linux/drivers/memory/emif.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * EMIF driver
   4 *
   5 * Copyright (C) 2012 Texas Instruments, Inc.
   6 *
   7 * Aneesh V <aneesh@ti.com>
   8 * Santosh Shilimkar <santosh.shilimkar@ti.com>
   9 */
  10#include <linux/err.h>
  11#include <linux/kernel.h>
  12#include <linux/reboot.h>
  13#include <linux/platform_data/emif_plat.h>
  14#include <linux/io.h>
  15#include <linux/device.h>
  16#include <linux/platform_device.h>
  17#include <linux/interrupt.h>
  18#include <linux/slab.h>
  19#include <linux/of.h>
  20#include <linux/debugfs.h>
  21#include <linux/seq_file.h>
  22#include <linux/module.h>
  23#include <linux/list.h>
  24#include <linux/spinlock.h>
  25#include <linux/pm.h>
  26
  27#include "emif.h"
  28#include "jedec_ddr.h"
  29#include "of_memory.h"
  30
  31/**
  32 * struct emif_data - Per device static data for driver's use
  33 * @duplicate:                  Whether the DDR devices attached to this EMIF
  34 *                              instance are exactly same as that on EMIF1. In
  35 *                              this case we can save some memory and processing
  36 * @temperature_level:          Maximum temperature of LPDDR2 devices attached
  37 *                              to this EMIF - read from MR4 register. If there
  38 *                              are two devices attached to this EMIF, this
  39 *                              value is the maximum of the two temperature
  40 *                              levels.
  41 * @node:                       node in the device list
  42 * @base:                       base address of memory-mapped IO registers.
  43 * @dev:                        device pointer.
  44 * @regs_cache:                 An array of 'struct emif_regs' that stores
  45 *                              calculated register values for different
  46 *                              frequencies, to avoid re-calculating them on
  47 *                              each DVFS transition.
  48 * @curr_regs:                  The set of register values used in the last
  49 *                              frequency change (i.e. corresponding to the
  50 *                              frequency in effect at the moment)
  51 * @plat_data:                  Pointer to saved platform data.
  52 * @debugfs_root:               dentry to the root folder for EMIF in debugfs
  53 * @np_ddr:                     Pointer to ddr device tree node
  54 */
  55struct emif_data {
  56        u8                              duplicate;
  57        u8                              temperature_level;
  58        u8                              lpmode;
  59        struct list_head                node;
  60        unsigned long                   irq_state;
  61        void __iomem                    *base;
  62        struct device                   *dev;
  63        struct emif_regs                *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
  64        struct emif_regs                *curr_regs;
  65        struct emif_platform_data       *plat_data;
  66        struct dentry                   *debugfs_root;
  67        struct device_node              *np_ddr;
  68};
  69
  70static struct emif_data *emif1;
  71static DEFINE_SPINLOCK(emif_lock);
  72static unsigned long    irq_state;
  73static LIST_HEAD(device_list);
  74
  75#ifdef CONFIG_DEBUG_FS
  76static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
  77        struct emif_regs *regs)
  78{
  79        u32 type = emif->plat_data->device_info->type;
  80        u32 ip_rev = emif->plat_data->ip_rev;
  81
  82        seq_printf(s, "EMIF register cache dump for %dMHz\n",
  83                regs->freq/1000000);
  84
  85        seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
  86        seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
  87        seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
  88        seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
  89
  90        if (ip_rev == EMIF_4D) {
  91                seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
  92                        regs->read_idle_ctrl_shdw_normal);
  93                seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
  94                        regs->read_idle_ctrl_shdw_volt_ramp);
  95        } else if (ip_rev == EMIF_4D5) {
  96                seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
  97                        regs->dll_calib_ctrl_shdw_normal);
  98                seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
  99                        regs->dll_calib_ctrl_shdw_volt_ramp);
 100        }
 101
 102        if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
 103                seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
 104                        regs->ref_ctrl_shdw_derated);
 105                seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
 106                        regs->sdram_tim1_shdw_derated);
 107                seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
 108                        regs->sdram_tim3_shdw_derated);
 109        }
 110}
 111
 112static int emif_regdump_show(struct seq_file *s, void *unused)
 113{
 114        struct emif_data        *emif   = s->private;
 115        struct emif_regs        **regs_cache;
 116        int                     i;
 117
 118        if (emif->duplicate)
 119                regs_cache = emif1->regs_cache;
 120        else
 121                regs_cache = emif->regs_cache;
 122
 123        for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
 124                do_emif_regdump_show(s, emif, regs_cache[i]);
 125                seq_putc(s, '\n');
 126        }
 127
 128        return 0;
 129}
 130
 131DEFINE_SHOW_ATTRIBUTE(emif_regdump);
 132
 133static int emif_mr4_show(struct seq_file *s, void *unused)
 134{
 135        struct emif_data *emif = s->private;
 136
 137        seq_printf(s, "MR4=%d\n", emif->temperature_level);
 138        return 0;
 139}
 140
 141DEFINE_SHOW_ATTRIBUTE(emif_mr4);
 142
 143static int __init_or_module emif_debugfs_init(struct emif_data *emif)
 144{
 145        emif->debugfs_root = debugfs_create_dir(dev_name(emif->dev), NULL);
 146        debugfs_create_file("regcache_dump", S_IRUGO, emif->debugfs_root, emif,
 147                            &emif_regdump_fops);
 148        debugfs_create_file("mr4", S_IRUGO, emif->debugfs_root, emif,
 149                            &emif_mr4_fops);
 150        return 0;
 151}
 152
 153static void __exit emif_debugfs_exit(struct emif_data *emif)
 154{
 155        debugfs_remove_recursive(emif->debugfs_root);
 156        emif->debugfs_root = NULL;
 157}
 158#else
 159static inline int __init_or_module emif_debugfs_init(struct emif_data *emif)
 160{
 161        return 0;
 162}
 163
 164static inline void __exit emif_debugfs_exit(struct emif_data *emif)
 165{
 166}
 167#endif
 168
 169/*
 170 * Get bus width used by EMIF. Note that this may be different from the
 171 * bus width of the DDR devices used. For instance two 16-bit DDR devices
 172 * may be connected to a given CS of EMIF. In this case bus width as far
 173 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
 174 */
 175static u32 get_emif_bus_width(struct emif_data *emif)
 176{
 177        u32             width;
 178        void __iomem    *base = emif->base;
 179
 180        width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
 181                        >> NARROW_MODE_SHIFT;
 182        width = width == 0 ? 32 : 16;
 183
 184        return width;
 185}
 186
 187static void set_lpmode(struct emif_data *emif, u8 lpmode)
 188{
 189        u32 temp;
 190        void __iomem *base = emif->base;
 191
 192        /*
 193         * Workaround for errata i743 - LPDDR2 Power-Down State is Not
 194         * Efficient
 195         *
 196         * i743 DESCRIPTION:
 197         * The EMIF supports power-down state for low power. The EMIF
 198         * automatically puts the SDRAM into power-down after the memory is
 199         * not accessed for a defined number of cycles and the
 200         * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
 201         * As the EMIF supports automatic output impedance calibration, a ZQ
 202         * calibration long command is issued every time it exits active
 203         * power-down and precharge power-down modes. The EMIF waits and
 204         * blocks any other command during this calibration.
 205         * The EMIF does not allow selective disabling of ZQ calibration upon
 206         * exit of power-down mode. Due to very short periods of power-down
 207         * cycles, ZQ calibration overhead creates bandwidth issues and
 208         * increases overall system power consumption. On the other hand,
 209         * issuing ZQ calibration long commands when exiting self-refresh is
 210         * still required.
 211         *
 212         * WORKAROUND
 213         * Because there is no power consumption benefit of the power-down due
 214         * to the calibration and there is a performance risk, the guideline
 215         * is to not allow power-down state and, therefore, to not have set
 216         * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
 217         */
 218        if ((emif->plat_data->ip_rev == EMIF_4D) &&
 219            (lpmode == EMIF_LP_MODE_PWR_DN)) {
 220                WARN_ONCE(1,
 221                          "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
 222                /* rollback LP_MODE to Self-refresh mode */
 223                lpmode = EMIF_LP_MODE_SELF_REFRESH;
 224        }
 225
 226        temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
 227        temp &= ~LP_MODE_MASK;
 228        temp |= (lpmode << LP_MODE_SHIFT);
 229        writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
 230}
 231
 232static void do_freq_update(void)
 233{
 234        struct emif_data *emif;
 235
 236        /*
 237         * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
 238         *
 239         * i728 DESCRIPTION:
 240         * The EMIF automatically puts the SDRAM into self-refresh mode
 241         * after the EMIF has not performed accesses during
 242         * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
 243         * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
 244         * to 0x2. If during a small window the following three events
 245         * occur:
 246         * - The SR_TIMING counter expires
 247         * - And frequency change is requested
 248         * - And OCP access is requested
 249         * Then it causes instable clock on the DDR interface.
 250         *
 251         * WORKAROUND
 252         * To avoid the occurrence of the three events, the workaround
 253         * is to disable the self-refresh when requesting a frequency
 254         * change. Before requesting a frequency change the software must
 255         * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
 256         * frequency change has been done, the software can reprogram
 257         * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
 258         */
 259        list_for_each_entry(emif, &device_list, node) {
 260                if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
 261                        set_lpmode(emif, EMIF_LP_MODE_DISABLE);
 262        }
 263
 264        /*
 265         * TODO: Do FREQ_UPDATE here when an API
 266         * is available for this as part of the new
 267         * clock framework
 268         */
 269
 270        list_for_each_entry(emif, &device_list, node) {
 271                if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
 272                        set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
 273        }
 274}
 275
 276/* Find addressing table entry based on the device's type and density */
 277static const struct lpddr2_addressing *get_addressing_table(
 278        const struct ddr_device_info *device_info)
 279{
 280        u32             index, type, density;
 281
 282        type = device_info->type;
 283        density = device_info->density;
 284
 285        switch (type) {
 286        case DDR_TYPE_LPDDR2_S4:
 287                index = density - 1;
 288                break;
 289        case DDR_TYPE_LPDDR2_S2:
 290                switch (density) {
 291                case DDR_DENSITY_1Gb:
 292                case DDR_DENSITY_2Gb:
 293                        index = density + 3;
 294                        break;
 295                default:
 296                        index = density - 1;
 297                }
 298                break;
 299        default:
 300                return NULL;
 301        }
 302
 303        return &lpddr2_jedec_addressing_table[index];
 304}
 305
 306static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
 307                bool cs1_used, bool cal_resistors_per_cs)
 308{
 309        u32 zq = 0, val = 0;
 310
 311        val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
 312        zq |= val << ZQ_REFINTERVAL_SHIFT;
 313
 314        val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
 315        zq |= val << ZQ_ZQCL_MULT_SHIFT;
 316
 317        val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
 318        zq |= val << ZQ_ZQINIT_MULT_SHIFT;
 319
 320        zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
 321
 322        if (cal_resistors_per_cs)
 323                zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
 324        else
 325                zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
 326
 327        zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
 328
 329        val = cs1_used ? 1 : 0;
 330        zq |= val << ZQ_CS1EN_SHIFT;
 331
 332        return zq;
 333}
 334
 335static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
 336                const struct emif_custom_configs *custom_configs, bool cs1_used,
 337                u32 sdram_io_width, u32 emif_bus_width)
 338{
 339        u32 alert = 0, interval, devcnt;
 340
 341        if (custom_configs && (custom_configs->mask &
 342                                EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
 343                interval = custom_configs->temp_alert_poll_interval_ms;
 344        else
 345                interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
 346
 347        interval *= 1000000;                    /* Convert to ns */
 348        interval /= addressing->tREFI_ns;       /* Convert to refresh cycles */
 349        alert |= (interval << TA_REFINTERVAL_SHIFT);
 350
 351        /*
 352         * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
 353         * also to this form and subtract to get TA_DEVCNT, which is
 354         * in log2(x) form.
 355         */
 356        emif_bus_width = __fls(emif_bus_width) - 1;
 357        devcnt = emif_bus_width - sdram_io_width;
 358        alert |= devcnt << TA_DEVCNT_SHIFT;
 359
 360        /* DEVWDT is in 'log2(x) - 3' form */
 361        alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
 362
 363        alert |= 1 << TA_SFEXITEN_SHIFT;
 364        alert |= 1 << TA_CS0EN_SHIFT;
 365        alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
 366
 367        return alert;
 368}
 369
 370static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
 371{
 372        u32 pwr_mgmt_ctrl       = 0, timeout;
 373        u32 lpmode              = EMIF_LP_MODE_SELF_REFRESH;
 374        u32 timeout_perf        = EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
 375        u32 timeout_pwr         = EMIF_LP_MODE_TIMEOUT_POWER;
 376        u32 freq_threshold      = EMIF_LP_MODE_FREQ_THRESHOLD;
 377        u32 mask;
 378        u8 shift;
 379
 380        struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
 381
 382        if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
 383                lpmode          = cust_cfgs->lpmode;
 384                timeout_perf    = cust_cfgs->lpmode_timeout_performance;
 385                timeout_pwr     = cust_cfgs->lpmode_timeout_power;
 386                freq_threshold  = cust_cfgs->lpmode_freq_threshold;
 387        }
 388
 389        /* Timeout based on DDR frequency */
 390        timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
 391
 392        /*
 393         * The value to be set in register is "log2(timeout) - 3"
 394         * if timeout < 16 load 0 in register
 395         * if timeout is not a power of 2, round to next highest power of 2
 396         */
 397        if (timeout < 16) {
 398                timeout = 0;
 399        } else {
 400                if (timeout & (timeout - 1))
 401                        timeout <<= 1;
 402                timeout = __fls(timeout) - 3;
 403        }
 404
 405        switch (lpmode) {
 406        case EMIF_LP_MODE_CLOCK_STOP:
 407                shift = CS_TIM_SHIFT;
 408                mask = CS_TIM_MASK;
 409                break;
 410        case EMIF_LP_MODE_SELF_REFRESH:
 411                /* Workaround for errata i735 */
 412                if (timeout < 6)
 413                        timeout = 6;
 414
 415                shift = SR_TIM_SHIFT;
 416                mask = SR_TIM_MASK;
 417                break;
 418        case EMIF_LP_MODE_PWR_DN:
 419                shift = PD_TIM_SHIFT;
 420                mask = PD_TIM_MASK;
 421                break;
 422        case EMIF_LP_MODE_DISABLE:
 423        default:
 424                mask = 0;
 425                shift = 0;
 426                break;
 427        }
 428        /* Round to maximum in case of overflow, BUT warn! */
 429        if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) {
 430                pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
 431                       lpmode,
 432                       timeout_perf,
 433                       timeout_pwr,
 434                       freq_threshold);
 435                WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
 436                     timeout, mask >> shift);
 437                timeout = mask >> shift;
 438        }
 439
 440        /* Setup required timing */
 441        pwr_mgmt_ctrl = (timeout << shift) & mask;
 442        /* setup a default mask for rest of the modes */
 443        pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) &
 444                          ~mask;
 445
 446        /* No CS_TIM in EMIF_4D5 */
 447        if (ip_rev == EMIF_4D5)
 448                pwr_mgmt_ctrl &= ~CS_TIM_MASK;
 449
 450        pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
 451
 452        return pwr_mgmt_ctrl;
 453}
 454
 455/*
 456 * Get the temperature level of the EMIF instance:
 457 * Reads the MR4 register of attached SDRAM parts to find out the temperature
 458 * level. If there are two parts attached(one on each CS), then the temperature
 459 * level for the EMIF instance is the higher of the two temperatures.
 460 */
 461static void get_temperature_level(struct emif_data *emif)
 462{
 463        u32             temp, temperature_level;
 464        void __iomem    *base;
 465
 466        base = emif->base;
 467
 468        /* Read mode register 4 */
 469        writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
 470        temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
 471        temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
 472                                MR4_SDRAM_REF_RATE_SHIFT;
 473
 474        if (emif->plat_data->device_info->cs1_used) {
 475                writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
 476                temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
 477                temp = (temp & MR4_SDRAM_REF_RATE_MASK)
 478                                >> MR4_SDRAM_REF_RATE_SHIFT;
 479                temperature_level = max(temp, temperature_level);
 480        }
 481
 482        /* treat everything less than nominal(3) in MR4 as nominal */
 483        if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
 484                temperature_level = SDRAM_TEMP_NOMINAL;
 485
 486        /* if we get reserved value in MR4 persist with the existing value */
 487        if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
 488                emif->temperature_level = temperature_level;
 489}
 490
 491/*
 492 * setup_temperature_sensitive_regs() - set the timings for temperature
 493 * sensitive registers. This happens once at initialisation time based
 494 * on the temperature at boot time and subsequently based on the temperature
 495 * alert interrupt. Temperature alert can happen when the temperature
 496 * increases or drops. So this function can have the effect of either
 497 * derating the timings or going back to nominal values.
 498 */
 499static void setup_temperature_sensitive_regs(struct emif_data *emif,
 500                struct emif_regs *regs)
 501{
 502        u32             tim1, tim3, ref_ctrl, type;
 503        void __iomem    *base = emif->base;
 504        u32             temperature;
 505
 506        type = emif->plat_data->device_info->type;
 507
 508        tim1 = regs->sdram_tim1_shdw;
 509        tim3 = regs->sdram_tim3_shdw;
 510        ref_ctrl = regs->ref_ctrl_shdw;
 511
 512        /* No de-rating for non-lpddr2 devices */
 513        if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
 514                goto out;
 515
 516        temperature = emif->temperature_level;
 517        if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
 518                ref_ctrl = regs->ref_ctrl_shdw_derated;
 519        } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
 520                tim1 = regs->sdram_tim1_shdw_derated;
 521                tim3 = regs->sdram_tim3_shdw_derated;
 522                ref_ctrl = regs->ref_ctrl_shdw_derated;
 523        }
 524
 525out:
 526        writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
 527        writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
 528        writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
 529}
 530
 531static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
 532{
 533        u32             old_temp_level;
 534        irqreturn_t     ret = IRQ_HANDLED;
 535        struct emif_custom_configs *custom_configs;
 536
 537        spin_lock_irqsave(&emif_lock, irq_state);
 538        old_temp_level = emif->temperature_level;
 539        get_temperature_level(emif);
 540
 541        if (unlikely(emif->temperature_level == old_temp_level)) {
 542                goto out;
 543        } else if (!emif->curr_regs) {
 544                dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
 545                goto out;
 546        }
 547
 548        custom_configs = emif->plat_data->custom_configs;
 549
 550        /*
 551         * IF we detect higher than "nominal rating" from DDR sensor
 552         * on an unsupported DDR part, shutdown system
 553         */
 554        if (custom_configs && !(custom_configs->mask &
 555                                EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) {
 556                if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) {
 557                        dev_err(emif->dev,
 558                                "%s:NOT Extended temperature capable memory. Converting MR4=0x%02x as shutdown event\n",
 559                                __func__, emif->temperature_level);
 560                        /*
 561                         * Temperature far too high - do kernel_power_off()
 562                         * from thread context
 563                         */
 564                        emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN;
 565                        ret = IRQ_WAKE_THREAD;
 566                        goto out;
 567                }
 568        }
 569
 570        if (emif->temperature_level < old_temp_level ||
 571                emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
 572                /*
 573                 * Temperature coming down - defer handling to thread OR
 574                 * Temperature far too high - do kernel_power_off() from
 575                 * thread context
 576                 */
 577                ret = IRQ_WAKE_THREAD;
 578        } else {
 579                /* Temperature is going up - handle immediately */
 580                setup_temperature_sensitive_regs(emif, emif->curr_regs);
 581                do_freq_update();
 582        }
 583
 584out:
 585        spin_unlock_irqrestore(&emif_lock, irq_state);
 586        return ret;
 587}
 588
 589static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
 590{
 591        u32                     interrupts;
 592        struct emif_data        *emif = dev_id;
 593        void __iomem            *base = emif->base;
 594        struct device           *dev = emif->dev;
 595        irqreturn_t             ret = IRQ_HANDLED;
 596
 597        /* Save the status and clear it */
 598        interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
 599        writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
 600
 601        /*
 602         * Handle temperature alert
 603         * Temperature alert should be same for all ports
 604         * So, it's enough to process it only for one of the ports
 605         */
 606        if (interrupts & TA_SYS_MASK)
 607                ret = handle_temp_alert(base, emif);
 608
 609        if (interrupts & ERR_SYS_MASK)
 610                dev_err(dev, "Access error from SYS port - %x\n", interrupts);
 611
 612        if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
 613                /* Save the status and clear it */
 614                interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
 615                writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
 616
 617                if (interrupts & ERR_LL_MASK)
 618                        dev_err(dev, "Access error from LL port - %x\n",
 619                                interrupts);
 620        }
 621
 622        return ret;
 623}
 624
 625static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
 626{
 627        struct emif_data        *emif = dev_id;
 628
 629        if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
 630                dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
 631
 632                /* If we have Power OFF ability, use it, else try restarting */
 633                if (pm_power_off) {
 634                        kernel_power_off();
 635                } else {
 636                        WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
 637                        kernel_restart("SDRAM Over-temp Emergency restart");
 638                }
 639                return IRQ_HANDLED;
 640        }
 641
 642        spin_lock_irqsave(&emif_lock, irq_state);
 643
 644        if (emif->curr_regs) {
 645                setup_temperature_sensitive_regs(emif, emif->curr_regs);
 646                do_freq_update();
 647        } else {
 648                dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
 649        }
 650
 651        spin_unlock_irqrestore(&emif_lock, irq_state);
 652
 653        return IRQ_HANDLED;
 654}
 655
 656static void clear_all_interrupts(struct emif_data *emif)
 657{
 658        void __iomem    *base = emif->base;
 659
 660        writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
 661                base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
 662        if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
 663                writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
 664                        base + EMIF_LL_OCP_INTERRUPT_STATUS);
 665}
 666
 667static void disable_and_clear_all_interrupts(struct emif_data *emif)
 668{
 669        void __iomem            *base = emif->base;
 670
 671        /* Disable all interrupts */
 672        writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
 673                base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
 674        if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
 675                writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
 676                        base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
 677
 678        /* Clear all interrupts */
 679        clear_all_interrupts(emif);
 680}
 681
 682static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
 683{
 684        u32             interrupts, type;
 685        void __iomem    *base = emif->base;
 686
 687        type = emif->plat_data->device_info->type;
 688
 689        clear_all_interrupts(emif);
 690
 691        /* Enable interrupts for SYS interface */
 692        interrupts = EN_ERR_SYS_MASK;
 693        if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
 694                interrupts |= EN_TA_SYS_MASK;
 695        writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
 696
 697        /* Enable interrupts for LL interface */
 698        if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
 699                /* TA need not be enabled for LL */
 700                interrupts = EN_ERR_LL_MASK;
 701                writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
 702        }
 703
 704        /* setup IRQ handlers */
 705        return devm_request_threaded_irq(emif->dev, irq,
 706                                    emif_interrupt_handler,
 707                                    emif_threaded_isr,
 708                                    0, dev_name(emif->dev),
 709                                    emif);
 710
 711}
 712
 713static void __init_or_module emif_onetime_settings(struct emif_data *emif)
 714{
 715        u32                             pwr_mgmt_ctrl, zq, temp_alert_cfg;
 716        void __iomem                    *base = emif->base;
 717        const struct lpddr2_addressing  *addressing;
 718        const struct ddr_device_info    *device_info;
 719
 720        device_info = emif->plat_data->device_info;
 721        addressing = get_addressing_table(device_info);
 722
 723        /*
 724         * Init power management settings
 725         * We don't know the frequency yet. Use a high frequency
 726         * value for a conservative timeout setting
 727         */
 728        pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
 729                        emif->plat_data->ip_rev);
 730        emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
 731        writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
 732
 733        /* Init ZQ calibration settings */
 734        zq = get_zq_config_reg(addressing, device_info->cs1_used,
 735                device_info->cal_resistors_per_cs);
 736        writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
 737
 738        /* Check temperature level temperature level*/
 739        get_temperature_level(emif);
 740        if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
 741                dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
 742
 743        /* Init temperature polling */
 744        temp_alert_cfg = get_temp_alert_config(addressing,
 745                emif->plat_data->custom_configs, device_info->cs1_used,
 746                device_info->io_width, get_emif_bus_width(emif));
 747        writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
 748
 749        /*
 750         * Program external PHY control registers that are not frequency
 751         * dependent
 752         */
 753        if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
 754                return;
 755        writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
 756        writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
 757        writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
 758        writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
 759        writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
 760        writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
 761        writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
 762        writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
 763        writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
 764        writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
 765        writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
 766        writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
 767        writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
 768        writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
 769        writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
 770        writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
 771        writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
 772        writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
 773        writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
 774        writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
 775        writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
 776}
 777
 778static void get_default_timings(struct emif_data *emif)
 779{
 780        struct emif_platform_data *pd = emif->plat_data;
 781
 782        pd->timings             = lpddr2_jedec_timings;
 783        pd->timings_arr_size    = ARRAY_SIZE(lpddr2_jedec_timings);
 784
 785        dev_warn(emif->dev, "%s: using default timings\n", __func__);
 786}
 787
 788static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
 789                u32 ip_rev, struct device *dev)
 790{
 791        int valid;
 792
 793        valid = (type == DDR_TYPE_LPDDR2_S4 ||
 794                        type == DDR_TYPE_LPDDR2_S2)
 795                && (density >= DDR_DENSITY_64Mb
 796                        && density <= DDR_DENSITY_8Gb)
 797                && (io_width >= DDR_IO_WIDTH_8
 798                        && io_width <= DDR_IO_WIDTH_32);
 799
 800        /* Combinations of EMIF and PHY revisions that we support today */
 801        switch (ip_rev) {
 802        case EMIF_4D:
 803                valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
 804                break;
 805        case EMIF_4D5:
 806                valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
 807                break;
 808        default:
 809                valid = 0;
 810        }
 811
 812        if (!valid)
 813                dev_err(dev, "%s: invalid DDR details\n", __func__);
 814        return valid;
 815}
 816
 817static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
 818                struct device *dev)
 819{
 820        int valid = 1;
 821
 822        if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
 823                (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
 824                valid = cust_cfgs->lpmode_freq_threshold &&
 825                        cust_cfgs->lpmode_timeout_performance &&
 826                        cust_cfgs->lpmode_timeout_power;
 827
 828        if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
 829                valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
 830
 831        if (!valid)
 832                dev_warn(dev, "%s: invalid custom configs\n", __func__);
 833
 834        return valid;
 835}
 836
 837#if defined(CONFIG_OF)
 838static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
 839                struct emif_data *emif)
 840{
 841        struct emif_custom_configs      *cust_cfgs = NULL;
 842        int                             len;
 843        const __be32                    *lpmode, *poll_intvl;
 844
 845        lpmode = of_get_property(np_emif, "low-power-mode", &len);
 846        poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
 847
 848        if (lpmode || poll_intvl)
 849                cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
 850                        GFP_KERNEL);
 851
 852        if (!cust_cfgs)
 853                return;
 854
 855        if (lpmode) {
 856                cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
 857                cust_cfgs->lpmode = be32_to_cpup(lpmode);
 858                of_property_read_u32(np_emif,
 859                                "low-power-mode-timeout-performance",
 860                                &cust_cfgs->lpmode_timeout_performance);
 861                of_property_read_u32(np_emif,
 862                                "low-power-mode-timeout-power",
 863                                &cust_cfgs->lpmode_timeout_power);
 864                of_property_read_u32(np_emif,
 865                                "low-power-mode-freq-threshold",
 866                                &cust_cfgs->lpmode_freq_threshold);
 867        }
 868
 869        if (poll_intvl) {
 870                cust_cfgs->mask |=
 871                                EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
 872                cust_cfgs->temp_alert_poll_interval_ms =
 873                                                be32_to_cpup(poll_intvl);
 874        }
 875
 876        if (of_find_property(np_emif, "extended-temp-part", &len))
 877                cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART;
 878
 879        if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
 880                devm_kfree(emif->dev, cust_cfgs);
 881                return;
 882        }
 883
 884        emif->plat_data->custom_configs = cust_cfgs;
 885}
 886
 887static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
 888                struct device_node *np_ddr,
 889                struct ddr_device_info *dev_info)
 890{
 891        u32 density = 0, io_width = 0;
 892        int len;
 893
 894        if (of_find_property(np_emif, "cs1-used", &len))
 895                dev_info->cs1_used = true;
 896
 897        if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
 898                dev_info->cal_resistors_per_cs = true;
 899
 900        if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s4"))
 901                dev_info->type = DDR_TYPE_LPDDR2_S4;
 902        else if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s2"))
 903                dev_info->type = DDR_TYPE_LPDDR2_S2;
 904
 905        of_property_read_u32(np_ddr, "density", &density);
 906        of_property_read_u32(np_ddr, "io-width", &io_width);
 907
 908        /* Convert from density in Mb to the density encoding in jedc_ddr.h */
 909        if (density & (density - 1))
 910                dev_info->density = 0;
 911        else
 912                dev_info->density = __fls(density) - 5;
 913
 914        /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
 915        if (io_width & (io_width - 1))
 916                dev_info->io_width = 0;
 917        else
 918                dev_info->io_width = __fls(io_width) - 1;
 919}
 920
 921static struct emif_data * __init_or_module of_get_memory_device_details(
 922                struct device_node *np_emif, struct device *dev)
 923{
 924        struct emif_data                *emif = NULL;
 925        struct ddr_device_info          *dev_info = NULL;
 926        struct emif_platform_data       *pd = NULL;
 927        struct device_node              *np_ddr;
 928        int                             len;
 929
 930        np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
 931        if (!np_ddr)
 932                goto error;
 933        emif    = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
 934        pd      = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
 935        dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
 936
 937        if (!emif || !pd || !dev_info) {
 938                dev_err(dev, "%s: Out of memory!!\n",
 939                        __func__);
 940                goto error;
 941        }
 942
 943        emif->plat_data         = pd;
 944        pd->device_info         = dev_info;
 945        emif->dev               = dev;
 946        emif->np_ddr            = np_ddr;
 947        emif->temperature_level = SDRAM_TEMP_NOMINAL;
 948
 949        if (of_device_is_compatible(np_emif, "ti,emif-4d"))
 950                emif->plat_data->ip_rev = EMIF_4D;
 951        else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
 952                emif->plat_data->ip_rev = EMIF_4D5;
 953
 954        of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
 955
 956        if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
 957                pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
 958
 959        of_get_ddr_info(np_emif, np_ddr, dev_info);
 960        if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
 961                        pd->device_info->io_width, pd->phy_type, pd->ip_rev,
 962                        emif->dev)) {
 963                dev_err(dev, "%s: invalid device data!!\n", __func__);
 964                goto error;
 965        }
 966        /*
 967         * For EMIF instances other than EMIF1 see if the devices connected
 968         * are exactly same as on EMIF1(which is typically the case). If so,
 969         * mark it as a duplicate of EMIF1. This will save some memory and
 970         * computation.
 971         */
 972        if (emif1 && emif1->np_ddr == np_ddr) {
 973                emif->duplicate = true;
 974                goto out;
 975        } else if (emif1) {
 976                dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
 977                        __func__);
 978        }
 979
 980        of_get_custom_configs(np_emif, emif);
 981        emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
 982                                        emif->plat_data->device_info->type,
 983                                        &emif->plat_data->timings_arr_size);
 984
 985        emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
 986        goto out;
 987
 988error:
 989        return NULL;
 990out:
 991        return emif;
 992}
 993
 994#else
 995
 996static struct emif_data * __init_or_module of_get_memory_device_details(
 997                struct device_node *np_emif, struct device *dev)
 998{
 999        return NULL;
1000}
1001#endif
1002
1003static struct emif_data *__init_or_module get_device_details(
1004                struct platform_device *pdev)
1005{
1006        u32                             size;
1007        struct emif_data                *emif = NULL;
1008        struct ddr_device_info          *dev_info;
1009        struct emif_custom_configs      *cust_cfgs;
1010        struct emif_platform_data       *pd;
1011        struct device                   *dev;
1012        void                            *temp;
1013
1014        pd = pdev->dev.platform_data;
1015        dev = &pdev->dev;
1016
1017        if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1018                        pd->device_info->density, pd->device_info->io_width,
1019                        pd->phy_type, pd->ip_rev, dev))) {
1020                dev_err(dev, "%s: invalid device data\n", __func__);
1021                goto error;
1022        }
1023
1024        emif    = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1025        temp    = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1026        dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1027
1028        if (!emif || !pd || !dev_info) {
1029                dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
1030                goto error;
1031        }
1032
1033        memcpy(temp, pd, sizeof(*pd));
1034        pd = temp;
1035        memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1036
1037        pd->device_info         = dev_info;
1038        emif->plat_data         = pd;
1039        emif->dev               = dev;
1040        emif->temperature_level = SDRAM_TEMP_NOMINAL;
1041
1042        /*
1043         * For EMIF instances other than EMIF1 see if the devices connected
1044         * are exactly same as on EMIF1(which is typically the case). If so,
1045         * mark it as a duplicate of EMIF1 and skip copying timings data.
1046         * This will save some memory and some computation later.
1047         */
1048        emif->duplicate = emif1 && (memcmp(dev_info,
1049                emif1->plat_data->device_info,
1050                sizeof(struct ddr_device_info)) == 0);
1051
1052        if (emif->duplicate) {
1053                pd->timings = NULL;
1054                pd->min_tck = NULL;
1055                goto out;
1056        } else if (emif1) {
1057                dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1058                        __func__);
1059        }
1060
1061        /*
1062         * Copy custom configs - ignore allocation error, if any, as
1063         * custom_configs is not very critical
1064         */
1065        cust_cfgs = pd->custom_configs;
1066        if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1067                temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1068                if (temp)
1069                        memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1070                else
1071                        dev_warn(dev, "%s:%d: allocation error\n", __func__,
1072                                __LINE__);
1073                pd->custom_configs = temp;
1074        }
1075
1076        /*
1077         * Copy timings and min-tck values from platform data. If it is not
1078         * available or if memory allocation fails, use JEDEC defaults
1079         */
1080        size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1081        if (pd->timings) {
1082                temp = devm_kzalloc(dev, size, GFP_KERNEL);
1083                if (temp) {
1084                        memcpy(temp, pd->timings, size);
1085                        pd->timings = temp;
1086                } else {
1087                        dev_warn(dev, "%s:%d: allocation error\n", __func__,
1088                                __LINE__);
1089                        get_default_timings(emif);
1090                }
1091        } else {
1092                get_default_timings(emif);
1093        }
1094
1095        if (pd->min_tck) {
1096                temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1097                if (temp) {
1098                        memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1099                        pd->min_tck = temp;
1100                } else {
1101                        dev_warn(dev, "%s:%d: allocation error\n", __func__,
1102                                __LINE__);
1103                        pd->min_tck = &lpddr2_jedec_min_tck;
1104                }
1105        } else {
1106                pd->min_tck = &lpddr2_jedec_min_tck;
1107        }
1108
1109out:
1110        return emif;
1111
1112error:
1113        return NULL;
1114}
1115
1116static int __init_or_module emif_probe(struct platform_device *pdev)
1117{
1118        struct emif_data        *emif;
1119        struct resource         *res;
1120        int                     irq;
1121
1122        if (pdev->dev.of_node)
1123                emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1124        else
1125                emif = get_device_details(pdev);
1126
1127        if (!emif) {
1128                pr_err("%s: error getting device data\n", __func__);
1129                goto error;
1130        }
1131
1132        list_add(&emif->node, &device_list);
1133
1134        /* Save pointers to each other in emif and device structures */
1135        emif->dev = &pdev->dev;
1136        platform_set_drvdata(pdev, emif);
1137
1138        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1139        emif->base = devm_ioremap_resource(emif->dev, res);
1140        if (IS_ERR(emif->base))
1141                goto error;
1142
1143        irq = platform_get_irq(pdev, 0);
1144        if (irq < 0)
1145                goto error;
1146
1147        emif_onetime_settings(emif);
1148        emif_debugfs_init(emif);
1149        disable_and_clear_all_interrupts(emif);
1150        setup_interrupts(emif, irq);
1151
1152        /* One-time actions taken on probing the first device */
1153        if (!emif1) {
1154                emif1 = emif;
1155
1156                /*
1157                 * TODO: register notifiers for frequency and voltage
1158                 * change here once the respective frameworks are
1159                 * available
1160                 */
1161        }
1162
1163        dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1164                __func__, emif->base, irq);
1165
1166        return 0;
1167error:
1168        return -ENODEV;
1169}
1170
1171static int __exit emif_remove(struct platform_device *pdev)
1172{
1173        struct emif_data *emif = platform_get_drvdata(pdev);
1174
1175        emif_debugfs_exit(emif);
1176
1177        return 0;
1178}
1179
1180static void emif_shutdown(struct platform_device *pdev)
1181{
1182        struct emif_data        *emif = platform_get_drvdata(pdev);
1183
1184        disable_and_clear_all_interrupts(emif);
1185}
1186
1187#if defined(CONFIG_OF)
1188static const struct of_device_id emif_of_match[] = {
1189                { .compatible = "ti,emif-4d" },
1190                { .compatible = "ti,emif-4d5" },
1191                {},
1192};
1193MODULE_DEVICE_TABLE(of, emif_of_match);
1194#endif
1195
1196static struct platform_driver emif_driver = {
1197        .remove         = __exit_p(emif_remove),
1198        .shutdown       = emif_shutdown,
1199        .driver = {
1200                .name = "emif",
1201                .of_match_table = of_match_ptr(emif_of_match),
1202        },
1203};
1204
1205module_platform_driver_probe(emif_driver, emif_probe);
1206
1207MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1208MODULE_LICENSE("GPL");
1209MODULE_ALIAS("platform:emif");
1210MODULE_AUTHOR("Texas Instruments Inc");
1211