linux/drivers/media/rc/rc-ir-raw.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2// rc-ir-raw.c - handle IR pulse/space events
   3//
   4// Copyright (C) 2010 by Mauro Carvalho Chehab
   5
   6#include <linux/export.h>
   7#include <linux/kthread.h>
   8#include <linux/mutex.h>
   9#include <linux/kmod.h>
  10#include <linux/sched.h>
  11#include "rc-core-priv.h"
  12
  13/* Used to keep track of IR raw clients, protected by ir_raw_handler_lock */
  14static LIST_HEAD(ir_raw_client_list);
  15
  16/* Used to handle IR raw handler extensions */
  17DEFINE_MUTEX(ir_raw_handler_lock);
  18static LIST_HEAD(ir_raw_handler_list);
  19static atomic64_t available_protocols = ATOMIC64_INIT(0);
  20
  21static int ir_raw_event_thread(void *data)
  22{
  23        struct ir_raw_event ev;
  24        struct ir_raw_handler *handler;
  25        struct ir_raw_event_ctrl *raw = data;
  26        struct rc_dev *dev = raw->dev;
  27
  28        while (1) {
  29                mutex_lock(&ir_raw_handler_lock);
  30                while (kfifo_out(&raw->kfifo, &ev, 1)) {
  31                        if (is_timing_event(ev)) {
  32                                if (ev.duration == 0)
  33                                        dev_warn_once(&dev->dev, "nonsensical timing event of duration 0");
  34                                if (is_timing_event(raw->prev_ev) &&
  35                                    !is_transition(&ev, &raw->prev_ev))
  36                                        dev_warn_once(&dev->dev, "two consecutive events of type %s",
  37                                                      TO_STR(ev.pulse));
  38                                if (raw->prev_ev.reset && ev.pulse == 0)
  39                                        dev_warn_once(&dev->dev, "timing event after reset should be pulse");
  40                        }
  41                        list_for_each_entry(handler, &ir_raw_handler_list, list)
  42                                if (dev->enabled_protocols &
  43                                    handler->protocols || !handler->protocols)
  44                                        handler->decode(dev, ev);
  45                        lirc_raw_event(dev, ev);
  46                        raw->prev_ev = ev;
  47                }
  48                mutex_unlock(&ir_raw_handler_lock);
  49
  50                set_current_state(TASK_INTERRUPTIBLE);
  51
  52                if (kthread_should_stop()) {
  53                        __set_current_state(TASK_RUNNING);
  54                        break;
  55                } else if (!kfifo_is_empty(&raw->kfifo))
  56                        set_current_state(TASK_RUNNING);
  57
  58                schedule();
  59        }
  60
  61        return 0;
  62}
  63
  64/**
  65 * ir_raw_event_store() - pass a pulse/space duration to the raw ir decoders
  66 * @dev:        the struct rc_dev device descriptor
  67 * @ev:         the struct ir_raw_event descriptor of the pulse/space
  68 *
  69 * This routine (which may be called from an interrupt context) stores a
  70 * pulse/space duration for the raw ir decoding state machines. Pulses are
  71 * signalled as positive values and spaces as negative values. A zero value
  72 * will reset the decoding state machines.
  73 */
  74int ir_raw_event_store(struct rc_dev *dev, struct ir_raw_event *ev)
  75{
  76        if (!dev->raw)
  77                return -EINVAL;
  78
  79        dev_dbg(&dev->dev, "sample: (%05dus %s)\n",
  80                ev->duration, TO_STR(ev->pulse));
  81
  82        if (!kfifo_put(&dev->raw->kfifo, *ev)) {
  83                dev_err(&dev->dev, "IR event FIFO is full!\n");
  84                return -ENOSPC;
  85        }
  86
  87        return 0;
  88}
  89EXPORT_SYMBOL_GPL(ir_raw_event_store);
  90
  91/**
  92 * ir_raw_event_store_edge() - notify raw ir decoders of the start of a pulse/space
  93 * @dev:        the struct rc_dev device descriptor
  94 * @pulse:      true for pulse, false for space
  95 *
  96 * This routine (which may be called from an interrupt context) is used to
  97 * store the beginning of an ir pulse or space (or the start/end of ir
  98 * reception) for the raw ir decoding state machines. This is used by
  99 * hardware which does not provide durations directly but only interrupts
 100 * (or similar events) on state change.
 101 */
 102int ir_raw_event_store_edge(struct rc_dev *dev, bool pulse)
 103{
 104        ktime_t                 now;
 105        struct ir_raw_event     ev = {};
 106
 107        if (!dev->raw)
 108                return -EINVAL;
 109
 110        now = ktime_get();
 111        ev.duration = ktime_to_us(ktime_sub(now, dev->raw->last_event));
 112        ev.pulse = !pulse;
 113
 114        return ir_raw_event_store_with_timeout(dev, &ev);
 115}
 116EXPORT_SYMBOL_GPL(ir_raw_event_store_edge);
 117
 118/*
 119 * ir_raw_event_store_with_timeout() - pass a pulse/space duration to the raw
 120 *                                     ir decoders, schedule decoding and
 121 *                                     timeout
 122 * @dev:        the struct rc_dev device descriptor
 123 * @ev:         the struct ir_raw_event descriptor of the pulse/space
 124 *
 125 * This routine (which may be called from an interrupt context) stores a
 126 * pulse/space duration for the raw ir decoding state machines, schedules
 127 * decoding and generates a timeout.
 128 */
 129int ir_raw_event_store_with_timeout(struct rc_dev *dev, struct ir_raw_event *ev)
 130{
 131        ktime_t         now;
 132        int             rc = 0;
 133
 134        if (!dev->raw)
 135                return -EINVAL;
 136
 137        now = ktime_get();
 138
 139        spin_lock(&dev->raw->edge_spinlock);
 140        rc = ir_raw_event_store(dev, ev);
 141
 142        dev->raw->last_event = now;
 143
 144        /* timer could be set to timeout (125ms by default) */
 145        if (!timer_pending(&dev->raw->edge_handle) ||
 146            time_after(dev->raw->edge_handle.expires,
 147                       jiffies + msecs_to_jiffies(15))) {
 148                mod_timer(&dev->raw->edge_handle,
 149                          jiffies + msecs_to_jiffies(15));
 150        }
 151        spin_unlock(&dev->raw->edge_spinlock);
 152
 153        return rc;
 154}
 155EXPORT_SYMBOL_GPL(ir_raw_event_store_with_timeout);
 156
 157/**
 158 * ir_raw_event_store_with_filter() - pass next pulse/space to decoders with some processing
 159 * @dev:        the struct rc_dev device descriptor
 160 * @ev:         the event that has occurred
 161 *
 162 * This routine (which may be called from an interrupt context) works
 163 * in similar manner to ir_raw_event_store_edge.
 164 * This routine is intended for devices with limited internal buffer
 165 * It automerges samples of same type, and handles timeouts. Returns non-zero
 166 * if the event was added, and zero if the event was ignored due to idle
 167 * processing.
 168 */
 169int ir_raw_event_store_with_filter(struct rc_dev *dev, struct ir_raw_event *ev)
 170{
 171        if (!dev->raw)
 172                return -EINVAL;
 173
 174        /* Ignore spaces in idle mode */
 175        if (dev->idle && !ev->pulse)
 176                return 0;
 177        else if (dev->idle)
 178                ir_raw_event_set_idle(dev, false);
 179
 180        if (!dev->raw->this_ev.duration)
 181                dev->raw->this_ev = *ev;
 182        else if (ev->pulse == dev->raw->this_ev.pulse)
 183                dev->raw->this_ev.duration += ev->duration;
 184        else {
 185                ir_raw_event_store(dev, &dev->raw->this_ev);
 186                dev->raw->this_ev = *ev;
 187        }
 188
 189        /* Enter idle mode if necessary */
 190        if (!ev->pulse && dev->timeout &&
 191            dev->raw->this_ev.duration >= dev->timeout)
 192                ir_raw_event_set_idle(dev, true);
 193
 194        return 1;
 195}
 196EXPORT_SYMBOL_GPL(ir_raw_event_store_with_filter);
 197
 198/**
 199 * ir_raw_event_set_idle() - provide hint to rc-core when the device is idle or not
 200 * @dev:        the struct rc_dev device descriptor
 201 * @idle:       whether the device is idle or not
 202 */
 203void ir_raw_event_set_idle(struct rc_dev *dev, bool idle)
 204{
 205        if (!dev->raw)
 206                return;
 207
 208        dev_dbg(&dev->dev, "%s idle mode\n", idle ? "enter" : "leave");
 209
 210        if (idle) {
 211                dev->raw->this_ev.timeout = true;
 212                ir_raw_event_store(dev, &dev->raw->this_ev);
 213                dev->raw->this_ev = (struct ir_raw_event) {};
 214        }
 215
 216        if (dev->s_idle)
 217                dev->s_idle(dev, idle);
 218
 219        dev->idle = idle;
 220}
 221EXPORT_SYMBOL_GPL(ir_raw_event_set_idle);
 222
 223/**
 224 * ir_raw_event_handle() - schedules the decoding of stored ir data
 225 * @dev:        the struct rc_dev device descriptor
 226 *
 227 * This routine will tell rc-core to start decoding stored ir data.
 228 */
 229void ir_raw_event_handle(struct rc_dev *dev)
 230{
 231        if (!dev->raw || !dev->raw->thread)
 232                return;
 233
 234        wake_up_process(dev->raw->thread);
 235}
 236EXPORT_SYMBOL_GPL(ir_raw_event_handle);
 237
 238/* used internally by the sysfs interface */
 239u64
 240ir_raw_get_allowed_protocols(void)
 241{
 242        return atomic64_read(&available_protocols);
 243}
 244
 245static int change_protocol(struct rc_dev *dev, u64 *rc_proto)
 246{
 247        struct ir_raw_handler *handler;
 248        u32 timeout = 0;
 249
 250        mutex_lock(&ir_raw_handler_lock);
 251        list_for_each_entry(handler, &ir_raw_handler_list, list) {
 252                if (!(dev->enabled_protocols & handler->protocols) &&
 253                    (*rc_proto & handler->protocols) && handler->raw_register)
 254                        handler->raw_register(dev);
 255
 256                if ((dev->enabled_protocols & handler->protocols) &&
 257                    !(*rc_proto & handler->protocols) &&
 258                    handler->raw_unregister)
 259                        handler->raw_unregister(dev);
 260        }
 261        mutex_unlock(&ir_raw_handler_lock);
 262
 263        if (!dev->max_timeout)
 264                return 0;
 265
 266        mutex_lock(&ir_raw_handler_lock);
 267        list_for_each_entry(handler, &ir_raw_handler_list, list) {
 268                if (handler->protocols & *rc_proto) {
 269                        if (timeout < handler->min_timeout)
 270                                timeout = handler->min_timeout;
 271                }
 272        }
 273        mutex_unlock(&ir_raw_handler_lock);
 274
 275        if (timeout == 0)
 276                timeout = IR_DEFAULT_TIMEOUT;
 277        else
 278                timeout += MS_TO_US(10);
 279
 280        if (timeout < dev->min_timeout)
 281                timeout = dev->min_timeout;
 282        else if (timeout > dev->max_timeout)
 283                timeout = dev->max_timeout;
 284
 285        if (dev->s_timeout)
 286                dev->s_timeout(dev, timeout);
 287        else
 288                dev->timeout = timeout;
 289
 290        return 0;
 291}
 292
 293static void ir_raw_disable_protocols(struct rc_dev *dev, u64 protocols)
 294{
 295        mutex_lock(&dev->lock);
 296        dev->enabled_protocols &= ~protocols;
 297        mutex_unlock(&dev->lock);
 298}
 299
 300/**
 301 * ir_raw_gen_manchester() - Encode data with Manchester (bi-phase) modulation.
 302 * @ev:         Pointer to pointer to next free event. *@ev is incremented for
 303 *              each raw event filled.
 304 * @max:        Maximum number of raw events to fill.
 305 * @timings:    Manchester modulation timings.
 306 * @n:          Number of bits of data.
 307 * @data:       Data bits to encode.
 308 *
 309 * Encodes the @n least significant bits of @data using Manchester (bi-phase)
 310 * modulation with the timing characteristics described by @timings, writing up
 311 * to @max raw IR events using the *@ev pointer.
 312 *
 313 * Returns:     0 on success.
 314 *              -ENOBUFS if there isn't enough space in the array to fit the
 315 *              full encoded data. In this case all @max events will have been
 316 *              written.
 317 */
 318int ir_raw_gen_manchester(struct ir_raw_event **ev, unsigned int max,
 319                          const struct ir_raw_timings_manchester *timings,
 320                          unsigned int n, u64 data)
 321{
 322        bool need_pulse;
 323        u64 i;
 324        int ret = -ENOBUFS;
 325
 326        i = BIT_ULL(n - 1);
 327
 328        if (timings->leader_pulse) {
 329                if (!max--)
 330                        return ret;
 331                init_ir_raw_event_duration((*ev), 1, timings->leader_pulse);
 332                if (timings->leader_space) {
 333                        if (!max--)
 334                                return ret;
 335                        init_ir_raw_event_duration(++(*ev), 0,
 336                                                   timings->leader_space);
 337                }
 338        } else {
 339                /* continue existing signal */
 340                --(*ev);
 341        }
 342        /* from here on *ev will point to the last event rather than the next */
 343
 344        while (n && i > 0) {
 345                need_pulse = !(data & i);
 346                if (timings->invert)
 347                        need_pulse = !need_pulse;
 348                if (need_pulse == !!(*ev)->pulse) {
 349                        (*ev)->duration += timings->clock;
 350                } else {
 351                        if (!max--)
 352                                goto nobufs;
 353                        init_ir_raw_event_duration(++(*ev), need_pulse,
 354                                                   timings->clock);
 355                }
 356
 357                if (!max--)
 358                        goto nobufs;
 359                init_ir_raw_event_duration(++(*ev), !need_pulse,
 360                                           timings->clock);
 361                i >>= 1;
 362        }
 363
 364        if (timings->trailer_space) {
 365                if (!(*ev)->pulse)
 366                        (*ev)->duration += timings->trailer_space;
 367                else if (!max--)
 368                        goto nobufs;
 369                else
 370                        init_ir_raw_event_duration(++(*ev), 0,
 371                                                   timings->trailer_space);
 372        }
 373
 374        ret = 0;
 375nobufs:
 376        /* point to the next event rather than last event before returning */
 377        ++(*ev);
 378        return ret;
 379}
 380EXPORT_SYMBOL(ir_raw_gen_manchester);
 381
 382/**
 383 * ir_raw_gen_pd() - Encode data to raw events with pulse-distance modulation.
 384 * @ev:         Pointer to pointer to next free event. *@ev is incremented for
 385 *              each raw event filled.
 386 * @max:        Maximum number of raw events to fill.
 387 * @timings:    Pulse distance modulation timings.
 388 * @n:          Number of bits of data.
 389 * @data:       Data bits to encode.
 390 *
 391 * Encodes the @n least significant bits of @data using pulse-distance
 392 * modulation with the timing characteristics described by @timings, writing up
 393 * to @max raw IR events using the *@ev pointer.
 394 *
 395 * Returns:     0 on success.
 396 *              -ENOBUFS if there isn't enough space in the array to fit the
 397 *              full encoded data. In this case all @max events will have been
 398 *              written.
 399 */
 400int ir_raw_gen_pd(struct ir_raw_event **ev, unsigned int max,
 401                  const struct ir_raw_timings_pd *timings,
 402                  unsigned int n, u64 data)
 403{
 404        int i;
 405        int ret;
 406        unsigned int space;
 407
 408        if (timings->header_pulse) {
 409                ret = ir_raw_gen_pulse_space(ev, &max, timings->header_pulse,
 410                                             timings->header_space);
 411                if (ret)
 412                        return ret;
 413        }
 414
 415        if (timings->msb_first) {
 416                for (i = n - 1; i >= 0; --i) {
 417                        space = timings->bit_space[(data >> i) & 1];
 418                        ret = ir_raw_gen_pulse_space(ev, &max,
 419                                                     timings->bit_pulse,
 420                                                     space);
 421                        if (ret)
 422                                return ret;
 423                }
 424        } else {
 425                for (i = 0; i < n; ++i, data >>= 1) {
 426                        space = timings->bit_space[data & 1];
 427                        ret = ir_raw_gen_pulse_space(ev, &max,
 428                                                     timings->bit_pulse,
 429                                                     space);
 430                        if (ret)
 431                                return ret;
 432                }
 433        }
 434
 435        ret = ir_raw_gen_pulse_space(ev, &max, timings->trailer_pulse,
 436                                     timings->trailer_space);
 437        return ret;
 438}
 439EXPORT_SYMBOL(ir_raw_gen_pd);
 440
 441/**
 442 * ir_raw_gen_pl() - Encode data to raw events with pulse-length modulation.
 443 * @ev:         Pointer to pointer to next free event. *@ev is incremented for
 444 *              each raw event filled.
 445 * @max:        Maximum number of raw events to fill.
 446 * @timings:    Pulse distance modulation timings.
 447 * @n:          Number of bits of data.
 448 * @data:       Data bits to encode.
 449 *
 450 * Encodes the @n least significant bits of @data using space-distance
 451 * modulation with the timing characteristics described by @timings, writing up
 452 * to @max raw IR events using the *@ev pointer.
 453 *
 454 * Returns:     0 on success.
 455 *              -ENOBUFS if there isn't enough space in the array to fit the
 456 *              full encoded data. In this case all @max events will have been
 457 *              written.
 458 */
 459int ir_raw_gen_pl(struct ir_raw_event **ev, unsigned int max,
 460                  const struct ir_raw_timings_pl *timings,
 461                  unsigned int n, u64 data)
 462{
 463        int i;
 464        int ret = -ENOBUFS;
 465        unsigned int pulse;
 466
 467        if (!max--)
 468                return ret;
 469
 470        init_ir_raw_event_duration((*ev)++, 1, timings->header_pulse);
 471
 472        if (timings->msb_first) {
 473                for (i = n - 1; i >= 0; --i) {
 474                        if (!max--)
 475                                return ret;
 476                        init_ir_raw_event_duration((*ev)++, 0,
 477                                                   timings->bit_space);
 478                        if (!max--)
 479                                return ret;
 480                        pulse = timings->bit_pulse[(data >> i) & 1];
 481                        init_ir_raw_event_duration((*ev)++, 1, pulse);
 482                }
 483        } else {
 484                for (i = 0; i < n; ++i, data >>= 1) {
 485                        if (!max--)
 486                                return ret;
 487                        init_ir_raw_event_duration((*ev)++, 0,
 488                                                   timings->bit_space);
 489                        if (!max--)
 490                                return ret;
 491                        pulse = timings->bit_pulse[data & 1];
 492                        init_ir_raw_event_duration((*ev)++, 1, pulse);
 493                }
 494        }
 495
 496        if (!max--)
 497                return ret;
 498
 499        init_ir_raw_event_duration((*ev)++, 0, timings->trailer_space);
 500
 501        return 0;
 502}
 503EXPORT_SYMBOL(ir_raw_gen_pl);
 504
 505/**
 506 * ir_raw_encode_scancode() - Encode a scancode as raw events
 507 *
 508 * @protocol:           protocol
 509 * @scancode:           scancode filter describing a single scancode
 510 * @events:             array of raw events to write into
 511 * @max:                max number of raw events
 512 *
 513 * Attempts to encode the scancode as raw events.
 514 *
 515 * Returns:     The number of events written.
 516 *              -ENOBUFS if there isn't enough space in the array to fit the
 517 *              encoding. In this case all @max events will have been written.
 518 *              -EINVAL if the scancode is ambiguous or invalid, or if no
 519 *              compatible encoder was found.
 520 */
 521int ir_raw_encode_scancode(enum rc_proto protocol, u32 scancode,
 522                           struct ir_raw_event *events, unsigned int max)
 523{
 524        struct ir_raw_handler *handler;
 525        int ret = -EINVAL;
 526        u64 mask = 1ULL << protocol;
 527
 528        ir_raw_load_modules(&mask);
 529
 530        mutex_lock(&ir_raw_handler_lock);
 531        list_for_each_entry(handler, &ir_raw_handler_list, list) {
 532                if (handler->protocols & mask && handler->encode) {
 533                        ret = handler->encode(protocol, scancode, events, max);
 534                        if (ret >= 0 || ret == -ENOBUFS)
 535                                break;
 536                }
 537        }
 538        mutex_unlock(&ir_raw_handler_lock);
 539
 540        return ret;
 541}
 542EXPORT_SYMBOL(ir_raw_encode_scancode);
 543
 544/**
 545 * ir_raw_edge_handle() - Handle ir_raw_event_store_edge() processing
 546 *
 547 * @t:          timer_list
 548 *
 549 * This callback is armed by ir_raw_event_store_edge(). It does two things:
 550 * first of all, rather than calling ir_raw_event_handle() for each
 551 * edge and waking up the rc thread, 15 ms after the first edge
 552 * ir_raw_event_handle() is called. Secondly, generate a timeout event
 553 * no more IR is received after the rc_dev timeout.
 554 */
 555static void ir_raw_edge_handle(struct timer_list *t)
 556{
 557        struct ir_raw_event_ctrl *raw = from_timer(raw, t, edge_handle);
 558        struct rc_dev *dev = raw->dev;
 559        unsigned long flags;
 560        ktime_t interval;
 561
 562        spin_lock_irqsave(&dev->raw->edge_spinlock, flags);
 563        interval = ktime_sub(ktime_get(), dev->raw->last_event);
 564        if (ktime_to_us(interval) >= dev->timeout) {
 565                struct ir_raw_event ev = {
 566                        .timeout = true,
 567                        .duration = ktime_to_us(interval)
 568                };
 569
 570                ir_raw_event_store(dev, &ev);
 571        } else {
 572                mod_timer(&dev->raw->edge_handle,
 573                          jiffies + usecs_to_jiffies(dev->timeout -
 574                                                     ktime_to_us(interval)));
 575        }
 576        spin_unlock_irqrestore(&dev->raw->edge_spinlock, flags);
 577
 578        ir_raw_event_handle(dev);
 579}
 580
 581/**
 582 * ir_raw_encode_carrier() - Get carrier used for protocol
 583 *
 584 * @protocol:           protocol
 585 *
 586 * Attempts to find the carrier for the specified protocol
 587 *
 588 * Returns:     The carrier in Hz
 589 *              -EINVAL if the protocol is invalid, or if no
 590 *              compatible encoder was found.
 591 */
 592int ir_raw_encode_carrier(enum rc_proto protocol)
 593{
 594        struct ir_raw_handler *handler;
 595        int ret = -EINVAL;
 596        u64 mask = BIT_ULL(protocol);
 597
 598        mutex_lock(&ir_raw_handler_lock);
 599        list_for_each_entry(handler, &ir_raw_handler_list, list) {
 600                if (handler->protocols & mask && handler->encode) {
 601                        ret = handler->carrier;
 602                        break;
 603                }
 604        }
 605        mutex_unlock(&ir_raw_handler_lock);
 606
 607        return ret;
 608}
 609EXPORT_SYMBOL(ir_raw_encode_carrier);
 610
 611/*
 612 * Used to (un)register raw event clients
 613 */
 614int ir_raw_event_prepare(struct rc_dev *dev)
 615{
 616        if (!dev)
 617                return -EINVAL;
 618
 619        dev->raw = kzalloc(sizeof(*dev->raw), GFP_KERNEL);
 620        if (!dev->raw)
 621                return -ENOMEM;
 622
 623        dev->raw->dev = dev;
 624        dev->change_protocol = change_protocol;
 625        dev->idle = true;
 626        spin_lock_init(&dev->raw->edge_spinlock);
 627        timer_setup(&dev->raw->edge_handle, ir_raw_edge_handle, 0);
 628        INIT_KFIFO(dev->raw->kfifo);
 629
 630        return 0;
 631}
 632
 633int ir_raw_event_register(struct rc_dev *dev)
 634{
 635        struct task_struct *thread;
 636
 637        thread = kthread_run(ir_raw_event_thread, dev->raw, "rc%u", dev->minor);
 638        if (IS_ERR(thread))
 639                return PTR_ERR(thread);
 640
 641        dev->raw->thread = thread;
 642
 643        mutex_lock(&ir_raw_handler_lock);
 644        list_add_tail(&dev->raw->list, &ir_raw_client_list);
 645        mutex_unlock(&ir_raw_handler_lock);
 646
 647        return 0;
 648}
 649
 650void ir_raw_event_free(struct rc_dev *dev)
 651{
 652        if (!dev)
 653                return;
 654
 655        kfree(dev->raw);
 656        dev->raw = NULL;
 657}
 658
 659void ir_raw_event_unregister(struct rc_dev *dev)
 660{
 661        struct ir_raw_handler *handler;
 662
 663        if (!dev || !dev->raw)
 664                return;
 665
 666        kthread_stop(dev->raw->thread);
 667        del_timer_sync(&dev->raw->edge_handle);
 668
 669        mutex_lock(&ir_raw_handler_lock);
 670        list_del(&dev->raw->list);
 671        list_for_each_entry(handler, &ir_raw_handler_list, list)
 672                if (handler->raw_unregister &&
 673                    (handler->protocols & dev->enabled_protocols))
 674                        handler->raw_unregister(dev);
 675
 676        lirc_bpf_free(dev);
 677
 678        ir_raw_event_free(dev);
 679
 680        /*
 681         * A user can be calling bpf(BPF_PROG_{QUERY|ATTACH|DETACH}), so
 682         * ensure that the raw member is null on unlock; this is how
 683         * "device gone" is checked.
 684         */
 685        mutex_unlock(&ir_raw_handler_lock);
 686}
 687
 688/*
 689 * Extension interface - used to register the IR decoders
 690 */
 691
 692int ir_raw_handler_register(struct ir_raw_handler *ir_raw_handler)
 693{
 694        mutex_lock(&ir_raw_handler_lock);
 695        list_add_tail(&ir_raw_handler->list, &ir_raw_handler_list);
 696        atomic64_or(ir_raw_handler->protocols, &available_protocols);
 697        mutex_unlock(&ir_raw_handler_lock);
 698
 699        return 0;
 700}
 701EXPORT_SYMBOL(ir_raw_handler_register);
 702
 703void ir_raw_handler_unregister(struct ir_raw_handler *ir_raw_handler)
 704{
 705        struct ir_raw_event_ctrl *raw;
 706        u64 protocols = ir_raw_handler->protocols;
 707
 708        mutex_lock(&ir_raw_handler_lock);
 709        list_del(&ir_raw_handler->list);
 710        list_for_each_entry(raw, &ir_raw_client_list, list) {
 711                if (ir_raw_handler->raw_unregister &&
 712                    (raw->dev->enabled_protocols & protocols))
 713                        ir_raw_handler->raw_unregister(raw->dev);
 714                ir_raw_disable_protocols(raw->dev, protocols);
 715        }
 716        atomic64_andnot(protocols, &available_protocols);
 717        mutex_unlock(&ir_raw_handler_lock);
 718}
 719EXPORT_SYMBOL(ir_raw_handler_unregister);
 720