1
2
3
4#include <linux/device.h>
5#include <linux/export.h>
6#include <linux/hwmon.h>
7#include <linux/hwmon-sysfs.h>
8#include <linux/jiffies.h>
9#include <linux/kernel.h>
10#include <linux/math64.h>
11#include <linux/module.h>
12#include <linux/mutex.h>
13#include <linux/sysfs.h>
14#include <asm/unaligned.h>
15
16#include "common.h"
17
18#define EXTN_FLAG_SENSOR_ID BIT(7)
19
20#define OCC_ERROR_COUNT_THRESHOLD 2
21
22#define OCC_STATE_SAFE 4
23#define OCC_SAFE_TIMEOUT msecs_to_jiffies(60000)
24
25#define OCC_UPDATE_FREQUENCY msecs_to_jiffies(1000)
26
27#define OCC_TEMP_SENSOR_FAULT 0xFF
28
29#define OCC_FRU_TYPE_VRM 3
30
31
32
33struct temp_sensor_1 {
34 u16 sensor_id;
35 u16 value;
36} __packed;
37
38struct temp_sensor_2 {
39 u32 sensor_id;
40 u8 fru_type;
41 u8 value;
42} __packed;
43
44struct temp_sensor_10 {
45 u32 sensor_id;
46 u8 fru_type;
47 u8 value;
48 u8 throttle;
49 u8 reserved;
50} __packed;
51
52struct freq_sensor_1 {
53 u16 sensor_id;
54 u16 value;
55} __packed;
56
57struct freq_sensor_2 {
58 u32 sensor_id;
59 u16 value;
60} __packed;
61
62struct power_sensor_1 {
63 u16 sensor_id;
64 u32 update_tag;
65 u32 accumulator;
66 u16 value;
67} __packed;
68
69struct power_sensor_2 {
70 u32 sensor_id;
71 u8 function_id;
72 u8 apss_channel;
73 u16 reserved;
74 u32 update_tag;
75 u64 accumulator;
76 u16 value;
77} __packed;
78
79struct power_sensor_data {
80 u16 value;
81 u32 update_tag;
82 u64 accumulator;
83} __packed;
84
85struct power_sensor_data_and_time {
86 u16 update_time;
87 u16 value;
88 u32 update_tag;
89 u64 accumulator;
90} __packed;
91
92struct power_sensor_a0 {
93 u32 sensor_id;
94 struct power_sensor_data_and_time system;
95 u32 reserved;
96 struct power_sensor_data_and_time proc;
97 struct power_sensor_data vdd;
98 struct power_sensor_data vdn;
99} __packed;
100
101struct caps_sensor_2 {
102 u16 cap;
103 u16 system_power;
104 u16 n_cap;
105 u16 max;
106 u16 min;
107 u16 user;
108 u8 user_source;
109} __packed;
110
111struct caps_sensor_3 {
112 u16 cap;
113 u16 system_power;
114 u16 n_cap;
115 u16 max;
116 u16 hard_min;
117 u16 soft_min;
118 u16 user;
119 u8 user_source;
120} __packed;
121
122struct extended_sensor {
123 union {
124 u8 name[4];
125 u32 sensor_id;
126 };
127 u8 flags;
128 u8 reserved;
129 u8 data[6];
130} __packed;
131
132static int occ_poll(struct occ *occ)
133{
134 int rc;
135 u16 checksum = occ->poll_cmd_data + occ->seq_no + 1;
136 u8 cmd[8];
137 struct occ_poll_response_header *header;
138
139
140 cmd[0] = occ->seq_no++;
141 cmd[1] = 0;
142 cmd[2] = 0;
143 cmd[3] = 1;
144 cmd[4] = occ->poll_cmd_data;
145 cmd[5] = checksum >> 8;
146 cmd[6] = checksum & 0xFF;
147 cmd[7] = 0;
148
149
150 rc = occ->send_cmd(occ, cmd);
151 if (rc) {
152 occ->last_error = rc;
153 if (occ->error_count++ > OCC_ERROR_COUNT_THRESHOLD)
154 occ->error = rc;
155
156 goto done;
157 }
158
159
160 occ->error_count = 0;
161 occ->last_error = 0;
162 occ->error = 0;
163
164
165 header = (struct occ_poll_response_header *)occ->resp.data;
166 if (header->occ_state == OCC_STATE_SAFE) {
167 if (occ->last_safe) {
168 if (time_after(jiffies,
169 occ->last_safe + OCC_SAFE_TIMEOUT))
170 occ->error = -EHOSTDOWN;
171 } else {
172 occ->last_safe = jiffies;
173 }
174 } else {
175 occ->last_safe = 0;
176 }
177
178done:
179 occ_sysfs_poll_done(occ);
180 return rc;
181}
182
183static int occ_set_user_power_cap(struct occ *occ, u16 user_power_cap)
184{
185 int rc;
186 u8 cmd[8];
187 u16 checksum = 0x24;
188 __be16 user_power_cap_be = cpu_to_be16(user_power_cap);
189
190 cmd[0] = 0;
191 cmd[1] = 0x22;
192 cmd[2] = 0;
193 cmd[3] = 2;
194
195 memcpy(&cmd[4], &user_power_cap_be, 2);
196
197 checksum += cmd[4] + cmd[5];
198 cmd[6] = checksum >> 8;
199 cmd[7] = checksum & 0xFF;
200
201 rc = mutex_lock_interruptible(&occ->lock);
202 if (rc)
203 return rc;
204
205 rc = occ->send_cmd(occ, cmd);
206
207 mutex_unlock(&occ->lock);
208
209 return rc;
210}
211
212int occ_update_response(struct occ *occ)
213{
214 int rc = mutex_lock_interruptible(&occ->lock);
215
216 if (rc)
217 return rc;
218
219
220 if (time_after(jiffies, occ->next_update)) {
221 rc = occ_poll(occ);
222 occ->next_update = jiffies + OCC_UPDATE_FREQUENCY;
223 } else {
224 rc = occ->last_error;
225 }
226
227 mutex_unlock(&occ->lock);
228 return rc;
229}
230
231static ssize_t occ_show_temp_1(struct device *dev,
232 struct device_attribute *attr, char *buf)
233{
234 int rc;
235 u32 val = 0;
236 struct temp_sensor_1 *temp;
237 struct occ *occ = dev_get_drvdata(dev);
238 struct occ_sensors *sensors = &occ->sensors;
239 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
240
241 rc = occ_update_response(occ);
242 if (rc)
243 return rc;
244
245 temp = ((struct temp_sensor_1 *)sensors->temp.data) + sattr->index;
246
247 switch (sattr->nr) {
248 case 0:
249 val = get_unaligned_be16(&temp->sensor_id);
250 break;
251 case 1:
252
253
254
255
256 if (temp->value == 0xFFFF)
257 return -EREMOTEIO;
258 val = get_unaligned_be16(&temp->value) * 1000;
259 break;
260 default:
261 return -EINVAL;
262 }
263
264 return sysfs_emit(buf, "%u\n", val);
265}
266
267static ssize_t occ_show_temp_2(struct device *dev,
268 struct device_attribute *attr, char *buf)
269{
270 int rc;
271 u32 val = 0;
272 struct temp_sensor_2 *temp;
273 struct occ *occ = dev_get_drvdata(dev);
274 struct occ_sensors *sensors = &occ->sensors;
275 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
276
277 rc = occ_update_response(occ);
278 if (rc)
279 return rc;
280
281 temp = ((struct temp_sensor_2 *)sensors->temp.data) + sattr->index;
282
283 switch (sattr->nr) {
284 case 0:
285 val = get_unaligned_be32(&temp->sensor_id);
286 break;
287 case 1:
288 val = temp->value;
289 if (val == OCC_TEMP_SENSOR_FAULT)
290 return -EREMOTEIO;
291
292
293
294
295
296
297 if (temp->fru_type != OCC_FRU_TYPE_VRM) {
298
299 if (val == 0)
300 return -EAGAIN;
301
302 val *= 1000;
303 }
304 break;
305 case 2:
306 val = temp->fru_type;
307 break;
308 case 3:
309 val = temp->value == OCC_TEMP_SENSOR_FAULT;
310 break;
311 default:
312 return -EINVAL;
313 }
314
315 return sysfs_emit(buf, "%u\n", val);
316}
317
318static ssize_t occ_show_temp_10(struct device *dev,
319 struct device_attribute *attr, char *buf)
320{
321 int rc;
322 u32 val = 0;
323 struct temp_sensor_10 *temp;
324 struct occ *occ = dev_get_drvdata(dev);
325 struct occ_sensors *sensors = &occ->sensors;
326 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
327
328 rc = occ_update_response(occ);
329 if (rc)
330 return rc;
331
332 temp = ((struct temp_sensor_10 *)sensors->temp.data) + sattr->index;
333
334 switch (sattr->nr) {
335 case 0:
336 val = get_unaligned_be32(&temp->sensor_id);
337 break;
338 case 1:
339 val = temp->value;
340 if (val == OCC_TEMP_SENSOR_FAULT)
341 return -EREMOTEIO;
342
343
344 if (val == 0)
345 return -EAGAIN;
346
347 val *= 1000;
348 break;
349 case 2:
350 val = temp->fru_type;
351 break;
352 case 3:
353 val = temp->value == OCC_TEMP_SENSOR_FAULT;
354 break;
355 case 4:
356 val = temp->throttle * 1000;
357 break;
358 default:
359 return -EINVAL;
360 }
361
362 return sysfs_emit(buf, "%u\n", val);
363}
364
365static ssize_t occ_show_freq_1(struct device *dev,
366 struct device_attribute *attr, char *buf)
367{
368 int rc;
369 u16 val = 0;
370 struct freq_sensor_1 *freq;
371 struct occ *occ = dev_get_drvdata(dev);
372 struct occ_sensors *sensors = &occ->sensors;
373 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
374
375 rc = occ_update_response(occ);
376 if (rc)
377 return rc;
378
379 freq = ((struct freq_sensor_1 *)sensors->freq.data) + sattr->index;
380
381 switch (sattr->nr) {
382 case 0:
383 val = get_unaligned_be16(&freq->sensor_id);
384 break;
385 case 1:
386 val = get_unaligned_be16(&freq->value);
387 break;
388 default:
389 return -EINVAL;
390 }
391
392 return sysfs_emit(buf, "%u\n", val);
393}
394
395static ssize_t occ_show_freq_2(struct device *dev,
396 struct device_attribute *attr, char *buf)
397{
398 int rc;
399 u32 val = 0;
400 struct freq_sensor_2 *freq;
401 struct occ *occ = dev_get_drvdata(dev);
402 struct occ_sensors *sensors = &occ->sensors;
403 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
404
405 rc = occ_update_response(occ);
406 if (rc)
407 return rc;
408
409 freq = ((struct freq_sensor_2 *)sensors->freq.data) + sattr->index;
410
411 switch (sattr->nr) {
412 case 0:
413 val = get_unaligned_be32(&freq->sensor_id);
414 break;
415 case 1:
416 val = get_unaligned_be16(&freq->value);
417 break;
418 default:
419 return -EINVAL;
420 }
421
422 return sysfs_emit(buf, "%u\n", val);
423}
424
425static ssize_t occ_show_power_1(struct device *dev,
426 struct device_attribute *attr, char *buf)
427{
428 int rc;
429 u64 val = 0;
430 struct power_sensor_1 *power;
431 struct occ *occ = dev_get_drvdata(dev);
432 struct occ_sensors *sensors = &occ->sensors;
433 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
434
435 rc = occ_update_response(occ);
436 if (rc)
437 return rc;
438
439 power = ((struct power_sensor_1 *)sensors->power.data) + sattr->index;
440
441 switch (sattr->nr) {
442 case 0:
443 val = get_unaligned_be16(&power->sensor_id);
444 break;
445 case 1:
446 val = get_unaligned_be32(&power->accumulator) /
447 get_unaligned_be32(&power->update_tag);
448 val *= 1000000ULL;
449 break;
450 case 2:
451 val = (u64)get_unaligned_be32(&power->update_tag) *
452 occ->powr_sample_time_us;
453 break;
454 case 3:
455 val = get_unaligned_be16(&power->value) * 1000000ULL;
456 break;
457 default:
458 return -EINVAL;
459 }
460
461 return sysfs_emit(buf, "%llu\n", val);
462}
463
464static u64 occ_get_powr_avg(u64 *accum, u32 *samples)
465{
466 u64 divisor = get_unaligned_be32(samples);
467
468 return (divisor == 0) ? 0 :
469 div64_u64(get_unaligned_be64(accum) * 1000000ULL, divisor);
470}
471
472static ssize_t occ_show_power_2(struct device *dev,
473 struct device_attribute *attr, char *buf)
474{
475 int rc;
476 u64 val = 0;
477 struct power_sensor_2 *power;
478 struct occ *occ = dev_get_drvdata(dev);
479 struct occ_sensors *sensors = &occ->sensors;
480 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
481
482 rc = occ_update_response(occ);
483 if (rc)
484 return rc;
485
486 power = ((struct power_sensor_2 *)sensors->power.data) + sattr->index;
487
488 switch (sattr->nr) {
489 case 0:
490 return sysfs_emit(buf, "%u_%u_%u\n",
491 get_unaligned_be32(&power->sensor_id),
492 power->function_id, power->apss_channel);
493 case 1:
494 val = occ_get_powr_avg(&power->accumulator,
495 &power->update_tag);
496 break;
497 case 2:
498 val = (u64)get_unaligned_be32(&power->update_tag) *
499 occ->powr_sample_time_us;
500 break;
501 case 3:
502 val = get_unaligned_be16(&power->value) * 1000000ULL;
503 break;
504 default:
505 return -EINVAL;
506 }
507
508 return sysfs_emit(buf, "%llu\n", val);
509}
510
511static ssize_t occ_show_power_a0(struct device *dev,
512 struct device_attribute *attr, char *buf)
513{
514 int rc;
515 u64 val = 0;
516 struct power_sensor_a0 *power;
517 struct occ *occ = dev_get_drvdata(dev);
518 struct occ_sensors *sensors = &occ->sensors;
519 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
520
521 rc = occ_update_response(occ);
522 if (rc)
523 return rc;
524
525 power = ((struct power_sensor_a0 *)sensors->power.data) + sattr->index;
526
527 switch (sattr->nr) {
528 case 0:
529 return sysfs_emit(buf, "%u_system\n",
530 get_unaligned_be32(&power->sensor_id));
531 case 1:
532 val = occ_get_powr_avg(&power->system.accumulator,
533 &power->system.update_tag);
534 break;
535 case 2:
536 val = (u64)get_unaligned_be32(&power->system.update_tag) *
537 occ->powr_sample_time_us;
538 break;
539 case 3:
540 val = get_unaligned_be16(&power->system.value) * 1000000ULL;
541 break;
542 case 4:
543 return sysfs_emit(buf, "%u_proc\n",
544 get_unaligned_be32(&power->sensor_id));
545 case 5:
546 val = occ_get_powr_avg(&power->proc.accumulator,
547 &power->proc.update_tag);
548 break;
549 case 6:
550 val = (u64)get_unaligned_be32(&power->proc.update_tag) *
551 occ->powr_sample_time_us;
552 break;
553 case 7:
554 val = get_unaligned_be16(&power->proc.value) * 1000000ULL;
555 break;
556 case 8:
557 return sysfs_emit(buf, "%u_vdd\n",
558 get_unaligned_be32(&power->sensor_id));
559 case 9:
560 val = occ_get_powr_avg(&power->vdd.accumulator,
561 &power->vdd.update_tag);
562 break;
563 case 10:
564 val = (u64)get_unaligned_be32(&power->vdd.update_tag) *
565 occ->powr_sample_time_us;
566 break;
567 case 11:
568 val = get_unaligned_be16(&power->vdd.value) * 1000000ULL;
569 break;
570 case 12:
571 return sysfs_emit(buf, "%u_vdn\n",
572 get_unaligned_be32(&power->sensor_id));
573 case 13:
574 val = occ_get_powr_avg(&power->vdn.accumulator,
575 &power->vdn.update_tag);
576 break;
577 case 14:
578 val = (u64)get_unaligned_be32(&power->vdn.update_tag) *
579 occ->powr_sample_time_us;
580 break;
581 case 15:
582 val = get_unaligned_be16(&power->vdn.value) * 1000000ULL;
583 break;
584 default:
585 return -EINVAL;
586 }
587
588 return sysfs_emit(buf, "%llu\n", val);
589}
590
591static ssize_t occ_show_caps_1_2(struct device *dev,
592 struct device_attribute *attr, char *buf)
593{
594 int rc;
595 u64 val = 0;
596 struct caps_sensor_2 *caps;
597 struct occ *occ = dev_get_drvdata(dev);
598 struct occ_sensors *sensors = &occ->sensors;
599 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
600
601 rc = occ_update_response(occ);
602 if (rc)
603 return rc;
604
605 caps = ((struct caps_sensor_2 *)sensors->caps.data) + sattr->index;
606
607 switch (sattr->nr) {
608 case 0:
609 return sysfs_emit(buf, "system\n");
610 case 1:
611 val = get_unaligned_be16(&caps->cap) * 1000000ULL;
612 break;
613 case 2:
614 val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
615 break;
616 case 3:
617 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
618 break;
619 case 4:
620 val = get_unaligned_be16(&caps->max) * 1000000ULL;
621 break;
622 case 5:
623 val = get_unaligned_be16(&caps->min) * 1000000ULL;
624 break;
625 case 6:
626 val = get_unaligned_be16(&caps->user) * 1000000ULL;
627 break;
628 case 7:
629 if (occ->sensors.caps.version == 1)
630 return -EINVAL;
631
632 val = caps->user_source;
633 break;
634 default:
635 return -EINVAL;
636 }
637
638 return sysfs_emit(buf, "%llu\n", val);
639}
640
641static ssize_t occ_show_caps_3(struct device *dev,
642 struct device_attribute *attr, char *buf)
643{
644 int rc;
645 u64 val = 0;
646 struct caps_sensor_3 *caps;
647 struct occ *occ = dev_get_drvdata(dev);
648 struct occ_sensors *sensors = &occ->sensors;
649 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
650
651 rc = occ_update_response(occ);
652 if (rc)
653 return rc;
654
655 caps = ((struct caps_sensor_3 *)sensors->caps.data) + sattr->index;
656
657 switch (sattr->nr) {
658 case 0:
659 return sysfs_emit(buf, "system\n");
660 case 1:
661 val = get_unaligned_be16(&caps->cap) * 1000000ULL;
662 break;
663 case 2:
664 val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
665 break;
666 case 3:
667 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
668 break;
669 case 4:
670 val = get_unaligned_be16(&caps->max) * 1000000ULL;
671 break;
672 case 5:
673 val = get_unaligned_be16(&caps->hard_min) * 1000000ULL;
674 break;
675 case 6:
676 val = get_unaligned_be16(&caps->user) * 1000000ULL;
677 break;
678 case 7:
679 val = caps->user_source;
680 break;
681 default:
682 return -EINVAL;
683 }
684
685 return sysfs_emit(buf, "%llu\n", val);
686}
687
688static ssize_t occ_store_caps_user(struct device *dev,
689 struct device_attribute *attr,
690 const char *buf, size_t count)
691{
692 int rc;
693 u16 user_power_cap;
694 unsigned long long value;
695 struct occ *occ = dev_get_drvdata(dev);
696
697 rc = kstrtoull(buf, 0, &value);
698 if (rc)
699 return rc;
700
701 user_power_cap = div64_u64(value, 1000000ULL);
702
703 rc = occ_set_user_power_cap(occ, user_power_cap);
704 if (rc)
705 return rc;
706
707 return count;
708}
709
710static ssize_t occ_show_extended(struct device *dev,
711 struct device_attribute *attr, char *buf)
712{
713 int rc;
714 struct extended_sensor *extn;
715 struct occ *occ = dev_get_drvdata(dev);
716 struct occ_sensors *sensors = &occ->sensors;
717 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
718
719 rc = occ_update_response(occ);
720 if (rc)
721 return rc;
722
723 extn = ((struct extended_sensor *)sensors->extended.data) +
724 sattr->index;
725
726 switch (sattr->nr) {
727 case 0:
728 if (extn->flags & EXTN_FLAG_SENSOR_ID) {
729 rc = sysfs_emit(buf, "%u",
730 get_unaligned_be32(&extn->sensor_id));
731 } else {
732 rc = sysfs_emit(buf, "%02x%02x%02x%02x\n",
733 extn->name[0], extn->name[1],
734 extn->name[2], extn->name[3]);
735 }
736 break;
737 case 1:
738 rc = sysfs_emit(buf, "%02x\n", extn->flags);
739 break;
740 case 2:
741 rc = sysfs_emit(buf, "%02x%02x%02x%02x%02x%02x\n",
742 extn->data[0], extn->data[1], extn->data[2],
743 extn->data[3], extn->data[4], extn->data[5]);
744 break;
745 default:
746 return -EINVAL;
747 }
748
749 return rc;
750}
751
752
753
754
755
756
757#define ATTR_OCC(_name, _mode, _show, _store) { \
758 .attr = { \
759 .name = _name, \
760 .mode = VERIFY_OCTAL_PERMISSIONS(_mode), \
761 }, \
762 .show = _show, \
763 .store = _store, \
764}
765
766#define SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index) { \
767 .dev_attr = ATTR_OCC(_name, _mode, _show, _store), \
768 .index = _index, \
769 .nr = _nr, \
770}
771
772#define OCC_INIT_ATTR(_name, _mode, _show, _store, _nr, _index) \
773 ((struct sensor_device_attribute_2) \
774 SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index))
775
776
777
778
779
780static int occ_setup_sensor_attrs(struct occ *occ)
781{
782 unsigned int i, s, num_attrs = 0;
783 struct device *dev = occ->bus_dev;
784 struct occ_sensors *sensors = &occ->sensors;
785 struct occ_attribute *attr;
786 struct temp_sensor_2 *temp;
787 ssize_t (*show_temp)(struct device *, struct device_attribute *,
788 char *) = occ_show_temp_1;
789 ssize_t (*show_freq)(struct device *, struct device_attribute *,
790 char *) = occ_show_freq_1;
791 ssize_t (*show_power)(struct device *, struct device_attribute *,
792 char *) = occ_show_power_1;
793 ssize_t (*show_caps)(struct device *, struct device_attribute *,
794 char *) = occ_show_caps_1_2;
795
796 switch (sensors->temp.version) {
797 case 1:
798 num_attrs += (sensors->temp.num_sensors * 2);
799 break;
800 case 2:
801 num_attrs += (sensors->temp.num_sensors * 4);
802 show_temp = occ_show_temp_2;
803 break;
804 case 0x10:
805 num_attrs += (sensors->temp.num_sensors * 5);
806 show_temp = occ_show_temp_10;
807 break;
808 default:
809 sensors->temp.num_sensors = 0;
810 }
811
812 switch (sensors->freq.version) {
813 case 2:
814 show_freq = occ_show_freq_2;
815 fallthrough;
816 case 1:
817 num_attrs += (sensors->freq.num_sensors * 2);
818 break;
819 default:
820 sensors->freq.num_sensors = 0;
821 }
822
823 switch (sensors->power.version) {
824 case 2:
825 show_power = occ_show_power_2;
826 fallthrough;
827 case 1:
828 num_attrs += (sensors->power.num_sensors * 4);
829 break;
830 case 0xA0:
831 num_attrs += (sensors->power.num_sensors * 16);
832 show_power = occ_show_power_a0;
833 break;
834 default:
835 sensors->power.num_sensors = 0;
836 }
837
838 switch (sensors->caps.version) {
839 case 1:
840 num_attrs += (sensors->caps.num_sensors * 7);
841 break;
842 case 3:
843 show_caps = occ_show_caps_3;
844 fallthrough;
845 case 2:
846 num_attrs += (sensors->caps.num_sensors * 8);
847 break;
848 default:
849 sensors->caps.num_sensors = 0;
850 }
851
852 switch (sensors->extended.version) {
853 case 1:
854 num_attrs += (sensors->extended.num_sensors * 3);
855 break;
856 default:
857 sensors->extended.num_sensors = 0;
858 }
859
860 occ->attrs = devm_kzalloc(dev, sizeof(*occ->attrs) * num_attrs,
861 GFP_KERNEL);
862 if (!occ->attrs)
863 return -ENOMEM;
864
865
866 occ->group.attrs = devm_kzalloc(dev, sizeof(*occ->group.attrs) *
867 num_attrs + 1, GFP_KERNEL);
868 if (!occ->group.attrs)
869 return -ENOMEM;
870
871 attr = occ->attrs;
872
873 for (i = 0; i < sensors->temp.num_sensors; ++i) {
874 s = i + 1;
875 temp = ((struct temp_sensor_2 *)sensors->temp.data) + i;
876
877 snprintf(attr->name, sizeof(attr->name), "temp%d_label", s);
878 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
879 0, i);
880 attr++;
881
882 if (sensors->temp.version == 2 &&
883 temp->fru_type == OCC_FRU_TYPE_VRM) {
884 snprintf(attr->name, sizeof(attr->name),
885 "temp%d_alarm", s);
886 } else {
887 snprintf(attr->name, sizeof(attr->name),
888 "temp%d_input", s);
889 }
890
891 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
892 1, i);
893 attr++;
894
895 if (sensors->temp.version > 1) {
896 snprintf(attr->name, sizeof(attr->name),
897 "temp%d_fru_type", s);
898 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
899 show_temp, NULL, 2, i);
900 attr++;
901
902 snprintf(attr->name, sizeof(attr->name),
903 "temp%d_fault", s);
904 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
905 show_temp, NULL, 3, i);
906 attr++;
907
908 if (sensors->temp.version == 0x10) {
909 snprintf(attr->name, sizeof(attr->name),
910 "temp%d_max", s);
911 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
912 show_temp, NULL,
913 4, i);
914 attr++;
915 }
916 }
917 }
918
919 for (i = 0; i < sensors->freq.num_sensors; ++i) {
920 s = i + 1;
921
922 snprintf(attr->name, sizeof(attr->name), "freq%d_label", s);
923 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
924 0, i);
925 attr++;
926
927 snprintf(attr->name, sizeof(attr->name), "freq%d_input", s);
928 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
929 1, i);
930 attr++;
931 }
932
933 if (sensors->power.version == 0xA0) {
934
935
936
937
938 for (i = 0; i < sensors->power.num_sensors; ++i) {
939 unsigned int j;
940 unsigned int nr = 0;
941
942 s = (i * 4) + 1;
943
944 for (j = 0; j < 4; ++j) {
945 snprintf(attr->name, sizeof(attr->name),
946 "power%d_label", s);
947 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
948 show_power, NULL,
949 nr++, i);
950 attr++;
951
952 snprintf(attr->name, sizeof(attr->name),
953 "power%d_average", s);
954 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
955 show_power, NULL,
956 nr++, i);
957 attr++;
958
959 snprintf(attr->name, sizeof(attr->name),
960 "power%d_average_interval", s);
961 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
962 show_power, NULL,
963 nr++, i);
964 attr++;
965
966 snprintf(attr->name, sizeof(attr->name),
967 "power%d_input", s);
968 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
969 show_power, NULL,
970 nr++, i);
971 attr++;
972
973 s++;
974 }
975 }
976
977 s = (sensors->power.num_sensors * 4) + 1;
978 } else {
979 for (i = 0; i < sensors->power.num_sensors; ++i) {
980 s = i + 1;
981
982 snprintf(attr->name, sizeof(attr->name),
983 "power%d_label", s);
984 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
985 show_power, NULL, 0, i);
986 attr++;
987
988 snprintf(attr->name, sizeof(attr->name),
989 "power%d_average", s);
990 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
991 show_power, NULL, 1, i);
992 attr++;
993
994 snprintf(attr->name, sizeof(attr->name),
995 "power%d_average_interval", s);
996 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
997 show_power, NULL, 2, i);
998 attr++;
999
1000 snprintf(attr->name, sizeof(attr->name),
1001 "power%d_input", s);
1002 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1003 show_power, NULL, 3, i);
1004 attr++;
1005 }
1006
1007 s = sensors->power.num_sensors + 1;
1008 }
1009
1010 if (sensors->caps.num_sensors >= 1) {
1011 snprintf(attr->name, sizeof(attr->name), "power%d_label", s);
1012 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1013 0, 0);
1014 attr++;
1015
1016 snprintf(attr->name, sizeof(attr->name), "power%d_cap", s);
1017 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1018 1, 0);
1019 attr++;
1020
1021 snprintf(attr->name, sizeof(attr->name), "power%d_input", s);
1022 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1023 2, 0);
1024 attr++;
1025
1026 snprintf(attr->name, sizeof(attr->name),
1027 "power%d_cap_not_redundant", s);
1028 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1029 3, 0);
1030 attr++;
1031
1032 snprintf(attr->name, sizeof(attr->name), "power%d_cap_max", s);
1033 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1034 4, 0);
1035 attr++;
1036
1037 snprintf(attr->name, sizeof(attr->name), "power%d_cap_min", s);
1038 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1039 5, 0);
1040 attr++;
1041
1042 snprintf(attr->name, sizeof(attr->name), "power%d_cap_user",
1043 s);
1044 attr->sensor = OCC_INIT_ATTR(attr->name, 0644, show_caps,
1045 occ_store_caps_user, 6, 0);
1046 attr++;
1047
1048 if (sensors->caps.version > 1) {
1049 snprintf(attr->name, sizeof(attr->name),
1050 "power%d_cap_user_source", s);
1051 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1052 show_caps, NULL, 7, 0);
1053 attr++;
1054 }
1055 }
1056
1057 for (i = 0; i < sensors->extended.num_sensors; ++i) {
1058 s = i + 1;
1059
1060 snprintf(attr->name, sizeof(attr->name), "extn%d_label", s);
1061 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1062 occ_show_extended, NULL, 0, i);
1063 attr++;
1064
1065 snprintf(attr->name, sizeof(attr->name), "extn%d_flags", s);
1066 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1067 occ_show_extended, NULL, 1, i);
1068 attr++;
1069
1070 snprintf(attr->name, sizeof(attr->name), "extn%d_input", s);
1071 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1072 occ_show_extended, NULL, 2, i);
1073 attr++;
1074 }
1075
1076
1077 for (i = 0; i < num_attrs; ++i) {
1078 sysfs_attr_init(&occ->attrs[i].sensor.dev_attr.attr);
1079 occ->group.attrs[i] = &occ->attrs[i].sensor.dev_attr.attr;
1080 }
1081
1082 return 0;
1083}
1084
1085
1086static void occ_parse_poll_response(struct occ *occ)
1087{
1088 unsigned int i, old_offset, offset = 0, size = 0;
1089 struct occ_sensor *sensor;
1090 struct occ_sensors *sensors = &occ->sensors;
1091 struct occ_response *resp = &occ->resp;
1092 struct occ_poll_response *poll =
1093 (struct occ_poll_response *)&resp->data[0];
1094 struct occ_poll_response_header *header = &poll->header;
1095 struct occ_sensor_data_block *block = &poll->block;
1096
1097 dev_info(occ->bus_dev, "OCC found, code level: %.16s\n",
1098 header->occ_code_level);
1099
1100 for (i = 0; i < header->num_sensor_data_blocks; ++i) {
1101 block = (struct occ_sensor_data_block *)((u8 *)block + offset);
1102 old_offset = offset;
1103 offset = (block->header.num_sensors *
1104 block->header.sensor_length) + sizeof(block->header);
1105 size += offset;
1106
1107
1108 if ((size + sizeof(*header)) >= OCC_RESP_DATA_BYTES) {
1109 dev_warn(occ->bus_dev, "exceeded response buffer\n");
1110 return;
1111 }
1112
1113 dev_dbg(occ->bus_dev, " %04x..%04x: %.4s (%d sensors)\n",
1114 old_offset, offset - 1, block->header.eye_catcher,
1115 block->header.num_sensors);
1116
1117
1118 if (strncmp(block->header.eye_catcher, "TEMP", 4) == 0)
1119 sensor = &sensors->temp;
1120 else if (strncmp(block->header.eye_catcher, "FREQ", 4) == 0)
1121 sensor = &sensors->freq;
1122 else if (strncmp(block->header.eye_catcher, "POWR", 4) == 0)
1123 sensor = &sensors->power;
1124 else if (strncmp(block->header.eye_catcher, "CAPS", 4) == 0)
1125 sensor = &sensors->caps;
1126 else if (strncmp(block->header.eye_catcher, "EXTN", 4) == 0)
1127 sensor = &sensors->extended;
1128 else {
1129 dev_warn(occ->bus_dev, "sensor not supported %.4s\n",
1130 block->header.eye_catcher);
1131 continue;
1132 }
1133
1134 sensor->num_sensors = block->header.num_sensors;
1135 sensor->version = block->header.sensor_format;
1136 sensor->data = &block->data;
1137 }
1138
1139 dev_dbg(occ->bus_dev, "Max resp size: %u+%zd=%zd\n", size,
1140 sizeof(*header), size + sizeof(*header));
1141}
1142
1143int occ_setup(struct occ *occ, const char *name)
1144{
1145 int rc;
1146
1147
1148 occ->seq_no = 1;
1149 mutex_init(&occ->lock);
1150 occ->groups[0] = &occ->group;
1151
1152
1153 rc = occ_poll(occ);
1154 if (rc == -ESHUTDOWN) {
1155 dev_info(occ->bus_dev, "host is not ready\n");
1156 return rc;
1157 } else if (rc < 0) {
1158 dev_err(occ->bus_dev,
1159 "failed to get OCC poll response=%02x: %d\n",
1160 occ->resp.return_status, rc);
1161 return rc;
1162 }
1163
1164 occ->next_update = jiffies + OCC_UPDATE_FREQUENCY;
1165 occ_parse_poll_response(occ);
1166
1167 rc = occ_setup_sensor_attrs(occ);
1168 if (rc) {
1169 dev_err(occ->bus_dev, "failed to setup sensor attrs: %d\n",
1170 rc);
1171 return rc;
1172 }
1173
1174 occ->hwmon = devm_hwmon_device_register_with_groups(occ->bus_dev, name,
1175 occ, occ->groups);
1176 if (IS_ERR(occ->hwmon)) {
1177 rc = PTR_ERR(occ->hwmon);
1178 dev_err(occ->bus_dev, "failed to register hwmon device: %d\n",
1179 rc);
1180 return rc;
1181 }
1182
1183 rc = occ_setup_sysfs(occ);
1184 if (rc)
1185 dev_err(occ->bus_dev, "failed to setup sysfs: %d\n", rc);
1186
1187 return rc;
1188}
1189EXPORT_SYMBOL_GPL(occ_setup);
1190
1191MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>");
1192MODULE_DESCRIPTION("Common OCC hwmon code");
1193MODULE_LICENSE("GPL");
1194