endif /* CONFIG_EDAC_DEBUG */
 156
 157static struct attribute *fsl_ddr_dev_attrs[] = {
 158#ifdef CONFIG_EDAC_DEBUG
 159        &dev_attr_inject_data_hi.attr,
 160        &dev_attr_inject_data_lo.attr,
 161        &dev_attr_inject_ctrl.attr,
 162#endif
 163        NULL
 164};
 165
 166ATTRIBUTE_GROUPS(fsl_ddr_dev);
 167
 168/**************************** MC Err device ***************************/
 169
 170/*
 171 * Taken from table 8-55 in the MPC8641 User's Manual and/or 9-61 in the
 172 * MPC8572 User's Manual.  Each line represents a syndrome bit column as a
 173 * 64-bit value, but split into an upper and lower 32-bit chunk.  The labels
 174 * below correspond to Freescale's manuals.
 175 */
 176static unsigned int ecc_table[16] = {
 177        /* MSB           LSB */
 178        /* [0:31]    [32:63] */
 179        0xf00fe11e, 0xc33c0ff7, /* Syndrome bit 7 */
 180        0x00ff00ff, 0x00fff0ff,
 181        0x0f0f0f0f, 0x0f0fff00,
 182        0x11113333, 0x7777000f,
 183        0x22224444, 0x8888222f,
 184        0x44448888, 0xffff4441,
 185        0x8888ffff, 0x11118882,
 186        0xffff1111, 0x22221114, /* Syndrome bit 0 */
 187};
 188
 189/*
 190 * Calculate the correct ECC value for a 64-bit value specified by high:low
 191 */
 192static u8 calculate_ecc(u32 high, u32 low)
 193{
 194        u32 mask_low;
 195        u32 mask_high;
 196        int bit_cnt;
 197        u8 ecc = 0;
 198        int i;
 199        int j;
 200
 201        for (i = 0; i < 8; i++) {
 202                mask_high = ecc_table[i * 2];
 203                mask_low = ecc_table[i * 2 + 1];
 204                bit_cnt = 0;
 205
 206                for (j = 0; j < 32; j++) {
 207                        if ((mask_high >> j) & 1)
 208                                bit_cnt ^= (high >> j) & 1;
 209                        if ((mask_low >> j) & 1)
 210                                bit_cnt ^= (low >> j) & 1;
 211                }
 212
 213                ecc |= bit_cnt << i;
 214        }
 215
 216        return ecc;
 217}
 218
 219/*
 220 * Create the syndrome code which is generated if the data line specified by
 221 * 'bit' failed.  Eg generate an 8-bit codes seen in Table 8-55 in the MPC8641
 222 * User's Manual and 9-61 in the MPC8572 User's Manual.
 223 */
 224static u8 syndrome_from_bit(unsigned int bit) {
 225        int i;
 226        u8 syndrome = 0;
 227
 228        /*
 229         * Cycle through the upper or lower 32-bit portion of each value in
 230         * ecc_table depending on if 'bit' is in the upper or lower half of
 231         * 64-bit data.
 232         */
 233        for (i = bit < 32; i < 16; i += 2)
 234                syndrome |= ((ecc_table[i] >> (bit % 32)) & 1) << (i / 2);
 235
 236        return syndrome;
 237}
 238
 239/*
 240 * Decode data and ecc syndrome to determine what went wrong
 241 * Note: This can only decode single-bit errors
 242 */
 243static void sbe_ecc_decode(u32 cap_high, u32 cap_low, u32 cap_ecc,
 244                       int *bad_data_bit, int *bad_ecc_bit)
 245{
 246        int i;
 247        u8 syndrome;
 248
 249        *bad_data_bit = -1;
 250        *bad_ecc_bit = -1;
 251
 252        /*
 253         * Calculate the ECC of the captured data and XOR it with the captured
 254         * ECC to find an ECC syndrome value we can search for
 255         */
 256        syndrome = calculate_ecc(cap_high, cap_low) ^ cap_ecc;
 257
 258        /* Check if a data line is stuck... */
 259        for (i = 0; i < 64; i++) {
 260                if (syndrome == syndrome_from_bit(i)) {
 261                        *bad_data_bit = i;
 262                        return;
 263                }
 264        }
 265
 266        /* If data is correct, check ECC bits for errors... */
 267        for (i = 0; i < 8; i++) {
 268                if ((syndrome >> i) & 0x1) {
 269                        *bad_ecc_bit = i;
 270                        return;
 271                }
 272        }
 273}
 274
 275#define make64(high, low) (((u64)(high) << 32) | (low))
 276
 277static void fsl_mc_check(struct mem_ctl_info *mci)
 278{
 279        struct fsl_mc_pdata *pdata = mci->pvt_info;
 280        struct csrow_info *csrow;
 281        u32 bus_width;
 282        u32 err_detect;
 283        u32 syndrome;
 284        u64 err_addr;
 285        u32 pfn;
 286        int row_index;
 287        u32 cap_high;
 288        u32 cap_low;
 289        int bad_data_bit;
 290        int bad_ecc_bit;
 291
 292        err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
 293        if (!err_detect)
 294                return;
 295
 296        fsl_mc_printk(mci, KERN_ERR, "Err Detect Register: %#8.8x\n",
 297                      err_detect);
 298
 299        /* no more processing if not ECC bit errors */
 300        if (!(err_detect & (DDR_EDE_SBE | DDR_EDE_MBE))) {
 301                ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
 302                return;
 303        }
 304
 305        syndrome = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ECC);
 306
 307        /* Mask off appropriate bits of syndrome based on bus width */
 308        bus_width = (ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG) &
 309                     DSC_DBW_MASK) ? 32 : 64;
 310        if (bus_width == 64)
 311                syndrome &= 0xff;
 312        else
 313                syndrome &= 0xffff;
 314
 315        err_addr = make64(
 316                ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_EXT_ADDRESS),
 317                ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ADDRESS));
 318        pfn = err_addr >> PAGE_SHIFT;
 319
 320        for (row_index = 0; row_index < mci->nr_csrows; row_index++) {
 321                csrow = mci->csrows[row_index];
 322                if ((pfn >= csrow->first_page) && (pfn <= csrow->last_page))
 323                        break;
 324        }
 325
 326        cap_high = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_HI);
 327        cap_low = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_LO);
 328
 329        /*
 330         * Analyze single-bit errors on 64-bit wide buses
 331         * TODO: Add support for 32-bit wide buses
 332         */
 333        if ((err_detect & DDR_EDE_SBE) && (bus_width == 64)) {
 334                sbe_ecc_decode(cap_high, cap_low, syndrome,
 335                                &bad_data_bit, &bad_ecc_bit);
 336
 337                if (bad_data_bit != -1)
 338                        fsl_mc_printk(mci, KERN_ERR,
 339                                "Faulty Data bit: %d\n", bad_data_bit);
 340                if (bad_ecc_bit != -1)
 341                        fsl_mc_printk(mci, KERN_ERR,
 342                                "Faulty ECC bit: %d\n", bad_ecc_bit);
 343
 344                fsl_mc_printk(mci, KERN_ERR,
 345                        "Expected Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
 346                        cap_high ^ (1 << (bad_data_bit - 32)),
 347                        cap_low ^ (1 << bad_data_bit),
 348                        syndrome ^ (1 << bad_ecc_bit));
 349        }
 350
 351        fsl_mc_printk(mci, KERN_ERR,
 352                        "Captured Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
 353                        cap_high, cap_low, syndrome);
 354        fsl_mc_printk(mci, KERN_ERR, "Err addr: %#8.8llx\n", err_addr);
 355        fsl_mc_printk(mci, KERN_ERR, "PFN: %#8.8x\n", pfn);
 356
 357        /* we are out of range */
 358        if (row_index == mci->nr_csrows)
 359                fsl_mc_printk(mci, KERN_ERR, "PFN out of range!\n");
 360
 361        if (err_detect & DDR_EDE_SBE)
 362                edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
 363                                     pfn, err_addr & ~PAGE_MASK, syndrome,
 364                                     row_index, 0, -1,
 365                                     mci->ctl_name, "");
 366
 367        if (err_detect & DDR_EDE_MBE)
 368                edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
 369                                     pfn, err_addr & ~PAGE_MASK, syndrome,
 370                                     row_index, 0, -1,
 371                                     mci->ctl_name, "");
 372
 373        ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
 374}
 375
 376static irqreturn_t fsl_mc_isr(int irq, void *dev_id)
 377{
 378        struct mem_ctl_info *mci = dev_id;
 379        struct fsl_mc_pdata *pdata = mci->pvt_info;
 380        u32 err_detect;
 381
 382        err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
 383        if (!err_detect)
 384                return IRQ_NONE;
 385
 386        fsl_mc_check(mci);
 387
 388        return IRQ_HANDLED;
 389}
 390
 391static void fsl_ddr_init_csrows(struct mem_ctl_info *mci)
 392{
 393        struct fsl_mc_pdata *pdata = mci->pvt_info;
 394        struct csrow_info *csrow;
 395        struct dimm_info *dimm;
 396        u32 sdram_ctl;
 397        u32 sdtype;
 398        enum mem_type mtype;
 399        u32 cs_bnds;
 400        int index;
 401
 402        sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
 403
 404        sdtype = sdram_ctl & DSC_SDTYPE_MASK;
 405        if (sdram_ctl & DSC_RD_EN) {
 406                switch (sdtype) {
 407                case 0x02000000:
 408                        mtype = MEM_RDDR;
 409                        break;
 410                case 0x03000000:
 411                        mtype = MEM_RDDR2;
 412                        break;
 413                case 0x07000000:
 414                        mtype = MEM_RDDR3;
 415                        break;
 416                case 0x05000000:
 417                        mtype = MEM_RDDR4;
 418                        break;
 419                default:
 420                        mtype = MEM_UNKNOWN;
 421                        break;
 422                }
 423        } else {
 424                switch (sdtype) {
 425                case 0x02000000:
 426                        mtype = MEM_DDR;
 427                        break;
 428                case 0x03000000:
 429                        mtype = MEM_DDR2;
 430                        break;
 431                case 0x07000000:
 432                        mtype = MEM_DDR3;
 433                        break;
 434                case 0x05000000:
 435                        mtype = MEM_DDR4;
 436                        break;
 437                default:
 438                        mtype = MEM_UNKNOWN;
 439                        break;
 440                }
 441        }
 442
 443        for (index = 0; index < mci->nr_csrows; index++) {
 444                u32 start;
 445                u32 end;
 446
 447                csrow = mci->csrows[index];
 448                dimm = csrow->channels[0]->dimm;
 449
 450                cs_bnds = ddr_in32(pdata->mc_vbase + FSL_MC_CS_BNDS_0 +
 451                                   (index * FSL_MC_CS_BNDS_OFS));
 452
 453                start = (cs_bnds & 0xffff0000) >> 16;
 454                end   = (cs_bnds & 0x0000ffff);
 455
 456                if (start == end)
 457                        continue;       /* not populated */
 458
 459                start <<= (24 - PAGE_SHIFT);
 460                end   <<= (24 - PAGE_SHIFT);
 461                end    |= (1 << (24 - PAGE_SHIFT)) - 1;
 462
 463                csrow->first_page = start;
 464                csrow->last_page = end;
 465
 466                dimm->nr_pages = end + 1 - start;
 467                dimm->grain = 8;
 468                dimm->mtype = mtype;
 469                dimm->dtype = DEV_UNKNOWN;
 470                if (sdram_ctl & DSC_X32_EN)
 471                        dimm->dtype = DEV_X32;
 472                dimm->edac_mode = EDAC_SECDED;
 473        }
 474}
 475
 476int fsl_mc_err_probe(struct platform_device *op)
 477{
 478        struct mem_ctl_info *mci;
 479        struct edac_mc_layer layers[2];
 480        struct fsl_mc_pdata *pdata;
 481        struct resource r;
 482        u32 sdram_ctl;
 483        int res;
 484
 485        if (!devres_open_group(&op->dev, fsl_mc_err_probe, GFP_KERNEL))
 486                return -ENOMEM;
 487
 488        layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
 489        layers[0].size = 4;
 490        layers[0].is_virt_csrow = true;
 491        layers[1].type = EDAC_MC_LAYER_CHANNEL;
 492        layers[1].size = 1;
 493        layers[1].is_virt_csrow = false;
 494        mci = edac_mc_alloc(edac_mc_idx, ARRAY_SIZE(layers), layers,
 495                            sizeof(*pdata));
 496        if (!mci) {
 497                devres_release_group(&op->dev, fsl_mc_err_probe);
 498                return -ENOMEM;
 499        }
 500
 501        pdata = mci->pvt_info;
 502        pdata->name = "fsl_mc_err";
 503        mci->pdev = &op->dev;
 504        pdata->edac_idx = edac_mc_idx++;
 505        dev_set_drvdata(mci->pdev, mci);
 506        mci->ctl_name = pdata->name;
 507        mci->dev_name = pdata->name;
 508
 509        /*
 510         * Get the endianness of DDR controller registers.
 511         * Default is big endian.
 512         */
 513        little_endian = of_property_read_bool(op->dev.of_node, "little-endian");
 514
 515        res = of_address_to_resource(op->dev.of_node, 0, &r);
 516        if (res) {
 517                pr_err("%s: Unable to get resource for MC err regs\n",
 518                       __func__);
 519                goto err;
 520        }
 521
 522        if (!devm_request_mem_region(&op->dev, r.start, resource_size(&r),
 523                                     pdata->name)) {
 524                pr_err("%s: Error while requesting mem region\n",
 525                       __func__);
 526                res = -EBUSY;
 527                goto err;
 528        }
 529
 530        pdata->mc_vbase = devm_ioremap(&op->dev, r.start, resource_size(&r));
 531        if (!pdata->mc_vbase) {
 532                pr_err("%s: Unable to setup MC err regs\n", __func__);
 533                res = -ENOMEM;
 534                goto err;
 535        }
 536
 537        sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
 538        if (!(sdram_ctl & DSC_ECC_EN)) {
 539                /* no ECC */
 540                pr_warn("%s: No ECC DIMMs discovered\n", __func__);
 541                res = -ENODEV;
 542                goto err;
 543        }
 544
 545        edac_dbg(3, "init mci\n");
 546        mci->mtype_cap = MEM_FLAG_DDR | MEM_FLAG_RDDR |
 547                         MEM_FLAG_DDR2 | MEM_FLAG_RDDR2 |
 548                         MEM_FLAG_DDR3 | MEM_FLAG_RDDR3 |
 549                         MEM_FLAG_DDR4 | MEM_FLAG_RDDR4;
 550        mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
 551        mci->edac_cap = EDAC_FLAG_SECDED;
 552        mci->mod_name = EDAC_MOD_STR;
 553
 554        if (edac_op_state == EDAC_OPSTATE_POLL)
 555                mci->edac_check = fsl_mc_check;
 556
 557        mci->ctl_page_to_phys = NULL;
 558
 559        mci->scrub_mode = SCRUB_SW_SRC;
 560
 561        fsl_ddr_init_csrows(mci);
 562
 563        /* store the original error disable bits */
 564        orig_ddr_err_disable = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DISABLE);
 565        ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE, 0);
 566
 567        /* clear all error bits */
 568        ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, ~0);
 569
 570        res = edac_mc_add_mc_with_groups(mci, fsl_ddr_dev_groups);
 571        if (res) {
 572                edac_dbg(3, "failed edac_mc_add_mc()\n");
 573                goto err;
 574        }
 575
 576        if (edac_op_state == EDAC_OPSTATE_INT) {
 577                ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN,
 578                          DDR_EIE_MBEE | DDR_EIE_SBEE);
 579
 580                /* store the original error management threshold */
 581                orig_ddr_err_sbe = ddr_in32(pdata->mc_vbase +
 582                                            FSL_MC_ERR_SBE) & 0xff0000;
 583
 584                /* set threshold to 1 error per interrupt */
 585                ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, 0x10000);
 586
 587                /* register interrupts */
 588                pdata->irq = platform_get_irq(op, 0);
 589                res = devm_request_irq(&op->dev, pdata->irq,
 590                                       fsl_mc_isr,
 591                                       IRQF_SHARED,
 592                                       "[EDAC] MC err", mci);
 593                if (res < 0) {
 594                        pr_err("%s: Unable to request irq %d for FSL DDR DRAM ERR\n",
 595                               __func__, pdata->irq);
 596                        res = -ENODEV;
 597                        goto err2;
 598                }
 599
 600                pr_info(EDAC_MOD_STR " acquired irq %d for MC\n",
 601                       pdata->irq);
 602        }
 603
 604        devres_remove_group(&op->dev, fsl_mc_err_probe);
 605        edac_dbg(3, "success\n");
 606        pr_info(EDAC_MOD_STR " MC err registered\n");
 607
 608        return 0;
 609
 610err2:
 611        edac_mc_del_mc(&op->dev);
 612err:
 613        devres_release_group(&op->dev, fsl_mc_err_probe);
 614        edac_mc_free(mci);
 615        return res;
 616}
 617
 618int fsl_mc_err_remove(struct platform_device *op)
 619{
 620        struct mem_ctl_info *mci = dev_get_drvdata(&op->dev);
 621        struct fsl_mc_pdata *pdata = mci->pvt_info;
 622
 623        edac_dbg(0, "\n");
 624
 625        if (edac_op_state == EDAC_OPSTATE_INT) {
 626                ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN, 0);
 627        }
 628
 629        ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE,
 630                  orig_ddr_err_disable);
 631        ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, orig_ddr_err_sbe);
 632
 633        edac_mc_del_mc(&op->dev);
 634        edac_mc_free(mci);
 635        return 0;
 636}
 637