linux/drivers/infiniband/core/device.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2004 Topspin Communications.  All rights reserved.
   3 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
   4 *
   5 * This software is available to you under a choice of one of two
   6 * licenses.  You may choose to be licensed under the terms of the GNU
   7 * General Public License (GPL) Version 2, available from the file
   8 * COPYING in the main directory of this source tree, or the
   9 * OpenIB.org BSD license below:
  10 *
  11 *     Redistribution and use in source and binary forms, with or
  12 *     without modification, are permitted provided that the following
  13 *     conditions are met:
  14 *
  15 *      - Redistributions of source code must retain the above
  16 *        copyright notice, this list of conditions and the following
  17 *        disclaimer.
  18 *
  19 *      - Redistributions in binary form must reproduce the above
  20 *        copyright notice, this list of conditions and the following
  21 *        disclaimer in the documentation and/or other materials
  22 *        provided with the distribution.
  23 *
  24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  31 * SOFTWARE.
  32 */
  33
  34#include <linux/module.h>
  35#include <linux/string.h>
  36#include <linux/errno.h>
  37#include <linux/kernel.h>
  38#include <linux/slab.h>
  39#include <linux/init.h>
  40#include <linux/netdevice.h>
  41#include <net/net_namespace.h>
  42#include <linux/security.h>
  43#include <linux/notifier.h>
  44#include <linux/hashtable.h>
  45#include <rdma/rdma_netlink.h>
  46#include <rdma/ib_addr.h>
  47#include <rdma/ib_cache.h>
  48#include <rdma/rdma_counter.h>
  49
  50#include "core_priv.h"
  51#include "restrack.h"
  52
  53MODULE_AUTHOR("Roland Dreier");
  54MODULE_DESCRIPTION("core kernel InfiniBand API");
  55MODULE_LICENSE("Dual BSD/GPL");
  56
  57struct workqueue_struct *ib_comp_wq;
  58struct workqueue_struct *ib_comp_unbound_wq;
  59struct workqueue_struct *ib_wq;
  60EXPORT_SYMBOL_GPL(ib_wq);
  61
  62/*
  63 * Each of the three rwsem locks (devices, clients, client_data) protects the
  64 * xarray of the same name. Specifically it allows the caller to assert that
  65 * the MARK will/will not be changing under the lock, and for devices and
  66 * clients, that the value in the xarray is still a valid pointer. Change of
  67 * the MARK is linked to the object state, so holding the lock and testing the
  68 * MARK also asserts that the contained object is in a certain state.
  69 *
  70 * This is used to build a two stage register/unregister flow where objects
  71 * can continue to be in the xarray even though they are still in progress to
  72 * register/unregister.
  73 *
  74 * The xarray itself provides additional locking, and restartable iteration,
  75 * which is also relied on.
  76 *
  77 * Locks should not be nested, with the exception of client_data, which is
  78 * allowed to nest under the read side of the other two locks.
  79 *
  80 * The devices_rwsem also protects the device name list, any change or
  81 * assignment of device name must also hold the write side to guarantee unique
  82 * names.
  83 */
  84
  85/*
  86 * devices contains devices that have had their names assigned. The
  87 * devices may not be registered. Users that care about the registration
  88 * status need to call ib_device_try_get() on the device to ensure it is
  89 * registered, and keep it registered, for the required duration.
  90 *
  91 */
  92static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
  93static DECLARE_RWSEM(devices_rwsem);
  94#define DEVICE_REGISTERED XA_MARK_1
  95
  96static u32 highest_client_id;
  97#define CLIENT_REGISTERED XA_MARK_1
  98static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
  99static DECLARE_RWSEM(clients_rwsem);
 100
 101static void ib_client_put(struct ib_client *client)
 102{
 103        if (refcount_dec_and_test(&client->uses))
 104                complete(&client->uses_zero);
 105}
 106
 107/*
 108 * If client_data is registered then the corresponding client must also still
 109 * be registered.
 110 */
 111#define CLIENT_DATA_REGISTERED XA_MARK_1
 112
 113unsigned int rdma_dev_net_id;
 114
 115/*
 116 * A list of net namespaces is maintained in an xarray. This is necessary
 117 * because we can't get the locking right using the existing net ns list. We
 118 * would require a init_net callback after the list is updated.
 119 */
 120static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
 121/*
 122 * rwsem to protect accessing the rdma_nets xarray entries.
 123 */
 124static DECLARE_RWSEM(rdma_nets_rwsem);
 125
 126bool ib_devices_shared_netns = true;
 127module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
 128MODULE_PARM_DESC(netns_mode,
 129                 "Share device among net namespaces; default=1 (shared)");
 130/**
 131 * rdma_dev_access_netns() - Return whether an rdma device can be accessed
 132 *                           from a specified net namespace or not.
 133 * @dev:        Pointer to rdma device which needs to be checked
 134 * @net:        Pointer to net namesapce for which access to be checked
 135 *
 136 * When the rdma device is in shared mode, it ignores the net namespace.
 137 * When the rdma device is exclusive to a net namespace, rdma device net
 138 * namespace is checked against the specified one.
 139 */
 140bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
 141{
 142        return (ib_devices_shared_netns ||
 143                net_eq(read_pnet(&dev->coredev.rdma_net), net));
 144}
 145EXPORT_SYMBOL(rdma_dev_access_netns);
 146
 147/*
 148 * xarray has this behavior where it won't iterate over NULL values stored in
 149 * allocated arrays.  So we need our own iterator to see all values stored in
 150 * the array. This does the same thing as xa_for_each except that it also
 151 * returns NULL valued entries if the array is allocating. Simplified to only
 152 * work on simple xarrays.
 153 */
 154static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
 155                             xa_mark_t filter)
 156{
 157        XA_STATE(xas, xa, *indexp);
 158        void *entry;
 159
 160        rcu_read_lock();
 161        do {
 162                entry = xas_find_marked(&xas, ULONG_MAX, filter);
 163                if (xa_is_zero(entry))
 164                        break;
 165        } while (xas_retry(&xas, entry));
 166        rcu_read_unlock();
 167
 168        if (entry) {
 169                *indexp = xas.xa_index;
 170                if (xa_is_zero(entry))
 171                        return NULL;
 172                return entry;
 173        }
 174        return XA_ERROR(-ENOENT);
 175}
 176#define xan_for_each_marked(xa, index, entry, filter)                          \
 177        for (index = 0, entry = xan_find_marked(xa, &(index), filter);         \
 178             !xa_is_err(entry);                                                \
 179             (index)++, entry = xan_find_marked(xa, &(index), filter))
 180
 181/* RCU hash table mapping netdevice pointers to struct ib_port_data */
 182static DEFINE_SPINLOCK(ndev_hash_lock);
 183static DECLARE_HASHTABLE(ndev_hash, 5);
 184
 185static void free_netdevs(struct ib_device *ib_dev);
 186static void ib_unregister_work(struct work_struct *work);
 187static void __ib_unregister_device(struct ib_device *device);
 188static int ib_security_change(struct notifier_block *nb, unsigned long event,
 189                              void *lsm_data);
 190static void ib_policy_change_task(struct work_struct *work);
 191static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
 192
 193static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
 194                           struct va_format *vaf)
 195{
 196        if (ibdev && ibdev->dev.parent)
 197                dev_printk_emit(level[1] - '0',
 198                                ibdev->dev.parent,
 199                                "%s %s %s: %pV",
 200                                dev_driver_string(ibdev->dev.parent),
 201                                dev_name(ibdev->dev.parent),
 202                                dev_name(&ibdev->dev),
 203                                vaf);
 204        else if (ibdev)
 205                printk("%s%s: %pV",
 206                       level, dev_name(&ibdev->dev), vaf);
 207        else
 208                printk("%s(NULL ib_device): %pV", level, vaf);
 209}
 210
 211void ibdev_printk(const char *level, const struct ib_device *ibdev,
 212                  const char *format, ...)
 213{
 214        struct va_format vaf;
 215        va_list args;
 216
 217        va_start(args, format);
 218
 219        vaf.fmt = format;
 220        vaf.va = &args;
 221
 222        __ibdev_printk(level, ibdev, &vaf);
 223
 224        va_end(args);
 225}
 226EXPORT_SYMBOL(ibdev_printk);
 227
 228#define define_ibdev_printk_level(func, level)                  \
 229void func(const struct ib_device *ibdev, const char *fmt, ...)  \
 230{                                                               \
 231        struct va_format vaf;                                   \
 232        va_list args;                                           \
 233                                                                \
 234        va_start(args, fmt);                                    \
 235                                                                \
 236        vaf.fmt = fmt;                                          \
 237        vaf.va = &args;                                         \
 238                                                                \
 239        __ibdev_printk(level, ibdev, &vaf);                     \
 240                                                                \
 241        va_end(args);                                           \
 242}                                                               \
 243EXPORT_SYMBOL(func);
 244
 245define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
 246define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
 247define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
 248define_ibdev_printk_level(ibdev_err, KERN_ERR);
 249define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
 250define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
 251define_ibdev_printk_level(ibdev_info, KERN_INFO);
 252
 253static struct notifier_block ibdev_lsm_nb = {
 254        .notifier_call = ib_security_change,
 255};
 256
 257static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
 258                                 struct net *net);
 259
 260/* Pointer to the RCU head at the start of the ib_port_data array */
 261struct ib_port_data_rcu {
 262        struct rcu_head rcu_head;
 263        struct ib_port_data pdata[];
 264};
 265
 266static void ib_device_check_mandatory(struct ib_device *device)
 267{
 268#define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
 269        static const struct {
 270                size_t offset;
 271                char  *name;
 272        } mandatory_table[] = {
 273                IB_MANDATORY_FUNC(query_device),
 274                IB_MANDATORY_FUNC(query_port),
 275                IB_MANDATORY_FUNC(alloc_pd),
 276                IB_MANDATORY_FUNC(dealloc_pd),
 277                IB_MANDATORY_FUNC(create_qp),
 278                IB_MANDATORY_FUNC(modify_qp),
 279                IB_MANDATORY_FUNC(destroy_qp),
 280                IB_MANDATORY_FUNC(post_send),
 281                IB_MANDATORY_FUNC(post_recv),
 282                IB_MANDATORY_FUNC(create_cq),
 283                IB_MANDATORY_FUNC(destroy_cq),
 284                IB_MANDATORY_FUNC(poll_cq),
 285                IB_MANDATORY_FUNC(req_notify_cq),
 286                IB_MANDATORY_FUNC(get_dma_mr),
 287                IB_MANDATORY_FUNC(reg_user_mr),
 288                IB_MANDATORY_FUNC(dereg_mr),
 289                IB_MANDATORY_FUNC(get_port_immutable)
 290        };
 291        int i;
 292
 293        device->kverbs_provider = true;
 294        for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
 295                if (!*(void **) ((void *) &device->ops +
 296                                 mandatory_table[i].offset)) {
 297                        device->kverbs_provider = false;
 298                        break;
 299                }
 300        }
 301}
 302
 303/*
 304 * Caller must perform ib_device_put() to return the device reference count
 305 * when ib_device_get_by_index() returns valid device pointer.
 306 */
 307struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
 308{
 309        struct ib_device *device;
 310
 311        down_read(&devices_rwsem);
 312        device = xa_load(&devices, index);
 313        if (device) {
 314                if (!rdma_dev_access_netns(device, net)) {
 315                        device = NULL;
 316                        goto out;
 317                }
 318
 319                if (!ib_device_try_get(device))
 320                        device = NULL;
 321        }
 322out:
 323        up_read(&devices_rwsem);
 324        return device;
 325}
 326
 327/**
 328 * ib_device_put - Release IB device reference
 329 * @device: device whose reference to be released
 330 *
 331 * ib_device_put() releases reference to the IB device to allow it to be
 332 * unregistered and eventually free.
 333 */
 334void ib_device_put(struct ib_device *device)
 335{
 336        if (refcount_dec_and_test(&device->refcount))
 337                complete(&device->unreg_completion);
 338}
 339EXPORT_SYMBOL(ib_device_put);
 340
 341static struct ib_device *__ib_device_get_by_name(const char *name)
 342{
 343        struct ib_device *device;
 344        unsigned long index;
 345
 346        xa_for_each (&devices, index, device)
 347                if (!strcmp(name, dev_name(&device->dev)))
 348                        return device;
 349
 350        return NULL;
 351}
 352
 353/**
 354 * ib_device_get_by_name - Find an IB device by name
 355 * @name: The name to look for
 356 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
 357 *
 358 * Find and hold an ib_device by its name. The caller must call
 359 * ib_device_put() on the returned pointer.
 360 */
 361struct ib_device *ib_device_get_by_name(const char *name,
 362                                        enum rdma_driver_id driver_id)
 363{
 364        struct ib_device *device;
 365
 366        down_read(&devices_rwsem);
 367        device = __ib_device_get_by_name(name);
 368        if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
 369            device->ops.driver_id != driver_id)
 370                device = NULL;
 371
 372        if (device) {
 373                if (!ib_device_try_get(device))
 374                        device = NULL;
 375        }
 376        up_read(&devices_rwsem);
 377        return device;
 378}
 379EXPORT_SYMBOL(ib_device_get_by_name);
 380
 381static int rename_compat_devs(struct ib_device *device)
 382{
 383        struct ib_core_device *cdev;
 384        unsigned long index;
 385        int ret = 0;
 386
 387        mutex_lock(&device->compat_devs_mutex);
 388        xa_for_each (&device->compat_devs, index, cdev) {
 389                ret = device_rename(&cdev->dev, dev_name(&device->dev));
 390                if (ret) {
 391                        dev_warn(&cdev->dev,
 392                                 "Fail to rename compatdev to new name %s\n",
 393                                 dev_name(&device->dev));
 394                        break;
 395                }
 396        }
 397        mutex_unlock(&device->compat_devs_mutex);
 398        return ret;
 399}
 400
 401int ib_device_rename(struct ib_device *ibdev, const char *name)
 402{
 403        unsigned long index;
 404        void *client_data;
 405        int ret;
 406
 407        down_write(&devices_rwsem);
 408        if (!strcmp(name, dev_name(&ibdev->dev))) {
 409                up_write(&devices_rwsem);
 410                return 0;
 411        }
 412
 413        if (__ib_device_get_by_name(name)) {
 414                up_write(&devices_rwsem);
 415                return -EEXIST;
 416        }
 417
 418        ret = device_rename(&ibdev->dev, name);
 419        if (ret) {
 420                up_write(&devices_rwsem);
 421                return ret;
 422        }
 423
 424        strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
 425        ret = rename_compat_devs(ibdev);
 426
 427        downgrade_write(&devices_rwsem);
 428        down_read(&ibdev->client_data_rwsem);
 429        xan_for_each_marked(&ibdev->client_data, index, client_data,
 430                            CLIENT_DATA_REGISTERED) {
 431                struct ib_client *client = xa_load(&clients, index);
 432
 433                if (!client || !client->rename)
 434                        continue;
 435
 436                client->rename(ibdev, client_data);
 437        }
 438        up_read(&ibdev->client_data_rwsem);
 439        up_read(&devices_rwsem);
 440        return 0;
 441}
 442
 443int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
 444{
 445        if (use_dim > 1)
 446                return -EINVAL;
 447        ibdev->use_cq_dim = use_dim;
 448
 449        return 0;
 450}
 451
 452static int alloc_name(struct ib_device *ibdev, const char *name)
 453{
 454        struct ib_device *device;
 455        unsigned long index;
 456        struct ida inuse;
 457        int rc;
 458        int i;
 459
 460        lockdep_assert_held_write(&devices_rwsem);
 461        ida_init(&inuse);
 462        xa_for_each (&devices, index, device) {
 463                char buf[IB_DEVICE_NAME_MAX];
 464
 465                if (sscanf(dev_name(&device->dev), name, &i) != 1)
 466                        continue;
 467                if (i < 0 || i >= INT_MAX)
 468                        continue;
 469                snprintf(buf, sizeof buf, name, i);
 470                if (strcmp(buf, dev_name(&device->dev)) != 0)
 471                        continue;
 472
 473                rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
 474                if (rc < 0)
 475                        goto out;
 476        }
 477
 478        rc = ida_alloc(&inuse, GFP_KERNEL);
 479        if (rc < 0)
 480                goto out;
 481
 482        rc = dev_set_name(&ibdev->dev, name, rc);
 483out:
 484        ida_destroy(&inuse);
 485        return rc;
 486}
 487
 488static void ib_device_release(struct device *device)
 489{
 490        struct ib_device *dev = container_of(device, struct ib_device, dev);
 491
 492        free_netdevs(dev);
 493        WARN_ON(refcount_read(&dev->refcount));
 494        if (dev->hw_stats_data)
 495                ib_device_release_hw_stats(dev->hw_stats_data);
 496        if (dev->port_data) {
 497                ib_cache_release_one(dev);
 498                ib_security_release_port_pkey_list(dev);
 499                rdma_counter_release(dev);
 500                kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
 501                                       pdata[0]),
 502                          rcu_head);
 503        }
 504
 505        mutex_destroy(&dev->unregistration_lock);
 506        mutex_destroy(&dev->compat_devs_mutex);
 507
 508        xa_destroy(&dev->compat_devs);
 509        xa_destroy(&dev->client_data);
 510        kfree_rcu(dev, rcu_head);
 511}
 512
 513static int ib_device_uevent(struct device *device,
 514                            struct kobj_uevent_env *env)
 515{
 516        if (add_uevent_var(env, "NAME=%s", dev_name(device)))
 517                return -ENOMEM;
 518
 519        /*
 520         * It would be nice to pass the node GUID with the event...
 521         */
 522
 523        return 0;
 524}
 525
 526static const void *net_namespace(struct device *d)
 527{
 528        struct ib_core_device *coredev =
 529                        container_of(d, struct ib_core_device, dev);
 530
 531        return read_pnet(&coredev->rdma_net);
 532}
 533
 534static struct class ib_class = {
 535        .name    = "infiniband",
 536        .dev_release = ib_device_release,
 537        .dev_uevent = ib_device_uevent,
 538        .ns_type = &net_ns_type_operations,
 539        .namespace = net_namespace,
 540};
 541
 542static void rdma_init_coredev(struct ib_core_device *coredev,
 543                              struct ib_device *dev, struct net *net)
 544{
 545        /* This BUILD_BUG_ON is intended to catch layout change
 546         * of union of ib_core_device and device.
 547         * dev must be the first element as ib_core and providers
 548         * driver uses it. Adding anything in ib_core_device before
 549         * device will break this assumption.
 550         */
 551        BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
 552                     offsetof(struct ib_device, dev));
 553
 554        coredev->dev.class = &ib_class;
 555        coredev->dev.groups = dev->groups;
 556        device_initialize(&coredev->dev);
 557        coredev->owner = dev;
 558        INIT_LIST_HEAD(&coredev->port_list);
 559        write_pnet(&coredev->rdma_net, net);
 560}
 561
 562/**
 563 * _ib_alloc_device - allocate an IB device struct
 564 * @size:size of structure to allocate
 565 *
 566 * Low-level drivers should use ib_alloc_device() to allocate &struct
 567 * ib_device.  @size is the size of the structure to be allocated,
 568 * including any private data used by the low-level driver.
 569 * ib_dealloc_device() must be used to free structures allocated with
 570 * ib_alloc_device().
 571 */
 572struct ib_device *_ib_alloc_device(size_t size)
 573{
 574        struct ib_device *device;
 575        unsigned int i;
 576
 577        if (WARN_ON(size < sizeof(struct ib_device)))
 578                return NULL;
 579
 580        device = kzalloc(size, GFP_KERNEL);
 581        if (!device)
 582                return NULL;
 583
 584        if (rdma_restrack_init(device)) {
 585                kfree(device);
 586                return NULL;
 587        }
 588
 589        rdma_init_coredev(&device->coredev, device, &init_net);
 590
 591        INIT_LIST_HEAD(&device->event_handler_list);
 592        spin_lock_init(&device->qp_open_list_lock);
 593        init_rwsem(&device->event_handler_rwsem);
 594        mutex_init(&device->unregistration_lock);
 595        /*
 596         * client_data needs to be alloc because we don't want our mark to be
 597         * destroyed if the user stores NULL in the client data.
 598         */
 599        xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
 600        init_rwsem(&device->client_data_rwsem);
 601        xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
 602        mutex_init(&device->compat_devs_mutex);
 603        init_completion(&device->unreg_completion);
 604        INIT_WORK(&device->unregistration_work, ib_unregister_work);
 605
 606        spin_lock_init(&device->cq_pools_lock);
 607        for (i = 0; i < ARRAY_SIZE(device->cq_pools); i++)
 608                INIT_LIST_HEAD(&device->cq_pools[i]);
 609
 610        rwlock_init(&device->cache_lock);
 611
 612        device->uverbs_cmd_mask =
 613                BIT_ULL(IB_USER_VERBS_CMD_ALLOC_MW) |
 614                BIT_ULL(IB_USER_VERBS_CMD_ALLOC_PD) |
 615                BIT_ULL(IB_USER_VERBS_CMD_ATTACH_MCAST) |
 616                BIT_ULL(IB_USER_VERBS_CMD_CLOSE_XRCD) |
 617                BIT_ULL(IB_USER_VERBS_CMD_CREATE_AH) |
 618                BIT_ULL(IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
 619                BIT_ULL(IB_USER_VERBS_CMD_CREATE_CQ) |
 620                BIT_ULL(IB_USER_VERBS_CMD_CREATE_QP) |
 621                BIT_ULL(IB_USER_VERBS_CMD_CREATE_SRQ) |
 622                BIT_ULL(IB_USER_VERBS_CMD_CREATE_XSRQ) |
 623                BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_MW) |
 624                BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_PD) |
 625                BIT_ULL(IB_USER_VERBS_CMD_DEREG_MR) |
 626                BIT_ULL(IB_USER_VERBS_CMD_DESTROY_AH) |
 627                BIT_ULL(IB_USER_VERBS_CMD_DESTROY_CQ) |
 628                BIT_ULL(IB_USER_VERBS_CMD_DESTROY_QP) |
 629                BIT_ULL(IB_USER_VERBS_CMD_DESTROY_SRQ) |
 630                BIT_ULL(IB_USER_VERBS_CMD_DETACH_MCAST) |
 631                BIT_ULL(IB_USER_VERBS_CMD_GET_CONTEXT) |
 632                BIT_ULL(IB_USER_VERBS_CMD_MODIFY_QP) |
 633                BIT_ULL(IB_USER_VERBS_CMD_MODIFY_SRQ) |
 634                BIT_ULL(IB_USER_VERBS_CMD_OPEN_QP) |
 635                BIT_ULL(IB_USER_VERBS_CMD_OPEN_XRCD) |
 636                BIT_ULL(IB_USER_VERBS_CMD_QUERY_DEVICE) |
 637                BIT_ULL(IB_USER_VERBS_CMD_QUERY_PORT) |
 638                BIT_ULL(IB_USER_VERBS_CMD_QUERY_QP) |
 639                BIT_ULL(IB_USER_VERBS_CMD_QUERY_SRQ) |
 640                BIT_ULL(IB_USER_VERBS_CMD_REG_MR) |
 641                BIT_ULL(IB_USER_VERBS_CMD_REREG_MR) |
 642                BIT_ULL(IB_USER_VERBS_CMD_RESIZE_CQ);
 643        return device;
 644}
 645EXPORT_SYMBOL(_ib_alloc_device);
 646
 647/**
 648 * ib_dealloc_device - free an IB device struct
 649 * @device:structure to free
 650 *
 651 * Free a structure allocated with ib_alloc_device().
 652 */
 653void ib_dealloc_device(struct ib_device *device)
 654{
 655        if (device->ops.dealloc_driver)
 656                device->ops.dealloc_driver(device);
 657
 658        /*
 659         * ib_unregister_driver() requires all devices to remain in the xarray
 660         * while their ops are callable. The last op we call is dealloc_driver
 661         * above.  This is needed to create a fence on op callbacks prior to
 662         * allowing the driver module to unload.
 663         */
 664        down_write(&devices_rwsem);
 665        if (xa_load(&devices, device->index) == device)
 666                xa_erase(&devices, device->index);
 667        up_write(&devices_rwsem);
 668
 669        /* Expedite releasing netdev references */
 670        free_netdevs(device);
 671
 672        WARN_ON(!xa_empty(&device->compat_devs));
 673        WARN_ON(!xa_empty(&device->client_data));
 674        WARN_ON(refcount_read(&device->refcount));
 675        rdma_restrack_clean(device);
 676        /* Balances with device_initialize */
 677        put_device(&device->dev);
 678}
 679EXPORT_SYMBOL(ib_dealloc_device);
 680
 681/*
 682 * add_client_context() and remove_client_context() must be safe against
 683 * parallel calls on the same device - registration/unregistration of both the
 684 * device and client can be occurring in parallel.
 685 *
 686 * The routines need to be a fence, any caller must not return until the add
 687 * or remove is fully completed.
 688 */
 689static int add_client_context(struct ib_device *device,
 690                              struct ib_client *client)
 691{
 692        int ret = 0;
 693
 694        if (!device->kverbs_provider && !client->no_kverbs_req)
 695                return 0;
 696
 697        down_write(&device->client_data_rwsem);
 698        /*
 699         * So long as the client is registered hold both the client and device
 700         * unregistration locks.
 701         */
 702        if (!refcount_inc_not_zero(&client->uses))
 703                goto out_unlock;
 704        refcount_inc(&device->refcount);
 705
 706        /*
 707         * Another caller to add_client_context got here first and has already
 708         * completely initialized context.
 709         */
 710        if (xa_get_mark(&device->client_data, client->client_id,
 711                    CLIENT_DATA_REGISTERED))
 712                goto out;
 713
 714        ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
 715                              GFP_KERNEL));
 716        if (ret)
 717                goto out;
 718        downgrade_write(&device->client_data_rwsem);
 719        if (client->add) {
 720                if (client->add(device)) {
 721                        /*
 722                         * If a client fails to add then the error code is
 723                         * ignored, but we won't call any more ops on this
 724                         * client.
 725                         */
 726                        xa_erase(&device->client_data, client->client_id);
 727                        up_read(&device->client_data_rwsem);
 728                        ib_device_put(device);
 729                        ib_client_put(client);
 730                        return 0;
 731                }
 732        }
 733
 734        /* Readers shall not see a client until add has been completed */
 735        xa_set_mark(&device->client_data, client->client_id,
 736                    CLIENT_DATA_REGISTERED);
 737        up_read(&device->client_data_rwsem);
 738        return 0;
 739
 740out:
 741        ib_device_put(device);
 742        ib_client_put(client);
 743out_unlock:
 744        up_write(&device->client_data_rwsem);
 745        return ret;
 746}
 747
 748static void remove_client_context(struct ib_device *device,
 749                                  unsigned int client_id)
 750{
 751        struct ib_client *client;
 752        void *client_data;
 753
 754        down_write(&device->client_data_rwsem);
 755        if (!xa_get_mark(&device->client_data, client_id,
 756                         CLIENT_DATA_REGISTERED)) {
 757                up_write(&device->client_data_rwsem);
 758                return;
 759        }
 760        client_data = xa_load(&device->client_data, client_id);
 761        xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
 762        client = xa_load(&clients, client_id);
 763        up_write(&device->client_data_rwsem);
 764
 765        /*
 766         * Notice we cannot be holding any exclusive locks when calling the
 767         * remove callback as the remove callback can recurse back into any
 768         * public functions in this module and thus try for any locks those
 769         * functions take.
 770         *
 771         * For this reason clients and drivers should not call the
 772         * unregistration functions will holdling any locks.
 773         */
 774        if (client->remove)
 775                client->remove(device, client_data);
 776
 777        xa_erase(&device->client_data, client_id);
 778        ib_device_put(device);
 779        ib_client_put(client);
 780}
 781
 782static int alloc_port_data(struct ib_device *device)
 783{
 784        struct ib_port_data_rcu *pdata_rcu;
 785        u32 port;
 786
 787        if (device->port_data)
 788                return 0;
 789
 790        /* This can only be called once the physical port range is defined */
 791        if (WARN_ON(!device->phys_port_cnt))
 792                return -EINVAL;
 793
 794        /* Reserve U32_MAX so the logic to go over all the ports is sane */
 795        if (WARN_ON(device->phys_port_cnt == U32_MAX))
 796                return -EINVAL;
 797
 798        /*
 799         * device->port_data is indexed directly by the port number to make
 800         * access to this data as efficient as possible.
 801         *
 802         * Therefore port_data is declared as a 1 based array with potential
 803         * empty slots at the beginning.
 804         */
 805        pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
 806                                        rdma_end_port(device) + 1),
 807                            GFP_KERNEL);
 808        if (!pdata_rcu)
 809                return -ENOMEM;
 810        /*
 811         * The rcu_head is put in front of the port data array and the stored
 812         * pointer is adjusted since we never need to see that member until
 813         * kfree_rcu.
 814         */
 815        device->port_data = pdata_rcu->pdata;
 816
 817        rdma_for_each_port (device, port) {
 818                struct ib_port_data *pdata = &device->port_data[port];
 819
 820                pdata->ib_dev = device;
 821                spin_lock_init(&pdata->pkey_list_lock);
 822                INIT_LIST_HEAD(&pdata->pkey_list);
 823                spin_lock_init(&pdata->netdev_lock);
 824                INIT_HLIST_NODE(&pdata->ndev_hash_link);
 825        }
 826        return 0;
 827}
 828
 829static int verify_immutable(const struct ib_device *dev, u32 port)
 830{
 831        return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
 832                            rdma_max_mad_size(dev, port) != 0);
 833}
 834
 835static int setup_port_data(struct ib_device *device)
 836{
 837        u32 port;
 838        int ret;
 839
 840        ret = alloc_port_data(device);
 841        if (ret)
 842                return ret;
 843
 844        rdma_for_each_port (device, port) {
 845                struct ib_port_data *pdata = &device->port_data[port];
 846
 847                ret = device->ops.get_port_immutable(device, port,
 848                                                     &pdata->immutable);
 849                if (ret)
 850                        return ret;
 851
 852                if (verify_immutable(device, port))
 853                        return -EINVAL;
 854        }
 855        return 0;
 856}
 857
 858/**
 859 * ib_port_immutable_read() - Read rdma port's immutable data
 860 * @dev: IB device
 861 * @port: port number whose immutable data to read. It starts with index 1 and
 862 *        valid upto including rdma_end_port().
 863 */
 864const struct ib_port_immutable*
 865ib_port_immutable_read(struct ib_device *dev, unsigned int port)
 866{
 867        WARN_ON(!rdma_is_port_valid(dev, port));
 868        return &dev->port_data[port].immutable;
 869}
 870EXPORT_SYMBOL(ib_port_immutable_read);
 871
 872void ib_get_device_fw_str(struct ib_device *dev, char *str)
 873{
 874        if (dev->ops.get_dev_fw_str)
 875                dev->ops.get_dev_fw_str(dev, str);
 876        else
 877                str[0] = '\0';
 878}
 879EXPORT_SYMBOL(ib_get_device_fw_str);
 880
 881static void ib_policy_change_task(struct work_struct *work)
 882{
 883        struct ib_device *dev;
 884        unsigned long index;
 885
 886        down_read(&devices_rwsem);
 887        xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
 888                unsigned int i;
 889
 890                rdma_for_each_port (dev, i) {
 891                        u64 sp;
 892                        ib_get_cached_subnet_prefix(dev, i, &sp);
 893                        ib_security_cache_change(dev, i, sp);
 894                }
 895        }
 896        up_read(&devices_rwsem);
 897}
 898
 899static int ib_security_change(struct notifier_block *nb, unsigned long event,
 900                              void *lsm_data)
 901{
 902        if (event != LSM_POLICY_CHANGE)
 903                return NOTIFY_DONE;
 904
 905        schedule_work(&ib_policy_change_work);
 906        ib_mad_agent_security_change();
 907
 908        return NOTIFY_OK;
 909}
 910
 911static void compatdev_release(struct device *dev)
 912{
 913        struct ib_core_device *cdev =
 914                container_of(dev, struct ib_core_device, dev);
 915
 916        kfree(cdev);
 917}
 918
 919static int add_one_compat_dev(struct ib_device *device,
 920                              struct rdma_dev_net *rnet)
 921{
 922        struct ib_core_device *cdev;
 923        int ret;
 924
 925        lockdep_assert_held(&rdma_nets_rwsem);
 926        if (!ib_devices_shared_netns)
 927                return 0;
 928
 929        /*
 930         * Create and add compat device in all namespaces other than where it
 931         * is currently bound to.
 932         */
 933        if (net_eq(read_pnet(&rnet->net),
 934                   read_pnet(&device->coredev.rdma_net)))
 935                return 0;
 936
 937        /*
 938         * The first of init_net() or ib_register_device() to take the
 939         * compat_devs_mutex wins and gets to add the device. Others will wait
 940         * for completion here.
 941         */
 942        mutex_lock(&device->compat_devs_mutex);
 943        cdev = xa_load(&device->compat_devs, rnet->id);
 944        if (cdev) {
 945                ret = 0;
 946                goto done;
 947        }
 948        ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
 949        if (ret)
 950                goto done;
 951
 952        cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
 953        if (!cdev) {
 954                ret = -ENOMEM;
 955                goto cdev_err;
 956        }
 957
 958        cdev->dev.parent = device->dev.parent;
 959        rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
 960        cdev->dev.release = compatdev_release;
 961        ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
 962        if (ret)
 963                goto add_err;
 964
 965        ret = device_add(&cdev->dev);
 966        if (ret)
 967                goto add_err;
 968        ret = ib_setup_port_attrs(cdev);
 969        if (ret)
 970                goto port_err;
 971
 972        ret = xa_err(xa_store(&device->compat_devs, rnet->id,
 973                              cdev, GFP_KERNEL));
 974        if (ret)
 975                goto insert_err;
 976
 977        mutex_unlock(&device->compat_devs_mutex);
 978        return 0;
 979
 980insert_err:
 981        ib_free_port_attrs(cdev);
 982port_err:
 983        device_del(&cdev->dev);
 984add_err:
 985        put_device(&cdev->dev);
 986cdev_err:
 987        xa_release(&device->compat_devs, rnet->id);
 988done:
 989        mutex_unlock(&device->compat_devs_mutex);
 990        return ret;
 991}
 992
 993static void remove_one_compat_dev(struct ib_device *device, u32 id)
 994{
 995        struct ib_core_device *cdev;
 996
 997        mutex_lock(&device->compat_devs_mutex);
 998        cdev = xa_erase(&device->compat_devs, id);
 999        mutex_unlock(&device->compat_devs_mutex);
1000        if (cdev) {
1001                ib_free_port_attrs(cdev);
1002                device_del(&cdev->dev);
1003                put_device(&cdev->dev);
1004        }
1005}
1006
1007static void remove_compat_devs(struct ib_device *device)
1008{
1009        struct ib_core_device *cdev;
1010        unsigned long index;
1011
1012        xa_for_each (&device->compat_devs, index, cdev)
1013                remove_one_compat_dev(device, index);
1014}
1015
1016static int add_compat_devs(struct ib_device *device)
1017{
1018        struct rdma_dev_net *rnet;
1019        unsigned long index;
1020        int ret = 0;
1021
1022        lockdep_assert_held(&devices_rwsem);
1023
1024        down_read(&rdma_nets_rwsem);
1025        xa_for_each (&rdma_nets, index, rnet) {
1026                ret = add_one_compat_dev(device, rnet);
1027                if (ret)
1028                        break;
1029        }
1030        up_read(&rdma_nets_rwsem);
1031        return ret;
1032}
1033
1034static void remove_all_compat_devs(void)
1035{
1036        struct ib_compat_device *cdev;
1037        struct ib_device *dev;
1038        unsigned long index;
1039
1040        down_read(&devices_rwsem);
1041        xa_for_each (&devices, index, dev) {
1042                unsigned long c_index = 0;
1043
1044                /* Hold nets_rwsem so that any other thread modifying this
1045                 * system param can sync with this thread.
1046                 */
1047                down_read(&rdma_nets_rwsem);
1048                xa_for_each (&dev->compat_devs, c_index, cdev)
1049                        remove_one_compat_dev(dev, c_index);
1050                up_read(&rdma_nets_rwsem);
1051        }
1052        up_read(&devices_rwsem);
1053}
1054
1055static int add_all_compat_devs(void)
1056{
1057        struct rdma_dev_net *rnet;
1058        struct ib_device *dev;
1059        unsigned long index;
1060        int ret = 0;
1061
1062        down_read(&devices_rwsem);
1063        xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1064                unsigned long net_index = 0;
1065
1066                /* Hold nets_rwsem so that any other thread modifying this
1067                 * system param can sync with this thread.
1068                 */
1069                down_read(&rdma_nets_rwsem);
1070                xa_for_each (&rdma_nets, net_index, rnet) {
1071                        ret = add_one_compat_dev(dev, rnet);
1072                        if (ret)
1073                                break;
1074                }
1075                up_read(&rdma_nets_rwsem);
1076        }
1077        up_read(&devices_rwsem);
1078        if (ret)
1079                remove_all_compat_devs();
1080        return ret;
1081}
1082
1083int rdma_compatdev_set(u8 enable)
1084{
1085        struct rdma_dev_net *rnet;
1086        unsigned long index;
1087        int ret = 0;
1088
1089        down_write(&rdma_nets_rwsem);
1090        if (ib_devices_shared_netns == enable) {
1091                up_write(&rdma_nets_rwsem);
1092                return 0;
1093        }
1094
1095        /* enable/disable of compat devices is not supported
1096         * when more than default init_net exists.
1097         */
1098        xa_for_each (&rdma_nets, index, rnet) {
1099                ret++;
1100                break;
1101        }
1102        if (!ret)
1103                ib_devices_shared_netns = enable;
1104        up_write(&rdma_nets_rwsem);
1105        if (ret)
1106                return -EBUSY;
1107
1108        if (enable)
1109                ret = add_all_compat_devs();
1110        else
1111                remove_all_compat_devs();
1112        return ret;
1113}
1114
1115static void rdma_dev_exit_net(struct net *net)
1116{
1117        struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1118        struct ib_device *dev;
1119        unsigned long index;
1120        int ret;
1121
1122        down_write(&rdma_nets_rwsem);
1123        /*
1124         * Prevent the ID from being re-used and hide the id from xa_for_each.
1125         */
1126        ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1127        WARN_ON(ret);
1128        up_write(&rdma_nets_rwsem);
1129
1130        down_read(&devices_rwsem);
1131        xa_for_each (&devices, index, dev) {
1132                get_device(&dev->dev);
1133                /*
1134                 * Release the devices_rwsem so that pontentially blocking
1135                 * device_del, doesn't hold the devices_rwsem for too long.
1136                 */
1137                up_read(&devices_rwsem);
1138
1139                remove_one_compat_dev(dev, rnet->id);
1140
1141                /*
1142                 * If the real device is in the NS then move it back to init.
1143                 */
1144                rdma_dev_change_netns(dev, net, &init_net);
1145
1146                put_device(&dev->dev);
1147                down_read(&devices_rwsem);
1148        }
1149        up_read(&devices_rwsem);
1150
1151        rdma_nl_net_exit(rnet);
1152        xa_erase(&rdma_nets, rnet->id);
1153}
1154
1155static __net_init int rdma_dev_init_net(struct net *net)
1156{
1157        struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1158        unsigned long index;
1159        struct ib_device *dev;
1160        int ret;
1161
1162        write_pnet(&rnet->net, net);
1163
1164        ret = rdma_nl_net_init(rnet);
1165        if (ret)
1166                return ret;
1167
1168        /* No need to create any compat devices in default init_net. */
1169        if (net_eq(net, &init_net))
1170                return 0;
1171
1172        ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1173        if (ret) {
1174                rdma_nl_net_exit(rnet);
1175                return ret;
1176        }
1177
1178        down_read(&devices_rwsem);
1179        xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1180                /* Hold nets_rwsem so that netlink command cannot change
1181                 * system configuration for device sharing mode.
1182                 */
1183                down_read(&rdma_nets_rwsem);
1184                ret = add_one_compat_dev(dev, rnet);
1185                up_read(&rdma_nets_rwsem);
1186                if (ret)
1187                        break;
1188        }
1189        up_read(&devices_rwsem);
1190
1191        if (ret)
1192                rdma_dev_exit_net(net);
1193
1194        return ret;
1195}
1196
1197/*
1198 * Assign the unique string device name and the unique device index. This is
1199 * undone by ib_dealloc_device.
1200 */
1201static int assign_name(struct ib_device *device, const char *name)
1202{
1203        static u32 last_id;
1204        int ret;
1205
1206        down_write(&devices_rwsem);
1207        /* Assign a unique name to the device */
1208        if (strchr(name, '%'))
1209                ret = alloc_name(device, name);
1210        else
1211                ret = dev_set_name(&device->dev, name);
1212        if (ret)
1213                goto out;
1214
1215        if (__ib_device_get_by_name(dev_name(&device->dev))) {
1216                ret = -ENFILE;
1217                goto out;
1218        }
1219        strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1220
1221        ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1222                        &last_id, GFP_KERNEL);
1223        if (ret > 0)
1224                ret = 0;
1225
1226out:
1227        up_write(&devices_rwsem);
1228        return ret;
1229}
1230
1231/*
1232 * setup_device() allocates memory and sets up data that requires calling the
1233 * device ops, this is the only reason these actions are not done during
1234 * ib_alloc_device. It is undone by ib_dealloc_device().
1235 */
1236static int setup_device(struct ib_device *device)
1237{
1238        struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1239        int ret;
1240
1241        ib_device_check_mandatory(device);
1242
1243        ret = setup_port_data(device);
1244        if (ret) {
1245                dev_warn(&device->dev, "Couldn't create per-port data\n");
1246                return ret;
1247        }
1248
1249        memset(&device->attrs, 0, sizeof(device->attrs));
1250        ret = device->ops.query_device(device, &device->attrs, &uhw);
1251        if (ret) {
1252                dev_warn(&device->dev,
1253                         "Couldn't query the device attributes\n");
1254                return ret;
1255        }
1256
1257        return 0;
1258}
1259
1260static void disable_device(struct ib_device *device)
1261{
1262        u32 cid;
1263
1264        WARN_ON(!refcount_read(&device->refcount));
1265
1266        down_write(&devices_rwsem);
1267        xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1268        up_write(&devices_rwsem);
1269
1270        /*
1271         * Remove clients in LIFO order, see assign_client_id. This could be
1272         * more efficient if xarray learns to reverse iterate. Since no new
1273         * clients can be added to this ib_device past this point we only need
1274         * the maximum possible client_id value here.
1275         */
1276        down_read(&clients_rwsem);
1277        cid = highest_client_id;
1278        up_read(&clients_rwsem);
1279        while (cid) {
1280                cid--;
1281                remove_client_context(device, cid);
1282        }
1283
1284        ib_cq_pool_cleanup(device);
1285
1286        /* Pairs with refcount_set in enable_device */
1287        ib_device_put(device);
1288        wait_for_completion(&device->unreg_completion);
1289
1290        /*
1291         * compat devices must be removed after device refcount drops to zero.
1292         * Otherwise init_net() may add more compatdevs after removing compat
1293         * devices and before device is disabled.
1294         */
1295        remove_compat_devs(device);
1296}
1297
1298/*
1299 * An enabled device is visible to all clients and to all the public facing
1300 * APIs that return a device pointer. This always returns with a new get, even
1301 * if it fails.
1302 */
1303static int enable_device_and_get(struct ib_device *device)
1304{
1305        struct ib_client *client;
1306        unsigned long index;
1307        int ret = 0;
1308
1309        /*
1310         * One ref belongs to the xa and the other belongs to this
1311         * thread. This is needed to guard against parallel unregistration.
1312         */
1313        refcount_set(&device->refcount, 2);
1314        down_write(&devices_rwsem);
1315        xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1316
1317        /*
1318         * By using downgrade_write() we ensure that no other thread can clear
1319         * DEVICE_REGISTERED while we are completing the client setup.
1320         */
1321        downgrade_write(&devices_rwsem);
1322
1323        if (device->ops.enable_driver) {
1324                ret = device->ops.enable_driver(device);
1325                if (ret)
1326                        goto out;
1327        }
1328
1329        down_read(&clients_rwsem);
1330        xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1331                ret = add_client_context(device, client);
1332                if (ret)
1333                        break;
1334        }
1335        up_read(&clients_rwsem);
1336        if (!ret)
1337                ret = add_compat_devs(device);
1338out:
1339        up_read(&devices_rwsem);
1340        return ret;
1341}
1342
1343static void prevent_dealloc_device(struct ib_device *ib_dev)
1344{
1345}
1346
1347/**
1348 * ib_register_device - Register an IB device with IB core
1349 * @device: Device to register
1350 * @name: unique string device name. This may include a '%' which will
1351 *        cause a unique index to be added to the passed device name.
1352 * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB
1353 *              device will be used. In this case the caller should fully
1354 *              setup the ibdev for DMA. This usually means using dma_virt_ops.
1355 *
1356 * Low-level drivers use ib_register_device() to register their
1357 * devices with the IB core.  All registered clients will receive a
1358 * callback for each device that is added. @device must be allocated
1359 * with ib_alloc_device().
1360 *
1361 * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1362 * asynchronously then the device pointer may become freed as soon as this
1363 * function returns.
1364 */
1365int ib_register_device(struct ib_device *device, const char *name,
1366                       struct device *dma_device)
1367{
1368        int ret;
1369
1370        ret = assign_name(device, name);
1371        if (ret)
1372                return ret;
1373
1374        /*
1375         * If the caller does not provide a DMA capable device then the IB core
1376         * will set up ib_sge and scatterlist structures that stash the kernel
1377         * virtual address into the address field.
1378         */
1379        WARN_ON(dma_device && !dma_device->dma_parms);
1380        device->dma_device = dma_device;
1381
1382        ret = setup_device(device);
1383        if (ret)
1384                return ret;
1385
1386        ret = ib_cache_setup_one(device);
1387        if (ret) {
1388                dev_warn(&device->dev,
1389                         "Couldn't set up InfiniBand P_Key/GID cache\n");
1390                return ret;
1391        }
1392
1393        device->groups[0] = &ib_dev_attr_group;
1394        device->groups[1] = device->ops.device_group;
1395        ret = ib_setup_device_attrs(device);
1396        if (ret)
1397                goto cache_cleanup;
1398
1399        ib_device_register_rdmacg(device);
1400
1401        rdma_counter_init(device);
1402
1403        /*
1404         * Ensure that ADD uevent is not fired because it
1405         * is too early amd device is not initialized yet.
1406         */
1407        dev_set_uevent_suppress(&device->dev, true);
1408        ret = device_add(&device->dev);
1409        if (ret)
1410                goto cg_cleanup;
1411
1412        ret = ib_setup_port_attrs(&device->coredev);
1413        if (ret) {
1414                dev_warn(&device->dev,
1415                         "Couldn't register device with driver model\n");
1416                goto dev_cleanup;
1417        }
1418
1419        ret = enable_device_and_get(device);
1420        if (ret) {
1421                void (*dealloc_fn)(struct ib_device *);
1422
1423                /*
1424                 * If we hit this error flow then we don't want to
1425                 * automatically dealloc the device since the caller is
1426                 * expected to call ib_dealloc_device() after
1427                 * ib_register_device() fails. This is tricky due to the
1428                 * possibility for a parallel unregistration along with this
1429                 * error flow. Since we have a refcount here we know any
1430                 * parallel flow is stopped in disable_device and will see the
1431                 * special dealloc_driver pointer, causing the responsibility to
1432                 * ib_dealloc_device() to revert back to this thread.
1433                 */
1434                dealloc_fn = device->ops.dealloc_driver;
1435                device->ops.dealloc_driver = prevent_dealloc_device;
1436                ib_device_put(device);
1437                __ib_unregister_device(device);
1438                device->ops.dealloc_driver = dealloc_fn;
1439                dev_set_uevent_suppress(&device->dev, false);
1440                return ret;
1441        }
1442        dev_set_uevent_suppress(&device->dev, false);
1443        /* Mark for userspace that device is ready */
1444        kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1445        ib_device_put(device);
1446
1447        return 0;
1448
1449dev_cleanup:
1450        device_del(&device->dev);
1451cg_cleanup:
1452        dev_set_uevent_suppress(&device->dev, false);
1453        ib_device_unregister_rdmacg(device);
1454cache_cleanup:
1455        ib_cache_cleanup_one(device);
1456        return ret;
1457}
1458EXPORT_SYMBOL(ib_register_device);
1459
1460/* Callers must hold a get on the device. */
1461static void __ib_unregister_device(struct ib_device *ib_dev)
1462{
1463        /*
1464         * We have a registration lock so that all the calls to unregister are
1465         * fully fenced, once any unregister returns the device is truely
1466         * unregistered even if multiple callers are unregistering it at the
1467         * same time. This also interacts with the registration flow and
1468         * provides sane semantics if register and unregister are racing.
1469         */
1470        mutex_lock(&ib_dev->unregistration_lock);
1471        if (!refcount_read(&ib_dev->refcount))
1472                goto out;
1473
1474        disable_device(ib_dev);
1475
1476        /* Expedite removing unregistered pointers from the hash table */
1477        free_netdevs(ib_dev);
1478
1479        ib_free_port_attrs(&ib_dev->coredev);
1480        device_del(&ib_dev->dev);
1481        ib_device_unregister_rdmacg(ib_dev);
1482        ib_cache_cleanup_one(ib_dev);
1483
1484        /*
1485         * Drivers using the new flow may not call ib_dealloc_device except
1486         * in error unwind prior to registration success.
1487         */
1488        if (ib_dev->ops.dealloc_driver &&
1489            ib_dev->ops.dealloc_driver != prevent_dealloc_device) {
1490                WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1491                ib_dealloc_device(ib_dev);
1492        }
1493out:
1494        mutex_unlock(&ib_dev->unregistration_lock);
1495}
1496
1497/**
1498 * ib_unregister_device - Unregister an IB device
1499 * @ib_dev: The device to unregister
1500 *
1501 * Unregister an IB device.  All clients will receive a remove callback.
1502 *
1503 * Callers should call this routine only once, and protect against races with
1504 * registration. Typically it should only be called as part of a remove
1505 * callback in an implementation of driver core's struct device_driver and
1506 * related.
1507 *
1508 * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1509 * this function.
1510 */
1511void ib_unregister_device(struct ib_device *ib_dev)
1512{
1513        get_device(&ib_dev->dev);
1514        __ib_unregister_device(ib_dev);
1515        put_device(&ib_dev->dev);
1516}
1517EXPORT_SYMBOL(ib_unregister_device);
1518
1519/**
1520 * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1521 * @ib_dev: The device to unregister
1522 *
1523 * This is the same as ib_unregister_device(), except it includes an internal
1524 * ib_device_put() that should match a 'get' obtained by the caller.
1525 *
1526 * It is safe to call this routine concurrently from multiple threads while
1527 * holding the 'get'. When the function returns the device is fully
1528 * unregistered.
1529 *
1530 * Drivers using this flow MUST use the driver_unregister callback to clean up
1531 * their resources associated with the device and dealloc it.
1532 */
1533void ib_unregister_device_and_put(struct ib_device *ib_dev)
1534{
1535        WARN_ON(!ib_dev->ops.dealloc_driver);
1536        get_device(&ib_dev->dev);
1537        ib_device_put(ib_dev);
1538        __ib_unregister_device(ib_dev);
1539        put_device(&ib_dev->dev);
1540}
1541EXPORT_SYMBOL(ib_unregister_device_and_put);
1542
1543/**
1544 * ib_unregister_driver - Unregister all IB devices for a driver
1545 * @driver_id: The driver to unregister
1546 *
1547 * This implements a fence for device unregistration. It only returns once all
1548 * devices associated with the driver_id have fully completed their
1549 * unregistration and returned from ib_unregister_device*().
1550 *
1551 * If device's are not yet unregistered it goes ahead and starts unregistering
1552 * them.
1553 *
1554 * This does not block creation of new devices with the given driver_id, that
1555 * is the responsibility of the caller.
1556 */
1557void ib_unregister_driver(enum rdma_driver_id driver_id)
1558{
1559        struct ib_device *ib_dev;
1560        unsigned long index;
1561
1562        down_read(&devices_rwsem);
1563        xa_for_each (&devices, index, ib_dev) {
1564                if (ib_dev->ops.driver_id != driver_id)
1565                        continue;
1566
1567                get_device(&ib_dev->dev);
1568                up_read(&devices_rwsem);
1569
1570                WARN_ON(!ib_dev->ops.dealloc_driver);
1571                __ib_unregister_device(ib_dev);
1572
1573                put_device(&ib_dev->dev);
1574                down_read(&devices_rwsem);
1575        }
1576        up_read(&devices_rwsem);
1577}
1578EXPORT_SYMBOL(ib_unregister_driver);
1579
1580static void ib_unregister_work(struct work_struct *work)
1581{
1582        struct ib_device *ib_dev =
1583                container_of(work, struct ib_device, unregistration_work);
1584
1585        __ib_unregister_device(ib_dev);
1586        put_device(&ib_dev->dev);
1587}
1588
1589/**
1590 * ib_unregister_device_queued - Unregister a device using a work queue
1591 * @ib_dev: The device to unregister
1592 *
1593 * This schedules an asynchronous unregistration using a WQ for the device. A
1594 * driver should use this to avoid holding locks while doing unregistration,
1595 * such as holding the RTNL lock.
1596 *
1597 * Drivers using this API must use ib_unregister_driver before module unload
1598 * to ensure that all scheduled unregistrations have completed.
1599 */
1600void ib_unregister_device_queued(struct ib_device *ib_dev)
1601{
1602        WARN_ON(!refcount_read(&ib_dev->refcount));
1603        WARN_ON(!ib_dev->ops.dealloc_driver);
1604        get_device(&ib_dev->dev);
1605        if (!queue_work(system_unbound_wq, &ib_dev->unregistration_work))
1606                put_device(&ib_dev->dev);
1607}
1608EXPORT_SYMBOL(ib_unregister_device_queued);
1609
1610/*
1611 * The caller must pass in a device that has the kref held and the refcount
1612 * released. If the device is in cur_net and still registered then it is moved
1613 * into net.
1614 */
1615static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1616                                 struct net *net)
1617{
1618        int ret2 = -EINVAL;
1619        int ret;
1620
1621        mutex_lock(&device->unregistration_lock);
1622
1623        /*
1624         * If a device not under ib_device_get() or if the unregistration_lock
1625         * is not held, the namespace can be changed, or it can be unregistered.
1626         * Check again under the lock.
1627         */
1628        if (refcount_read(&device->refcount) == 0 ||
1629            !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1630                ret = -ENODEV;
1631                goto out;
1632        }
1633
1634        kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1635        disable_device(device);
1636
1637        /*
1638         * At this point no one can be using the device, so it is safe to
1639         * change the namespace.
1640         */
1641        write_pnet(&device->coredev.rdma_net, net);
1642
1643        down_read(&devices_rwsem);
1644        /*
1645         * Currently rdma devices are system wide unique. So the device name
1646         * is guaranteed free in the new namespace. Publish the new namespace
1647         * at the sysfs level.
1648         */
1649        ret = device_rename(&device->dev, dev_name(&device->dev));
1650        up_read(&devices_rwsem);
1651        if (ret) {
1652                dev_warn(&device->dev,
1653                         "%s: Couldn't rename device after namespace change\n",
1654                         __func__);
1655                /* Try and put things back and re-enable the device */
1656                write_pnet(&device->coredev.rdma_net, cur_net);
1657        }
1658
1659        ret2 = enable_device_and_get(device);
1660        if (ret2) {
1661                /*
1662                 * This shouldn't really happen, but if it does, let the user
1663                 * retry at later point. So don't disable the device.
1664                 */
1665                dev_warn(&device->dev,
1666                         "%s: Couldn't re-enable device after namespace change\n",
1667                         __func__);
1668        }
1669        kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1670
1671        ib_device_put(device);
1672out:
1673        mutex_unlock(&device->unregistration_lock);
1674        if (ret)
1675                return ret;
1676        return ret2;
1677}
1678
1679int ib_device_set_netns_put(struct sk_buff *skb,
1680                            struct ib_device *dev, u32 ns_fd)
1681{
1682        struct net *net;
1683        int ret;
1684
1685        net = get_net_ns_by_fd(ns_fd);
1686        if (IS_ERR(net)) {
1687                ret = PTR_ERR(net);
1688                goto net_err;
1689        }
1690
1691        if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1692                ret = -EPERM;
1693                goto ns_err;
1694        }
1695
1696        /*
1697         * All the ib_clients, including uverbs, are reset when the namespace is
1698         * changed and this cannot be blocked waiting for userspace to do
1699         * something, so disassociation is mandatory.
1700         */
1701        if (!dev->ops.disassociate_ucontext || ib_devices_shared_netns) {
1702                ret = -EOPNOTSUPP;
1703                goto ns_err;
1704        }
1705
1706        get_device(&dev->dev);
1707        ib_device_put(dev);
1708        ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1709        put_device(&dev->dev);
1710
1711        put_net(net);
1712        return ret;
1713
1714ns_err:
1715        put_net(net);
1716net_err:
1717        ib_device_put(dev);
1718        return ret;
1719}
1720
1721static struct pernet_operations rdma_dev_net_ops = {
1722        .init = rdma_dev_init_net,
1723        .exit = rdma_dev_exit_net,
1724        .id = &rdma_dev_net_id,
1725        .size = sizeof(struct rdma_dev_net),
1726};
1727
1728static int assign_client_id(struct ib_client *client)
1729{
1730        int ret;
1731
1732        down_write(&clients_rwsem);
1733        /*
1734         * The add/remove callbacks must be called in FIFO/LIFO order. To
1735         * achieve this we assign client_ids so they are sorted in
1736         * registration order.
1737         */
1738        client->client_id = highest_client_id;
1739        ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1740        if (ret)
1741                goto out;
1742
1743        highest_client_id++;
1744        xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1745
1746out:
1747        up_write(&clients_rwsem);
1748        return ret;
1749}
1750
1751static void remove_client_id(struct ib_client *client)
1752{
1753        down_write(&clients_rwsem);
1754        xa_erase(&clients, client->client_id);
1755        for (; highest_client_id; highest_client_id--)
1756                if (xa_load(&clients, highest_client_id - 1))
1757                        break;
1758        up_write(&clients_rwsem);
1759}
1760
1761/**
1762 * ib_register_client - Register an IB client
1763 * @client:Client to register
1764 *
1765 * Upper level users of the IB drivers can use ib_register_client() to
1766 * register callbacks for IB device addition and removal.  When an IB
1767 * device is added, each registered client's add method will be called
1768 * (in the order the clients were registered), and when a device is
1769 * removed, each client's remove method will be called (in the reverse
1770 * order that clients were registered).  In addition, when
1771 * ib_register_client() is called, the client will receive an add
1772 * callback for all devices already registered.
1773 */
1774int ib_register_client(struct ib_client *client)
1775{
1776        struct ib_device *device;
1777        unsigned long index;
1778        int ret;
1779
1780        refcount_set(&client->uses, 1);
1781        init_completion(&client->uses_zero);
1782        ret = assign_client_id(client);
1783        if (ret)
1784                return ret;
1785
1786        down_read(&devices_rwsem);
1787        xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1788                ret = add_client_context(device, client);
1789                if (ret) {
1790                        up_read(&devices_rwsem);
1791                        ib_unregister_client(client);
1792                        return ret;
1793                }
1794        }
1795        up_read(&devices_rwsem);
1796        return 0;
1797}
1798EXPORT_SYMBOL(ib_register_client);
1799
1800/**
1801 * ib_unregister_client - Unregister an IB client
1802 * @client:Client to unregister
1803 *
1804 * Upper level users use ib_unregister_client() to remove their client
1805 * registration.  When ib_unregister_client() is called, the client
1806 * will receive a remove callback for each IB device still registered.
1807 *
1808 * This is a full fence, once it returns no client callbacks will be called,
1809 * or are running in another thread.
1810 */
1811void ib_unregister_client(struct ib_client *client)
1812{
1813        struct ib_device *device;
1814        unsigned long index;
1815
1816        down_write(&clients_rwsem);
1817        ib_client_put(client);
1818        xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1819        up_write(&clients_rwsem);
1820
1821        /* We do not want to have locks while calling client->remove() */
1822        rcu_read_lock();
1823        xa_for_each (&devices, index, device) {
1824                if (!ib_device_try_get(device))
1825                        continue;
1826                rcu_read_unlock();
1827
1828                remove_client_context(device, client->client_id);
1829
1830                ib_device_put(device);
1831                rcu_read_lock();
1832        }
1833        rcu_read_unlock();
1834
1835        /*
1836         * remove_client_context() is not a fence, it can return even though a
1837         * removal is ongoing. Wait until all removals are completed.
1838         */
1839        wait_for_completion(&client->uses_zero);
1840        remove_client_id(client);
1841}
1842EXPORT_SYMBOL(ib_unregister_client);
1843
1844static int __ib_get_global_client_nl_info(const char *client_name,
1845                                          struct ib_client_nl_info *res)
1846{
1847        struct ib_client *client;
1848        unsigned long index;
1849        int ret = -ENOENT;
1850
1851        down_read(&clients_rwsem);
1852        xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1853                if (strcmp(client->name, client_name) != 0)
1854                        continue;
1855                if (!client->get_global_nl_info) {
1856                        ret = -EOPNOTSUPP;
1857                        break;
1858                }
1859                ret = client->get_global_nl_info(res);
1860                if (WARN_ON(ret == -ENOENT))
1861                        ret = -EINVAL;
1862                if (!ret && res->cdev)
1863                        get_device(res->cdev);
1864                break;
1865        }
1866        up_read(&clients_rwsem);
1867        return ret;
1868}
1869
1870static int __ib_get_client_nl_info(struct ib_device *ibdev,
1871                                   const char *client_name,
1872                                   struct ib_client_nl_info *res)
1873{
1874        unsigned long index;
1875        void *client_data;
1876        int ret = -ENOENT;
1877
1878        down_read(&ibdev->client_data_rwsem);
1879        xan_for_each_marked (&ibdev->client_data, index, client_data,
1880                             CLIENT_DATA_REGISTERED) {
1881                struct ib_client *client = xa_load(&clients, index);
1882
1883                if (!client || strcmp(client->name, client_name) != 0)
1884                        continue;
1885                if (!client->get_nl_info) {
1886                        ret = -EOPNOTSUPP;
1887                        break;
1888                }
1889                ret = client->get_nl_info(ibdev, client_data, res);
1890                if (WARN_ON(ret == -ENOENT))
1891                        ret = -EINVAL;
1892
1893                /*
1894                 * The cdev is guaranteed valid as long as we are inside the
1895                 * client_data_rwsem as remove_one can't be called. Keep it
1896                 * valid for the caller.
1897                 */
1898                if (!ret && res->cdev)
1899                        get_device(res->cdev);
1900                break;
1901        }
1902        up_read(&ibdev->client_data_rwsem);
1903
1904        return ret;
1905}
1906
1907/**
1908 * ib_get_client_nl_info - Fetch the nl_info from a client
1909 * @ibdev: IB device
1910 * @client_name: Name of the client
1911 * @res: Result of the query
1912 */
1913int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1914                          struct ib_client_nl_info *res)
1915{
1916        int ret;
1917
1918        if (ibdev)
1919                ret = __ib_get_client_nl_info(ibdev, client_name, res);
1920        else
1921                ret = __ib_get_global_client_nl_info(client_name, res);
1922#ifdef CONFIG_MODULES
1923        if (ret == -ENOENT) {
1924                request_module("rdma-client-%s", client_name);
1925                if (ibdev)
1926                        ret = __ib_get_client_nl_info(ibdev, client_name, res);
1927                else
1928                        ret = __ib_get_global_client_nl_info(client_name, res);
1929        }
1930#endif
1931        if (ret) {
1932                if (ret == -ENOENT)
1933                        return -EOPNOTSUPP;
1934                return ret;
1935        }
1936
1937        if (WARN_ON(!res->cdev))
1938                return -EINVAL;
1939        return 0;
1940}
1941
1942/**
1943 * ib_set_client_data - Set IB client context
1944 * @device:Device to set context for
1945 * @client:Client to set context for
1946 * @data:Context to set
1947 *
1948 * ib_set_client_data() sets client context data that can be retrieved with
1949 * ib_get_client_data(). This can only be called while the client is
1950 * registered to the device, once the ib_client remove() callback returns this
1951 * cannot be called.
1952 */
1953void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1954                        void *data)
1955{
1956        void *rc;
1957
1958        if (WARN_ON(IS_ERR(data)))
1959                data = NULL;
1960
1961        rc = xa_store(&device->client_data, client->client_id, data,
1962                      GFP_KERNEL);
1963        WARN_ON(xa_is_err(rc));
1964}
1965EXPORT_SYMBOL(ib_set_client_data);
1966
1967/**
1968 * ib_register_event_handler - Register an IB event handler
1969 * @event_handler:Handler to register
1970 *
1971 * ib_register_event_handler() registers an event handler that will be
1972 * called back when asynchronous IB events occur (as defined in
1973 * chapter 11 of the InfiniBand Architecture Specification). This
1974 * callback occurs in workqueue context.
1975 */
1976void ib_register_event_handler(struct ib_event_handler *event_handler)
1977{
1978        down_write(&event_handler->device->event_handler_rwsem);
1979        list_add_tail(&event_handler->list,
1980                      &event_handler->device->event_handler_list);
1981        up_write(&event_handler->device->event_handler_rwsem);
1982}
1983EXPORT_SYMBOL(ib_register_event_handler);
1984
1985/**
1986 * ib_unregister_event_handler - Unregister an event handler
1987 * @event_handler:Handler to unregister
1988 *
1989 * Unregister an event handler registered with
1990 * ib_register_event_handler().
1991 */
1992void ib_unregister_event_handler(struct ib_event_handler *event_handler)
1993{
1994        down_write(&event_handler->device->event_handler_rwsem);
1995        list_del(&event_handler->list);
1996        up_write(&event_handler->device->event_handler_rwsem);
1997}
1998EXPORT_SYMBOL(ib_unregister_event_handler);
1999
2000void ib_dispatch_event_clients(struct ib_event *event)
2001{
2002        struct ib_event_handler *handler;
2003
2004        down_read(&event->device->event_handler_rwsem);
2005
2006        list_for_each_entry(handler, &event->device->event_handler_list, list)
2007                handler->handler(handler, event);
2008
2009        up_read(&event->device->event_handler_rwsem);
2010}
2011
2012static int iw_query_port(struct ib_device *device,
2013                           u32 port_num,
2014                           struct ib_port_attr *port_attr)
2015{
2016        struct in_device *inetdev;
2017        struct net_device *netdev;
2018
2019        memset(port_attr, 0, sizeof(*port_attr));
2020
2021        netdev = ib_device_get_netdev(device, port_num);
2022        if (!netdev)
2023                return -ENODEV;
2024
2025        port_attr->max_mtu = IB_MTU_4096;
2026        port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
2027
2028        if (!netif_carrier_ok(netdev)) {
2029                port_attr->state = IB_PORT_DOWN;
2030                port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
2031        } else {
2032                rcu_read_lock();
2033                inetdev = __in_dev_get_rcu(netdev);
2034
2035                if (inetdev && inetdev->ifa_list) {
2036                        port_attr->state = IB_PORT_ACTIVE;
2037                        port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2038                } else {
2039                        port_attr->state = IB_PORT_INIT;
2040                        port_attr->phys_state =
2041                                IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2042                }
2043
2044                rcu_read_unlock();
2045        }
2046
2047        dev_put(netdev);
2048        return device->ops.query_port(device, port_num, port_attr);
2049}
2050
2051static int __ib_query_port(struct ib_device *device,
2052                           u32 port_num,
2053                           struct ib_port_attr *port_attr)
2054{
2055        int err;
2056
2057        memset(port_attr, 0, sizeof(*port_attr));
2058
2059        err = device->ops.query_port(device, port_num, port_attr);
2060        if (err || port_attr->subnet_prefix)
2061                return err;
2062
2063        if (rdma_port_get_link_layer(device, port_num) !=
2064            IB_LINK_LAYER_INFINIBAND)
2065                return 0;
2066
2067        ib_get_cached_subnet_prefix(device, port_num,
2068                                    &port_attr->subnet_prefix);
2069        return 0;
2070}
2071
2072/**
2073 * ib_query_port - Query IB port attributes
2074 * @device:Device to query
2075 * @port_num:Port number to query
2076 * @port_attr:Port attributes
2077 *
2078 * ib_query_port() returns the attributes of a port through the
2079 * @port_attr pointer.
2080 */
2081int ib_query_port(struct ib_device *device,
2082                  u32 port_num,
2083                  struct ib_port_attr *port_attr)
2084{
2085        if (!rdma_is_port_valid(device, port_num))
2086                return -EINVAL;
2087
2088        if (rdma_protocol_iwarp(device, port_num))
2089                return iw_query_port(device, port_num, port_attr);
2090        else
2091                return __ib_query_port(device, port_num, port_attr);
2092}
2093EXPORT_SYMBOL(ib_query_port);
2094
2095static void add_ndev_hash(struct ib_port_data *pdata)
2096{
2097        unsigned long flags;
2098
2099        might_sleep();
2100
2101        spin_lock_irqsave(&ndev_hash_lock, flags);
2102        if (hash_hashed(&pdata->ndev_hash_link)) {
2103                hash_del_rcu(&pdata->ndev_hash_link);
2104                spin_unlock_irqrestore(&ndev_hash_lock, flags);
2105                /*
2106                 * We cannot do hash_add_rcu after a hash_del_rcu until the
2107                 * grace period
2108                 */
2109                synchronize_rcu();
2110                spin_lock_irqsave(&ndev_hash_lock, flags);
2111        }
2112        if (pdata->netdev)
2113                hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2114                             (uintptr_t)pdata->netdev);
2115        spin_unlock_irqrestore(&ndev_hash_lock, flags);
2116}
2117
2118/**
2119 * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2120 * @ib_dev: Device to modify
2121 * @ndev: net_device to affiliate, may be NULL
2122 * @port: IB port the net_device is connected to
2123 *
2124 * Drivers should use this to link the ib_device to a netdev so the netdev
2125 * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2126 * affiliated with any port.
2127 *
2128 * The caller must ensure that the given ndev is not unregistered or
2129 * unregistering, and that either the ib_device is unregistered or
2130 * ib_device_set_netdev() is called with NULL when the ndev sends a
2131 * NETDEV_UNREGISTER event.
2132 */
2133int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2134                         u32 port)
2135{
2136        struct net_device *old_ndev;
2137        struct ib_port_data *pdata;
2138        unsigned long flags;
2139        int ret;
2140
2141        /*
2142         * Drivers wish to call this before ib_register_driver, so we have to
2143         * setup the port data early.
2144         */
2145        ret = alloc_port_data(ib_dev);
2146        if (ret)
2147                return ret;
2148
2149        if (!rdma_is_port_valid(ib_dev, port))
2150                return -EINVAL;
2151
2152        pdata = &ib_dev->port_data[port];
2153        spin_lock_irqsave(&pdata->netdev_lock, flags);
2154        old_ndev = rcu_dereference_protected(
2155                pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2156        if (old_ndev == ndev) {
2157                spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2158                return 0;
2159        }
2160
2161        if (ndev)
2162                dev_hold(ndev);
2163        rcu_assign_pointer(pdata->netdev, ndev);
2164        spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2165
2166        add_ndev_hash(pdata);
2167        if (old_ndev)
2168                dev_put(old_ndev);
2169
2170        return 0;
2171}
2172EXPORT_SYMBOL(ib_device_set_netdev);
2173
2174static void free_netdevs(struct ib_device *ib_dev)
2175{
2176        unsigned long flags;
2177        u32 port;
2178
2179        if (!ib_dev->port_data)
2180                return;
2181
2182        rdma_for_each_port (ib_dev, port) {
2183                struct ib_port_data *pdata = &ib_dev->port_data[port];
2184                struct net_device *ndev;
2185
2186                spin_lock_irqsave(&pdata->netdev_lock, flags);
2187                ndev = rcu_dereference_protected(
2188                        pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2189                if (ndev) {
2190                        spin_lock(&ndev_hash_lock);
2191                        hash_del_rcu(&pdata->ndev_hash_link);
2192                        spin_unlock(&ndev_hash_lock);
2193
2194                        /*
2195                         * If this is the last dev_put there is still a
2196                         * synchronize_rcu before the netdev is kfreed, so we
2197                         * can continue to rely on unlocked pointer
2198                         * comparisons after the put
2199                         */
2200                        rcu_assign_pointer(pdata->netdev, NULL);
2201                        dev_put(ndev);
2202                }
2203                spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2204        }
2205}
2206
2207struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2208                                        u32 port)
2209{
2210        struct ib_port_data *pdata;
2211        struct net_device *res;
2212
2213        if (!rdma_is_port_valid(ib_dev, port))
2214                return NULL;
2215
2216        pdata = &ib_dev->port_data[port];
2217
2218        /*
2219         * New drivers should use ib_device_set_netdev() not the legacy
2220         * get_netdev().
2221         */
2222        if (ib_dev->ops.get_netdev)
2223                res = ib_dev->ops.get_netdev(ib_dev, port);
2224        else {
2225                spin_lock(&pdata->netdev_lock);
2226                res = rcu_dereference_protected(
2227                        pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2228                if (res)
2229                        dev_hold(res);
2230                spin_unlock(&pdata->netdev_lock);
2231        }
2232
2233        /*
2234         * If we are starting to unregister expedite things by preventing
2235         * propagation of an unregistering netdev.
2236         */
2237        if (res && res->reg_state != NETREG_REGISTERED) {
2238                dev_put(res);
2239                return NULL;
2240        }
2241
2242        return res;
2243}
2244
2245/**
2246 * ib_device_get_by_netdev - Find an IB device associated with a netdev
2247 * @ndev: netdev to locate
2248 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2249 *
2250 * Find and hold an ib_device that is associated with a netdev via
2251 * ib_device_set_netdev(). The caller must call ib_device_put() on the
2252 * returned pointer.
2253 */
2254struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2255                                          enum rdma_driver_id driver_id)
2256{
2257        struct ib_device *res = NULL;
2258        struct ib_port_data *cur;
2259
2260        rcu_read_lock();
2261        hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2262                                    (uintptr_t)ndev) {
2263                if (rcu_access_pointer(cur->netdev) == ndev &&
2264                    (driver_id == RDMA_DRIVER_UNKNOWN ||
2265                     cur->ib_dev->ops.driver_id == driver_id) &&
2266                    ib_device_try_get(cur->ib_dev)) {
2267                        res = cur->ib_dev;
2268                        break;
2269                }
2270        }
2271        rcu_read_unlock();
2272
2273        return res;
2274}
2275EXPORT_SYMBOL(ib_device_get_by_netdev);
2276
2277/**
2278 * ib_enum_roce_netdev - enumerate all RoCE ports
2279 * @ib_dev : IB device we want to query
2280 * @filter: Should we call the callback?
2281 * @filter_cookie: Cookie passed to filter
2282 * @cb: Callback to call for each found RoCE ports
2283 * @cookie: Cookie passed back to the callback
2284 *
2285 * Enumerates all of the physical RoCE ports of ib_dev
2286 * which are related to netdevice and calls callback() on each
2287 * device for which filter() function returns non zero.
2288 */
2289void ib_enum_roce_netdev(struct ib_device *ib_dev,
2290                         roce_netdev_filter filter,
2291                         void *filter_cookie,
2292                         roce_netdev_callback cb,
2293                         void *cookie)
2294{
2295        u32 port;
2296
2297        rdma_for_each_port (ib_dev, port)
2298                if (rdma_protocol_roce(ib_dev, port)) {
2299                        struct net_device *idev =
2300                                ib_device_get_netdev(ib_dev, port);
2301
2302                        if (filter(ib_dev, port, idev, filter_cookie))
2303                                cb(ib_dev, port, idev, cookie);
2304
2305                        if (idev)
2306                                dev_put(idev);
2307                }
2308}
2309
2310/**
2311 * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2312 * @filter: Should we call the callback?
2313 * @filter_cookie: Cookie passed to filter
2314 * @cb: Callback to call for each found RoCE ports
2315 * @cookie: Cookie passed back to the callback
2316 *
2317 * Enumerates all RoCE devices' physical ports which are related
2318 * to netdevices and calls callback() on each device for which
2319 * filter() function returns non zero.
2320 */
2321void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2322                              void *filter_cookie,
2323                              roce_netdev_callback cb,
2324                              void *cookie)
2325{
2326        struct ib_device *dev;
2327        unsigned long index;
2328
2329        down_read(&devices_rwsem);
2330        xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2331                ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2332        up_read(&devices_rwsem);
2333}
2334
2335/*
2336 * ib_enum_all_devs - enumerate all ib_devices
2337 * @cb: Callback to call for each found ib_device
2338 *
2339 * Enumerates all ib_devices and calls callback() on each device.
2340 */
2341int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2342                     struct netlink_callback *cb)
2343{
2344        unsigned long index;
2345        struct ib_device *dev;
2346        unsigned int idx = 0;
2347        int ret = 0;
2348
2349        down_read(&devices_rwsem);
2350        xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2351                if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2352                        continue;
2353
2354                ret = nldev_cb(dev, skb, cb, idx);
2355                if (ret)
2356                        break;
2357                idx++;
2358        }
2359        up_read(&devices_rwsem);
2360        return ret;
2361}
2362
2363/**
2364 * ib_query_pkey - Get P_Key table entry
2365 * @device:Device to query
2366 * @port_num:Port number to query
2367 * @index:P_Key table index to query
2368 * @pkey:Returned P_Key
2369 *
2370 * ib_query_pkey() fetches the specified P_Key table entry.
2371 */
2372int ib_query_pkey(struct ib_device *device,
2373                  u32 port_num, u16 index, u16 *pkey)
2374{
2375        if (!rdma_is_port_valid(device, port_num))
2376                return -EINVAL;
2377
2378        if (!device->ops.query_pkey)
2379                return -EOPNOTSUPP;
2380
2381        return device->ops.query_pkey(device, port_num, index, pkey);
2382}
2383EXPORT_SYMBOL(ib_query_pkey);
2384
2385/**
2386 * ib_modify_device - Change IB device attributes
2387 * @device:Device to modify
2388 * @device_modify_mask:Mask of attributes to change
2389 * @device_modify:New attribute values
2390 *
2391 * ib_modify_device() changes a device's attributes as specified by
2392 * the @device_modify_mask and @device_modify structure.
2393 */
2394int ib_modify_device(struct ib_device *device,
2395                     int device_modify_mask,
2396                     struct ib_device_modify *device_modify)
2397{
2398        if (!device->ops.modify_device)
2399                return -EOPNOTSUPP;
2400
2401        return device->ops.modify_device(device, device_modify_mask,
2402                                         device_modify);
2403}
2404EXPORT_SYMBOL(ib_modify_device);
2405
2406/**
2407 * ib_modify_port - Modifies the attributes for the specified port.
2408 * @device: The device to modify.
2409 * @port_num: The number of the port to modify.
2410 * @port_modify_mask: Mask used to specify which attributes of the port
2411 *   to change.
2412 * @port_modify: New attribute values for the port.
2413 *
2414 * ib_modify_port() changes a port's attributes as specified by the
2415 * @port_modify_mask and @port_modify structure.
2416 */
2417int ib_modify_port(struct ib_device *device,
2418                   u32 port_num, int port_modify_mask,
2419                   struct ib_port_modify *port_modify)
2420{
2421        int rc;
2422
2423        if (!rdma_is_port_valid(device, port_num))
2424                return -EINVAL;
2425
2426        if (device->ops.modify_port)
2427                rc = device->ops.modify_port(device, port_num,
2428                                             port_modify_mask,
2429                                             port_modify);
2430        else if (rdma_protocol_roce(device, port_num) &&
2431                 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2432                  (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2433                rc = 0;
2434        else
2435                rc = -EOPNOTSUPP;
2436        return rc;
2437}
2438EXPORT_SYMBOL(ib_modify_port);
2439
2440/**
2441 * ib_find_gid - Returns the port number and GID table index where
2442 *   a specified GID value occurs. Its searches only for IB link layer.
2443 * @device: The device to query.
2444 * @gid: The GID value to search for.
2445 * @port_num: The port number of the device where the GID value was found.
2446 * @index: The index into the GID table where the GID was found.  This
2447 *   parameter may be NULL.
2448 */
2449int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2450                u32 *port_num, u16 *index)
2451{
2452        union ib_gid tmp_gid;
2453        u32 port;
2454        int ret, i;
2455
2456        rdma_for_each_port (device, port) {
2457                if (!rdma_protocol_ib(device, port))
2458                        continue;
2459
2460                for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2461                     ++i) {
2462                        ret = rdma_query_gid(device, port, i, &tmp_gid);
2463                        if (ret)
2464                                return ret;
2465                        if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2466                                *port_num = port;
2467                                if (index)
2468                                        *index = i;
2469                                return 0;
2470                        }
2471                }
2472        }
2473
2474        return -ENOENT;
2475}
2476EXPORT_SYMBOL(ib_find_gid);
2477
2478/**
2479 * ib_find_pkey - Returns the PKey table index where a specified
2480 *   PKey value occurs.
2481 * @device: The device to query.
2482 * @port_num: The port number of the device to search for the PKey.
2483 * @pkey: The PKey value to search for.
2484 * @index: The index into the PKey table where the PKey was found.
2485 */
2486int ib_find_pkey(struct ib_device *device,
2487                 u32 port_num, u16 pkey, u16 *index)
2488{
2489        int ret, i;
2490        u16 tmp_pkey;
2491        int partial_ix = -1;
2492
2493        for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2494             ++i) {
2495                ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2496                if (ret)
2497                        return ret;
2498                if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2499                        /* if there is full-member pkey take it.*/
2500                        if (tmp_pkey & 0x8000) {
2501                                *index = i;
2502                                return 0;
2503                        }
2504                        if (partial_ix < 0)
2505                                partial_ix = i;
2506                }
2507        }
2508
2509        /*no full-member, if exists take the limited*/
2510        if (partial_ix >= 0) {
2511                *index = partial_ix;
2512                return 0;
2513        }
2514        return -ENOENT;
2515}
2516EXPORT_SYMBOL(ib_find_pkey);
2517
2518/**
2519 * ib_get_net_dev_by_params() - Return the appropriate net_dev
2520 * for a received CM request
2521 * @dev:        An RDMA device on which the request has been received.
2522 * @port:       Port number on the RDMA device.
2523 * @pkey:       The Pkey the request came on.
2524 * @gid:        A GID that the net_dev uses to communicate.
2525 * @addr:       Contains the IP address that the request specified as its
2526 *              destination.
2527 *
2528 */
2529struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2530                                            u32 port,
2531                                            u16 pkey,
2532                                            const union ib_gid *gid,
2533                                            const struct sockaddr *addr)
2534{
2535        struct net_device *net_dev = NULL;
2536        unsigned long index;
2537        void *client_data;
2538
2539        if (!rdma_protocol_ib(dev, port))
2540                return NULL;
2541
2542        /*
2543         * Holding the read side guarantees that the client will not become
2544         * unregistered while we are calling get_net_dev_by_params()
2545         */
2546        down_read(&dev->client_data_rwsem);
2547        xan_for_each_marked (&dev->client_data, index, client_data,
2548                             CLIENT_DATA_REGISTERED) {
2549                struct ib_client *client = xa_load(&clients, index);
2550
2551                if (!client || !client->get_net_dev_by_params)
2552                        continue;
2553
2554                net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2555                                                        addr, client_data);
2556                if (net_dev)
2557                        break;
2558        }
2559        up_read(&dev->client_data_rwsem);
2560
2561        return net_dev;
2562}
2563EXPORT_SYMBOL(ib_get_net_dev_by_params);
2564
2565void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2566{
2567        struct ib_device_ops *dev_ops = &dev->ops;
2568#define SET_DEVICE_OP(ptr, name)                                               \
2569        do {                                                                   \
2570                if (ops->name)                                                 \
2571                        if (!((ptr)->name))                                    \
2572                                (ptr)->name = ops->name;                       \
2573        } while (0)
2574
2575#define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2576
2577        if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2578                WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2579                        dev_ops->driver_id != ops->driver_id);
2580                dev_ops->driver_id = ops->driver_id;
2581        }
2582        if (ops->owner) {
2583                WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2584                dev_ops->owner = ops->owner;
2585        }
2586        if (ops->uverbs_abi_ver)
2587                dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2588
2589        dev_ops->uverbs_no_driver_id_binding |=
2590                ops->uverbs_no_driver_id_binding;
2591
2592        SET_DEVICE_OP(dev_ops, add_gid);
2593        SET_DEVICE_OP(dev_ops, advise_mr);
2594        SET_DEVICE_OP(dev_ops, alloc_dm);
2595        SET_DEVICE_OP(dev_ops, alloc_hw_device_stats);
2596        SET_DEVICE_OP(dev_ops, alloc_hw_port_stats);
2597        SET_DEVICE_OP(dev_ops, alloc_mr);
2598        SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2599        SET_DEVICE_OP(dev_ops, alloc_mw);
2600        SET_DEVICE_OP(dev_ops, alloc_pd);
2601        SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2602        SET_DEVICE_OP(dev_ops, alloc_ucontext);
2603        SET_DEVICE_OP(dev_ops, alloc_xrcd);
2604        SET_DEVICE_OP(dev_ops, attach_mcast);
2605        SET_DEVICE_OP(dev_ops, check_mr_status);
2606        SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2607        SET_DEVICE_OP(dev_ops, counter_bind_qp);
2608        SET_DEVICE_OP(dev_ops, counter_dealloc);
2609        SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2610        SET_DEVICE_OP(dev_ops, counter_update_stats);
2611        SET_DEVICE_OP(dev_ops, create_ah);
2612        SET_DEVICE_OP(dev_ops, create_counters);
2613        SET_DEVICE_OP(dev_ops, create_cq);
2614        SET_DEVICE_OP(dev_ops, create_flow);
2615        SET_DEVICE_OP(dev_ops, create_flow_action_esp);
2616        SET_DEVICE_OP(dev_ops, create_qp);
2617        SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2618        SET_DEVICE_OP(dev_ops, create_srq);
2619        SET_DEVICE_OP(dev_ops, create_user_ah);
2620        SET_DEVICE_OP(dev_ops, create_wq);
2621        SET_DEVICE_OP(dev_ops, dealloc_dm);
2622        SET_DEVICE_OP(dev_ops, dealloc_driver);
2623        SET_DEVICE_OP(dev_ops, dealloc_mw);
2624        SET_DEVICE_OP(dev_ops, dealloc_pd);
2625        SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2626        SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2627        SET_DEVICE_OP(dev_ops, del_gid);
2628        SET_DEVICE_OP(dev_ops, dereg_mr);
2629        SET_DEVICE_OP(dev_ops, destroy_ah);
2630        SET_DEVICE_OP(dev_ops, destroy_counters);
2631        SET_DEVICE_OP(dev_ops, destroy_cq);
2632        SET_DEVICE_OP(dev_ops, destroy_flow);
2633        SET_DEVICE_OP(dev_ops, destroy_flow_action);
2634        SET_DEVICE_OP(dev_ops, destroy_qp);
2635        SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2636        SET_DEVICE_OP(dev_ops, destroy_srq);
2637        SET_DEVICE_OP(dev_ops, destroy_wq);
2638        SET_DEVICE_OP(dev_ops, device_group);
2639        SET_DEVICE_OP(dev_ops, detach_mcast);
2640        SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2641        SET_DEVICE_OP(dev_ops, drain_rq);
2642        SET_DEVICE_OP(dev_ops, drain_sq);
2643        SET_DEVICE_OP(dev_ops, enable_driver);
2644        SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry);
2645        SET_DEVICE_OP(dev_ops, fill_res_cq_entry);
2646        SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw);
2647        SET_DEVICE_OP(dev_ops, fill_res_mr_entry);
2648        SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw);
2649        SET_DEVICE_OP(dev_ops, fill_res_qp_entry);
2650        SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw);
2651        SET_DEVICE_OP(dev_ops, fill_stat_mr_entry);
2652        SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2653        SET_DEVICE_OP(dev_ops, get_dma_mr);
2654        SET_DEVICE_OP(dev_ops, get_hw_stats);
2655        SET_DEVICE_OP(dev_ops, get_link_layer);
2656        SET_DEVICE_OP(dev_ops, get_netdev);
2657        SET_DEVICE_OP(dev_ops, get_numa_node);
2658        SET_DEVICE_OP(dev_ops, get_port_immutable);
2659        SET_DEVICE_OP(dev_ops, get_vector_affinity);
2660        SET_DEVICE_OP(dev_ops, get_vf_config);
2661        SET_DEVICE_OP(dev_ops, get_vf_guid);
2662        SET_DEVICE_OP(dev_ops, get_vf_stats);
2663        SET_DEVICE_OP(dev_ops, iw_accept);
2664        SET_DEVICE_OP(dev_ops, iw_add_ref);
2665        SET_DEVICE_OP(dev_ops, iw_connect);
2666        SET_DEVICE_OP(dev_ops, iw_create_listen);
2667        SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2668        SET_DEVICE_OP(dev_ops, iw_get_qp);
2669        SET_DEVICE_OP(dev_ops, iw_reject);
2670        SET_DEVICE_OP(dev_ops, iw_rem_ref);
2671        SET_DEVICE_OP(dev_ops, map_mr_sg);
2672        SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2673        SET_DEVICE_OP(dev_ops, mmap);
2674        SET_DEVICE_OP(dev_ops, mmap_free);
2675        SET_DEVICE_OP(dev_ops, modify_ah);
2676        SET_DEVICE_OP(dev_ops, modify_cq);
2677        SET_DEVICE_OP(dev_ops, modify_device);
2678        SET_DEVICE_OP(dev_ops, modify_flow_action_esp);
2679        SET_DEVICE_OP(dev_ops, modify_port);
2680        SET_DEVICE_OP(dev_ops, modify_qp);
2681        SET_DEVICE_OP(dev_ops, modify_srq);
2682        SET_DEVICE_OP(dev_ops, modify_wq);
2683        SET_DEVICE_OP(dev_ops, peek_cq);
2684        SET_DEVICE_OP(dev_ops, poll_cq);
2685        SET_DEVICE_OP(dev_ops, port_groups);
2686        SET_DEVICE_OP(dev_ops, post_recv);
2687        SET_DEVICE_OP(dev_ops, post_send);
2688        SET_DEVICE_OP(dev_ops, post_srq_recv);
2689        SET_DEVICE_OP(dev_ops, process_mad);
2690        SET_DEVICE_OP(dev_ops, query_ah);
2691        SET_DEVICE_OP(dev_ops, query_device);
2692        SET_DEVICE_OP(dev_ops, query_gid);
2693        SET_DEVICE_OP(dev_ops, query_pkey);
2694        SET_DEVICE_OP(dev_ops, query_port);
2695        SET_DEVICE_OP(dev_ops, query_qp);
2696        SET_DEVICE_OP(dev_ops, query_srq);
2697        SET_DEVICE_OP(dev_ops, query_ucontext);
2698        SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2699        SET_DEVICE_OP(dev_ops, read_counters);
2700        SET_DEVICE_OP(dev_ops, reg_dm_mr);
2701        SET_DEVICE_OP(dev_ops, reg_user_mr);
2702        SET_DEVICE_OP(dev_ops, reg_user_mr_dmabuf);
2703        SET_DEVICE_OP(dev_ops, req_notify_cq);
2704        SET_DEVICE_OP(dev_ops, rereg_user_mr);
2705        SET_DEVICE_OP(dev_ops, resize_cq);
2706        SET_DEVICE_OP(dev_ops, set_vf_guid);
2707        SET_DEVICE_OP(dev_ops, set_vf_link_state);
2708
2709        SET_OBJ_SIZE(dev_ops, ib_ah);
2710        SET_OBJ_SIZE(dev_ops, ib_counters);
2711        SET_OBJ_SIZE(dev_ops, ib_cq);
2712        SET_OBJ_SIZE(dev_ops, ib_mw);
2713        SET_OBJ_SIZE(dev_ops, ib_pd);
2714        SET_OBJ_SIZE(dev_ops, ib_qp);
2715        SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table);
2716        SET_OBJ_SIZE(dev_ops, ib_srq);
2717        SET_OBJ_SIZE(dev_ops, ib_ucontext);
2718        SET_OBJ_SIZE(dev_ops, ib_xrcd);
2719}
2720EXPORT_SYMBOL(ib_set_device_ops);
2721
2722#ifdef CONFIG_INFINIBAND_VIRT_DMA
2723int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents)
2724{
2725        struct scatterlist *s;
2726        int i;
2727
2728        for_each_sg(sg, s, nents, i) {
2729                sg_dma_address(s) = (uintptr_t)sg_virt(s);
2730                sg_dma_len(s) = s->length;
2731        }
2732        return nents;
2733}
2734EXPORT_SYMBOL(ib_dma_virt_map_sg);
2735#endif /* CONFIG_INFINIBAND_VIRT_DMA */
2736
2737static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2738        [RDMA_NL_LS_OP_RESOLVE] = {
2739                .doit = ib_nl_handle_resolve_resp,
2740                .flags = RDMA_NL_ADMIN_PERM,
2741        },
2742        [RDMA_NL_LS_OP_SET_TIMEOUT] = {
2743                .doit = ib_nl_handle_set_timeout,
2744                .flags = RDMA_NL_ADMIN_PERM,
2745        },
2746        [RDMA_NL_LS_OP_IP_RESOLVE] = {
2747                .doit = ib_nl_handle_ip_res_resp,
2748                .flags = RDMA_NL_ADMIN_PERM,
2749        },
2750};
2751
2752static int __init ib_core_init(void)
2753{
2754        int ret;
2755
2756        ib_wq = alloc_workqueue("infiniband", 0, 0);
2757        if (!ib_wq)
2758                return -ENOMEM;
2759
2760        ib_comp_wq = alloc_workqueue("ib-comp-wq",
2761                        WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2762        if (!ib_comp_wq) {
2763                ret = -ENOMEM;
2764                goto err;
2765        }
2766
2767        ib_comp_unbound_wq =
2768                alloc_workqueue("ib-comp-unb-wq",
2769                                WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2770                                WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2771        if (!ib_comp_unbound_wq) {
2772                ret = -ENOMEM;
2773                goto err_comp;
2774        }
2775
2776        ret = class_register(&ib_class);
2777        if (ret) {
2778                pr_warn("Couldn't create InfiniBand device class\n");
2779                goto err_comp_unbound;
2780        }
2781
2782        rdma_nl_init();
2783
2784        ret = addr_init();
2785        if (ret) {
2786                pr_warn("Couldn't init IB address resolution\n");
2787                goto err_ibnl;
2788        }
2789
2790        ret = ib_mad_init();
2791        if (ret) {
2792                pr_warn("Couldn't init IB MAD\n");
2793                goto err_addr;
2794        }
2795
2796        ret = ib_sa_init();
2797        if (ret) {
2798                pr_warn("Couldn't init SA\n");
2799                goto err_mad;
2800        }
2801
2802        ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2803        if (ret) {
2804                pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2805                goto err_sa;
2806        }
2807
2808        ret = register_pernet_device(&rdma_dev_net_ops);
2809        if (ret) {
2810                pr_warn("Couldn't init compat dev. ret %d\n", ret);
2811                goto err_compat;
2812        }
2813
2814        nldev_init();
2815        rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2816        roce_gid_mgmt_init();
2817
2818        return 0;
2819
2820err_compat:
2821        unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2822err_sa:
2823        ib_sa_cleanup();
2824err_mad:
2825        ib_mad_cleanup();
2826err_addr:
2827        addr_cleanup();
2828err_ibnl:
2829        class_unregister(&ib_class);
2830err_comp_unbound:
2831        destroy_workqueue(ib_comp_unbound_wq);
2832err_comp:
2833        destroy_workqueue(ib_comp_wq);
2834err:
2835        destroy_workqueue(ib_wq);
2836        return ret;
2837}
2838
2839static void __exit ib_core_cleanup(void)
2840{
2841        roce_gid_mgmt_cleanup();
2842        nldev_exit();
2843        rdma_nl_unregister(RDMA_NL_LS);
2844        unregister_pernet_device(&rdma_dev_net_ops);
2845        unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2846        ib_sa_cleanup();
2847        ib_mad_cleanup();
2848        addr_cleanup();
2849        rdma_nl_exit();
2850        class_unregister(&ib_class);
2851        destroy_workqueue(ib_comp_unbound_wq);
2852        destroy_workqueue(ib_comp_wq);
2853        /* Make sure that any pending umem accounting work is done. */
2854        destroy_workqueue(ib_wq);
2855        flush_workqueue(system_unbound_wq);
2856        WARN_ON(!xa_empty(&clients));
2857        WARN_ON(!xa_empty(&devices));
2858}
2859
2860MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2861
2862/* ib core relies on netdev stack to first register net_ns_type_operations
2863 * ns kobject type before ib_core initialization.
2864 */
2865fs_initcall(ib_core_init);
2866module_exit(ib_core_cleanup);
2867