linux/drivers/infiniband/sw/rdmavt/qp.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
   2/*
   3 * Copyright(c) 2016 - 2020 Intel Corporation.
   4 */
   5
   6#include <linux/hash.h>
   7#include <linux/bitops.h>
   8#include <linux/lockdep.h>
   9#include <linux/vmalloc.h>
  10#include <linux/slab.h>
  11#include <rdma/ib_verbs.h>
  12#include <rdma/ib_hdrs.h>
  13#include <rdma/opa_addr.h>
  14#include <rdma/uverbs_ioctl.h>
  15#include "qp.h"
  16#include "vt.h"
  17#include "trace.h"
  18
  19#define RVT_RWQ_COUNT_THRESHOLD 16
  20
  21static void rvt_rc_timeout(struct timer_list *t);
  22static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
  23                         enum ib_qp_type type);
  24
  25/*
  26 * Convert the AETH RNR timeout code into the number of microseconds.
  27 */
  28static const u32 ib_rvt_rnr_table[32] = {
  29        655360, /* 00: 655.36 */
  30        10,     /* 01:    .01 */
  31        20,     /* 02     .02 */
  32        30,     /* 03:    .03 */
  33        40,     /* 04:    .04 */
  34        60,     /* 05:    .06 */
  35        80,     /* 06:    .08 */
  36        120,    /* 07:    .12 */
  37        160,    /* 08:    .16 */
  38        240,    /* 09:    .24 */
  39        320,    /* 0A:    .32 */
  40        480,    /* 0B:    .48 */
  41        640,    /* 0C:    .64 */
  42        960,    /* 0D:    .96 */
  43        1280,   /* 0E:   1.28 */
  44        1920,   /* 0F:   1.92 */
  45        2560,   /* 10:   2.56 */
  46        3840,   /* 11:   3.84 */
  47        5120,   /* 12:   5.12 */
  48        7680,   /* 13:   7.68 */
  49        10240,  /* 14:  10.24 */
  50        15360,  /* 15:  15.36 */
  51        20480,  /* 16:  20.48 */
  52        30720,  /* 17:  30.72 */
  53        40960,  /* 18:  40.96 */
  54        61440,  /* 19:  61.44 */
  55        81920,  /* 1A:  81.92 */
  56        122880, /* 1B: 122.88 */
  57        163840, /* 1C: 163.84 */
  58        245760, /* 1D: 245.76 */
  59        327680, /* 1E: 327.68 */
  60        491520  /* 1F: 491.52 */
  61};
  62
  63/*
  64 * Note that it is OK to post send work requests in the SQE and ERR
  65 * states; rvt_do_send() will process them and generate error
  66 * completions as per IB 1.2 C10-96.
  67 */
  68const int ib_rvt_state_ops[IB_QPS_ERR + 1] = {
  69        [IB_QPS_RESET] = 0,
  70        [IB_QPS_INIT] = RVT_POST_RECV_OK,
  71        [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK,
  72        [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
  73            RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK |
  74            RVT_PROCESS_NEXT_SEND_OK,
  75        [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
  76            RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK,
  77        [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
  78            RVT_POST_SEND_OK | RVT_FLUSH_SEND,
  79        [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV |
  80            RVT_POST_SEND_OK | RVT_FLUSH_SEND,
  81};
  82EXPORT_SYMBOL(ib_rvt_state_ops);
  83
  84/* platform specific: return the last level cache (llc) size, in KiB */
  85static int rvt_wss_llc_size(void)
  86{
  87        /* assume that the boot CPU value is universal for all CPUs */
  88        return boot_cpu_data.x86_cache_size;
  89}
  90
  91/* platform specific: cacheless copy */
  92static void cacheless_memcpy(void *dst, void *src, size_t n)
  93{
  94        /*
  95         * Use the only available X64 cacheless copy.  Add a __user cast
  96         * to quiet sparse.  The src agument is already in the kernel so
  97         * there are no security issues.  The extra fault recovery machinery
  98         * is not invoked.
  99         */
 100        __copy_user_nocache(dst, (void __user *)src, n, 0);
 101}
 102
 103void rvt_wss_exit(struct rvt_dev_info *rdi)
 104{
 105        struct rvt_wss *wss = rdi->wss;
 106
 107        if (!wss)
 108                return;
 109
 110        /* coded to handle partially initialized and repeat callers */
 111        kfree(wss->entries);
 112        wss->entries = NULL;
 113        kfree(rdi->wss);
 114        rdi->wss = NULL;
 115}
 116
 117/*
 118 * rvt_wss_init - Init wss data structures
 119 *
 120 * Return: 0 on success
 121 */
 122int rvt_wss_init(struct rvt_dev_info *rdi)
 123{
 124        unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
 125        unsigned int wss_threshold = rdi->dparms.wss_threshold;
 126        unsigned int wss_clean_period = rdi->dparms.wss_clean_period;
 127        long llc_size;
 128        long llc_bits;
 129        long table_size;
 130        long table_bits;
 131        struct rvt_wss *wss;
 132        int node = rdi->dparms.node;
 133
 134        if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) {
 135                rdi->wss = NULL;
 136                return 0;
 137        }
 138
 139        rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node);
 140        if (!rdi->wss)
 141                return -ENOMEM;
 142        wss = rdi->wss;
 143
 144        /* check for a valid percent range - default to 80 if none or invalid */
 145        if (wss_threshold < 1 || wss_threshold > 100)
 146                wss_threshold = 80;
 147
 148        /* reject a wildly large period */
 149        if (wss_clean_period > 1000000)
 150                wss_clean_period = 256;
 151
 152        /* reject a zero period */
 153        if (wss_clean_period == 0)
 154                wss_clean_period = 1;
 155
 156        /*
 157         * Calculate the table size - the next power of 2 larger than the
 158         * LLC size.  LLC size is in KiB.
 159         */
 160        llc_size = rvt_wss_llc_size() * 1024;
 161        table_size = roundup_pow_of_two(llc_size);
 162
 163        /* one bit per page in rounded up table */
 164        llc_bits = llc_size / PAGE_SIZE;
 165        table_bits = table_size / PAGE_SIZE;
 166        wss->pages_mask = table_bits - 1;
 167        wss->num_entries = table_bits / BITS_PER_LONG;
 168
 169        wss->threshold = (llc_bits * wss_threshold) / 100;
 170        if (wss->threshold == 0)
 171                wss->threshold = 1;
 172
 173        wss->clean_period = wss_clean_period;
 174        atomic_set(&wss->clean_counter, wss_clean_period);
 175
 176        wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries),
 177                                    GFP_KERNEL, node);
 178        if (!wss->entries) {
 179                rvt_wss_exit(rdi);
 180                return -ENOMEM;
 181        }
 182
 183        return 0;
 184}
 185
 186/*
 187 * Advance the clean counter.  When the clean period has expired,
 188 * clean an entry.
 189 *
 190 * This is implemented in atomics to avoid locking.  Because multiple
 191 * variables are involved, it can be racy which can lead to slightly
 192 * inaccurate information.  Since this is only a heuristic, this is
 193 * OK.  Any innaccuracies will clean themselves out as the counter
 194 * advances.  That said, it is unlikely the entry clean operation will
 195 * race - the next possible racer will not start until the next clean
 196 * period.
 197 *
 198 * The clean counter is implemented as a decrement to zero.  When zero
 199 * is reached an entry is cleaned.
 200 */
 201static void wss_advance_clean_counter(struct rvt_wss *wss)
 202{
 203        int entry;
 204        int weight;
 205        unsigned long bits;
 206
 207        /* become the cleaner if we decrement the counter to zero */
 208        if (atomic_dec_and_test(&wss->clean_counter)) {
 209                /*
 210                 * Set, not add, the clean period.  This avoids an issue
 211                 * where the counter could decrement below the clean period.
 212                 * Doing a set can result in lost decrements, slowing the
 213                 * clean advance.  Since this a heuristic, this possible
 214                 * slowdown is OK.
 215                 *
 216                 * An alternative is to loop, advancing the counter by a
 217                 * clean period until the result is > 0. However, this could
 218                 * lead to several threads keeping another in the clean loop.
 219                 * This could be mitigated by limiting the number of times
 220                 * we stay in the loop.
 221                 */
 222                atomic_set(&wss->clean_counter, wss->clean_period);
 223
 224                /*
 225                 * Uniquely grab the entry to clean and move to next.
 226                 * The current entry is always the lower bits of
 227                 * wss.clean_entry.  The table size, wss.num_entries,
 228                 * is always a power-of-2.
 229                 */
 230                entry = (atomic_inc_return(&wss->clean_entry) - 1)
 231                        & (wss->num_entries - 1);
 232
 233                /* clear the entry and count the bits */
 234                bits = xchg(&wss->entries[entry], 0);
 235                weight = hweight64((u64)bits);
 236                /* only adjust the contended total count if needed */
 237                if (weight)
 238                        atomic_sub(weight, &wss->total_count);
 239        }
 240}
 241
 242/*
 243 * Insert the given address into the working set array.
 244 */
 245static void wss_insert(struct rvt_wss *wss, void *address)
 246{
 247        u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask;
 248        u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
 249        u32 nr = page & (BITS_PER_LONG - 1);
 250
 251        if (!test_and_set_bit(nr, &wss->entries[entry]))
 252                atomic_inc(&wss->total_count);
 253
 254        wss_advance_clean_counter(wss);
 255}
 256
 257/*
 258 * Is the working set larger than the threshold?
 259 */
 260static inline bool wss_exceeds_threshold(struct rvt_wss *wss)
 261{
 262        return atomic_read(&wss->total_count) >= wss->threshold;
 263}
 264
 265static void get_map_page(struct rvt_qpn_table *qpt,
 266                         struct rvt_qpn_map *map)
 267{
 268        unsigned long page = get_zeroed_page(GFP_KERNEL);
 269
 270        /*
 271         * Free the page if someone raced with us installing it.
 272         */
 273
 274        spin_lock(&qpt->lock);
 275        if (map->page)
 276                free_page(page);
 277        else
 278                map->page = (void *)page;
 279        spin_unlock(&qpt->lock);
 280}
 281
 282/**
 283 * init_qpn_table - initialize the QP number table for a device
 284 * @rdi: rvt dev struct
 285 * @qpt: the QPN table
 286 */
 287static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt)
 288{
 289        u32 offset, i;
 290        struct rvt_qpn_map *map;
 291        int ret = 0;
 292
 293        if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start))
 294                return -EINVAL;
 295
 296        spin_lock_init(&qpt->lock);
 297
 298        qpt->last = rdi->dparms.qpn_start;
 299        qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift;
 300
 301        /*
 302         * Drivers may want some QPs beyond what we need for verbs let them use
 303         * our qpn table. No need for two. Lets go ahead and mark the bitmaps
 304         * for those. The reserved range must be *after* the range which verbs
 305         * will pick from.
 306         */
 307
 308        /* Figure out number of bit maps needed before reserved range */
 309        qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE;
 310
 311        /* This should always be zero */
 312        offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK;
 313
 314        /* Starting with the first reserved bit map */
 315        map = &qpt->map[qpt->nmaps];
 316
 317        rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n",
 318                    rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end);
 319        for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) {
 320                if (!map->page) {
 321                        get_map_page(qpt, map);
 322                        if (!map->page) {
 323                                ret = -ENOMEM;
 324                                break;
 325                        }
 326                }
 327                set_bit(offset, map->page);
 328                offset++;
 329                if (offset == RVT_BITS_PER_PAGE) {
 330                        /* next page */
 331                        qpt->nmaps++;
 332                        map++;
 333                        offset = 0;
 334                }
 335        }
 336        return ret;
 337}
 338
 339/**
 340 * free_qpn_table - free the QP number table for a device
 341 * @qpt: the QPN table
 342 */
 343static void free_qpn_table(struct rvt_qpn_table *qpt)
 344{
 345        int i;
 346
 347        for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
 348                free_page((unsigned long)qpt->map[i].page);
 349}
 350
 351/**
 352 * rvt_driver_qp_init - Init driver qp resources
 353 * @rdi: rvt dev strucutre
 354 *
 355 * Return: 0 on success
 356 */
 357int rvt_driver_qp_init(struct rvt_dev_info *rdi)
 358{
 359        int i;
 360        int ret = -ENOMEM;
 361
 362        if (!rdi->dparms.qp_table_size)
 363                return -EINVAL;
 364
 365        /*
 366         * If driver is not doing any QP allocation then make sure it is
 367         * providing the necessary QP functions.
 368         */
 369        if (!rdi->driver_f.free_all_qps ||
 370            !rdi->driver_f.qp_priv_alloc ||
 371            !rdi->driver_f.qp_priv_free ||
 372            !rdi->driver_f.notify_qp_reset ||
 373            !rdi->driver_f.notify_restart_rc)
 374                return -EINVAL;
 375
 376        /* allocate parent object */
 377        rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL,
 378                                   rdi->dparms.node);
 379        if (!rdi->qp_dev)
 380                return -ENOMEM;
 381
 382        /* allocate hash table */
 383        rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size;
 384        rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size);
 385        rdi->qp_dev->qp_table =
 386                kmalloc_array_node(rdi->qp_dev->qp_table_size,
 387                             sizeof(*rdi->qp_dev->qp_table),
 388                             GFP_KERNEL, rdi->dparms.node);
 389        if (!rdi->qp_dev->qp_table)
 390                goto no_qp_table;
 391
 392        for (i = 0; i < rdi->qp_dev->qp_table_size; i++)
 393                RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL);
 394
 395        spin_lock_init(&rdi->qp_dev->qpt_lock);
 396
 397        /* initialize qpn map */
 398        if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table))
 399                goto fail_table;
 400
 401        spin_lock_init(&rdi->n_qps_lock);
 402
 403        return 0;
 404
 405fail_table:
 406        kfree(rdi->qp_dev->qp_table);
 407        free_qpn_table(&rdi->qp_dev->qpn_table);
 408
 409no_qp_table:
 410        kfree(rdi->qp_dev);
 411
 412        return ret;
 413}
 414
 415/**
 416 * rvt_free_qp_cb - callback function to reset a qp
 417 * @qp: the qp to reset
 418 * @v: a 64-bit value
 419 *
 420 * This function resets the qp and removes it from the
 421 * qp hash table.
 422 */
 423static void rvt_free_qp_cb(struct rvt_qp *qp, u64 v)
 424{
 425        unsigned int *qp_inuse = (unsigned int *)v;
 426        struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
 427
 428        /* Reset the qp and remove it from the qp hash list */
 429        rvt_reset_qp(rdi, qp, qp->ibqp.qp_type);
 430
 431        /* Increment the qp_inuse count */
 432        (*qp_inuse)++;
 433}
 434
 435/**
 436 * rvt_free_all_qps - check for QPs still in use
 437 * @rdi: rvt device info structure
 438 *
 439 * There should not be any QPs still in use.
 440 * Free memory for table.
 441 * Return the number of QPs still in use.
 442 */
 443static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi)
 444{
 445        unsigned int qp_inuse = 0;
 446
 447        qp_inuse += rvt_mcast_tree_empty(rdi);
 448
 449        rvt_qp_iter(rdi, (u64)&qp_inuse, rvt_free_qp_cb);
 450
 451        return qp_inuse;
 452}
 453
 454/**
 455 * rvt_qp_exit - clean up qps on device exit
 456 * @rdi: rvt dev structure
 457 *
 458 * Check for qp leaks and free resources.
 459 */
 460void rvt_qp_exit(struct rvt_dev_info *rdi)
 461{
 462        u32 qps_inuse = rvt_free_all_qps(rdi);
 463
 464        if (qps_inuse)
 465                rvt_pr_err(rdi, "QP memory leak! %u still in use\n",
 466                           qps_inuse);
 467        if (!rdi->qp_dev)
 468                return;
 469
 470        kfree(rdi->qp_dev->qp_table);
 471        free_qpn_table(&rdi->qp_dev->qpn_table);
 472        kfree(rdi->qp_dev);
 473}
 474
 475static inline unsigned mk_qpn(struct rvt_qpn_table *qpt,
 476                              struct rvt_qpn_map *map, unsigned off)
 477{
 478        return (map - qpt->map) * RVT_BITS_PER_PAGE + off;
 479}
 480
 481/**
 482 * alloc_qpn - Allocate the next available qpn or zero/one for QP type
 483 *             IB_QPT_SMI/IB_QPT_GSI
 484 * @rdi: rvt device info structure
 485 * @qpt: queue pair number table pointer
 486 * @type: the QP type
 487 * @port_num: IB port number, 1 based, comes from core
 488 * @exclude_prefix: prefix of special queue pair number being allocated
 489 *
 490 * Return: The queue pair number
 491 */
 492static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt,
 493                     enum ib_qp_type type, u8 port_num, u8 exclude_prefix)
 494{
 495        u32 i, offset, max_scan, qpn;
 496        struct rvt_qpn_map *map;
 497        u32 ret;
 498        u32 max_qpn = exclude_prefix == RVT_AIP_QP_PREFIX ?
 499                RVT_AIP_QPN_MAX : RVT_QPN_MAX;
 500
 501        if (rdi->driver_f.alloc_qpn)
 502                return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num);
 503
 504        if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
 505                unsigned n;
 506
 507                ret = type == IB_QPT_GSI;
 508                n = 1 << (ret + 2 * (port_num - 1));
 509                spin_lock(&qpt->lock);
 510                if (qpt->flags & n)
 511                        ret = -EINVAL;
 512                else
 513                        qpt->flags |= n;
 514                spin_unlock(&qpt->lock);
 515                goto bail;
 516        }
 517
 518        qpn = qpt->last + qpt->incr;
 519        if (qpn >= max_qpn)
 520                qpn = qpt->incr | ((qpt->last & 1) ^ 1);
 521        /* offset carries bit 0 */
 522        offset = qpn & RVT_BITS_PER_PAGE_MASK;
 523        map = &qpt->map[qpn / RVT_BITS_PER_PAGE];
 524        max_scan = qpt->nmaps - !offset;
 525        for (i = 0;;) {
 526                if (unlikely(!map->page)) {
 527                        get_map_page(qpt, map);
 528                        if (unlikely(!map->page))
 529                                break;
 530                }
 531                do {
 532                        if (!test_and_set_bit(offset, map->page)) {
 533                                qpt->last = qpn;
 534                                ret = qpn;
 535                                goto bail;
 536                        }
 537                        offset += qpt->incr;
 538                        /*
 539                         * This qpn might be bogus if offset >= BITS_PER_PAGE.
 540                         * That is OK.   It gets re-assigned below
 541                         */
 542                        qpn = mk_qpn(qpt, map, offset);
 543                } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX);
 544                /*
 545                 * In order to keep the number of pages allocated to a
 546                 * minimum, we scan the all existing pages before increasing
 547                 * the size of the bitmap table.
 548                 */
 549                if (++i > max_scan) {
 550                        if (qpt->nmaps == RVT_QPNMAP_ENTRIES)
 551                                break;
 552                        map = &qpt->map[qpt->nmaps++];
 553                        /* start at incr with current bit 0 */
 554                        offset = qpt->incr | (offset & 1);
 555                } else if (map < &qpt->map[qpt->nmaps]) {
 556                        ++map;
 557                        /* start at incr with current bit 0 */
 558                        offset = qpt->incr | (offset & 1);
 559                } else {
 560                        map = &qpt->map[0];
 561                        /* wrap to first map page, invert bit 0 */
 562                        offset = qpt->incr | ((offset & 1) ^ 1);
 563                }
 564                /* there can be no set bits in low-order QoS bits */
 565                WARN_ON(rdi->dparms.qos_shift > 1 &&
 566                        offset & ((BIT(rdi->dparms.qos_shift - 1) - 1) << 1));
 567                qpn = mk_qpn(qpt, map, offset);
 568        }
 569
 570        ret = -ENOMEM;
 571
 572bail:
 573        return ret;
 574}
 575
 576/**
 577 * rvt_clear_mr_refs - Drop help mr refs
 578 * @qp: rvt qp data structure
 579 * @clr_sends: If shoudl clear send side or not
 580 */
 581static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends)
 582{
 583        unsigned n;
 584        struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
 585
 586        if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags))
 587                rvt_put_ss(&qp->s_rdma_read_sge);
 588
 589        rvt_put_ss(&qp->r_sge);
 590
 591        if (clr_sends) {
 592                while (qp->s_last != qp->s_head) {
 593                        struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last);
 594
 595                        rvt_put_qp_swqe(qp, wqe);
 596                        if (++qp->s_last >= qp->s_size)
 597                                qp->s_last = 0;
 598                        smp_wmb(); /* see qp_set_savail */
 599                }
 600                if (qp->s_rdma_mr) {
 601                        rvt_put_mr(qp->s_rdma_mr);
 602                        qp->s_rdma_mr = NULL;
 603                }
 604        }
 605
 606        for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) {
 607                struct rvt_ack_entry *e = &qp->s_ack_queue[n];
 608
 609                if (e->rdma_sge.mr) {
 610                        rvt_put_mr(e->rdma_sge.mr);
 611                        e->rdma_sge.mr = NULL;
 612                }
 613        }
 614}
 615
 616/**
 617 * rvt_swqe_has_lkey - return true if lkey is used by swqe
 618 * @wqe: the send wqe
 619 * @lkey: the lkey
 620 *
 621 * Test the swqe for using lkey
 622 */
 623static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey)
 624{
 625        int i;
 626
 627        for (i = 0; i < wqe->wr.num_sge; i++) {
 628                struct rvt_sge *sge = &wqe->sg_list[i];
 629
 630                if (rvt_mr_has_lkey(sge->mr, lkey))
 631                        return true;
 632        }
 633        return false;
 634}
 635
 636/**
 637 * rvt_qp_sends_has_lkey - return true is qp sends use lkey
 638 * @qp: the rvt_qp
 639 * @lkey: the lkey
 640 */
 641static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey)
 642{
 643        u32 s_last = qp->s_last;
 644
 645        while (s_last != qp->s_head) {
 646                struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last);
 647
 648                if (rvt_swqe_has_lkey(wqe, lkey))
 649                        return true;
 650
 651                if (++s_last >= qp->s_size)
 652                        s_last = 0;
 653        }
 654        if (qp->s_rdma_mr)
 655                if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey))
 656                        return true;
 657        return false;
 658}
 659
 660/**
 661 * rvt_qp_acks_has_lkey - return true if acks have lkey
 662 * @qp: the qp
 663 * @lkey: the lkey
 664 */
 665static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey)
 666{
 667        int i;
 668        struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
 669
 670        for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) {
 671                struct rvt_ack_entry *e = &qp->s_ack_queue[i];
 672
 673                if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey))
 674                        return true;
 675        }
 676        return false;
 677}
 678
 679/**
 680 * rvt_qp_mr_clean - clean up remote ops for lkey
 681 * @qp: the qp
 682 * @lkey: the lkey that is being de-registered
 683 *
 684 * This routine checks if the lkey is being used by
 685 * the qp.
 686 *
 687 * If so, the qp is put into an error state to elminate
 688 * any references from the qp.
 689 */
 690void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey)
 691{
 692        bool lastwqe = false;
 693
 694        if (qp->ibqp.qp_type == IB_QPT_SMI ||
 695            qp->ibqp.qp_type == IB_QPT_GSI)
 696                /* avoid special QPs */
 697                return;
 698        spin_lock_irq(&qp->r_lock);
 699        spin_lock(&qp->s_hlock);
 700        spin_lock(&qp->s_lock);
 701
 702        if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
 703                goto check_lwqe;
 704
 705        if (rvt_ss_has_lkey(&qp->r_sge, lkey) ||
 706            rvt_qp_sends_has_lkey(qp, lkey) ||
 707            rvt_qp_acks_has_lkey(qp, lkey))
 708                lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR);
 709check_lwqe:
 710        spin_unlock(&qp->s_lock);
 711        spin_unlock(&qp->s_hlock);
 712        spin_unlock_irq(&qp->r_lock);
 713        if (lastwqe) {
 714                struct ib_event ev;
 715
 716                ev.device = qp->ibqp.device;
 717                ev.element.qp = &qp->ibqp;
 718                ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
 719                qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
 720        }
 721}
 722
 723/**
 724 * rvt_remove_qp - remove qp form table
 725 * @rdi: rvt dev struct
 726 * @qp: qp to remove
 727 *
 728 * Remove the QP from the table so it can't be found asynchronously by
 729 * the receive routine.
 730 */
 731static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
 732{
 733        struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
 734        u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
 735        unsigned long flags;
 736        int removed = 1;
 737
 738        spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
 739
 740        if (rcu_dereference_protected(rvp->qp[0],
 741                        lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
 742                RCU_INIT_POINTER(rvp->qp[0], NULL);
 743        } else if (rcu_dereference_protected(rvp->qp[1],
 744                        lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
 745                RCU_INIT_POINTER(rvp->qp[1], NULL);
 746        } else {
 747                struct rvt_qp *q;
 748                struct rvt_qp __rcu **qpp;
 749
 750                removed = 0;
 751                qpp = &rdi->qp_dev->qp_table[n];
 752                for (; (q = rcu_dereference_protected(*qpp,
 753                        lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL;
 754                        qpp = &q->next) {
 755                        if (q == qp) {
 756                                RCU_INIT_POINTER(*qpp,
 757                                     rcu_dereference_protected(qp->next,
 758                                     lockdep_is_held(&rdi->qp_dev->qpt_lock)));
 759                                removed = 1;
 760                                trace_rvt_qpremove(qp, n);
 761                                break;
 762                        }
 763                }
 764        }
 765
 766        spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
 767        if (removed) {
 768                synchronize_rcu();
 769                rvt_put_qp(qp);
 770        }
 771}
 772
 773/**
 774 * rvt_alloc_rq - allocate memory for user or kernel buffer
 775 * @rq: receive queue data structure
 776 * @size: number of request queue entries
 777 * @node: The NUMA node
 778 * @udata: True if user data is available or not false
 779 *
 780 * Return: If memory allocation failed, return -ENONEM
 781 * This function is used by both shared receive
 782 * queues and non-shared receive queues to allocate
 783 * memory.
 784 */
 785int rvt_alloc_rq(struct rvt_rq *rq, u32 size, int node,
 786                 struct ib_udata *udata)
 787{
 788        if (udata) {
 789                rq->wq = vmalloc_user(sizeof(struct rvt_rwq) + size);
 790                if (!rq->wq)
 791                        goto bail;
 792                /* need kwq with no buffers */
 793                rq->kwq = kzalloc_node(sizeof(*rq->kwq), GFP_KERNEL, node);
 794                if (!rq->kwq)
 795                        goto bail;
 796                rq->kwq->curr_wq = rq->wq->wq;
 797        } else {
 798                /* need kwq with buffers */
 799                rq->kwq =
 800                        vzalloc_node(sizeof(struct rvt_krwq) + size, node);
 801                if (!rq->kwq)
 802                        goto bail;
 803                rq->kwq->curr_wq = rq->kwq->wq;
 804        }
 805
 806        spin_lock_init(&rq->kwq->p_lock);
 807        spin_lock_init(&rq->kwq->c_lock);
 808        return 0;
 809bail:
 810        rvt_free_rq(rq);
 811        return -ENOMEM;
 812}
 813
 814/**
 815 * rvt_init_qp - initialize the QP state to the reset state
 816 * @rdi: rvt dev struct
 817 * @qp: the QP to init or reinit
 818 * @type: the QP type
 819 *
 820 * This function is called from both rvt_create_qp() and
 821 * rvt_reset_qp().   The difference is that the reset
 822 * patch the necessary locks to protect against concurent
 823 * access.
 824 */
 825static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
 826                        enum ib_qp_type type)
 827{
 828        qp->remote_qpn = 0;
 829        qp->qkey = 0;
 830        qp->qp_access_flags = 0;
 831        qp->s_flags &= RVT_S_SIGNAL_REQ_WR;
 832        qp->s_hdrwords = 0;
 833        qp->s_wqe = NULL;
 834        qp->s_draining = 0;
 835        qp->s_next_psn = 0;
 836        qp->s_last_psn = 0;
 837        qp->s_sending_psn = 0;
 838        qp->s_sending_hpsn = 0;
 839        qp->s_psn = 0;
 840        qp->r_psn = 0;
 841        qp->r_msn = 0;
 842        if (type == IB_QPT_RC) {
 843                qp->s_state = IB_OPCODE_RC_SEND_LAST;
 844                qp->r_state = IB_OPCODE_RC_SEND_LAST;
 845        } else {
 846                qp->s_state = IB_OPCODE_UC_SEND_LAST;
 847                qp->r_state = IB_OPCODE_UC_SEND_LAST;
 848        }
 849        qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
 850        qp->r_nak_state = 0;
 851        qp->r_aflags = 0;
 852        qp->r_flags = 0;
 853        qp->s_head = 0;
 854        qp->s_tail = 0;
 855        qp->s_cur = 0;
 856        qp->s_acked = 0;
 857        qp->s_last = 0;
 858        qp->s_ssn = 1;
 859        qp->s_lsn = 0;
 860        qp->s_mig_state = IB_MIG_MIGRATED;
 861        qp->r_head_ack_queue = 0;
 862        qp->s_tail_ack_queue = 0;
 863        qp->s_acked_ack_queue = 0;
 864        qp->s_num_rd_atomic = 0;
 865        qp->r_sge.num_sge = 0;
 866        atomic_set(&qp->s_reserved_used, 0);
 867}
 868
 869/**
 870 * _rvt_reset_qp - initialize the QP state to the reset state
 871 * @rdi: rvt dev struct
 872 * @qp: the QP to reset
 873 * @type: the QP type
 874 *
 875 * r_lock, s_hlock, and s_lock are required to be held by the caller
 876 */
 877static void _rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
 878                          enum ib_qp_type type)
 879        __must_hold(&qp->s_lock)
 880        __must_hold(&qp->s_hlock)
 881        __must_hold(&qp->r_lock)
 882{
 883        lockdep_assert_held(&qp->r_lock);
 884        lockdep_assert_held(&qp->s_hlock);
 885        lockdep_assert_held(&qp->s_lock);
 886        if (qp->state != IB_QPS_RESET) {
 887                qp->state = IB_QPS_RESET;
 888
 889                /* Let drivers flush their waitlist */
 890                rdi->driver_f.flush_qp_waiters(qp);
 891                rvt_stop_rc_timers(qp);
 892                qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT);
 893                spin_unlock(&qp->s_lock);
 894                spin_unlock(&qp->s_hlock);
 895                spin_unlock_irq(&qp->r_lock);
 896
 897                /* Stop the send queue and the retry timer */
 898                rdi->driver_f.stop_send_queue(qp);
 899                rvt_del_timers_sync(qp);
 900                /* Wait for things to stop */
 901                rdi->driver_f.quiesce_qp(qp);
 902
 903                /* take qp out the hash and wait for it to be unused */
 904                rvt_remove_qp(rdi, qp);
 905
 906                /* grab the lock b/c it was locked at call time */
 907                spin_lock_irq(&qp->r_lock);
 908                spin_lock(&qp->s_hlock);
 909                spin_lock(&qp->s_lock);
 910
 911                rvt_clear_mr_refs(qp, 1);
 912                /*
 913                 * Let the driver do any tear down or re-init it needs to for
 914                 * a qp that has been reset
 915                 */
 916                rdi->driver_f.notify_qp_reset(qp);
 917        }
 918        rvt_init_qp(rdi, qp, type);
 919        lockdep_assert_held(&qp->r_lock);
 920        lockdep_assert_held(&qp->s_hlock);
 921        lockdep_assert_held(&qp->s_lock);
 922}
 923
 924/**
 925 * rvt_reset_qp - initialize the QP state to the reset state
 926 * @rdi: the device info
 927 * @qp: the QP to reset
 928 * @type: the QP type
 929 *
 930 * This is the wrapper function to acquire the r_lock, s_hlock, and s_lock
 931 * before calling _rvt_reset_qp().
 932 */
 933static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
 934                         enum ib_qp_type type)
 935{
 936        spin_lock_irq(&qp->r_lock);
 937        spin_lock(&qp->s_hlock);
 938        spin_lock(&qp->s_lock);
 939        _rvt_reset_qp(rdi, qp, type);
 940        spin_unlock(&qp->s_lock);
 941        spin_unlock(&qp->s_hlock);
 942        spin_unlock_irq(&qp->r_lock);
 943}
 944
 945/**
 946 * rvt_free_qpn - Free a qpn from the bit map
 947 * @qpt: QP table
 948 * @qpn: queue pair number to free
 949 */
 950static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
 951{
 952        struct rvt_qpn_map *map;
 953
 954        if ((qpn & RVT_AIP_QP_PREFIX_MASK) == RVT_AIP_QP_BASE)
 955                qpn &= RVT_AIP_QP_SUFFIX;
 956
 957        map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE;
 958        if (map->page)
 959                clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
 960}
 961
 962/**
 963 * get_allowed_ops - Given a QP type return the appropriate allowed OP
 964 * @type: valid, supported, QP type
 965 */
 966static u8 get_allowed_ops(enum ib_qp_type type)
 967{
 968        return type == IB_QPT_RC ? IB_OPCODE_RC : type == IB_QPT_UC ?
 969                IB_OPCODE_UC : IB_OPCODE_UD;
 970}
 971
 972/**
 973 * free_ud_wq_attr - Clean up AH attribute cache for UD QPs
 974 * @qp: Valid QP with allowed_ops set
 975 *
 976 * The rvt_swqe data structure being used is a union, so this is
 977 * only valid for UD QPs.
 978 */
 979static void free_ud_wq_attr(struct rvt_qp *qp)
 980{
 981        struct rvt_swqe *wqe;
 982        int i;
 983
 984        for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
 985                wqe = rvt_get_swqe_ptr(qp, i);
 986                kfree(wqe->ud_wr.attr);
 987                wqe->ud_wr.attr = NULL;
 988        }
 989}
 990
 991/**
 992 * alloc_ud_wq_attr - AH attribute cache for UD QPs
 993 * @qp: Valid QP with allowed_ops set
 994 * @node: Numa node for allocation
 995 *
 996 * The rvt_swqe data structure being used is a union, so this is
 997 * only valid for UD QPs.
 998 */
 999static int alloc_ud_wq_attr(struct rvt_qp *qp, int node)
1000{
1001        struct rvt_swqe *wqe;
1002        int i;
1003
1004        for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
1005                wqe = rvt_get_swqe_ptr(qp, i);
1006                wqe->ud_wr.attr = kzalloc_node(sizeof(*wqe->ud_wr.attr),
1007                                               GFP_KERNEL, node);
1008                if (!wqe->ud_wr.attr) {
1009                        free_ud_wq_attr(qp);
1010                        return -ENOMEM;
1011                }
1012        }
1013
1014        return 0;
1015}
1016
1017/**
1018 * rvt_create_qp - create a queue pair for a device
1019 * @ibqp: the queue pair
1020 * @init_attr: the attributes of the queue pair
1021 * @udata: user data for libibverbs.so
1022 *
1023 * Queue pair creation is mostly an rvt issue. However, drivers have their own
1024 * unique idea of what queue pair numbers mean. For instance there is a reserved
1025 * range for PSM.
1026 *
1027 * Return: 0 on success, otherwise returns an errno.
1028 *
1029 * Called by the ib_create_qp() core verbs function.
1030 */
1031int rvt_create_qp(struct ib_qp *ibqp, struct ib_qp_init_attr *init_attr,
1032                  struct ib_udata *udata)
1033{
1034        struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1035        int ret = -ENOMEM;
1036        struct rvt_swqe *swq = NULL;
1037        size_t sz;
1038        size_t sg_list_sz = 0;
1039        struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1040        void *priv = NULL;
1041        size_t sqsize;
1042        u8 exclude_prefix = 0;
1043
1044        if (!rdi)
1045                return -EINVAL;
1046
1047        if (init_attr->create_flags & ~IB_QP_CREATE_NETDEV_USE)
1048                return -EOPNOTSUPP;
1049
1050        if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge ||
1051            init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr)
1052                return -EINVAL;
1053
1054        /* Check receive queue parameters if no SRQ is specified. */
1055        if (!init_attr->srq) {
1056                if (init_attr->cap.max_recv_sge >
1057                    rdi->dparms.props.max_recv_sge ||
1058                    init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr)
1059                        return -EINVAL;
1060
1061                if (init_attr->cap.max_send_sge +
1062                    init_attr->cap.max_send_wr +
1063                    init_attr->cap.max_recv_sge +
1064                    init_attr->cap.max_recv_wr == 0)
1065                        return -EINVAL;
1066        }
1067        sqsize =
1068                init_attr->cap.max_send_wr + 1 +
1069                rdi->dparms.reserved_operations;
1070        switch (init_attr->qp_type) {
1071        case IB_QPT_SMI:
1072        case IB_QPT_GSI:
1073                if (init_attr->port_num == 0 ||
1074                    init_attr->port_num > ibqp->device->phys_port_cnt)
1075                        return -EINVAL;
1076                fallthrough;
1077        case IB_QPT_UC:
1078        case IB_QPT_RC:
1079        case IB_QPT_UD:
1080                sz = struct_size(swq, sg_list, init_attr->cap.max_send_sge);
1081                swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node);
1082                if (!swq)
1083                        return -ENOMEM;
1084
1085                if (init_attr->srq) {
1086                        struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq);
1087
1088                        if (srq->rq.max_sge > 1)
1089                                sg_list_sz = sizeof(*qp->r_sg_list) *
1090                                        (srq->rq.max_sge - 1);
1091                } else if (init_attr->cap.max_recv_sge > 1)
1092                        sg_list_sz = sizeof(*qp->r_sg_list) *
1093                                (init_attr->cap.max_recv_sge - 1);
1094                qp->r_sg_list =
1095                        kzalloc_node(sg_list_sz, GFP_KERNEL, rdi->dparms.node);
1096                if (!qp->r_sg_list)
1097                        goto bail_qp;
1098                qp->allowed_ops = get_allowed_ops(init_attr->qp_type);
1099
1100                RCU_INIT_POINTER(qp->next, NULL);
1101                if (init_attr->qp_type == IB_QPT_RC) {
1102                        qp->s_ack_queue =
1103                                kcalloc_node(rvt_max_atomic(rdi),
1104                                             sizeof(*qp->s_ack_queue),
1105                                             GFP_KERNEL,
1106                                             rdi->dparms.node);
1107                        if (!qp->s_ack_queue)
1108                                goto bail_qp;
1109                }
1110                /* initialize timers needed for rc qp */
1111                timer_setup(&qp->s_timer, rvt_rc_timeout, 0);
1112                hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC,
1113                             HRTIMER_MODE_REL);
1114                qp->s_rnr_timer.function = rvt_rc_rnr_retry;
1115
1116                /*
1117                 * Driver needs to set up it's private QP structure and do any
1118                 * initialization that is needed.
1119                 */
1120                priv = rdi->driver_f.qp_priv_alloc(rdi, qp);
1121                if (IS_ERR(priv)) {
1122                        ret = PTR_ERR(priv);
1123                        goto bail_qp;
1124                }
1125                qp->priv = priv;
1126                qp->timeout_jiffies =
1127                        usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
1128                                1000UL);
1129                if (init_attr->srq) {
1130                        sz = 0;
1131                } else {
1132                        qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
1133                        qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
1134                        sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
1135                                sizeof(struct rvt_rwqe);
1136                        ret = rvt_alloc_rq(&qp->r_rq, qp->r_rq.size * sz,
1137                                           rdi->dparms.node, udata);
1138                        if (ret)
1139                                goto bail_driver_priv;
1140                }
1141
1142                /*
1143                 * ib_create_qp() will initialize qp->ibqp
1144                 * except for qp->ibqp.qp_num.
1145                 */
1146                spin_lock_init(&qp->r_lock);
1147                spin_lock_init(&qp->s_hlock);
1148                spin_lock_init(&qp->s_lock);
1149                atomic_set(&qp->refcount, 0);
1150                atomic_set(&qp->local_ops_pending, 0);
1151                init_waitqueue_head(&qp->wait);
1152                INIT_LIST_HEAD(&qp->rspwait);
1153                qp->state = IB_QPS_RESET;
1154                qp->s_wq = swq;
1155                qp->s_size = sqsize;
1156                qp->s_avail = init_attr->cap.max_send_wr;
1157                qp->s_max_sge = init_attr->cap.max_send_sge;
1158                if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
1159                        qp->s_flags = RVT_S_SIGNAL_REQ_WR;
1160                ret = alloc_ud_wq_attr(qp, rdi->dparms.node);
1161                if (ret)
1162                        goto bail_rq_rvt;
1163
1164                if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE)
1165                        exclude_prefix = RVT_AIP_QP_PREFIX;
1166
1167                ret = alloc_qpn(rdi, &rdi->qp_dev->qpn_table,
1168                                init_attr->qp_type,
1169                                init_attr->port_num,
1170                                exclude_prefix);
1171                if (ret < 0)
1172                        goto bail_rq_wq;
1173
1174                qp->ibqp.qp_num = ret;
1175                if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE)
1176                        qp->ibqp.qp_num |= RVT_AIP_QP_BASE;
1177                qp->port_num = init_attr->port_num;
1178                rvt_init_qp(rdi, qp, init_attr->qp_type);
1179                if (rdi->driver_f.qp_priv_init) {
1180                        ret = rdi->driver_f.qp_priv_init(rdi, qp, init_attr);
1181                        if (ret)
1182                                goto bail_rq_wq;
1183                }
1184                break;
1185
1186        default:
1187                /* Don't support raw QPs */
1188                return -EOPNOTSUPP;
1189        }
1190
1191        init_attr->cap.max_inline_data = 0;
1192
1193        /*
1194         * Return the address of the RWQ as the offset to mmap.
1195         * See rvt_mmap() for details.
1196         */
1197        if (udata && udata->outlen >= sizeof(__u64)) {
1198                if (!qp->r_rq.wq) {
1199                        __u64 offset = 0;
1200
1201                        ret = ib_copy_to_udata(udata, &offset,
1202                                               sizeof(offset));
1203                        if (ret)
1204                                goto bail_qpn;
1205                } else {
1206                        u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz;
1207
1208                        qp->ip = rvt_create_mmap_info(rdi, s, udata,
1209                                                      qp->r_rq.wq);
1210                        if (IS_ERR(qp->ip)) {
1211                                ret = PTR_ERR(qp->ip);
1212                                goto bail_qpn;
1213                        }
1214
1215                        ret = ib_copy_to_udata(udata, &qp->ip->offset,
1216                                               sizeof(qp->ip->offset));
1217                        if (ret)
1218                                goto bail_ip;
1219                }
1220                qp->pid = current->pid;
1221        }
1222
1223        spin_lock(&rdi->n_qps_lock);
1224        if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) {
1225                spin_unlock(&rdi->n_qps_lock);
1226                ret = -ENOMEM;
1227                goto bail_ip;
1228        }
1229
1230        rdi->n_qps_allocated++;
1231        /*
1232         * Maintain a busy_jiffies variable that will be added to the timeout
1233         * period in mod_retry_timer and add_retry_timer. This busy jiffies
1234         * is scaled by the number of rc qps created for the device to reduce
1235         * the number of timeouts occurring when there is a large number of
1236         * qps. busy_jiffies is incremented every rc qp scaling interval.
1237         * The scaling interval is selected based on extensive performance
1238         * evaluation of targeted workloads.
1239         */
1240        if (init_attr->qp_type == IB_QPT_RC) {
1241                rdi->n_rc_qps++;
1242                rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1243        }
1244        spin_unlock(&rdi->n_qps_lock);
1245
1246        if (qp->ip) {
1247                spin_lock_irq(&rdi->pending_lock);
1248                list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps);
1249                spin_unlock_irq(&rdi->pending_lock);
1250        }
1251
1252        return 0;
1253
1254bail_ip:
1255        if (qp->ip)
1256                kref_put(&qp->ip->ref, rvt_release_mmap_info);
1257
1258bail_qpn:
1259        rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1260
1261bail_rq_wq:
1262        free_ud_wq_attr(qp);
1263
1264bail_rq_rvt:
1265        rvt_free_rq(&qp->r_rq);
1266
1267bail_driver_priv:
1268        rdi->driver_f.qp_priv_free(rdi, qp);
1269
1270bail_qp:
1271        kfree(qp->s_ack_queue);
1272        kfree(qp->r_sg_list);
1273        vfree(swq);
1274        return ret;
1275}
1276
1277/**
1278 * rvt_error_qp - put a QP into the error state
1279 * @qp: the QP to put into the error state
1280 * @err: the receive completion error to signal if a RWQE is active
1281 *
1282 * Flushes both send and receive work queues.
1283 *
1284 * Return: true if last WQE event should be generated.
1285 * The QP r_lock and s_lock should be held and interrupts disabled.
1286 * If we are already in error state, just return.
1287 */
1288int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err)
1289{
1290        struct ib_wc wc;
1291        int ret = 0;
1292        struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1293
1294        lockdep_assert_held(&qp->r_lock);
1295        lockdep_assert_held(&qp->s_lock);
1296        if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
1297                goto bail;
1298
1299        qp->state = IB_QPS_ERR;
1300
1301        if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
1302                qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
1303                del_timer(&qp->s_timer);
1304        }
1305
1306        if (qp->s_flags & RVT_S_ANY_WAIT_SEND)
1307                qp->s_flags &= ~RVT_S_ANY_WAIT_SEND;
1308
1309        rdi->driver_f.notify_error_qp(qp);
1310
1311        /* Schedule the sending tasklet to drain the send work queue. */
1312        if (READ_ONCE(qp->s_last) != qp->s_head)
1313                rdi->driver_f.schedule_send(qp);
1314
1315        rvt_clear_mr_refs(qp, 0);
1316
1317        memset(&wc, 0, sizeof(wc));
1318        wc.qp = &qp->ibqp;
1319        wc.opcode = IB_WC_RECV;
1320
1321        if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) {
1322                wc.wr_id = qp->r_wr_id;
1323                wc.status = err;
1324                rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1325        }
1326        wc.status = IB_WC_WR_FLUSH_ERR;
1327
1328        if (qp->r_rq.kwq) {
1329                u32 head;
1330                u32 tail;
1331                struct rvt_rwq *wq = NULL;
1332                struct rvt_krwq *kwq = NULL;
1333
1334                spin_lock(&qp->r_rq.kwq->c_lock);
1335                /* qp->ip used to validate if there is a  user buffer mmaped */
1336                if (qp->ip) {
1337                        wq = qp->r_rq.wq;
1338                        head = RDMA_READ_UAPI_ATOMIC(wq->head);
1339                        tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
1340                } else {
1341                        kwq = qp->r_rq.kwq;
1342                        head = kwq->head;
1343                        tail = kwq->tail;
1344                }
1345                /* sanity check pointers before trusting them */
1346                if (head >= qp->r_rq.size)
1347                        head = 0;
1348                if (tail >= qp->r_rq.size)
1349                        tail = 0;
1350                while (tail != head) {
1351                        wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
1352                        if (++tail >= qp->r_rq.size)
1353                                tail = 0;
1354                        rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1355                }
1356                if (qp->ip)
1357                        RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
1358                else
1359                        kwq->tail = tail;
1360                spin_unlock(&qp->r_rq.kwq->c_lock);
1361        } else if (qp->ibqp.event_handler) {
1362                ret = 1;
1363        }
1364
1365bail:
1366        return ret;
1367}
1368EXPORT_SYMBOL(rvt_error_qp);
1369
1370/*
1371 * Put the QP into the hash table.
1372 * The hash table holds a reference to the QP.
1373 */
1374static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
1375{
1376        struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
1377        unsigned long flags;
1378
1379        rvt_get_qp(qp);
1380        spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
1381
1382        if (qp->ibqp.qp_num <= 1) {
1383                rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp);
1384        } else {
1385                u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
1386
1387                qp->next = rdi->qp_dev->qp_table[n];
1388                rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp);
1389                trace_rvt_qpinsert(qp, n);
1390        }
1391
1392        spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
1393}
1394
1395/**
1396 * rvt_modify_qp - modify the attributes of a queue pair
1397 * @ibqp: the queue pair who's attributes we're modifying
1398 * @attr: the new attributes
1399 * @attr_mask: the mask of attributes to modify
1400 * @udata: user data for libibverbs.so
1401 *
1402 * Return: 0 on success, otherwise returns an errno.
1403 */
1404int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1405                  int attr_mask, struct ib_udata *udata)
1406{
1407        struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1408        struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1409        enum ib_qp_state cur_state, new_state;
1410        struct ib_event ev;
1411        int lastwqe = 0;
1412        int mig = 0;
1413        int pmtu = 0; /* for gcc warning only */
1414        int opa_ah;
1415
1416        if (attr_mask & ~IB_QP_ATTR_STANDARD_BITS)
1417                return -EOPNOTSUPP;
1418
1419        spin_lock_irq(&qp->r_lock);
1420        spin_lock(&qp->s_hlock);
1421        spin_lock(&qp->s_lock);
1422
1423        cur_state = attr_mask & IB_QP_CUR_STATE ?
1424                attr->cur_qp_state : qp->state;
1425        new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
1426        opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num);
1427
1428        if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
1429                                attr_mask))
1430                goto inval;
1431
1432        if (rdi->driver_f.check_modify_qp &&
1433            rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata))
1434                goto inval;
1435
1436        if (attr_mask & IB_QP_AV) {
1437                if (opa_ah) {
1438                        if (rdma_ah_get_dlid(&attr->ah_attr) >=
1439                                opa_get_mcast_base(OPA_MCAST_NR))
1440                                goto inval;
1441                } else {
1442                        if (rdma_ah_get_dlid(&attr->ah_attr) >=
1443                                be16_to_cpu(IB_MULTICAST_LID_BASE))
1444                                goto inval;
1445                }
1446
1447                if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr))
1448                        goto inval;
1449        }
1450
1451        if (attr_mask & IB_QP_ALT_PATH) {
1452                if (opa_ah) {
1453                        if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1454                                opa_get_mcast_base(OPA_MCAST_NR))
1455                                goto inval;
1456                } else {
1457                        if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1458                                be16_to_cpu(IB_MULTICAST_LID_BASE))
1459                                goto inval;
1460                }
1461
1462                if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
1463                        goto inval;
1464                if (attr->alt_pkey_index >= rvt_get_npkeys(rdi))
1465                        goto inval;
1466        }
1467
1468        if (attr_mask & IB_QP_PKEY_INDEX)
1469                if (attr->pkey_index >= rvt_get_npkeys(rdi))
1470                        goto inval;
1471
1472        if (attr_mask & IB_QP_MIN_RNR_TIMER)
1473                if (attr->min_rnr_timer > 31)
1474                        goto inval;
1475
1476        if (attr_mask & IB_QP_PORT)
1477                if (qp->ibqp.qp_type == IB_QPT_SMI ||
1478                    qp->ibqp.qp_type == IB_QPT_GSI ||
1479                    attr->port_num == 0 ||
1480                    attr->port_num > ibqp->device->phys_port_cnt)
1481                        goto inval;
1482
1483        if (attr_mask & IB_QP_DEST_QPN)
1484                if (attr->dest_qp_num > RVT_QPN_MASK)
1485                        goto inval;
1486
1487        if (attr_mask & IB_QP_RETRY_CNT)
1488                if (attr->retry_cnt > 7)
1489                        goto inval;
1490
1491        if (attr_mask & IB_QP_RNR_RETRY)
1492                if (attr->rnr_retry > 7)
1493                        goto inval;
1494
1495        /*
1496         * Don't allow invalid path_mtu values.  OK to set greater
1497         * than the active mtu (or even the max_cap, if we have tuned
1498         * that to a small mtu.  We'll set qp->path_mtu
1499         * to the lesser of requested attribute mtu and active,
1500         * for packetizing messages.
1501         * Note that the QP port has to be set in INIT and MTU in RTR.
1502         */
1503        if (attr_mask & IB_QP_PATH_MTU) {
1504                pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr);
1505                if (pmtu < 0)
1506                        goto inval;
1507        }
1508
1509        if (attr_mask & IB_QP_PATH_MIG_STATE) {
1510                if (attr->path_mig_state == IB_MIG_REARM) {
1511                        if (qp->s_mig_state == IB_MIG_ARMED)
1512                                goto inval;
1513                        if (new_state != IB_QPS_RTS)
1514                                goto inval;
1515                } else if (attr->path_mig_state == IB_MIG_MIGRATED) {
1516                        if (qp->s_mig_state == IB_MIG_REARM)
1517                                goto inval;
1518                        if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
1519                                goto inval;
1520                        if (qp->s_mig_state == IB_MIG_ARMED)
1521                                mig = 1;
1522                } else {
1523                        goto inval;
1524                }
1525        }
1526
1527        if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1528                if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic)
1529                        goto inval;
1530
1531        switch (new_state) {
1532        case IB_QPS_RESET:
1533                if (qp->state != IB_QPS_RESET)
1534                        _rvt_reset_qp(rdi, qp, ibqp->qp_type);
1535                break;
1536
1537        case IB_QPS_RTR:
1538                /* Allow event to re-trigger if QP set to RTR more than once */
1539                qp->r_flags &= ~RVT_R_COMM_EST;
1540                qp->state = new_state;
1541                break;
1542
1543        case IB_QPS_SQD:
1544                qp->s_draining = qp->s_last != qp->s_cur;
1545                qp->state = new_state;
1546                break;
1547
1548        case IB_QPS_SQE:
1549                if (qp->ibqp.qp_type == IB_QPT_RC)
1550                        goto inval;
1551                qp->state = new_state;
1552                break;
1553
1554        case IB_QPS_ERR:
1555                lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
1556                break;
1557
1558        default:
1559                qp->state = new_state;
1560                break;
1561        }
1562
1563        if (attr_mask & IB_QP_PKEY_INDEX)
1564                qp->s_pkey_index = attr->pkey_index;
1565
1566        if (attr_mask & IB_QP_PORT)
1567                qp->port_num = attr->port_num;
1568
1569        if (attr_mask & IB_QP_DEST_QPN)
1570                qp->remote_qpn = attr->dest_qp_num;
1571
1572        if (attr_mask & IB_QP_SQ_PSN) {
1573                qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask;
1574                qp->s_psn = qp->s_next_psn;
1575                qp->s_sending_psn = qp->s_next_psn;
1576                qp->s_last_psn = qp->s_next_psn - 1;
1577                qp->s_sending_hpsn = qp->s_last_psn;
1578        }
1579
1580        if (attr_mask & IB_QP_RQ_PSN)
1581                qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask;
1582
1583        if (attr_mask & IB_QP_ACCESS_FLAGS)
1584                qp->qp_access_flags = attr->qp_access_flags;
1585
1586        if (attr_mask & IB_QP_AV) {
1587                rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr);
1588                qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr);
1589                qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
1590        }
1591
1592        if (attr_mask & IB_QP_ALT_PATH) {
1593                rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr);
1594                qp->s_alt_pkey_index = attr->alt_pkey_index;
1595        }
1596
1597        if (attr_mask & IB_QP_PATH_MIG_STATE) {
1598                qp->s_mig_state = attr->path_mig_state;
1599                if (mig) {
1600                        qp->remote_ah_attr = qp->alt_ah_attr;
1601                        qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
1602                        qp->s_pkey_index = qp->s_alt_pkey_index;
1603                }
1604        }
1605
1606        if (attr_mask & IB_QP_PATH_MTU) {
1607                qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu);
1608                qp->log_pmtu = ilog2(qp->pmtu);
1609        }
1610
1611        if (attr_mask & IB_QP_RETRY_CNT) {
1612                qp->s_retry_cnt = attr->retry_cnt;
1613                qp->s_retry = attr->retry_cnt;
1614        }
1615
1616        if (attr_mask & IB_QP_RNR_RETRY) {
1617                qp->s_rnr_retry_cnt = attr->rnr_retry;
1618                qp->s_rnr_retry = attr->rnr_retry;
1619        }
1620
1621        if (attr_mask & IB_QP_MIN_RNR_TIMER)
1622                qp->r_min_rnr_timer = attr->min_rnr_timer;
1623
1624        if (attr_mask & IB_QP_TIMEOUT) {
1625                qp->timeout = attr->timeout;
1626                qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout);
1627        }
1628
1629        if (attr_mask & IB_QP_QKEY)
1630                qp->qkey = attr->qkey;
1631
1632        if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1633                qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
1634
1635        if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
1636                qp->s_max_rd_atomic = attr->max_rd_atomic;
1637
1638        if (rdi->driver_f.modify_qp)
1639                rdi->driver_f.modify_qp(qp, attr, attr_mask, udata);
1640
1641        spin_unlock(&qp->s_lock);
1642        spin_unlock(&qp->s_hlock);
1643        spin_unlock_irq(&qp->r_lock);
1644
1645        if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
1646                rvt_insert_qp(rdi, qp);
1647
1648        if (lastwqe) {
1649                ev.device = qp->ibqp.device;
1650                ev.element.qp = &qp->ibqp;
1651                ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
1652                qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1653        }
1654        if (mig) {
1655                ev.device = qp->ibqp.device;
1656                ev.element.qp = &qp->ibqp;
1657                ev.event = IB_EVENT_PATH_MIG;
1658                qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1659        }
1660        return 0;
1661
1662inval:
1663        spin_unlock(&qp->s_lock);
1664        spin_unlock(&qp->s_hlock);
1665        spin_unlock_irq(&qp->r_lock);
1666        return -EINVAL;
1667}
1668
1669/**
1670 * rvt_destroy_qp - destroy a queue pair
1671 * @ibqp: the queue pair to destroy
1672 * @udata: unused by the driver
1673 *
1674 * Note that this can be called while the QP is actively sending or
1675 * receiving!
1676 *
1677 * Return: 0 on success.
1678 */
1679int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata)
1680{
1681        struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1682        struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1683
1684        rvt_reset_qp(rdi, qp, ibqp->qp_type);
1685
1686        wait_event(qp->wait, !atomic_read(&qp->refcount));
1687        /* qpn is now available for use again */
1688        rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1689
1690        spin_lock(&rdi->n_qps_lock);
1691        rdi->n_qps_allocated--;
1692        if (qp->ibqp.qp_type == IB_QPT_RC) {
1693                rdi->n_rc_qps--;
1694                rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1695        }
1696        spin_unlock(&rdi->n_qps_lock);
1697
1698        if (qp->ip)
1699                kref_put(&qp->ip->ref, rvt_release_mmap_info);
1700        kvfree(qp->r_rq.kwq);
1701        rdi->driver_f.qp_priv_free(rdi, qp);
1702        kfree(qp->s_ack_queue);
1703        kfree(qp->r_sg_list);
1704        rdma_destroy_ah_attr(&qp->remote_ah_attr);
1705        rdma_destroy_ah_attr(&qp->alt_ah_attr);
1706        free_ud_wq_attr(qp);
1707        vfree(qp->s_wq);
1708        return 0;
1709}
1710
1711/**
1712 * rvt_query_qp - query an ipbq
1713 * @ibqp: IB qp to query
1714 * @attr: attr struct to fill in
1715 * @attr_mask: attr mask ignored
1716 * @init_attr: struct to fill in
1717 *
1718 * Return: always 0
1719 */
1720int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1721                 int attr_mask, struct ib_qp_init_attr *init_attr)
1722{
1723        struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1724        struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1725
1726        attr->qp_state = qp->state;
1727        attr->cur_qp_state = attr->qp_state;
1728        attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu);
1729        attr->path_mig_state = qp->s_mig_state;
1730        attr->qkey = qp->qkey;
1731        attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask;
1732        attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask;
1733        attr->dest_qp_num = qp->remote_qpn;
1734        attr->qp_access_flags = qp->qp_access_flags;
1735        attr->cap.max_send_wr = qp->s_size - 1 -
1736                rdi->dparms.reserved_operations;
1737        attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
1738        attr->cap.max_send_sge = qp->s_max_sge;
1739        attr->cap.max_recv_sge = qp->r_rq.max_sge;
1740        attr->cap.max_inline_data = 0;
1741        attr->ah_attr = qp->remote_ah_attr;
1742        attr->alt_ah_attr = qp->alt_ah_attr;
1743        attr->pkey_index = qp->s_pkey_index;
1744        attr->alt_pkey_index = qp->s_alt_pkey_index;
1745        attr->en_sqd_async_notify = 0;
1746        attr->sq_draining = qp->s_draining;
1747        attr->max_rd_atomic = qp->s_max_rd_atomic;
1748        attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
1749        attr->min_rnr_timer = qp->r_min_rnr_timer;
1750        attr->port_num = qp->port_num;
1751        attr->timeout = qp->timeout;
1752        attr->retry_cnt = qp->s_retry_cnt;
1753        attr->rnr_retry = qp->s_rnr_retry_cnt;
1754        attr->alt_port_num =
1755                rdma_ah_get_port_num(&qp->alt_ah_attr);
1756        attr->alt_timeout = qp->alt_timeout;
1757
1758        init_attr->event_handler = qp->ibqp.event_handler;
1759        init_attr->qp_context = qp->ibqp.qp_context;
1760        init_attr->send_cq = qp->ibqp.send_cq;
1761        init_attr->recv_cq = qp->ibqp.recv_cq;
1762        init_attr->srq = qp->ibqp.srq;
1763        init_attr->cap = attr->cap;
1764        if (qp->s_flags & RVT_S_SIGNAL_REQ_WR)
1765                init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
1766        else
1767                init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
1768        init_attr->qp_type = qp->ibqp.qp_type;
1769        init_attr->port_num = qp->port_num;
1770        return 0;
1771}
1772
1773/**
1774 * rvt_post_recv - post a receive on a QP
1775 * @ibqp: the QP to post the receive on
1776 * @wr: the WR to post
1777 * @bad_wr: the first bad WR is put here
1778 *
1779 * This may be called from interrupt context.
1780 *
1781 * Return: 0 on success otherwise errno
1782 */
1783int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr,
1784                  const struct ib_recv_wr **bad_wr)
1785{
1786        struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1787        struct rvt_krwq *wq = qp->r_rq.kwq;
1788        unsigned long flags;
1789        int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) &&
1790                                !qp->ibqp.srq;
1791
1792        /* Check that state is OK to post receive. */
1793        if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) {
1794                *bad_wr = wr;
1795                return -EINVAL;
1796        }
1797
1798        for (; wr; wr = wr->next) {
1799                struct rvt_rwqe *wqe;
1800                u32 next;
1801                int i;
1802
1803                if ((unsigned)wr->num_sge > qp->r_rq.max_sge) {
1804                        *bad_wr = wr;
1805                        return -EINVAL;
1806                }
1807
1808                spin_lock_irqsave(&qp->r_rq.kwq->p_lock, flags);
1809                next = wq->head + 1;
1810                if (next >= qp->r_rq.size)
1811                        next = 0;
1812                if (next == READ_ONCE(wq->tail)) {
1813                        spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1814                        *bad_wr = wr;
1815                        return -ENOMEM;
1816                }
1817                if (unlikely(qp_err_flush)) {
1818                        struct ib_wc wc;
1819
1820                        memset(&wc, 0, sizeof(wc));
1821                        wc.qp = &qp->ibqp;
1822                        wc.opcode = IB_WC_RECV;
1823                        wc.wr_id = wr->wr_id;
1824                        wc.status = IB_WC_WR_FLUSH_ERR;
1825                        rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1826                } else {
1827                        wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head);
1828                        wqe->wr_id = wr->wr_id;
1829                        wqe->num_sge = wr->num_sge;
1830                        for (i = 0; i < wr->num_sge; i++) {
1831                                wqe->sg_list[i].addr = wr->sg_list[i].addr;
1832                                wqe->sg_list[i].length = wr->sg_list[i].length;
1833                                wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
1834                        }
1835                        /*
1836                         * Make sure queue entry is written
1837                         * before the head index.
1838                         */
1839                        smp_store_release(&wq->head, next);
1840                }
1841                spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1842        }
1843        return 0;
1844}
1845
1846/**
1847 * rvt_qp_valid_operation - validate post send wr request
1848 * @qp: the qp
1849 * @post_parms: the post send table for the driver
1850 * @wr: the work request
1851 *
1852 * The routine validates the operation based on the
1853 * validation table an returns the length of the operation
1854 * which can extend beyond the ib_send_bw.  Operation
1855 * dependent flags key atomic operation validation.
1856 *
1857 * There is an exception for UD qps that validates the pd and
1858 * overrides the length to include the additional UD specific
1859 * length.
1860 *
1861 * Returns a negative error or the length of the work request
1862 * for building the swqe.
1863 */
1864static inline int rvt_qp_valid_operation(
1865        struct rvt_qp *qp,
1866        const struct rvt_operation_params *post_parms,
1867        const struct ib_send_wr *wr)
1868{
1869        int len;
1870
1871        if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length)
1872                return -EINVAL;
1873        if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type)))
1874                return -EINVAL;
1875        if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) &&
1876            ibpd_to_rvtpd(qp->ibqp.pd)->user)
1877                return -EINVAL;
1878        if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE &&
1879            (wr->num_sge == 0 ||
1880             wr->sg_list[0].length < sizeof(u64) ||
1881             wr->sg_list[0].addr & (sizeof(u64) - 1)))
1882                return -EINVAL;
1883        if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC &&
1884            !qp->s_max_rd_atomic)
1885                return -EINVAL;
1886        len = post_parms[wr->opcode].length;
1887        /* UD specific */
1888        if (qp->ibqp.qp_type != IB_QPT_UC &&
1889            qp->ibqp.qp_type != IB_QPT_RC) {
1890                if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
1891                        return -EINVAL;
1892                len = sizeof(struct ib_ud_wr);
1893        }
1894        return len;
1895}
1896
1897/**
1898 * rvt_qp_is_avail - determine queue capacity
1899 * @qp: the qp
1900 * @rdi: the rdmavt device
1901 * @reserved_op: is reserved operation
1902 *
1903 * This assumes the s_hlock is held but the s_last
1904 * qp variable is uncontrolled.
1905 *
1906 * For non reserved operations, the qp->s_avail
1907 * may be changed.
1908 *
1909 * The return value is zero or a -ENOMEM.
1910 */
1911static inline int rvt_qp_is_avail(
1912        struct rvt_qp *qp,
1913        struct rvt_dev_info *rdi,
1914        bool reserved_op)
1915{
1916        u32 slast;
1917        u32 avail;
1918        u32 reserved_used;
1919
1920        /* see rvt_qp_wqe_unreserve() */
1921        smp_mb__before_atomic();
1922        if (unlikely(reserved_op)) {
1923                /* see rvt_qp_wqe_unreserve() */
1924                reserved_used = atomic_read(&qp->s_reserved_used);
1925                if (reserved_used >= rdi->dparms.reserved_operations)
1926                        return -ENOMEM;
1927                return 0;
1928        }
1929        /* non-reserved operations */
1930        if (likely(qp->s_avail))
1931                return 0;
1932        /* See rvt_qp_complete_swqe() */
1933        slast = smp_load_acquire(&qp->s_last);
1934        if (qp->s_head >= slast)
1935                avail = qp->s_size - (qp->s_head - slast);
1936        else
1937                avail = slast - qp->s_head;
1938
1939        reserved_used = atomic_read(&qp->s_reserved_used);
1940        avail =  avail - 1 -
1941                (rdi->dparms.reserved_operations - reserved_used);
1942        /* insure we don't assign a negative s_avail */
1943        if ((s32)avail <= 0)
1944                return -ENOMEM;
1945        qp->s_avail = avail;
1946        if (WARN_ON(qp->s_avail >
1947                    (qp->s_size - 1 - rdi->dparms.reserved_operations)))
1948                rvt_pr_err(rdi,
1949                           "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u",
1950                           qp->ibqp.qp_num, qp->s_size, qp->s_avail,
1951                           qp->s_head, qp->s_tail, qp->s_cur,
1952                           qp->s_acked, qp->s_last);
1953        return 0;
1954}
1955
1956/**
1957 * rvt_post_one_wr - post one RC, UC, or UD send work request
1958 * @qp: the QP to post on
1959 * @wr: the work request to send
1960 * @call_send: kick the send engine into gear
1961 */
1962static int rvt_post_one_wr(struct rvt_qp *qp,
1963                           const struct ib_send_wr *wr,
1964                           bool *call_send)
1965{
1966        struct rvt_swqe *wqe;
1967        u32 next;
1968        int i;
1969        int j;
1970        int acc;
1971        struct rvt_lkey_table *rkt;
1972        struct rvt_pd *pd;
1973        struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1974        u8 log_pmtu;
1975        int ret;
1976        size_t cplen;
1977        bool reserved_op;
1978        int local_ops_delayed = 0;
1979
1980        BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE));
1981
1982        /* IB spec says that num_sge == 0 is OK. */
1983        if (unlikely(wr->num_sge > qp->s_max_sge))
1984                return -EINVAL;
1985
1986        ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr);
1987        if (ret < 0)
1988                return ret;
1989        cplen = ret;
1990
1991        /*
1992         * Local operations include fast register and local invalidate.
1993         * Fast register needs to be processed immediately because the
1994         * registered lkey may be used by following work requests and the
1995         * lkey needs to be valid at the time those requests are posted.
1996         * Local invalidate can be processed immediately if fencing is
1997         * not required and no previous local invalidate ops are pending.
1998         * Signaled local operations that have been processed immediately
1999         * need to have requests with "completion only" flags set posted
2000         * to the send queue in order to generate completions.
2001         */
2002        if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) {
2003                switch (wr->opcode) {
2004                case IB_WR_REG_MR:
2005                        ret = rvt_fast_reg_mr(qp,
2006                                              reg_wr(wr)->mr,
2007                                              reg_wr(wr)->key,
2008                                              reg_wr(wr)->access);
2009                        if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2010                                return ret;
2011                        break;
2012                case IB_WR_LOCAL_INV:
2013                        if ((wr->send_flags & IB_SEND_FENCE) ||
2014                            atomic_read(&qp->local_ops_pending)) {
2015                                local_ops_delayed = 1;
2016                        } else {
2017                                ret = rvt_invalidate_rkey(
2018                                        qp, wr->ex.invalidate_rkey);
2019                                if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2020                                        return ret;
2021                        }
2022                        break;
2023                default:
2024                        return -EINVAL;
2025                }
2026        }
2027
2028        reserved_op = rdi->post_parms[wr->opcode].flags &
2029                        RVT_OPERATION_USE_RESERVE;
2030        /* check for avail */
2031        ret = rvt_qp_is_avail(qp, rdi, reserved_op);
2032        if (ret)
2033                return ret;
2034        next = qp->s_head + 1;
2035        if (next >= qp->s_size)
2036                next = 0;
2037
2038        rkt = &rdi->lkey_table;
2039        pd = ibpd_to_rvtpd(qp->ibqp.pd);
2040        wqe = rvt_get_swqe_ptr(qp, qp->s_head);
2041
2042        /* cplen has length from above */
2043        memcpy(&wqe->wr, wr, cplen);
2044
2045        wqe->length = 0;
2046        j = 0;
2047        if (wr->num_sge) {
2048                struct rvt_sge *last_sge = NULL;
2049
2050                acc = wr->opcode >= IB_WR_RDMA_READ ?
2051                        IB_ACCESS_LOCAL_WRITE : 0;
2052                for (i = 0; i < wr->num_sge; i++) {
2053                        u32 length = wr->sg_list[i].length;
2054
2055                        if (length == 0)
2056                                continue;
2057                        ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge,
2058                                          &wr->sg_list[i], acc);
2059                        if (unlikely(ret < 0))
2060                                goto bail_inval_free;
2061                        wqe->length += length;
2062                        if (ret)
2063                                last_sge = &wqe->sg_list[j];
2064                        j += ret;
2065                }
2066                wqe->wr.num_sge = j;
2067        }
2068
2069        /*
2070         * Calculate and set SWQE PSN values prior to handing it off
2071         * to the driver's check routine. This give the driver the
2072         * opportunity to adjust PSN values based on internal checks.
2073         */
2074        log_pmtu = qp->log_pmtu;
2075        if (qp->allowed_ops == IB_OPCODE_UD) {
2076                struct rvt_ah *ah = rvt_get_swqe_ah(wqe);
2077
2078                log_pmtu = ah->log_pmtu;
2079                rdma_copy_ah_attr(wqe->ud_wr.attr, &ah->attr);
2080        }
2081
2082        if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) {
2083                if (local_ops_delayed)
2084                        atomic_inc(&qp->local_ops_pending);
2085                else
2086                        wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY;
2087                wqe->ssn = 0;
2088                wqe->psn = 0;
2089                wqe->lpsn = 0;
2090        } else {
2091                wqe->ssn = qp->s_ssn++;
2092                wqe->psn = qp->s_next_psn;
2093                wqe->lpsn = wqe->psn +
2094                                (wqe->length ?
2095                                        ((wqe->length - 1) >> log_pmtu) :
2096                                        0);
2097        }
2098
2099        /* general part of wqe valid - allow for driver checks */
2100        if (rdi->driver_f.setup_wqe) {
2101                ret = rdi->driver_f.setup_wqe(qp, wqe, call_send);
2102                if (ret < 0)
2103                        goto bail_inval_free_ref;
2104        }
2105
2106        if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL))
2107                qp->s_next_psn = wqe->lpsn + 1;
2108
2109        if (unlikely(reserved_op)) {
2110                wqe->wr.send_flags |= RVT_SEND_RESERVE_USED;
2111                rvt_qp_wqe_reserve(qp, wqe);
2112        } else {
2113                wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED;
2114                qp->s_avail--;
2115        }
2116        trace_rvt_post_one_wr(qp, wqe, wr->num_sge);
2117        smp_wmb(); /* see request builders */
2118        qp->s_head = next;
2119
2120        return 0;
2121
2122bail_inval_free_ref:
2123        if (qp->allowed_ops == IB_OPCODE_UD)
2124                rdma_destroy_ah_attr(wqe->ud_wr.attr);
2125bail_inval_free:
2126        /* release mr holds */
2127        while (j) {
2128                struct rvt_sge *sge = &wqe->sg_list[--j];
2129
2130                rvt_put_mr(sge->mr);
2131        }
2132        return ret;
2133}
2134
2135/**
2136 * rvt_post_send - post a send on a QP
2137 * @ibqp: the QP to post the send on
2138 * @wr: the list of work requests to post
2139 * @bad_wr: the first bad WR is put here
2140 *
2141 * This may be called from interrupt context.
2142 *
2143 * Return: 0 on success else errno
2144 */
2145int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr,
2146                  const struct ib_send_wr **bad_wr)
2147{
2148        struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
2149        struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2150        unsigned long flags = 0;
2151        bool call_send;
2152        unsigned nreq = 0;
2153        int err = 0;
2154
2155        spin_lock_irqsave(&qp->s_hlock, flags);
2156
2157        /*
2158         * Ensure QP state is such that we can send. If not bail out early,
2159         * there is no need to do this every time we post a send.
2160         */
2161        if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) {
2162                spin_unlock_irqrestore(&qp->s_hlock, flags);
2163                return -EINVAL;
2164        }
2165
2166        /*
2167         * If the send queue is empty, and we only have a single WR then just go
2168         * ahead and kick the send engine into gear. Otherwise we will always
2169         * just schedule the send to happen later.
2170         */
2171        call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next;
2172
2173        for (; wr; wr = wr->next) {
2174                err = rvt_post_one_wr(qp, wr, &call_send);
2175                if (unlikely(err)) {
2176                        *bad_wr = wr;
2177                        goto bail;
2178                }
2179                nreq++;
2180        }
2181bail:
2182        spin_unlock_irqrestore(&qp->s_hlock, flags);
2183        if (nreq) {
2184                /*
2185                 * Only call do_send if there is exactly one packet, and the
2186                 * driver said it was ok.
2187                 */
2188                if (nreq == 1 && call_send)
2189                        rdi->driver_f.do_send(qp);
2190                else
2191                        rdi->driver_f.schedule_send_no_lock(qp);
2192        }
2193        return err;
2194}
2195
2196/**
2197 * rvt_post_srq_recv - post a receive on a shared receive queue
2198 * @ibsrq: the SRQ to post the receive on
2199 * @wr: the list of work requests to post
2200 * @bad_wr: A pointer to the first WR to cause a problem is put here
2201 *
2202 * This may be called from interrupt context.
2203 *
2204 * Return: 0 on success else errno
2205 */
2206int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr,
2207                      const struct ib_recv_wr **bad_wr)
2208{
2209        struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq);
2210        struct rvt_krwq *wq;
2211        unsigned long flags;
2212
2213        for (; wr; wr = wr->next) {
2214                struct rvt_rwqe *wqe;
2215                u32 next;
2216                int i;
2217
2218                if ((unsigned)wr->num_sge > srq->rq.max_sge) {
2219                        *bad_wr = wr;
2220                        return -EINVAL;
2221                }
2222
2223                spin_lock_irqsave(&srq->rq.kwq->p_lock, flags);
2224                wq = srq->rq.kwq;
2225                next = wq->head + 1;
2226                if (next >= srq->rq.size)
2227                        next = 0;
2228                if (next == READ_ONCE(wq->tail)) {
2229                        spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2230                        *bad_wr = wr;
2231                        return -ENOMEM;
2232                }
2233
2234                wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head);
2235                wqe->wr_id = wr->wr_id;
2236                wqe->num_sge = wr->num_sge;
2237                for (i = 0; i < wr->num_sge; i++) {
2238                        wqe->sg_list[i].addr = wr->sg_list[i].addr;
2239                        wqe->sg_list[i].length = wr->sg_list[i].length;
2240                        wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
2241                }
2242                /* Make sure queue entry is written before the head index. */
2243                smp_store_release(&wq->head, next);
2244                spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2245        }
2246        return 0;
2247}
2248
2249/*
2250 * rvt used the internal kernel struct as part of its ABI, for now make sure
2251 * the kernel struct does not change layout. FIXME: rvt should never cast the
2252 * user struct to a kernel struct.
2253 */
2254static struct ib_sge *rvt_cast_sge(struct rvt_wqe_sge *sge)
2255{
2256        BUILD_BUG_ON(offsetof(struct ib_sge, addr) !=
2257                     offsetof(struct rvt_wqe_sge, addr));
2258        BUILD_BUG_ON(offsetof(struct ib_sge, length) !=
2259                     offsetof(struct rvt_wqe_sge, length));
2260        BUILD_BUG_ON(offsetof(struct ib_sge, lkey) !=
2261                     offsetof(struct rvt_wqe_sge, lkey));
2262        return (struct ib_sge *)sge;
2263}
2264
2265/*
2266 * Validate a RWQE and fill in the SGE state.
2267 * Return 1 if OK.
2268 */
2269static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe)
2270{
2271        int i, j, ret;
2272        struct ib_wc wc;
2273        struct rvt_lkey_table *rkt;
2274        struct rvt_pd *pd;
2275        struct rvt_sge_state *ss;
2276        struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2277
2278        rkt = &rdi->lkey_table;
2279        pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd);
2280        ss = &qp->r_sge;
2281        ss->sg_list = qp->r_sg_list;
2282        qp->r_len = 0;
2283        for (i = j = 0; i < wqe->num_sge; i++) {
2284                if (wqe->sg_list[i].length == 0)
2285                        continue;
2286                /* Check LKEY */
2287                ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge,
2288                                  NULL, rvt_cast_sge(&wqe->sg_list[i]),
2289                                  IB_ACCESS_LOCAL_WRITE);
2290                if (unlikely(ret <= 0))
2291                        goto bad_lkey;
2292                qp->r_len += wqe->sg_list[i].length;
2293                j++;
2294        }
2295        ss->num_sge = j;
2296        ss->total_len = qp->r_len;
2297        return 1;
2298
2299bad_lkey:
2300        while (j) {
2301                struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge;
2302
2303                rvt_put_mr(sge->mr);
2304        }
2305        ss->num_sge = 0;
2306        memset(&wc, 0, sizeof(wc));
2307        wc.wr_id = wqe->wr_id;
2308        wc.status = IB_WC_LOC_PROT_ERR;
2309        wc.opcode = IB_WC_RECV;
2310        wc.qp = &qp->ibqp;
2311        /* Signal solicited completion event. */
2312        rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
2313        return 0;
2314}
2315
2316/**
2317 * get_rvt_head - get head indices of the circular buffer
2318 * @rq: data structure for request queue entry
2319 * @ip: the QP
2320 *
2321 * Return - head index value
2322 */
2323static inline u32 get_rvt_head(struct rvt_rq *rq, void *ip)
2324{
2325        u32 head;
2326
2327        if (ip)
2328                head = RDMA_READ_UAPI_ATOMIC(rq->wq->head);
2329        else
2330                head = rq->kwq->head;
2331
2332        return head;
2333}
2334
2335/**
2336 * rvt_get_rwqe - copy the next RWQE into the QP's RWQE
2337 * @qp: the QP
2338 * @wr_id_only: update qp->r_wr_id only, not qp->r_sge
2339 *
2340 * Return -1 if there is a local error, 0 if no RWQE is available,
2341 * otherwise return 1.
2342 *
2343 * Can be called from interrupt level.
2344 */
2345int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only)
2346{
2347        unsigned long flags;
2348        struct rvt_rq *rq;
2349        struct rvt_krwq *kwq = NULL;
2350        struct rvt_rwq *wq;
2351        struct rvt_srq *srq;
2352        struct rvt_rwqe *wqe;
2353        void (*handler)(struct ib_event *, void *);
2354        u32 tail;
2355        u32 head;
2356        int ret;
2357        void *ip = NULL;
2358
2359        if (qp->ibqp.srq) {
2360                srq = ibsrq_to_rvtsrq(qp->ibqp.srq);
2361                handler = srq->ibsrq.event_handler;
2362                rq = &srq->rq;
2363                ip = srq->ip;
2364        } else {
2365                srq = NULL;
2366                handler = NULL;
2367                rq = &qp->r_rq;
2368                ip = qp->ip;
2369        }
2370
2371        spin_lock_irqsave(&rq->kwq->c_lock, flags);
2372        if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2373                ret = 0;
2374                goto unlock;
2375        }
2376        kwq = rq->kwq;
2377        if (ip) {
2378                wq = rq->wq;
2379                tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
2380        } else {
2381                tail = kwq->tail;
2382        }
2383
2384        /* Validate tail before using it since it is user writable. */
2385        if (tail >= rq->size)
2386                tail = 0;
2387
2388        if (kwq->count < RVT_RWQ_COUNT_THRESHOLD) {
2389                head = get_rvt_head(rq, ip);
2390                kwq->count = rvt_get_rq_count(rq, head, tail);
2391        }
2392        if (unlikely(kwq->count == 0)) {
2393                ret = 0;
2394                goto unlock;
2395        }
2396        /* Make sure entry is read after the count is read. */
2397        smp_rmb();
2398        wqe = rvt_get_rwqe_ptr(rq, tail);
2399        /*
2400         * Even though we update the tail index in memory, the verbs
2401         * consumer is not supposed to post more entries until a
2402         * completion is generated.
2403         */
2404        if (++tail >= rq->size)
2405                tail = 0;
2406        if (ip)
2407                RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
2408        else
2409                kwq->tail = tail;
2410        if (!wr_id_only && !init_sge(qp, wqe)) {
2411                ret = -1;
2412                goto unlock;
2413        }
2414        qp->r_wr_id = wqe->wr_id;
2415
2416        kwq->count--;
2417        ret = 1;
2418        set_bit(RVT_R_WRID_VALID, &qp->r_aflags);
2419        if (handler) {
2420                /*
2421                 * Validate head pointer value and compute
2422                 * the number of remaining WQEs.
2423                 */
2424                if (kwq->count < srq->limit) {
2425                        kwq->count =
2426                                rvt_get_rq_count(rq,
2427                                                 get_rvt_head(rq, ip), tail);
2428                        if (kwq->count < srq->limit) {
2429                                struct ib_event ev;
2430
2431                                srq->limit = 0;
2432                                spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2433                                ev.device = qp->ibqp.device;
2434                                ev.element.srq = qp->ibqp.srq;
2435                                ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
2436                                handler(&ev, srq->ibsrq.srq_context);
2437                                goto bail;
2438                        }
2439                }
2440        }
2441unlock:
2442        spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2443bail:
2444        return ret;
2445}
2446EXPORT_SYMBOL(rvt_get_rwqe);
2447
2448/**
2449 * rvt_comm_est - handle trap with QP established
2450 * @qp: the QP
2451 */
2452void rvt_comm_est(struct rvt_qp *qp)
2453{
2454        qp->r_flags |= RVT_R_COMM_EST;
2455        if (qp->ibqp.event_handler) {
2456                struct ib_event ev;
2457
2458                ev.device = qp->ibqp.device;
2459                ev.element.qp = &qp->ibqp;
2460                ev.event = IB_EVENT_COMM_EST;
2461                qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2462        }
2463}
2464EXPORT_SYMBOL(rvt_comm_est);
2465
2466void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err)
2467{
2468        unsigned long flags;
2469        int lastwqe;
2470
2471        spin_lock_irqsave(&qp->s_lock, flags);
2472        lastwqe = rvt_error_qp(qp, err);
2473        spin_unlock_irqrestore(&qp->s_lock, flags);
2474
2475        if (lastwqe) {
2476                struct ib_event ev;
2477
2478                ev.device = qp->ibqp.device;
2479                ev.element.qp = &qp->ibqp;
2480                ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
2481                qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2482        }
2483}
2484EXPORT_SYMBOL(rvt_rc_error);
2485
2486/*
2487 *  rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table
2488 *  @index - the index
2489 *  return usec from an index into ib_rvt_rnr_table
2490 */
2491unsigned long rvt_rnr_tbl_to_usec(u32 index)
2492{
2493        return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)];
2494}
2495EXPORT_SYMBOL(rvt_rnr_tbl_to_usec);
2496
2497static inline unsigned long rvt_aeth_to_usec(u32 aeth)
2498{
2499        return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) &
2500                                  IB_AETH_CREDIT_MASK];
2501}
2502
2503/*
2504 *  rvt_add_retry_timer_ext - add/start a retry timer
2505 *  @qp - the QP
2506 *  @shift - timeout shift to wait for multiple packets
2507 *  add a retry timer on the QP
2508 */
2509void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift)
2510{
2511        struct ib_qp *ibqp = &qp->ibqp;
2512        struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2513
2514        lockdep_assert_held(&qp->s_lock);
2515        qp->s_flags |= RVT_S_TIMER;
2516       /* 4.096 usec. * (1 << qp->timeout) */
2517        qp->s_timer.expires = jiffies + rdi->busy_jiffies +
2518                              (qp->timeout_jiffies << shift);
2519        add_timer(&qp->s_timer);
2520}
2521EXPORT_SYMBOL(rvt_add_retry_timer_ext);
2522
2523/**
2524 * rvt_add_rnr_timer - add/start an rnr timer on the QP
2525 * @qp: the QP
2526 * @aeth: aeth of RNR timeout, simulated aeth for loopback
2527 */
2528void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth)
2529{
2530        u32 to;
2531
2532        lockdep_assert_held(&qp->s_lock);
2533        qp->s_flags |= RVT_S_WAIT_RNR;
2534        to = rvt_aeth_to_usec(aeth);
2535        trace_rvt_rnrnak_add(qp, to);
2536        hrtimer_start(&qp->s_rnr_timer,
2537                      ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED);
2538}
2539EXPORT_SYMBOL(rvt_add_rnr_timer);
2540
2541/**
2542 * rvt_stop_rc_timers - stop all timers
2543 * @qp: the QP
2544 * stop any pending timers
2545 */
2546void rvt_stop_rc_timers(struct rvt_qp *qp)
2547{
2548        lockdep_assert_held(&qp->s_lock);
2549        /* Remove QP from all timers */
2550        if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
2551                qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
2552                del_timer(&qp->s_timer);
2553                hrtimer_try_to_cancel(&qp->s_rnr_timer);
2554        }
2555}
2556EXPORT_SYMBOL(rvt_stop_rc_timers);
2557
2558/**
2559 * rvt_stop_rnr_timer - stop an rnr timer
2560 * @qp: the QP
2561 *
2562 * stop an rnr timer and return if the timer
2563 * had been pending.
2564 */
2565static void rvt_stop_rnr_timer(struct rvt_qp *qp)
2566{
2567        lockdep_assert_held(&qp->s_lock);
2568        /* Remove QP from rnr timer */
2569        if (qp->s_flags & RVT_S_WAIT_RNR) {
2570                qp->s_flags &= ~RVT_S_WAIT_RNR;
2571                trace_rvt_rnrnak_stop(qp, 0);
2572        }
2573}
2574
2575/**
2576 * rvt_del_timers_sync - wait for any timeout routines to exit
2577 * @qp: the QP
2578 */
2579void rvt_del_timers_sync(struct rvt_qp *qp)
2580{
2581        del_timer_sync(&qp->s_timer);
2582        hrtimer_cancel(&qp->s_rnr_timer);
2583}
2584EXPORT_SYMBOL(rvt_del_timers_sync);
2585
2586/*
2587 * This is called from s_timer for missing responses.
2588 */
2589static void rvt_rc_timeout(struct timer_list *t)
2590{
2591        struct rvt_qp *qp = from_timer(qp, t, s_timer);
2592        struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2593        unsigned long flags;
2594
2595        spin_lock_irqsave(&qp->r_lock, flags);
2596        spin_lock(&qp->s_lock);
2597        if (qp->s_flags & RVT_S_TIMER) {
2598                struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
2599
2600                qp->s_flags &= ~RVT_S_TIMER;
2601                rvp->n_rc_timeouts++;
2602                del_timer(&qp->s_timer);
2603                trace_rvt_rc_timeout(qp, qp->s_last_psn + 1);
2604                if (rdi->driver_f.notify_restart_rc)
2605                        rdi->driver_f.notify_restart_rc(qp,
2606                                                        qp->s_last_psn + 1,
2607                                                        1);
2608                rdi->driver_f.schedule_send(qp);
2609        }
2610        spin_unlock(&qp->s_lock);
2611        spin_unlock_irqrestore(&qp->r_lock, flags);
2612}
2613
2614/*
2615 * This is called from s_timer for RNR timeouts.
2616 */
2617enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t)
2618{
2619        struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer);
2620        struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2621        unsigned long flags;
2622
2623        spin_lock_irqsave(&qp->s_lock, flags);
2624        rvt_stop_rnr_timer(qp);
2625        trace_rvt_rnrnak_timeout(qp, 0);
2626        rdi->driver_f.schedule_send(qp);
2627        spin_unlock_irqrestore(&qp->s_lock, flags);
2628        return HRTIMER_NORESTART;
2629}
2630EXPORT_SYMBOL(rvt_rc_rnr_retry);
2631
2632/**
2633 * rvt_qp_iter_init - initial for QP iteration
2634 * @rdi: rvt devinfo
2635 * @v: u64 value
2636 * @cb: user-defined callback
2637 *
2638 * This returns an iterator suitable for iterating QPs
2639 * in the system.
2640 *
2641 * The @cb is a user-defined callback and @v is a 64-bit
2642 * value passed to and relevant for processing in the
2643 * @cb.  An example use case would be to alter QP processing
2644 * based on criteria not part of the rvt_qp.
2645 *
2646 * Use cases that require memory allocation to succeed
2647 * must preallocate appropriately.
2648 *
2649 * Return: a pointer to an rvt_qp_iter or NULL
2650 */
2651struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
2652                                     u64 v,
2653                                     void (*cb)(struct rvt_qp *qp, u64 v))
2654{
2655        struct rvt_qp_iter *i;
2656
2657        i = kzalloc(sizeof(*i), GFP_KERNEL);
2658        if (!i)
2659                return NULL;
2660
2661        i->rdi = rdi;
2662        /* number of special QPs (SMI/GSI) for device */
2663        i->specials = rdi->ibdev.phys_port_cnt * 2;
2664        i->v = v;
2665        i->cb = cb;
2666
2667        return i;
2668}
2669EXPORT_SYMBOL(rvt_qp_iter_init);
2670
2671/**
2672 * rvt_qp_iter_next - return the next QP in iter
2673 * @iter: the iterator
2674 *
2675 * Fine grained QP iterator suitable for use
2676 * with debugfs seq_file mechanisms.
2677 *
2678 * Updates iter->qp with the current QP when the return
2679 * value is 0.
2680 *
2681 * Return: 0 - iter->qp is valid 1 - no more QPs
2682 */
2683int rvt_qp_iter_next(struct rvt_qp_iter *iter)
2684        __must_hold(RCU)
2685{
2686        int n = iter->n;
2687        int ret = 1;
2688        struct rvt_qp *pqp = iter->qp;
2689        struct rvt_qp *qp;
2690        struct rvt_dev_info *rdi = iter->rdi;
2691
2692        /*
2693         * The approach is to consider the special qps
2694         * as additional table entries before the
2695         * real hash table.  Since the qp code sets
2696         * the qp->next hash link to NULL, this works just fine.
2697         *
2698         * iter->specials is 2 * # ports
2699         *
2700         * n = 0..iter->specials is the special qp indices
2701         *
2702         * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are
2703         * the potential hash bucket entries
2704         *
2705         */
2706        for (; n <  rdi->qp_dev->qp_table_size + iter->specials; n++) {
2707                if (pqp) {
2708                        qp = rcu_dereference(pqp->next);
2709                } else {
2710                        if (n < iter->specials) {
2711                                struct rvt_ibport *rvp;
2712                                int pidx;
2713
2714                                pidx = n % rdi->ibdev.phys_port_cnt;
2715                                rvp = rdi->ports[pidx];
2716                                qp = rcu_dereference(rvp->qp[n & 1]);
2717                        } else {
2718                                qp = rcu_dereference(
2719                                        rdi->qp_dev->qp_table[
2720                                                (n - iter->specials)]);
2721                        }
2722                }
2723                pqp = qp;
2724                if (qp) {
2725                        iter->qp = qp;
2726                        iter->n = n;
2727                        return 0;
2728                }
2729        }
2730        return ret;
2731}
2732EXPORT_SYMBOL(rvt_qp_iter_next);
2733
2734/**
2735 * rvt_qp_iter - iterate all QPs
2736 * @rdi: rvt devinfo
2737 * @v: a 64-bit value
2738 * @cb: a callback
2739 *
2740 * This provides a way for iterating all QPs.
2741 *
2742 * The @cb is a user-defined callback and @v is a 64-bit
2743 * value passed to and relevant for processing in the
2744 * cb.  An example use case would be to alter QP processing
2745 * based on criteria not part of the rvt_qp.
2746 *
2747 * The code has an internal iterator to simplify
2748 * non seq_file use cases.
2749 */
2750void rvt_qp_iter(struct rvt_dev_info *rdi,
2751                 u64 v,
2752                 void (*cb)(struct rvt_qp *qp, u64 v))
2753{
2754        int ret;
2755        struct rvt_qp_iter i = {
2756                .rdi = rdi,
2757                .specials = rdi->ibdev.phys_port_cnt * 2,
2758                .v = v,
2759                .cb = cb
2760        };
2761
2762        rcu_read_lock();
2763        do {
2764                ret = rvt_qp_iter_next(&i);
2765                if (!ret) {
2766                        rvt_get_qp(i.qp);
2767                        rcu_read_unlock();
2768                        i.cb(i.qp, i.v);
2769                        rcu_read_lock();
2770                        rvt_put_qp(i.qp);
2771                }
2772        } while (!ret);
2773        rcu_read_unlock();
2774}
2775EXPORT_SYMBOL(rvt_qp_iter);
2776
2777/*
2778 * This should be called with s_lock held.
2779 */
2780void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe,
2781                       enum ib_wc_status status)
2782{
2783        u32 old_last, last;
2784        struct rvt_dev_info *rdi;
2785
2786        if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2787                return;
2788        rdi = ib_to_rvt(qp->ibqp.device);
2789
2790        old_last = qp->s_last;
2791        trace_rvt_qp_send_completion(qp, wqe, old_last);
2792        last = rvt_qp_complete_swqe(qp, wqe, rdi->wc_opcode[wqe->wr.opcode],
2793                                    status);
2794        if (qp->s_acked == old_last)
2795                qp->s_acked = last;
2796        if (qp->s_cur == old_last)
2797                qp->s_cur = last;
2798        if (qp->s_tail == old_last)
2799                qp->s_tail = last;
2800        if (qp->state == IB_QPS_SQD && last == qp->s_cur)
2801                qp->s_draining = 0;
2802}
2803EXPORT_SYMBOL(rvt_send_complete);
2804
2805/**
2806 * rvt_copy_sge - copy data to SGE memory
2807 * @qp: associated QP
2808 * @ss: the SGE state
2809 * @data: the data to copy
2810 * @length: the length of the data
2811 * @release: boolean to release MR
2812 * @copy_last: do a separate copy of the last 8 bytes
2813 */
2814void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss,
2815                  void *data, u32 length,
2816                  bool release, bool copy_last)
2817{
2818        struct rvt_sge *sge = &ss->sge;
2819        int i;
2820        bool in_last = false;
2821        bool cacheless_copy = false;
2822        struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2823        struct rvt_wss *wss = rdi->wss;
2824        unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
2825
2826        if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) {
2827                cacheless_copy = length >= PAGE_SIZE;
2828        } else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) {
2829                if (length >= PAGE_SIZE) {
2830                        /*
2831                         * NOTE: this *assumes*:
2832                         * o The first vaddr is the dest.
2833                         * o If multiple pages, then vaddr is sequential.
2834                         */
2835                        wss_insert(wss, sge->vaddr);
2836                        if (length >= (2 * PAGE_SIZE))
2837                                wss_insert(wss, (sge->vaddr + PAGE_SIZE));
2838
2839                        cacheless_copy = wss_exceeds_threshold(wss);
2840                } else {
2841                        wss_advance_clean_counter(wss);
2842                }
2843        }
2844
2845        if (copy_last) {
2846                if (length > 8) {
2847                        length -= 8;
2848                } else {
2849                        copy_last = false;
2850                        in_last = true;
2851                }
2852        }
2853
2854again:
2855        while (length) {
2856                u32 len = rvt_get_sge_length(sge, length);
2857
2858                WARN_ON_ONCE(len == 0);
2859                if (unlikely(in_last)) {
2860                        /* enforce byte transfer ordering */
2861                        for (i = 0; i < len; i++)
2862                                ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
2863                } else if (cacheless_copy) {
2864                        cacheless_memcpy(sge->vaddr, data, len);
2865                } else {
2866                        memcpy(sge->vaddr, data, len);
2867                }
2868                rvt_update_sge(ss, len, release);
2869                data += len;
2870                length -= len;
2871        }
2872
2873        if (copy_last) {
2874                copy_last = false;
2875                in_last = true;
2876                length = 8;
2877                goto again;
2878        }
2879}
2880EXPORT_SYMBOL(rvt_copy_sge);
2881
2882static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp,
2883                                          struct rvt_qp *sqp)
2884{
2885        rvp->n_pkt_drops++;
2886        /*
2887         * For RC, the requester would timeout and retry so
2888         * shortcut the timeouts and just signal too many retries.
2889         */
2890        return sqp->ibqp.qp_type == IB_QPT_RC ?
2891                IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS;
2892}
2893
2894/**
2895 * rvt_ruc_loopback - handle UC and RC loopback requests
2896 * @sqp: the sending QP
2897 *
2898 * This is called from rvt_do_send() to forward a WQE addressed to the same HFI
2899 * Note that although we are single threaded due to the send engine, we still
2900 * have to protect against post_send().  We don't have to worry about
2901 * receive interrupts since this is a connected protocol and all packets
2902 * will pass through here.
2903 */
2904void rvt_ruc_loopback(struct rvt_qp *sqp)
2905{
2906        struct rvt_ibport *rvp =  NULL;
2907        struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device);
2908        struct rvt_qp *qp;
2909        struct rvt_swqe *wqe;
2910        struct rvt_sge *sge;
2911        unsigned long flags;
2912        struct ib_wc wc;
2913        u64 sdata;
2914        atomic64_t *maddr;
2915        enum ib_wc_status send_status;
2916        bool release;
2917        int ret;
2918        bool copy_last = false;
2919        int local_ops = 0;
2920
2921        rcu_read_lock();
2922        rvp = rdi->ports[sqp->port_num - 1];
2923
2924        /*
2925         * Note that we check the responder QP state after
2926         * checking the requester's state.
2927         */
2928
2929        qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp,
2930                            sqp->remote_qpn);
2931
2932        spin_lock_irqsave(&sqp->s_lock, flags);
2933
2934        /* Return if we are already busy processing a work request. */
2935        if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) ||
2936            !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2937                goto unlock;
2938
2939        sqp->s_flags |= RVT_S_BUSY;
2940
2941again:
2942        if (sqp->s_last == READ_ONCE(sqp->s_head))
2943                goto clr_busy;
2944        wqe = rvt_get_swqe_ptr(sqp, sqp->s_last);
2945
2946        /* Return if it is not OK to start a new work request. */
2947        if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) {
2948                if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND))
2949                        goto clr_busy;
2950                /* We are in the error state, flush the work request. */
2951                send_status = IB_WC_WR_FLUSH_ERR;
2952                goto flush_send;
2953        }
2954
2955        /*
2956         * We can rely on the entry not changing without the s_lock
2957         * being held until we update s_last.
2958         * We increment s_cur to indicate s_last is in progress.
2959         */
2960        if (sqp->s_last == sqp->s_cur) {
2961                if (++sqp->s_cur >= sqp->s_size)
2962                        sqp->s_cur = 0;
2963        }
2964        spin_unlock_irqrestore(&sqp->s_lock, flags);
2965
2966        if (!qp) {
2967                send_status = loopback_qp_drop(rvp, sqp);
2968                goto serr_no_r_lock;
2969        }
2970        spin_lock_irqsave(&qp->r_lock, flags);
2971        if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) ||
2972            qp->ibqp.qp_type != sqp->ibqp.qp_type) {
2973                send_status = loopback_qp_drop(rvp, sqp);
2974                goto serr;
2975        }
2976
2977        memset(&wc, 0, sizeof(wc));
2978        send_status = IB_WC_SUCCESS;
2979
2980        release = true;
2981        sqp->s_sge.sge = wqe->sg_list[0];
2982        sqp->s_sge.sg_list = wqe->sg_list + 1;
2983        sqp->s_sge.num_sge = wqe->wr.num_sge;
2984        sqp->s_len = wqe->length;
2985        switch (wqe->wr.opcode) {
2986        case IB_WR_REG_MR:
2987                goto send_comp;
2988
2989        case IB_WR_LOCAL_INV:
2990                if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) {
2991                        if (rvt_invalidate_rkey(sqp,
2992                                                wqe->wr.ex.invalidate_rkey))
2993                                send_status = IB_WC_LOC_PROT_ERR;
2994                        local_ops = 1;
2995                }
2996                goto send_comp;
2997
2998        case IB_WR_SEND_WITH_INV:
2999        case IB_WR_SEND_WITH_IMM:
3000        case IB_WR_SEND:
3001                ret = rvt_get_rwqe(qp, false);
3002                if (ret < 0)
3003                        goto op_err;
3004                if (!ret)
3005                        goto rnr_nak;
3006                if (wqe->length > qp->r_len)
3007                        goto inv_err;
3008                switch (wqe->wr.opcode) {
3009                case IB_WR_SEND_WITH_INV:
3010                        if (!rvt_invalidate_rkey(qp,
3011                                                 wqe->wr.ex.invalidate_rkey)) {
3012                                wc.wc_flags = IB_WC_WITH_INVALIDATE;
3013                                wc.ex.invalidate_rkey =
3014                                        wqe->wr.ex.invalidate_rkey;
3015                        }
3016                        break;
3017                case IB_WR_SEND_WITH_IMM:
3018                        wc.wc_flags = IB_WC_WITH_IMM;
3019                        wc.ex.imm_data = wqe->wr.ex.imm_data;
3020                        break;
3021                default:
3022                        break;
3023                }
3024                break;
3025
3026        case IB_WR_RDMA_WRITE_WITH_IMM:
3027                if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3028                        goto inv_err;
3029                wc.wc_flags = IB_WC_WITH_IMM;
3030                wc.ex.imm_data = wqe->wr.ex.imm_data;
3031                ret = rvt_get_rwqe(qp, true);
3032                if (ret < 0)
3033                        goto op_err;
3034                if (!ret)
3035                        goto rnr_nak;
3036                /* skip copy_last set and qp_access_flags recheck */
3037                goto do_write;
3038        case IB_WR_RDMA_WRITE:
3039                copy_last = rvt_is_user_qp(qp);
3040                if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3041                        goto inv_err;
3042do_write:
3043                if (wqe->length == 0)
3044                        break;
3045                if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length,
3046                                          wqe->rdma_wr.remote_addr,
3047                                          wqe->rdma_wr.rkey,
3048                                          IB_ACCESS_REMOTE_WRITE)))
3049                        goto acc_err;
3050                qp->r_sge.sg_list = NULL;
3051                qp->r_sge.num_sge = 1;
3052                qp->r_sge.total_len = wqe->length;
3053                break;
3054
3055        case IB_WR_RDMA_READ:
3056                if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
3057                        goto inv_err;
3058                if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length,
3059                                          wqe->rdma_wr.remote_addr,
3060                                          wqe->rdma_wr.rkey,
3061                                          IB_ACCESS_REMOTE_READ)))
3062                        goto acc_err;
3063                release = false;
3064                sqp->s_sge.sg_list = NULL;
3065                sqp->s_sge.num_sge = 1;
3066                qp->r_sge.sge = wqe->sg_list[0];
3067                qp->r_sge.sg_list = wqe->sg_list + 1;
3068                qp->r_sge.num_sge = wqe->wr.num_sge;
3069                qp->r_sge.total_len = wqe->length;
3070                break;
3071
3072        case IB_WR_ATOMIC_CMP_AND_SWP:
3073        case IB_WR_ATOMIC_FETCH_AND_ADD:
3074                if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC)))
3075                        goto inv_err;
3076                if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64),
3077                                          wqe->atomic_wr.remote_addr,
3078                                          wqe->atomic_wr.rkey,
3079                                          IB_ACCESS_REMOTE_ATOMIC)))
3080                        goto acc_err;
3081                /* Perform atomic OP and save result. */
3082                maddr = (atomic64_t *)qp->r_sge.sge.vaddr;
3083                sdata = wqe->atomic_wr.compare_add;
3084                *(u64 *)sqp->s_sge.sge.vaddr =
3085                        (wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ?
3086                        (u64)atomic64_add_return(sdata, maddr) - sdata :
3087                        (u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr,
3088                                      sdata, wqe->atomic_wr.swap);
3089                rvt_put_mr(qp->r_sge.sge.mr);
3090                qp->r_sge.num_sge = 0;
3091                goto send_comp;
3092
3093        default:
3094                send_status = IB_WC_LOC_QP_OP_ERR;
3095                goto serr;
3096        }
3097
3098        sge = &sqp->s_sge.sge;
3099        while (sqp->s_len) {
3100                u32 len = rvt_get_sge_length(sge, sqp->s_len);
3101
3102                WARN_ON_ONCE(len == 0);
3103                rvt_copy_sge(qp, &qp->r_sge, sge->vaddr,
3104                             len, release, copy_last);
3105                rvt_update_sge(&sqp->s_sge, len, !release);
3106                sqp->s_len -= len;
3107        }
3108        if (release)
3109                rvt_put_ss(&qp->r_sge);
3110
3111        if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags))
3112                goto send_comp;
3113
3114        if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM)
3115                wc.opcode = IB_WC_RECV_RDMA_WITH_IMM;
3116        else
3117                wc.opcode = IB_WC_RECV;
3118        wc.wr_id = qp->r_wr_id;
3119        wc.status = IB_WC_SUCCESS;
3120        wc.byte_len = wqe->length;
3121        wc.qp = &qp->ibqp;
3122        wc.src_qp = qp->remote_qpn;
3123        wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX;
3124        wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr);
3125        wc.port_num = 1;
3126        /* Signal completion event if the solicited bit is set. */
3127        rvt_recv_cq(qp, &wc, wqe->wr.send_flags & IB_SEND_SOLICITED);
3128
3129send_comp:
3130        spin_unlock_irqrestore(&qp->r_lock, flags);
3131        spin_lock_irqsave(&sqp->s_lock, flags);
3132        rvp->n_loop_pkts++;
3133flush_send:
3134        sqp->s_rnr_retry = sqp->s_rnr_retry_cnt;
3135        rvt_send_complete(sqp, wqe, send_status);
3136        if (local_ops) {
3137                atomic_dec(&sqp->local_ops_pending);
3138                local_ops = 0;
3139        }
3140        goto again;
3141
3142rnr_nak:
3143        /* Handle RNR NAK */
3144        if (qp->ibqp.qp_type == IB_QPT_UC)
3145                goto send_comp;
3146        rvp->n_rnr_naks++;
3147        /*
3148         * Note: we don't need the s_lock held since the BUSY flag
3149         * makes this single threaded.
3150         */
3151        if (sqp->s_rnr_retry == 0) {
3152                send_status = IB_WC_RNR_RETRY_EXC_ERR;
3153                goto serr;
3154        }
3155        if (sqp->s_rnr_retry_cnt < 7)
3156                sqp->s_rnr_retry--;
3157        spin_unlock_irqrestore(&qp->r_lock, flags);
3158        spin_lock_irqsave(&sqp->s_lock, flags);
3159        if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK))
3160                goto clr_busy;
3161        rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer <<
3162                                IB_AETH_CREDIT_SHIFT);
3163        goto clr_busy;
3164
3165op_err:
3166        send_status = IB_WC_REM_OP_ERR;
3167        wc.status = IB_WC_LOC_QP_OP_ERR;
3168        goto err;
3169
3170inv_err:
3171        send_status =
3172                sqp->ibqp.qp_type == IB_QPT_RC ?
3173                        IB_WC_REM_INV_REQ_ERR :
3174                        IB_WC_SUCCESS;
3175        wc.status = IB_WC_LOC_QP_OP_ERR;
3176        goto err;
3177
3178acc_err:
3179        send_status = IB_WC_REM_ACCESS_ERR;
3180        wc.status = IB_WC_LOC_PROT_ERR;
3181err:
3182        /* responder goes to error state */
3183        rvt_rc_error(qp, wc.status);
3184
3185serr:
3186        spin_unlock_irqrestore(&qp->r_lock, flags);
3187serr_no_r_lock:
3188        spin_lock_irqsave(&sqp->s_lock, flags);
3189        rvt_send_complete(sqp, wqe, send_status);
3190        if (sqp->ibqp.qp_type == IB_QPT_RC) {
3191                int lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR);
3192
3193                sqp->s_flags &= ~RVT_S_BUSY;
3194                spin_unlock_irqrestore(&sqp->s_lock, flags);
3195                if (lastwqe) {
3196                        struct ib_event ev;
3197
3198                        ev.device = sqp->ibqp.device;
3199                        ev.element.qp = &sqp->ibqp;
3200                        ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
3201                        sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context);
3202                }
3203                goto done;
3204        }
3205clr_busy:
3206        sqp->s_flags &= ~RVT_S_BUSY;
3207unlock:
3208        spin_unlock_irqrestore(&sqp->s_lock, flags);
3209done:
3210        rcu_read_unlock();
3211}
3212EXPORT_SYMBOL(rvt_ruc_loopback);
3213