linux/drivers/infiniband/sw/rdmavt/mr.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
   2/*
   3 * Copyright(c) 2016 Intel Corporation.
   4 */
   5
   6#include <linux/slab.h>
   7#include <linux/vmalloc.h>
   8#include <rdma/ib_umem.h>
   9#include <rdma/rdma_vt.h>
  10#include "vt.h"
  11#include "mr.h"
  12#include "trace.h"
  13
  14/**
  15 * rvt_driver_mr_init - Init MR resources per driver
  16 * @rdi: rvt dev struct
  17 *
  18 * Do any intilization needed when a driver registers with rdmavt.
  19 *
  20 * Return: 0 on success or errno on failure
  21 */
  22int rvt_driver_mr_init(struct rvt_dev_info *rdi)
  23{
  24        unsigned int lkey_table_size = rdi->dparms.lkey_table_size;
  25        unsigned lk_tab_size;
  26        int i;
  27
  28        /*
  29         * The top hfi1_lkey_table_size bits are used to index the
  30         * table.  The lower 8 bits can be owned by the user (copied from
  31         * the LKEY).  The remaining bits act as a generation number or tag.
  32         */
  33        if (!lkey_table_size)
  34                return -EINVAL;
  35
  36        spin_lock_init(&rdi->lkey_table.lock);
  37
  38        /* ensure generation is at least 4 bits */
  39        if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) {
  40                rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n",
  41                            lkey_table_size, RVT_MAX_LKEY_TABLE_BITS);
  42                rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS;
  43                lkey_table_size = rdi->dparms.lkey_table_size;
  44        }
  45        rdi->lkey_table.max = 1 << lkey_table_size;
  46        rdi->lkey_table.shift = 32 - lkey_table_size;
  47        lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table);
  48        rdi->lkey_table.table = (struct rvt_mregion __rcu **)
  49                               vmalloc_node(lk_tab_size, rdi->dparms.node);
  50        if (!rdi->lkey_table.table)
  51                return -ENOMEM;
  52
  53        RCU_INIT_POINTER(rdi->dma_mr, NULL);
  54        for (i = 0; i < rdi->lkey_table.max; i++)
  55                RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL);
  56
  57        rdi->dparms.props.max_mr = rdi->lkey_table.max;
  58        return 0;
  59}
  60
  61/**
  62 * rvt_mr_exit - clean up MR
  63 * @rdi: rvt dev structure
  64 *
  65 * called when drivers have unregistered or perhaps failed to register with us
  66 */
  67void rvt_mr_exit(struct rvt_dev_info *rdi)
  68{
  69        if (rdi->dma_mr)
  70                rvt_pr_err(rdi, "DMA MR not null!\n");
  71
  72        vfree(rdi->lkey_table.table);
  73}
  74
  75static void rvt_deinit_mregion(struct rvt_mregion *mr)
  76{
  77        int i = mr->mapsz;
  78
  79        mr->mapsz = 0;
  80        while (i)
  81                kfree(mr->map[--i]);
  82        percpu_ref_exit(&mr->refcount);
  83}
  84
  85static void __rvt_mregion_complete(struct percpu_ref *ref)
  86{
  87        struct rvt_mregion *mr = container_of(ref, struct rvt_mregion,
  88                                              refcount);
  89
  90        complete(&mr->comp);
  91}
  92
  93static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd,
  94                            int count, unsigned int percpu_flags)
  95{
  96        int m, i = 0;
  97        struct rvt_dev_info *dev = ib_to_rvt(pd->device);
  98
  99        mr->mapsz = 0;
 100        m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
 101        for (; i < m; i++) {
 102                mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL,
 103                                          dev->dparms.node);
 104                if (!mr->map[i])
 105                        goto bail;
 106                mr->mapsz++;
 107        }
 108        init_completion(&mr->comp);
 109        /* count returning the ptr to user */
 110        if (percpu_ref_init(&mr->refcount, &__rvt_mregion_complete,
 111                            percpu_flags, GFP_KERNEL))
 112                goto bail;
 113
 114        atomic_set(&mr->lkey_invalid, 0);
 115        mr->pd = pd;
 116        mr->max_segs = count;
 117        return 0;
 118bail:
 119        rvt_deinit_mregion(mr);
 120        return -ENOMEM;
 121}
 122
 123/**
 124 * rvt_alloc_lkey - allocate an lkey
 125 * @mr: memory region that this lkey protects
 126 * @dma_region: 0->normal key, 1->restricted DMA key
 127 *
 128 * Returns 0 if successful, otherwise returns -errno.
 129 *
 130 * Increments mr reference count as required.
 131 *
 132 * Sets the lkey field mr for non-dma regions.
 133 *
 134 */
 135static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region)
 136{
 137        unsigned long flags;
 138        u32 r;
 139        u32 n;
 140        int ret = 0;
 141        struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
 142        struct rvt_lkey_table *rkt = &dev->lkey_table;
 143
 144        rvt_get_mr(mr);
 145        spin_lock_irqsave(&rkt->lock, flags);
 146
 147        /* special case for dma_mr lkey == 0 */
 148        if (dma_region) {
 149                struct rvt_mregion *tmr;
 150
 151                tmr = rcu_access_pointer(dev->dma_mr);
 152                if (!tmr) {
 153                        mr->lkey_published = 1;
 154                        /* Insure published written first */
 155                        rcu_assign_pointer(dev->dma_mr, mr);
 156                        rvt_get_mr(mr);
 157                }
 158                goto success;
 159        }
 160
 161        /* Find the next available LKEY */
 162        r = rkt->next;
 163        n = r;
 164        for (;;) {
 165                if (!rcu_access_pointer(rkt->table[r]))
 166                        break;
 167                r = (r + 1) & (rkt->max - 1);
 168                if (r == n)
 169                        goto bail;
 170        }
 171        rkt->next = (r + 1) & (rkt->max - 1);
 172        /*
 173         * Make sure lkey is never zero which is reserved to indicate an
 174         * unrestricted LKEY.
 175         */
 176        rkt->gen++;
 177        /*
 178         * bits are capped to ensure enough bits for generation number
 179         */
 180        mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) |
 181                ((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen)
 182                 << 8);
 183        if (mr->lkey == 0) {
 184                mr->lkey |= 1 << 8;
 185                rkt->gen++;
 186        }
 187        mr->lkey_published = 1;
 188        /* Insure published written first */
 189        rcu_assign_pointer(rkt->table[r], mr);
 190success:
 191        spin_unlock_irqrestore(&rkt->lock, flags);
 192out:
 193        return ret;
 194bail:
 195        rvt_put_mr(mr);
 196        spin_unlock_irqrestore(&rkt->lock, flags);
 197        ret = -ENOMEM;
 198        goto out;
 199}
 200
 201/**
 202 * rvt_free_lkey - free an lkey
 203 * @mr: mr to free from tables
 204 */
 205static void rvt_free_lkey(struct rvt_mregion *mr)
 206{
 207        unsigned long flags;
 208        u32 lkey = mr->lkey;
 209        u32 r;
 210        struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
 211        struct rvt_lkey_table *rkt = &dev->lkey_table;
 212        int freed = 0;
 213
 214        spin_lock_irqsave(&rkt->lock, flags);
 215        if (!lkey) {
 216                if (mr->lkey_published) {
 217                        mr->lkey_published = 0;
 218                        /* insure published is written before pointer */
 219                        rcu_assign_pointer(dev->dma_mr, NULL);
 220                        rvt_put_mr(mr);
 221                }
 222        } else {
 223                if (!mr->lkey_published)
 224                        goto out;
 225                r = lkey >> (32 - dev->dparms.lkey_table_size);
 226                mr->lkey_published = 0;
 227                /* insure published is written before pointer */
 228                rcu_assign_pointer(rkt->table[r], NULL);
 229        }
 230        freed++;
 231out:
 232        spin_unlock_irqrestore(&rkt->lock, flags);
 233        if (freed)
 234                percpu_ref_kill(&mr->refcount);
 235}
 236
 237static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd)
 238{
 239        struct rvt_mr *mr;
 240        int rval = -ENOMEM;
 241        int m;
 242
 243        /* Allocate struct plus pointers to first level page tables. */
 244        m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
 245        mr = kzalloc(struct_size(mr, mr.map, m), GFP_KERNEL);
 246        if (!mr)
 247                goto bail;
 248
 249        rval = rvt_init_mregion(&mr->mr, pd, count, 0);
 250        if (rval)
 251                goto bail;
 252        /*
 253         * ib_reg_phys_mr() will initialize mr->ibmr except for
 254         * lkey and rkey.
 255         */
 256        rval = rvt_alloc_lkey(&mr->mr, 0);
 257        if (rval)
 258                goto bail_mregion;
 259        mr->ibmr.lkey = mr->mr.lkey;
 260        mr->ibmr.rkey = mr->mr.lkey;
 261done:
 262        return mr;
 263
 264bail_mregion:
 265        rvt_deinit_mregion(&mr->mr);
 266bail:
 267        kfree(mr);
 268        mr = ERR_PTR(rval);
 269        goto done;
 270}
 271
 272static void __rvt_free_mr(struct rvt_mr *mr)
 273{
 274        rvt_free_lkey(&mr->mr);
 275        rvt_deinit_mregion(&mr->mr);
 276        kfree(mr);
 277}
 278
 279/**
 280 * rvt_get_dma_mr - get a DMA memory region
 281 * @pd: protection domain for this memory region
 282 * @acc: access flags
 283 *
 284 * Return: the memory region on success, otherwise returns an errno.
 285 */
 286struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc)
 287{
 288        struct rvt_mr *mr;
 289        struct ib_mr *ret;
 290        int rval;
 291
 292        if (ibpd_to_rvtpd(pd)->user)
 293                return ERR_PTR(-EPERM);
 294
 295        mr = kzalloc(sizeof(*mr), GFP_KERNEL);
 296        if (!mr) {
 297                ret = ERR_PTR(-ENOMEM);
 298                goto bail;
 299        }
 300
 301        rval = rvt_init_mregion(&mr->mr, pd, 0, 0);
 302        if (rval) {
 303                ret = ERR_PTR(rval);
 304                goto bail;
 305        }
 306
 307        rval = rvt_alloc_lkey(&mr->mr, 1);
 308        if (rval) {
 309                ret = ERR_PTR(rval);
 310                goto bail_mregion;
 311        }
 312
 313        mr->mr.access_flags = acc;
 314        ret = &mr->ibmr;
 315done:
 316        return ret;
 317
 318bail_mregion:
 319        rvt_deinit_mregion(&mr->mr);
 320bail:
 321        kfree(mr);
 322        goto done;
 323}
 324
 325/**
 326 * rvt_reg_user_mr - register a userspace memory region
 327 * @pd: protection domain for this memory region
 328 * @start: starting userspace address
 329 * @length: length of region to register
 330 * @virt_addr: associated virtual address
 331 * @mr_access_flags: access flags for this memory region
 332 * @udata: unused by the driver
 333 *
 334 * Return: the memory region on success, otherwise returns an errno.
 335 */
 336struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
 337                              u64 virt_addr, int mr_access_flags,
 338                              struct ib_udata *udata)
 339{
 340        struct rvt_mr *mr;
 341        struct ib_umem *umem;
 342        struct sg_page_iter sg_iter;
 343        int n, m;
 344        struct ib_mr *ret;
 345
 346        if (length == 0)
 347                return ERR_PTR(-EINVAL);
 348
 349        umem = ib_umem_get(pd->device, start, length, mr_access_flags);
 350        if (IS_ERR(umem))
 351                return (void *)umem;
 352
 353        n = ib_umem_num_pages(umem);
 354
 355        mr = __rvt_alloc_mr(n, pd);
 356        if (IS_ERR(mr)) {
 357                ret = (struct ib_mr *)mr;
 358                goto bail_umem;
 359        }
 360
 361        mr->mr.user_base = start;
 362        mr->mr.iova = virt_addr;
 363        mr->mr.length = length;
 364        mr->mr.offset = ib_umem_offset(umem);
 365        mr->mr.access_flags = mr_access_flags;
 366        mr->umem = umem;
 367
 368        mr->mr.page_shift = PAGE_SHIFT;
 369        m = 0;
 370        n = 0;
 371        for_each_sgtable_page (&umem->sgt_append.sgt, &sg_iter, 0) {
 372                void *vaddr;
 373
 374                vaddr = page_address(sg_page_iter_page(&sg_iter));
 375                if (!vaddr) {
 376                        ret = ERR_PTR(-EINVAL);
 377                        goto bail_inval;
 378                }
 379                mr->mr.map[m]->segs[n].vaddr = vaddr;
 380                mr->mr.map[m]->segs[n].length = PAGE_SIZE;
 381                trace_rvt_mr_user_seg(&mr->mr, m, n, vaddr, PAGE_SIZE);
 382                if (++n == RVT_SEGSZ) {
 383                        m++;
 384                        n = 0;
 385                }
 386        }
 387        return &mr->ibmr;
 388
 389bail_inval:
 390        __rvt_free_mr(mr);
 391
 392bail_umem:
 393        ib_umem_release(umem);
 394
 395        return ret;
 396}
 397
 398/**
 399 * rvt_dereg_clean_qp_cb - callback from iterator
 400 * @qp: the qp
 401 * @v: the mregion (as u64)
 402 *
 403 * This routine fields the callback for all QPs and
 404 * for QPs in the same PD as the MR will call the
 405 * rvt_qp_mr_clean() to potentially cleanup references.
 406 */
 407static void rvt_dereg_clean_qp_cb(struct rvt_qp *qp, u64 v)
 408{
 409        struct rvt_mregion *mr = (struct rvt_mregion *)v;
 410
 411        /* skip PDs that are not ours */
 412        if (mr->pd != qp->ibqp.pd)
 413                return;
 414        rvt_qp_mr_clean(qp, mr->lkey);
 415}
 416
 417/**
 418 * rvt_dereg_clean_qps - find QPs for reference cleanup
 419 * @mr: the MR that is being deregistered
 420 *
 421 * This routine iterates RC QPs looking for references
 422 * to the lkey noted in mr.
 423 */
 424static void rvt_dereg_clean_qps(struct rvt_mregion *mr)
 425{
 426        struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
 427
 428        rvt_qp_iter(rdi, (u64)mr, rvt_dereg_clean_qp_cb);
 429}
 430
 431/**
 432 * rvt_check_refs - check references
 433 * @mr: the megion
 434 * @t: the caller identification
 435 *
 436 * This routine checks MRs holding a reference during
 437 * when being de-registered.
 438 *
 439 * If the count is non-zero, the code calls a clean routine then
 440 * waits for the timeout for the count to zero.
 441 */
 442static int rvt_check_refs(struct rvt_mregion *mr, const char *t)
 443{
 444        unsigned long timeout;
 445        struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
 446
 447        if (mr->lkey) {
 448                /* avoid dma mr */
 449                rvt_dereg_clean_qps(mr);
 450                /* @mr was indexed on rcu protected @lkey_table */
 451                synchronize_rcu();
 452        }
 453
 454        timeout = wait_for_completion_timeout(&mr->comp, 5 * HZ);
 455        if (!timeout) {
 456                rvt_pr_err(rdi,
 457                           "%s timeout mr %p pd %p lkey %x refcount %ld\n",
 458                           t, mr, mr->pd, mr->lkey,
 459                           atomic_long_read(&mr->refcount.data->count));
 460                rvt_get_mr(mr);
 461                return -EBUSY;
 462        }
 463        return 0;
 464}
 465
 466/**
 467 * rvt_mr_has_lkey - is MR
 468 * @mr: the mregion
 469 * @lkey: the lkey
 470 */
 471bool rvt_mr_has_lkey(struct rvt_mregion *mr, u32 lkey)
 472{
 473        return mr && lkey == mr->lkey;
 474}
 475
 476/**
 477 * rvt_ss_has_lkey - is mr in sge tests
 478 * @ss: the sge state
 479 * @lkey: the lkey
 480 *
 481 * This code tests for an MR in the indicated
 482 * sge state.
 483 */
 484bool rvt_ss_has_lkey(struct rvt_sge_state *ss, u32 lkey)
 485{
 486        int i;
 487        bool rval = false;
 488
 489        if (!ss->num_sge)
 490                return rval;
 491        /* first one */
 492        rval = rvt_mr_has_lkey(ss->sge.mr, lkey);
 493        /* any others */
 494        for (i = 0; !rval && i < ss->num_sge - 1; i++)
 495                rval = rvt_mr_has_lkey(ss->sg_list[i].mr, lkey);
 496        return rval;
 497}
 498
 499/**
 500 * rvt_dereg_mr - unregister and free a memory region
 501 * @ibmr: the memory region to free
 502 * @udata: unused by the driver
 503 *
 504 * Note that this is called to free MRs created by rvt_get_dma_mr()
 505 * or rvt_reg_user_mr().
 506 *
 507 * Returns 0 on success.
 508 */
 509int rvt_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
 510{
 511        struct rvt_mr *mr = to_imr(ibmr);
 512        int ret;
 513
 514        rvt_free_lkey(&mr->mr);
 515
 516        rvt_put_mr(&mr->mr); /* will set completion if last */
 517        ret = rvt_check_refs(&mr->mr, __func__);
 518        if (ret)
 519                goto out;
 520        rvt_deinit_mregion(&mr->mr);
 521        ib_umem_release(mr->umem);
 522        kfree(mr);
 523out:
 524        return ret;
 525}
 526
 527/**
 528 * rvt_alloc_mr - Allocate a memory region usable with the
 529 * @pd: protection domain for this memory region
 530 * @mr_type: mem region type
 531 * @max_num_sg: Max number of segments allowed
 532 *
 533 * Return: the memory region on success, otherwise return an errno.
 534 */
 535struct ib_mr *rvt_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
 536                           u32 max_num_sg)
 537{
 538        struct rvt_mr *mr;
 539
 540        if (mr_type != IB_MR_TYPE_MEM_REG)
 541                return ERR_PTR(-EINVAL);
 542
 543        mr = __rvt_alloc_mr(max_num_sg, pd);
 544        if (IS_ERR(mr))
 545                return (struct ib_mr *)mr;
 546
 547        return &mr->ibmr;
 548}
 549
 550/**
 551 * rvt_set_page - page assignment function called by ib_sg_to_pages
 552 * @ibmr: memory region
 553 * @addr: dma address of mapped page
 554 *
 555 * Return: 0 on success
 556 */
 557static int rvt_set_page(struct ib_mr *ibmr, u64 addr)
 558{
 559        struct rvt_mr *mr = to_imr(ibmr);
 560        u32 ps = 1 << mr->mr.page_shift;
 561        u32 mapped_segs = mr->mr.length >> mr->mr.page_shift;
 562        int m, n;
 563
 564        if (unlikely(mapped_segs == mr->mr.max_segs))
 565                return -ENOMEM;
 566
 567        m = mapped_segs / RVT_SEGSZ;
 568        n = mapped_segs % RVT_SEGSZ;
 569        mr->mr.map[m]->segs[n].vaddr = (void *)addr;
 570        mr->mr.map[m]->segs[n].length = ps;
 571        mr->mr.length += ps;
 572        trace_rvt_mr_page_seg(&mr->mr, m, n, (void *)addr, ps);
 573
 574        return 0;
 575}
 576
 577/**
 578 * rvt_map_mr_sg - map sg list and set it the memory region
 579 * @ibmr: memory region
 580 * @sg: dma mapped scatterlist
 581 * @sg_nents: number of entries in sg
 582 * @sg_offset: offset in bytes into sg
 583 *
 584 * Overwrite rvt_mr length with mr length calculated by ib_sg_to_pages.
 585 *
 586 * Return: number of sg elements mapped to the memory region
 587 */
 588int rvt_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg,
 589                  int sg_nents, unsigned int *sg_offset)
 590{
 591        struct rvt_mr *mr = to_imr(ibmr);
 592        int ret;
 593
 594        mr->mr.length = 0;
 595        mr->mr.page_shift = PAGE_SHIFT;
 596        ret = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, rvt_set_page);
 597        mr->mr.user_base = ibmr->iova;
 598        mr->mr.iova = ibmr->iova;
 599        mr->mr.offset = ibmr->iova - (u64)mr->mr.map[0]->segs[0].vaddr;
 600        mr->mr.length = (size_t)ibmr->length;
 601        trace_rvt_map_mr_sg(ibmr, sg_nents, sg_offset);
 602        return ret;
 603}
 604
 605/**
 606 * rvt_fast_reg_mr - fast register physical MR
 607 * @qp: the queue pair where the work request comes from
 608 * @ibmr: the memory region to be registered
 609 * @key: updated key for this memory region
 610 * @access: access flags for this memory region
 611 *
 612 * Returns 0 on success.
 613 */
 614int rvt_fast_reg_mr(struct rvt_qp *qp, struct ib_mr *ibmr, u32 key,
 615                    int access)
 616{
 617        struct rvt_mr *mr = to_imr(ibmr);
 618
 619        if (qp->ibqp.pd != mr->mr.pd)
 620                return -EACCES;
 621
 622        /* not applicable to dma MR or user MR */
 623        if (!mr->mr.lkey || mr->umem)
 624                return -EINVAL;
 625
 626        if ((key & 0xFFFFFF00) != (mr->mr.lkey & 0xFFFFFF00))
 627                return -EINVAL;
 628
 629        ibmr->lkey = key;
 630        ibmr->rkey = key;
 631        mr->mr.lkey = key;
 632        mr->mr.access_flags = access;
 633        mr->mr.iova = ibmr->iova;
 634        atomic_set(&mr->mr.lkey_invalid, 0);
 635
 636        return 0;
 637}
 638EXPORT_SYMBOL(rvt_fast_reg_mr);
 639
 640/**
 641 * rvt_invalidate_rkey - invalidate an MR rkey
 642 * @qp: queue pair associated with the invalidate op
 643 * @rkey: rkey to invalidate
 644 *
 645 * Returns 0 on success.
 646 */
 647int rvt_invalidate_rkey(struct rvt_qp *qp, u32 rkey)
 648{
 649        struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
 650        struct rvt_lkey_table *rkt = &dev->lkey_table;
 651        struct rvt_mregion *mr;
 652
 653        if (rkey == 0)
 654                return -EINVAL;
 655
 656        rcu_read_lock();
 657        mr = rcu_dereference(
 658                rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]);
 659        if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd))
 660                goto bail;
 661
 662        atomic_set(&mr->lkey_invalid, 1);
 663        rcu_read_unlock();
 664        return 0;
 665
 666bail:
 667        rcu_read_unlock();
 668        return -EINVAL;
 669}
 670EXPORT_SYMBOL(rvt_invalidate_rkey);
 671
 672/**
 673 * rvt_sge_adjacent - is isge compressible
 674 * @last_sge: last outgoing SGE written
 675 * @sge: SGE to check
 676 *
 677 * If adjacent will update last_sge to add length.
 678 *
 679 * Return: true if isge is adjacent to last sge
 680 */
 681static inline bool rvt_sge_adjacent(struct rvt_sge *last_sge,
 682                                    struct ib_sge *sge)
 683{
 684        if (last_sge && sge->lkey == last_sge->mr->lkey &&
 685            ((uint64_t)(last_sge->vaddr + last_sge->length) == sge->addr)) {
 686                if (sge->lkey) {
 687                        if (unlikely((sge->addr - last_sge->mr->user_base +
 688                              sge->length > last_sge->mr->length)))
 689                                return false; /* overrun, caller will catch */
 690                } else {
 691                        last_sge->length += sge->length;
 692                }
 693                last_sge->sge_length += sge->length;
 694                trace_rvt_sge_adjacent(last_sge, sge);
 695                return true;
 696        }
 697        return false;
 698}
 699
 700/**
 701 * rvt_lkey_ok - check IB SGE for validity and initialize
 702 * @rkt: table containing lkey to check SGE against
 703 * @pd: protection domain
 704 * @isge: outgoing internal SGE
 705 * @last_sge: last outgoing SGE written
 706 * @sge: SGE to check
 707 * @acc: access flags
 708 *
 709 * Check the IB SGE for validity and initialize our internal version
 710 * of it.
 711 *
 712 * Increments the reference count when a new sge is stored.
 713 *
 714 * Return: 0 if compressed, 1 if added , otherwise returns -errno.
 715 */
 716int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd,
 717                struct rvt_sge *isge, struct rvt_sge *last_sge,
 718                struct ib_sge *sge, int acc)
 719{
 720        struct rvt_mregion *mr;
 721        unsigned n, m;
 722        size_t off;
 723
 724        /*
 725         * We use LKEY == zero for kernel virtual addresses
 726         * (see rvt_get_dma_mr()).
 727         */
 728        if (sge->lkey == 0) {
 729                struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device);
 730
 731                if (pd->user)
 732                        return -EINVAL;
 733                if (rvt_sge_adjacent(last_sge, sge))
 734                        return 0;
 735                rcu_read_lock();
 736                mr = rcu_dereference(dev->dma_mr);
 737                if (!mr)
 738                        goto bail;
 739                rvt_get_mr(mr);
 740                rcu_read_unlock();
 741
 742                isge->mr = mr;
 743                isge->vaddr = (void *)sge->addr;
 744                isge->length = sge->length;
 745                isge->sge_length = sge->length;
 746                isge->m = 0;
 747                isge->n = 0;
 748                goto ok;
 749        }
 750        if (rvt_sge_adjacent(last_sge, sge))
 751                return 0;
 752        rcu_read_lock();
 753        mr = rcu_dereference(rkt->table[sge->lkey >> rkt->shift]);
 754        if (!mr)
 755                goto bail;
 756        rvt_get_mr(mr);
 757        if (!READ_ONCE(mr->lkey_published))
 758                goto bail_unref;
 759
 760        if (unlikely(atomic_read(&mr->lkey_invalid) ||
 761                     mr->lkey != sge->lkey || mr->pd != &pd->ibpd))
 762                goto bail_unref;
 763
 764        off = sge->addr - mr->user_base;
 765        if (unlikely(sge->addr < mr->user_base ||
 766                     off + sge->length > mr->length ||
 767                     (mr->access_flags & acc) != acc))
 768                goto bail_unref;
 769        rcu_read_unlock();
 770
 771        off += mr->offset;
 772        if (mr->page_shift) {
 773                /*
 774                 * page sizes are uniform power of 2 so no loop is necessary
 775                 * entries_spanned_by_off is the number of times the loop below
 776                 * would have executed.
 777                */
 778                size_t entries_spanned_by_off;
 779
 780                entries_spanned_by_off = off >> mr->page_shift;
 781                off -= (entries_spanned_by_off << mr->page_shift);
 782                m = entries_spanned_by_off / RVT_SEGSZ;
 783                n = entries_spanned_by_off % RVT_SEGSZ;
 784        } else {
 785                m = 0;
 786                n = 0;
 787                while (off >= mr->map[m]->segs[n].length) {
 788                        off -= mr->map[m]->segs[n].length;
 789                        n++;
 790                        if (n >= RVT_SEGSZ) {
 791                                m++;
 792                                n = 0;
 793                        }
 794                }
 795        }
 796        isge->mr = mr;
 797        isge->vaddr = mr->map[m]->segs[n].vaddr + off;
 798        isge->length = mr->map[m]->segs[n].length - off;
 799        isge->sge_length = sge->length;
 800        isge->m = m;
 801        isge->n = n;
 802ok:
 803        trace_rvt_sge_new(isge, sge);
 804        return 1;
 805bail_unref:
 806        rvt_put_mr(mr);
 807bail:
 808        rcu_read_unlock();
 809        return -EINVAL;
 810}
 811EXPORT_SYMBOL(rvt_lkey_ok);
 812
 813/**
 814 * rvt_rkey_ok - check the IB virtual address, length, and RKEY
 815 * @qp: qp for validation
 816 * @sge: SGE state
 817 * @len: length of data
 818 * @vaddr: virtual address to place data
 819 * @rkey: rkey to check
 820 * @acc: access flags
 821 *
 822 * Return: 1 if successful, otherwise 0.
 823 *
 824 * increments the reference count upon success
 825 */
 826int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge,
 827                u32 len, u64 vaddr, u32 rkey, int acc)
 828{
 829        struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
 830        struct rvt_lkey_table *rkt = &dev->lkey_table;
 831        struct rvt_mregion *mr;
 832        unsigned n, m;
 833        size_t off;
 834
 835        /*
 836         * We use RKEY == zero for kernel virtual addresses
 837         * (see rvt_get_dma_mr()).
 838         */
 839        rcu_read_lock();
 840        if (rkey == 0) {
 841                struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd);
 842                struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device);
 843
 844                if (pd->user)
 845                        goto bail;
 846                mr = rcu_dereference(rdi->dma_mr);
 847                if (!mr)
 848                        goto bail;
 849                rvt_get_mr(mr);
 850                rcu_read_unlock();
 851
 852                sge->mr = mr;
 853                sge->vaddr = (void *)vaddr;
 854                sge->length = len;
 855                sge->sge_length = len;
 856                sge->m = 0;
 857                sge->n = 0;
 858                goto ok;
 859        }
 860
 861        mr = rcu_dereference(rkt->table[rkey >> rkt->shift]);
 862        if (!mr)
 863                goto bail;
 864        rvt_get_mr(mr);
 865        /* insure mr read is before test */
 866        if (!READ_ONCE(mr->lkey_published))
 867                goto bail_unref;
 868        if (unlikely(atomic_read(&mr->lkey_invalid) ||
 869                     mr->lkey != rkey || qp->ibqp.pd != mr->pd))
 870                goto bail_unref;
 871
 872        off = vaddr - mr->iova;
 873        if (unlikely(vaddr < mr->iova || off + len > mr->length ||
 874                     (mr->access_flags & acc) == 0))
 875                goto bail_unref;
 876        rcu_read_unlock();
 877
 878        off += mr->offset;
 879        if (mr->page_shift) {
 880                /*
 881                 * page sizes are uniform power of 2 so no loop is necessary
 882                 * entries_spanned_by_off is the number of times the loop below
 883                 * would have executed.
 884                */
 885                size_t entries_spanned_by_off;
 886
 887                entries_spanned_by_off = off >> mr->page_shift;
 888                off -= (entries_spanned_by_off << mr->page_shift);
 889                m = entries_spanned_by_off / RVT_SEGSZ;
 890                n = entries_spanned_by_off % RVT_SEGSZ;
 891        } else {
 892                m = 0;
 893                n = 0;
 894                while (off >= mr->map[m]->segs[n].length) {
 895                        off -= mr->map[m]->segs[n].length;
 896                        n++;
 897                        if (n >= RVT_SEGSZ) {
 898                                m++;
 899                                n = 0;
 900                        }
 901                }
 902        }
 903        sge->mr = mr;
 904        sge->vaddr = mr->map[m]->segs[n].vaddr + off;
 905        sge->length = mr->map[m]->segs[n].length - off;
 906        sge->sge_length = len;
 907        sge->m = m;
 908        sge->n = n;
 909ok:
 910        return 1;
 911bail_unref:
 912        rvt_put_mr(mr);
 913bail:
 914        rcu_read_unlock();
 915        return 0;
 916}
 917EXPORT_SYMBOL(rvt_rkey_ok);
 918