linux/drivers/mmc/host/mmci.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
   4 *
   5 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
   6 *  Copyright (C) 2010 ST-Ericsson SA
   7 */
   8#include <linux/module.h>
   9#include <linux/moduleparam.h>
  10#include <linux/init.h>
  11#include <linux/ioport.h>
  12#include <linux/device.h>
  13#include <linux/io.h>
  14#include <linux/interrupt.h>
  15#include <linux/kernel.h>
  16#include <linux/slab.h>
  17#include <linux/delay.h>
  18#include <linux/err.h>
  19#include <linux/highmem.h>
  20#include <linux/log2.h>
  21#include <linux/mmc/mmc.h>
  22#include <linux/mmc/pm.h>
  23#include <linux/mmc/host.h>
  24#include <linux/mmc/card.h>
  25#include <linux/mmc/sd.h>
  26#include <linux/mmc/slot-gpio.h>
  27#include <linux/amba/bus.h>
  28#include <linux/clk.h>
  29#include <linux/scatterlist.h>
  30#include <linux/of.h>
  31#include <linux/regulator/consumer.h>
  32#include <linux/dmaengine.h>
  33#include <linux/dma-mapping.h>
  34#include <linux/amba/mmci.h>
  35#include <linux/pm_runtime.h>
  36#include <linux/types.h>
  37#include <linux/pinctrl/consumer.h>
  38#include <linux/reset.h>
  39#include <linux/gpio/consumer.h>
  40
  41#include <asm/div64.h>
  42#include <asm/io.h>
  43
  44#include "mmci.h"
  45
  46#define DRIVER_NAME "mmci-pl18x"
  47
  48static void mmci_variant_init(struct mmci_host *host);
  49static void ux500_variant_init(struct mmci_host *host);
  50static void ux500v2_variant_init(struct mmci_host *host);
  51
  52static unsigned int fmax = 515633;
  53
  54static struct variant_data variant_arm = {
  55        .fifosize               = 16 * 4,
  56        .fifohalfsize           = 8 * 4,
  57        .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
  58        .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  59        .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
  60        .cmdreg_srsp            = MCI_CPSM_RESPONSE,
  61        .datalength_bits        = 16,
  62        .datactrl_blocksz       = 11,
  63        .pwrreg_powerup         = MCI_PWR_UP,
  64        .f_max                  = 100000000,
  65        .reversed_irq_handling  = true,
  66        .mmcimask1              = true,
  67        .irq_pio_mask           = MCI_IRQ_PIO_MASK,
  68        .start_err              = MCI_STARTBITERR,
  69        .opendrain              = MCI_ROD,
  70        .init                   = mmci_variant_init,
  71};
  72
  73static struct variant_data variant_arm_extended_fifo = {
  74        .fifosize               = 128 * 4,
  75        .fifohalfsize           = 64 * 4,
  76        .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
  77        .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  78        .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
  79        .cmdreg_srsp            = MCI_CPSM_RESPONSE,
  80        .datalength_bits        = 16,
  81        .datactrl_blocksz       = 11,
  82        .pwrreg_powerup         = MCI_PWR_UP,
  83        .f_max                  = 100000000,
  84        .mmcimask1              = true,
  85        .irq_pio_mask           = MCI_IRQ_PIO_MASK,
  86        .start_err              = MCI_STARTBITERR,
  87        .opendrain              = MCI_ROD,
  88        .init                   = mmci_variant_init,
  89};
  90
  91static struct variant_data variant_arm_extended_fifo_hwfc = {
  92        .fifosize               = 128 * 4,
  93        .fifohalfsize           = 64 * 4,
  94        .clkreg_enable          = MCI_ARM_HWFCEN,
  95        .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
  96        .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  97        .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
  98        .cmdreg_srsp            = MCI_CPSM_RESPONSE,
  99        .datalength_bits        = 16,
 100        .datactrl_blocksz       = 11,
 101        .pwrreg_powerup         = MCI_PWR_UP,
 102        .f_max                  = 100000000,
 103        .mmcimask1              = true,
 104        .irq_pio_mask           = MCI_IRQ_PIO_MASK,
 105        .start_err              = MCI_STARTBITERR,
 106        .opendrain              = MCI_ROD,
 107        .init                   = mmci_variant_init,
 108};
 109
 110static struct variant_data variant_u300 = {
 111        .fifosize               = 16 * 4,
 112        .fifohalfsize           = 8 * 4,
 113        .clkreg_enable          = MCI_ST_U300_HWFCEN,
 114        .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 115        .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
 116        .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 117        .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
 118        .cmdreg_srsp            = MCI_CPSM_RESPONSE,
 119        .datalength_bits        = 16,
 120        .datactrl_blocksz       = 11,
 121        .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
 122        .st_sdio                        = true,
 123        .pwrreg_powerup         = MCI_PWR_ON,
 124        .f_max                  = 100000000,
 125        .signal_direction       = true,
 126        .pwrreg_clkgate         = true,
 127        .pwrreg_nopower         = true,
 128        .mmcimask1              = true,
 129        .irq_pio_mask           = MCI_IRQ_PIO_MASK,
 130        .start_err              = MCI_STARTBITERR,
 131        .opendrain              = MCI_OD,
 132        .init                   = mmci_variant_init,
 133};
 134
 135static struct variant_data variant_nomadik = {
 136        .fifosize               = 16 * 4,
 137        .fifohalfsize           = 8 * 4,
 138        .clkreg                 = MCI_CLK_ENABLE,
 139        .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 140        .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
 141        .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 142        .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
 143        .cmdreg_srsp            = MCI_CPSM_RESPONSE,
 144        .datalength_bits        = 24,
 145        .datactrl_blocksz       = 11,
 146        .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
 147        .st_sdio                = true,
 148        .st_clkdiv              = true,
 149        .pwrreg_powerup         = MCI_PWR_ON,
 150        .f_max                  = 100000000,
 151        .signal_direction       = true,
 152        .pwrreg_clkgate         = true,
 153        .pwrreg_nopower         = true,
 154        .mmcimask1              = true,
 155        .irq_pio_mask           = MCI_IRQ_PIO_MASK,
 156        .start_err              = MCI_STARTBITERR,
 157        .opendrain              = MCI_OD,
 158        .init                   = mmci_variant_init,
 159};
 160
 161static struct variant_data variant_ux500 = {
 162        .fifosize               = 30 * 4,
 163        .fifohalfsize           = 8 * 4,
 164        .clkreg                 = MCI_CLK_ENABLE,
 165        .clkreg_enable          = MCI_ST_UX500_HWFCEN,
 166        .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 167        .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
 168        .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
 169        .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 170        .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
 171        .cmdreg_srsp            = MCI_CPSM_RESPONSE,
 172        .datalength_bits        = 24,
 173        .datactrl_blocksz       = 11,
 174        .datactrl_any_blocksz   = true,
 175        .dma_power_of_2         = true,
 176        .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
 177        .st_sdio                = true,
 178        .st_clkdiv              = true,
 179        .pwrreg_powerup         = MCI_PWR_ON,
 180        .f_max                  = 100000000,
 181        .signal_direction       = true,
 182        .pwrreg_clkgate         = true,
 183        .busy_detect            = true,
 184        .busy_dpsm_flag         = MCI_DPSM_ST_BUSYMODE,
 185        .busy_detect_flag       = MCI_ST_CARDBUSY,
 186        .busy_detect_mask       = MCI_ST_BUSYENDMASK,
 187        .pwrreg_nopower         = true,
 188        .mmcimask1              = true,
 189        .irq_pio_mask           = MCI_IRQ_PIO_MASK,
 190        .start_err              = MCI_STARTBITERR,
 191        .opendrain              = MCI_OD,
 192        .init                   = ux500_variant_init,
 193};
 194
 195static struct variant_data variant_ux500v2 = {
 196        .fifosize               = 30 * 4,
 197        .fifohalfsize           = 8 * 4,
 198        .clkreg                 = MCI_CLK_ENABLE,
 199        .clkreg_enable          = MCI_ST_UX500_HWFCEN,
 200        .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 201        .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
 202        .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
 203        .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 204        .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
 205        .cmdreg_srsp            = MCI_CPSM_RESPONSE,
 206        .datactrl_mask_ddrmode  = MCI_DPSM_ST_DDRMODE,
 207        .datalength_bits        = 24,
 208        .datactrl_blocksz       = 11,
 209        .datactrl_any_blocksz   = true,
 210        .dma_power_of_2         = true,
 211        .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
 212        .st_sdio                = true,
 213        .st_clkdiv              = true,
 214        .pwrreg_powerup         = MCI_PWR_ON,
 215        .f_max                  = 100000000,
 216        .signal_direction       = true,
 217        .pwrreg_clkgate         = true,
 218        .busy_detect            = true,
 219        .busy_dpsm_flag         = MCI_DPSM_ST_BUSYMODE,
 220        .busy_detect_flag       = MCI_ST_CARDBUSY,
 221        .busy_detect_mask       = MCI_ST_BUSYENDMASK,
 222        .pwrreg_nopower         = true,
 223        .mmcimask1              = true,
 224        .irq_pio_mask           = MCI_IRQ_PIO_MASK,
 225        .start_err              = MCI_STARTBITERR,
 226        .opendrain              = MCI_OD,
 227        .init                   = ux500v2_variant_init,
 228};
 229
 230static struct variant_data variant_stm32 = {
 231        .fifosize               = 32 * 4,
 232        .fifohalfsize           = 8 * 4,
 233        .clkreg                 = MCI_CLK_ENABLE,
 234        .clkreg_enable          = MCI_ST_UX500_HWFCEN,
 235        .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 236        .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
 237        .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
 238        .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 239        .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
 240        .cmdreg_srsp            = MCI_CPSM_RESPONSE,
 241        .irq_pio_mask           = MCI_IRQ_PIO_MASK,
 242        .datalength_bits        = 24,
 243        .datactrl_blocksz       = 11,
 244        .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
 245        .st_sdio                = true,
 246        .st_clkdiv              = true,
 247        .pwrreg_powerup         = MCI_PWR_ON,
 248        .f_max                  = 48000000,
 249        .pwrreg_clkgate         = true,
 250        .pwrreg_nopower         = true,
 251        .init                   = mmci_variant_init,
 252};
 253
 254static struct variant_data variant_stm32_sdmmc = {
 255        .fifosize               = 16 * 4,
 256        .fifohalfsize           = 8 * 4,
 257        .f_max                  = 208000000,
 258        .stm32_clkdiv           = true,
 259        .cmdreg_cpsm_enable     = MCI_CPSM_STM32_ENABLE,
 260        .cmdreg_lrsp_crc        = MCI_CPSM_STM32_LRSP_CRC,
 261        .cmdreg_srsp_crc        = MCI_CPSM_STM32_SRSP_CRC,
 262        .cmdreg_srsp            = MCI_CPSM_STM32_SRSP,
 263        .cmdreg_stop            = MCI_CPSM_STM32_CMDSTOP,
 264        .data_cmd_enable        = MCI_CPSM_STM32_CMDTRANS,
 265        .irq_pio_mask           = MCI_IRQ_PIO_STM32_MASK,
 266        .datactrl_first         = true,
 267        .datacnt_useless        = true,
 268        .datalength_bits        = 25,
 269        .datactrl_blocksz       = 14,
 270        .datactrl_any_blocksz   = true,
 271        .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
 272        .stm32_idmabsize_mask   = GENMASK(12, 5),
 273        .busy_timeout           = true,
 274        .busy_detect            = true,
 275        .busy_detect_flag       = MCI_STM32_BUSYD0,
 276        .busy_detect_mask       = MCI_STM32_BUSYD0ENDMASK,
 277        .init                   = sdmmc_variant_init,
 278};
 279
 280static struct variant_data variant_stm32_sdmmcv2 = {
 281        .fifosize               = 16 * 4,
 282        .fifohalfsize           = 8 * 4,
 283        .f_max                  = 208000000,
 284        .stm32_clkdiv           = true,
 285        .cmdreg_cpsm_enable     = MCI_CPSM_STM32_ENABLE,
 286        .cmdreg_lrsp_crc        = MCI_CPSM_STM32_LRSP_CRC,
 287        .cmdreg_srsp_crc        = MCI_CPSM_STM32_SRSP_CRC,
 288        .cmdreg_srsp            = MCI_CPSM_STM32_SRSP,
 289        .cmdreg_stop            = MCI_CPSM_STM32_CMDSTOP,
 290        .data_cmd_enable        = MCI_CPSM_STM32_CMDTRANS,
 291        .irq_pio_mask           = MCI_IRQ_PIO_STM32_MASK,
 292        .datactrl_first         = true,
 293        .datacnt_useless        = true,
 294        .datalength_bits        = 25,
 295        .datactrl_blocksz       = 14,
 296        .datactrl_any_blocksz   = true,
 297        .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
 298        .stm32_idmabsize_mask   = GENMASK(16, 5),
 299        .dma_lli                = true,
 300        .busy_timeout           = true,
 301        .busy_detect            = true,
 302        .busy_detect_flag       = MCI_STM32_BUSYD0,
 303        .busy_detect_mask       = MCI_STM32_BUSYD0ENDMASK,
 304        .init                   = sdmmc_variant_init,
 305};
 306
 307static struct variant_data variant_qcom = {
 308        .fifosize               = 16 * 4,
 309        .fifohalfsize           = 8 * 4,
 310        .clkreg                 = MCI_CLK_ENABLE,
 311        .clkreg_enable          = MCI_QCOM_CLK_FLOWENA |
 312                                  MCI_QCOM_CLK_SELECT_IN_FBCLK,
 313        .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
 314        .datactrl_mask_ddrmode  = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
 315        .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
 316        .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 317        .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
 318        .cmdreg_srsp            = MCI_CPSM_RESPONSE,
 319        .data_cmd_enable        = MCI_CPSM_QCOM_DATCMD,
 320        .datalength_bits        = 24,
 321        .datactrl_blocksz       = 11,
 322        .datactrl_any_blocksz   = true,
 323        .pwrreg_powerup         = MCI_PWR_UP,
 324        .f_max                  = 208000000,
 325        .explicit_mclk_control  = true,
 326        .qcom_fifo              = true,
 327        .qcom_dml               = true,
 328        .mmcimask1              = true,
 329        .irq_pio_mask           = MCI_IRQ_PIO_MASK,
 330        .start_err              = MCI_STARTBITERR,
 331        .opendrain              = MCI_ROD,
 332        .init                   = qcom_variant_init,
 333};
 334
 335/* Busy detection for the ST Micro variant */
 336static int mmci_card_busy(struct mmc_host *mmc)
 337{
 338        struct mmci_host *host = mmc_priv(mmc);
 339        unsigned long flags;
 340        int busy = 0;
 341
 342        spin_lock_irqsave(&host->lock, flags);
 343        if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
 344                busy = 1;
 345        spin_unlock_irqrestore(&host->lock, flags);
 346
 347        return busy;
 348}
 349
 350static void mmci_reg_delay(struct mmci_host *host)
 351{
 352        /*
 353         * According to the spec, at least three feedback clock cycles
 354         * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
 355         * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
 356         * Worst delay time during card init is at 100 kHz => 30 us.
 357         * Worst delay time when up and running is at 25 MHz => 120 ns.
 358         */
 359        if (host->cclk < 25000000)
 360                udelay(30);
 361        else
 362                ndelay(120);
 363}
 364
 365/*
 366 * This must be called with host->lock held
 367 */
 368void mmci_write_clkreg(struct mmci_host *host, u32 clk)
 369{
 370        if (host->clk_reg != clk) {
 371                host->clk_reg = clk;
 372                writel(clk, host->base + MMCICLOCK);
 373        }
 374}
 375
 376/*
 377 * This must be called with host->lock held
 378 */
 379void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
 380{
 381        if (host->pwr_reg != pwr) {
 382                host->pwr_reg = pwr;
 383                writel(pwr, host->base + MMCIPOWER);
 384        }
 385}
 386
 387/*
 388 * This must be called with host->lock held
 389 */
 390static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
 391{
 392        /* Keep busy mode in DPSM if enabled */
 393        datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
 394
 395        if (host->datactrl_reg != datactrl) {
 396                host->datactrl_reg = datactrl;
 397                writel(datactrl, host->base + MMCIDATACTRL);
 398        }
 399}
 400
 401/*
 402 * This must be called with host->lock held
 403 */
 404static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
 405{
 406        struct variant_data *variant = host->variant;
 407        u32 clk = variant->clkreg;
 408
 409        /* Make sure cclk reflects the current calculated clock */
 410        host->cclk = 0;
 411
 412        if (desired) {
 413                if (variant->explicit_mclk_control) {
 414                        host->cclk = host->mclk;
 415                } else if (desired >= host->mclk) {
 416                        clk = MCI_CLK_BYPASS;
 417                        if (variant->st_clkdiv)
 418                                clk |= MCI_ST_UX500_NEG_EDGE;
 419                        host->cclk = host->mclk;
 420                } else if (variant->st_clkdiv) {
 421                        /*
 422                         * DB8500 TRM says f = mclk / (clkdiv + 2)
 423                         * => clkdiv = (mclk / f) - 2
 424                         * Round the divider up so we don't exceed the max
 425                         * frequency
 426                         */
 427                        clk = DIV_ROUND_UP(host->mclk, desired) - 2;
 428                        if (clk >= 256)
 429                                clk = 255;
 430                        host->cclk = host->mclk / (clk + 2);
 431                } else {
 432                        /*
 433                         * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
 434                         * => clkdiv = mclk / (2 * f) - 1
 435                         */
 436                        clk = host->mclk / (2 * desired) - 1;
 437                        if (clk >= 256)
 438                                clk = 255;
 439                        host->cclk = host->mclk / (2 * (clk + 1));
 440                }
 441
 442                clk |= variant->clkreg_enable;
 443                clk |= MCI_CLK_ENABLE;
 444                /* This hasn't proven to be worthwhile */
 445                /* clk |= MCI_CLK_PWRSAVE; */
 446        }
 447
 448        /* Set actual clock for debug */
 449        host->mmc->actual_clock = host->cclk;
 450
 451        if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
 452                clk |= MCI_4BIT_BUS;
 453        if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
 454                clk |= variant->clkreg_8bit_bus_enable;
 455
 456        if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 457            host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 458                clk |= variant->clkreg_neg_edge_enable;
 459
 460        mmci_write_clkreg(host, clk);
 461}
 462
 463static void mmci_dma_release(struct mmci_host *host)
 464{
 465        if (host->ops && host->ops->dma_release)
 466                host->ops->dma_release(host);
 467
 468        host->use_dma = false;
 469}
 470
 471static void mmci_dma_setup(struct mmci_host *host)
 472{
 473        if (!host->ops || !host->ops->dma_setup)
 474                return;
 475
 476        if (host->ops->dma_setup(host))
 477                return;
 478
 479        /* initialize pre request cookie */
 480        host->next_cookie = 1;
 481
 482        host->use_dma = true;
 483}
 484
 485/*
 486 * Validate mmc prerequisites
 487 */
 488static int mmci_validate_data(struct mmci_host *host,
 489                              struct mmc_data *data)
 490{
 491        struct variant_data *variant = host->variant;
 492
 493        if (!data)
 494                return 0;
 495        if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) {
 496                dev_err(mmc_dev(host->mmc),
 497                        "unsupported block size (%d bytes)\n", data->blksz);
 498                return -EINVAL;
 499        }
 500
 501        if (host->ops && host->ops->validate_data)
 502                return host->ops->validate_data(host, data);
 503
 504        return 0;
 505}
 506
 507static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
 508{
 509        int err;
 510
 511        if (!host->ops || !host->ops->prep_data)
 512                return 0;
 513
 514        err = host->ops->prep_data(host, data, next);
 515
 516        if (next && !err)
 517                data->host_cookie = ++host->next_cookie < 0 ?
 518                        1 : host->next_cookie;
 519
 520        return err;
 521}
 522
 523static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
 524                      int err)
 525{
 526        if (host->ops && host->ops->unprep_data)
 527                host->ops->unprep_data(host, data, err);
 528
 529        data->host_cookie = 0;
 530}
 531
 532static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 533{
 534        WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
 535
 536        if (host->ops && host->ops->get_next_data)
 537                host->ops->get_next_data(host, data);
 538}
 539
 540static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
 541{
 542        struct mmc_data *data = host->data;
 543        int ret;
 544
 545        if (!host->use_dma)
 546                return -EINVAL;
 547
 548        ret = mmci_prep_data(host, data, false);
 549        if (ret)
 550                return ret;
 551
 552        if (!host->ops || !host->ops->dma_start)
 553                return -EINVAL;
 554
 555        /* Okay, go for it. */
 556        dev_vdbg(mmc_dev(host->mmc),
 557                 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
 558                 data->sg_len, data->blksz, data->blocks, data->flags);
 559
 560        ret = host->ops->dma_start(host, &datactrl);
 561        if (ret)
 562                return ret;
 563
 564        /* Trigger the DMA transfer */
 565        mmci_write_datactrlreg(host, datactrl);
 566
 567        /*
 568         * Let the MMCI say when the data is ended and it's time
 569         * to fire next DMA request. When that happens, MMCI will
 570         * call mmci_data_end()
 571         */
 572        writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
 573               host->base + MMCIMASK0);
 574        return 0;
 575}
 576
 577static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
 578{
 579        if (!host->use_dma)
 580                return;
 581
 582        if (host->ops && host->ops->dma_finalize)
 583                host->ops->dma_finalize(host, data);
 584}
 585
 586static void mmci_dma_error(struct mmci_host *host)
 587{
 588        if (!host->use_dma)
 589                return;
 590
 591        if (host->ops && host->ops->dma_error)
 592                host->ops->dma_error(host);
 593}
 594
 595static void
 596mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
 597{
 598        writel(0, host->base + MMCICOMMAND);
 599
 600        BUG_ON(host->data);
 601
 602        host->mrq = NULL;
 603        host->cmd = NULL;
 604
 605        mmc_request_done(host->mmc, mrq);
 606}
 607
 608static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
 609{
 610        void __iomem *base = host->base;
 611        struct variant_data *variant = host->variant;
 612
 613        if (host->singleirq) {
 614                unsigned int mask0 = readl(base + MMCIMASK0);
 615
 616                mask0 &= ~variant->irq_pio_mask;
 617                mask0 |= mask;
 618
 619                writel(mask0, base + MMCIMASK0);
 620        }
 621
 622        if (variant->mmcimask1)
 623                writel(mask, base + MMCIMASK1);
 624
 625        host->mask1_reg = mask;
 626}
 627
 628static void mmci_stop_data(struct mmci_host *host)
 629{
 630        mmci_write_datactrlreg(host, 0);
 631        mmci_set_mask1(host, 0);
 632        host->data = NULL;
 633}
 634
 635static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
 636{
 637        unsigned int flags = SG_MITER_ATOMIC;
 638
 639        if (data->flags & MMC_DATA_READ)
 640                flags |= SG_MITER_TO_SG;
 641        else
 642                flags |= SG_MITER_FROM_SG;
 643
 644        sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
 645}
 646
 647static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
 648{
 649        return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
 650}
 651
 652static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
 653{
 654        return MCI_DPSM_ENABLE | (host->data->blksz << 16);
 655}
 656
 657static bool ux500_busy_complete(struct mmci_host *host, u32 status, u32 err_msk)
 658{
 659        void __iomem *base = host->base;
 660
 661        /*
 662         * Before unmasking for the busy end IRQ, confirm that the
 663         * command was sent successfully. To keep track of having a
 664         * command in-progress, waiting for busy signaling to end,
 665         * store the status in host->busy_status.
 666         *
 667         * Note that, the card may need a couple of clock cycles before
 668         * it starts signaling busy on DAT0, hence re-read the
 669         * MMCISTATUS register here, to allow the busy bit to be set.
 670         * Potentially we may even need to poll the register for a
 671         * while, to allow it to be set, but tests indicates that it
 672         * isn't needed.
 673         */
 674        if (!host->busy_status && !(status & err_msk) &&
 675            (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
 676                writel(readl(base + MMCIMASK0) |
 677                       host->variant->busy_detect_mask,
 678                       base + MMCIMASK0);
 679
 680                host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND);
 681                return false;
 682        }
 683
 684        /*
 685         * If there is a command in-progress that has been successfully
 686         * sent, then bail out if busy status is set and wait for the
 687         * busy end IRQ.
 688         *
 689         * Note that, the HW triggers an IRQ on both edges while
 690         * monitoring DAT0 for busy completion, but there is only one
 691         * status bit in MMCISTATUS for the busy state. Therefore
 692         * both the start and the end interrupts needs to be cleared,
 693         * one after the other. So, clear the busy start IRQ here.
 694         */
 695        if (host->busy_status &&
 696            (status & host->variant->busy_detect_flag)) {
 697                writel(host->variant->busy_detect_mask, base + MMCICLEAR);
 698                return false;
 699        }
 700
 701        /*
 702         * If there is a command in-progress that has been successfully
 703         * sent and the busy bit isn't set, it means we have received
 704         * the busy end IRQ. Clear and mask the IRQ, then continue to
 705         * process the command.
 706         */
 707        if (host->busy_status) {
 708                writel(host->variant->busy_detect_mask, base + MMCICLEAR);
 709
 710                writel(readl(base + MMCIMASK0) &
 711                       ~host->variant->busy_detect_mask, base + MMCIMASK0);
 712                host->busy_status = 0;
 713        }
 714
 715        return true;
 716}
 717
 718/*
 719 * All the DMA operation mode stuff goes inside this ifdef.
 720 * This assumes that you have a generic DMA device interface,
 721 * no custom DMA interfaces are supported.
 722 */
 723#ifdef CONFIG_DMA_ENGINE
 724struct mmci_dmae_next {
 725        struct dma_async_tx_descriptor *desc;
 726        struct dma_chan *chan;
 727};
 728
 729struct mmci_dmae_priv {
 730        struct dma_chan *cur;
 731        struct dma_chan *rx_channel;
 732        struct dma_chan *tx_channel;
 733        struct dma_async_tx_descriptor  *desc_current;
 734        struct mmci_dmae_next next_data;
 735};
 736
 737int mmci_dmae_setup(struct mmci_host *host)
 738{
 739        const char *rxname, *txname;
 740        struct mmci_dmae_priv *dmae;
 741
 742        dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
 743        if (!dmae)
 744                return -ENOMEM;
 745
 746        host->dma_priv = dmae;
 747
 748        dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx");
 749        if (IS_ERR(dmae->rx_channel)) {
 750                int ret = PTR_ERR(dmae->rx_channel);
 751                dmae->rx_channel = NULL;
 752                return ret;
 753        }
 754
 755        dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx");
 756        if (IS_ERR(dmae->tx_channel)) {
 757                if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER)
 758                        dev_warn(mmc_dev(host->mmc),
 759                                 "Deferred probe for TX channel ignored\n");
 760                dmae->tx_channel = NULL;
 761        }
 762
 763        /*
 764         * If only an RX channel is specified, the driver will
 765         * attempt to use it bidirectionally, however if it is
 766         * is specified but cannot be located, DMA will be disabled.
 767         */
 768        if (dmae->rx_channel && !dmae->tx_channel)
 769                dmae->tx_channel = dmae->rx_channel;
 770
 771        if (dmae->rx_channel)
 772                rxname = dma_chan_name(dmae->rx_channel);
 773        else
 774                rxname = "none";
 775
 776        if (dmae->tx_channel)
 777                txname = dma_chan_name(dmae->tx_channel);
 778        else
 779                txname = "none";
 780
 781        dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
 782                 rxname, txname);
 783
 784        /*
 785         * Limit the maximum segment size in any SG entry according to
 786         * the parameters of the DMA engine device.
 787         */
 788        if (dmae->tx_channel) {
 789                struct device *dev = dmae->tx_channel->device->dev;
 790                unsigned int max_seg_size = dma_get_max_seg_size(dev);
 791
 792                if (max_seg_size < host->mmc->max_seg_size)
 793                        host->mmc->max_seg_size = max_seg_size;
 794        }
 795        if (dmae->rx_channel) {
 796                struct device *dev = dmae->rx_channel->device->dev;
 797                unsigned int max_seg_size = dma_get_max_seg_size(dev);
 798
 799                if (max_seg_size < host->mmc->max_seg_size)
 800                        host->mmc->max_seg_size = max_seg_size;
 801        }
 802
 803        if (!dmae->tx_channel || !dmae->rx_channel) {
 804                mmci_dmae_release(host);
 805                return -EINVAL;
 806        }
 807
 808        return 0;
 809}
 810
 811/*
 812 * This is used in or so inline it
 813 * so it can be discarded.
 814 */
 815void mmci_dmae_release(struct mmci_host *host)
 816{
 817        struct mmci_dmae_priv *dmae = host->dma_priv;
 818
 819        if (dmae->rx_channel)
 820                dma_release_channel(dmae->rx_channel);
 821        if (dmae->tx_channel)
 822                dma_release_channel(dmae->tx_channel);
 823        dmae->rx_channel = dmae->tx_channel = NULL;
 824}
 825
 826static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 827{
 828        struct mmci_dmae_priv *dmae = host->dma_priv;
 829        struct dma_chan *chan;
 830
 831        if (data->flags & MMC_DATA_READ)
 832                chan = dmae->rx_channel;
 833        else
 834                chan = dmae->tx_channel;
 835
 836        dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
 837                     mmc_get_dma_dir(data));
 838}
 839
 840void mmci_dmae_error(struct mmci_host *host)
 841{
 842        struct mmci_dmae_priv *dmae = host->dma_priv;
 843
 844        if (!dma_inprogress(host))
 845                return;
 846
 847        dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
 848        dmaengine_terminate_all(dmae->cur);
 849        host->dma_in_progress = false;
 850        dmae->cur = NULL;
 851        dmae->desc_current = NULL;
 852        host->data->host_cookie = 0;
 853
 854        mmci_dma_unmap(host, host->data);
 855}
 856
 857void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
 858{
 859        struct mmci_dmae_priv *dmae = host->dma_priv;
 860        u32 status;
 861        int i;
 862
 863        if (!dma_inprogress(host))
 864                return;
 865
 866        /* Wait up to 1ms for the DMA to complete */
 867        for (i = 0; ; i++) {
 868                status = readl(host->base + MMCISTATUS);
 869                if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
 870                        break;
 871                udelay(10);
 872        }
 873
 874        /*
 875         * Check to see whether we still have some data left in the FIFO -
 876         * this catches DMA controllers which are unable to monitor the
 877         * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
 878         * contiguous buffers.  On TX, we'll get a FIFO underrun error.
 879         */
 880        if (status & MCI_RXDATAAVLBLMASK) {
 881                mmci_dma_error(host);
 882                if (!data->error)
 883                        data->error = -EIO;
 884        } else if (!data->host_cookie) {
 885                mmci_dma_unmap(host, data);
 886        }
 887
 888        /*
 889         * Use of DMA with scatter-gather is impossible.
 890         * Give up with DMA and switch back to PIO mode.
 891         */
 892        if (status & MCI_RXDATAAVLBLMASK) {
 893                dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
 894                mmci_dma_release(host);
 895        }
 896
 897        host->dma_in_progress = false;
 898        dmae->cur = NULL;
 899        dmae->desc_current = NULL;
 900}
 901
 902/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
 903static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
 904                                struct dma_chan **dma_chan,
 905                                struct dma_async_tx_descriptor **dma_desc)
 906{
 907        struct mmci_dmae_priv *dmae = host->dma_priv;
 908        struct variant_data *variant = host->variant;
 909        struct dma_slave_config conf = {
 910                .src_addr = host->phybase + MMCIFIFO,
 911                .dst_addr = host->phybase + MMCIFIFO,
 912                .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 913                .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 914                .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
 915                .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
 916                .device_fc = false,
 917        };
 918        struct dma_chan *chan;
 919        struct dma_device *device;
 920        struct dma_async_tx_descriptor *desc;
 921        int nr_sg;
 922        unsigned long flags = DMA_CTRL_ACK;
 923
 924        if (data->flags & MMC_DATA_READ) {
 925                conf.direction = DMA_DEV_TO_MEM;
 926                chan = dmae->rx_channel;
 927        } else {
 928                conf.direction = DMA_MEM_TO_DEV;
 929                chan = dmae->tx_channel;
 930        }
 931
 932        /* If there's no DMA channel, fall back to PIO */
 933        if (!chan)
 934                return -EINVAL;
 935
 936        /* If less than or equal to the fifo size, don't bother with DMA */
 937        if (data->blksz * data->blocks <= variant->fifosize)
 938                return -EINVAL;
 939
 940        /*
 941         * This is necessary to get SDIO working on the Ux500. We do not yet
 942         * know if this is a bug in:
 943         * - The Ux500 DMA controller (DMA40)
 944         * - The MMCI DMA interface on the Ux500
 945         * some power of two blocks (such as 64 bytes) are sent regularly
 946         * during SDIO traffic and those work fine so for these we enable DMA
 947         * transfers.
 948         */
 949        if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz))
 950                return -EINVAL;
 951
 952        device = chan->device;
 953        nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
 954                           mmc_get_dma_dir(data));
 955        if (nr_sg == 0)
 956                return -EINVAL;
 957
 958        if (host->variant->qcom_dml)
 959                flags |= DMA_PREP_INTERRUPT;
 960
 961        dmaengine_slave_config(chan, &conf);
 962        desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
 963                                            conf.direction, flags);
 964        if (!desc)
 965                goto unmap_exit;
 966
 967        *dma_chan = chan;
 968        *dma_desc = desc;
 969
 970        return 0;
 971
 972 unmap_exit:
 973        dma_unmap_sg(device->dev, data->sg, data->sg_len,
 974                     mmc_get_dma_dir(data));
 975        return -ENOMEM;
 976}
 977
 978int mmci_dmae_prep_data(struct mmci_host *host,
 979                        struct mmc_data *data,
 980                        bool next)
 981{
 982        struct mmci_dmae_priv *dmae = host->dma_priv;
 983        struct mmci_dmae_next *nd = &dmae->next_data;
 984
 985        if (!host->use_dma)
 986                return -EINVAL;
 987
 988        if (next)
 989                return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
 990        /* Check if next job is already prepared. */
 991        if (dmae->cur && dmae->desc_current)
 992                return 0;
 993
 994        /* No job were prepared thus do it now. */
 995        return _mmci_dmae_prep_data(host, data, &dmae->cur,
 996                                    &dmae->desc_current);
 997}
 998
 999int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
1000{
1001        struct mmci_dmae_priv *dmae = host->dma_priv;
1002        int ret;
1003
1004        host->dma_in_progress = true;
1005        ret = dma_submit_error(dmaengine_submit(dmae->desc_current));
1006        if (ret < 0) {
1007                host->dma_in_progress = false;
1008                return ret;
1009        }
1010        dma_async_issue_pending(dmae->cur);
1011
1012        *datactrl |= MCI_DPSM_DMAENABLE;
1013
1014        return 0;
1015}
1016
1017void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
1018{
1019        struct mmci_dmae_priv *dmae = host->dma_priv;
1020        struct mmci_dmae_next *next = &dmae->next_data;
1021
1022        if (!host->use_dma)
1023                return;
1024
1025        WARN_ON(!data->host_cookie && (next->desc || next->chan));
1026
1027        dmae->desc_current = next->desc;
1028        dmae->cur = next->chan;
1029        next->desc = NULL;
1030        next->chan = NULL;
1031}
1032
1033void mmci_dmae_unprep_data(struct mmci_host *host,
1034                           struct mmc_data *data, int err)
1035
1036{
1037        struct mmci_dmae_priv *dmae = host->dma_priv;
1038
1039        if (!host->use_dma)
1040                return;
1041
1042        mmci_dma_unmap(host, data);
1043
1044        if (err) {
1045                struct mmci_dmae_next *next = &dmae->next_data;
1046                struct dma_chan *chan;
1047                if (data->flags & MMC_DATA_READ)
1048                        chan = dmae->rx_channel;
1049                else
1050                        chan = dmae->tx_channel;
1051                dmaengine_terminate_all(chan);
1052
1053                if (dmae->desc_current == next->desc)
1054                        dmae->desc_current = NULL;
1055
1056                if (dmae->cur == next->chan) {
1057                        host->dma_in_progress = false;
1058                        dmae->cur = NULL;
1059                }
1060
1061                next->desc = NULL;
1062                next->chan = NULL;
1063        }
1064}
1065
1066static struct mmci_host_ops mmci_variant_ops = {
1067        .prep_data = mmci_dmae_prep_data,
1068        .unprep_data = mmci_dmae_unprep_data,
1069        .get_datactrl_cfg = mmci_get_dctrl_cfg,
1070        .get_next_data = mmci_dmae_get_next_data,
1071        .dma_setup = mmci_dmae_setup,
1072        .dma_release = mmci_dmae_release,
1073        .dma_start = mmci_dmae_start,
1074        .dma_finalize = mmci_dmae_finalize,
1075        .dma_error = mmci_dmae_error,
1076};
1077#else
1078static struct mmci_host_ops mmci_variant_ops = {
1079        .get_datactrl_cfg = mmci_get_dctrl_cfg,
1080};
1081#endif
1082
1083static void mmci_variant_init(struct mmci_host *host)
1084{
1085        host->ops = &mmci_variant_ops;
1086}
1087
1088static void ux500_variant_init(struct mmci_host *host)
1089{
1090        host->ops = &mmci_variant_ops;
1091        host->ops->busy_complete = ux500_busy_complete;
1092}
1093
1094static void ux500v2_variant_init(struct mmci_host *host)
1095{
1096        host->ops = &mmci_variant_ops;
1097        host->ops->busy_complete = ux500_busy_complete;
1098        host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
1099}
1100
1101static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
1102{
1103        struct mmci_host *host = mmc_priv(mmc);
1104        struct mmc_data *data = mrq->data;
1105
1106        if (!data)
1107                return;
1108
1109        WARN_ON(data->host_cookie);
1110
1111        if (mmci_validate_data(host, data))
1112                return;
1113
1114        mmci_prep_data(host, data, true);
1115}
1116
1117static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
1118                              int err)
1119{
1120        struct mmci_host *host = mmc_priv(mmc);
1121        struct mmc_data *data = mrq->data;
1122
1123        if (!data || !data->host_cookie)
1124                return;
1125
1126        mmci_unprep_data(host, data, err);
1127}
1128
1129static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
1130{
1131        struct variant_data *variant = host->variant;
1132        unsigned int datactrl, timeout, irqmask;
1133        unsigned long long clks;
1134        void __iomem *base;
1135
1136        dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
1137                data->blksz, data->blocks, data->flags);
1138
1139        host->data = data;
1140        host->size = data->blksz * data->blocks;
1141        data->bytes_xfered = 0;
1142
1143        clks = (unsigned long long)data->timeout_ns * host->cclk;
1144        do_div(clks, NSEC_PER_SEC);
1145
1146        timeout = data->timeout_clks + (unsigned int)clks;
1147
1148        base = host->base;
1149        writel(timeout, base + MMCIDATATIMER);
1150        writel(host->size, base + MMCIDATALENGTH);
1151
1152        datactrl = host->ops->get_datactrl_cfg(host);
1153        datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1154
1155        if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1156                u32 clk;
1157
1158                datactrl |= variant->datactrl_mask_sdio;
1159
1160                /*
1161                 * The ST Micro variant for SDIO small write transfers
1162                 * needs to have clock H/W flow control disabled,
1163                 * otherwise the transfer will not start. The threshold
1164                 * depends on the rate of MCLK.
1165                 */
1166                if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1167                    (host->size < 8 ||
1168                     (host->size <= 8 && host->mclk > 50000000)))
1169                        clk = host->clk_reg & ~variant->clkreg_enable;
1170                else
1171                        clk = host->clk_reg | variant->clkreg_enable;
1172
1173                mmci_write_clkreg(host, clk);
1174        }
1175
1176        if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1177            host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1178                datactrl |= variant->datactrl_mask_ddrmode;
1179
1180        /*
1181         * Attempt to use DMA operation mode, if this
1182         * should fail, fall back to PIO mode
1183         */
1184        if (!mmci_dma_start(host, datactrl))
1185                return;
1186
1187        /* IRQ mode, map the SG list for CPU reading/writing */
1188        mmci_init_sg(host, data);
1189
1190        if (data->flags & MMC_DATA_READ) {
1191                irqmask = MCI_RXFIFOHALFFULLMASK;
1192
1193                /*
1194                 * If we have less than the fifo 'half-full' threshold to
1195                 * transfer, trigger a PIO interrupt as soon as any data
1196                 * is available.
1197                 */
1198                if (host->size < variant->fifohalfsize)
1199                        irqmask |= MCI_RXDATAAVLBLMASK;
1200        } else {
1201                /*
1202                 * We don't actually need to include "FIFO empty" here
1203                 * since its implicit in "FIFO half empty".
1204                 */
1205                irqmask = MCI_TXFIFOHALFEMPTYMASK;
1206        }
1207
1208        mmci_write_datactrlreg(host, datactrl);
1209        writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1210        mmci_set_mask1(host, irqmask);
1211}
1212
1213static void
1214mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1215{
1216        void __iomem *base = host->base;
1217        unsigned long long clks;
1218
1219        dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1220            cmd->opcode, cmd->arg, cmd->flags);
1221
1222        if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1223                writel(0, base + MMCICOMMAND);
1224                mmci_reg_delay(host);
1225        }
1226
1227        if (host->variant->cmdreg_stop &&
1228            cmd->opcode == MMC_STOP_TRANSMISSION)
1229                c |= host->variant->cmdreg_stop;
1230
1231        c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1232        if (cmd->flags & MMC_RSP_PRESENT) {
1233                if (cmd->flags & MMC_RSP_136)
1234                        c |= host->variant->cmdreg_lrsp_crc;
1235                else if (cmd->flags & MMC_RSP_CRC)
1236                        c |= host->variant->cmdreg_srsp_crc;
1237                else
1238                        c |= host->variant->cmdreg_srsp;
1239        }
1240
1241        if (host->variant->busy_timeout && cmd->flags & MMC_RSP_BUSY) {
1242                if (!cmd->busy_timeout)
1243                        cmd->busy_timeout = 10 * MSEC_PER_SEC;
1244
1245                if (cmd->busy_timeout > host->mmc->max_busy_timeout)
1246                        clks = (unsigned long long)host->mmc->max_busy_timeout * host->cclk;
1247                else
1248                        clks = (unsigned long long)cmd->busy_timeout * host->cclk;
1249
1250                do_div(clks, MSEC_PER_SEC);
1251                writel_relaxed(clks, host->base + MMCIDATATIMER);
1252        }
1253
1254        if (host->ops->pre_sig_volt_switch && cmd->opcode == SD_SWITCH_VOLTAGE)
1255                host->ops->pre_sig_volt_switch(host);
1256
1257        if (/*interrupt*/0)
1258                c |= MCI_CPSM_INTERRUPT;
1259
1260        if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1261                c |= host->variant->data_cmd_enable;
1262
1263        host->cmd = cmd;
1264
1265        writel(cmd->arg, base + MMCIARGUMENT);
1266        writel(c, base + MMCICOMMAND);
1267}
1268
1269static void mmci_stop_command(struct mmci_host *host)
1270{
1271        host->stop_abort.error = 0;
1272        mmci_start_command(host, &host->stop_abort, 0);
1273}
1274
1275static void
1276mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1277              unsigned int status)
1278{
1279        unsigned int status_err;
1280
1281        /* Make sure we have data to handle */
1282        if (!data)
1283                return;
1284
1285        /* First check for errors */
1286        status_err = status & (host->variant->start_err |
1287                               MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1288                               MCI_TXUNDERRUN | MCI_RXOVERRUN);
1289
1290        if (status_err) {
1291                u32 remain, success;
1292
1293                /* Terminate the DMA transfer */
1294                mmci_dma_error(host);
1295
1296                /*
1297                 * Calculate how far we are into the transfer.  Note that
1298                 * the data counter gives the number of bytes transferred
1299                 * on the MMC bus, not on the host side.  On reads, this
1300                 * can be as much as a FIFO-worth of data ahead.  This
1301                 * matters for FIFO overruns only.
1302                 */
1303                if (!host->variant->datacnt_useless) {
1304                        remain = readl(host->base + MMCIDATACNT);
1305                        success = data->blksz * data->blocks - remain;
1306                } else {
1307                        success = 0;
1308                }
1309
1310                dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1311                        status_err, success);
1312                if (status_err & MCI_DATACRCFAIL) {
1313                        /* Last block was not successful */
1314                        success -= 1;
1315                        data->error = -EILSEQ;
1316                } else if (status_err & MCI_DATATIMEOUT) {
1317                        data->error = -ETIMEDOUT;
1318                } else if (status_err & MCI_STARTBITERR) {
1319                        data->error = -ECOMM;
1320                } else if (status_err & MCI_TXUNDERRUN) {
1321                        data->error = -EIO;
1322                } else if (status_err & MCI_RXOVERRUN) {
1323                        if (success > host->variant->fifosize)
1324                                success -= host->variant->fifosize;
1325                        else
1326                                success = 0;
1327                        data->error = -EIO;
1328                }
1329                data->bytes_xfered = round_down(success, data->blksz);
1330        }
1331
1332        if (status & MCI_DATABLOCKEND)
1333                dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1334
1335        if (status & MCI_DATAEND || data->error) {
1336                mmci_dma_finalize(host, data);
1337
1338                mmci_stop_data(host);
1339
1340                if (!data->error)
1341                        /* The error clause is handled above, success! */
1342                        data->bytes_xfered = data->blksz * data->blocks;
1343
1344                if (!data->stop) {
1345                        if (host->variant->cmdreg_stop && data->error)
1346                                mmci_stop_command(host);
1347                        else
1348                                mmci_request_end(host, data->mrq);
1349                } else if (host->mrq->sbc && !data->error) {
1350                        mmci_request_end(host, data->mrq);
1351                } else {
1352                        mmci_start_command(host, data->stop, 0);
1353                }
1354        }
1355}
1356
1357static void
1358mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1359             unsigned int status)
1360{
1361        u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT;
1362        void __iomem *base = host->base;
1363        bool sbc, busy_resp;
1364
1365        if (!cmd)
1366                return;
1367
1368        sbc = (cmd == host->mrq->sbc);
1369        busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1370
1371        /*
1372         * We need to be one of these interrupts to be considered worth
1373         * handling. Note that we tag on any latent IRQs postponed
1374         * due to waiting for busy status.
1375         */
1376        if (host->variant->busy_timeout && busy_resp)
1377                err_msk |= MCI_DATATIMEOUT;
1378
1379        if (!((status | host->busy_status) &
1380              (err_msk | MCI_CMDSENT | MCI_CMDRESPEND)))
1381                return;
1382
1383        /* Handle busy detection on DAT0 if the variant supports it. */
1384        if (busy_resp && host->variant->busy_detect)
1385                if (!host->ops->busy_complete(host, status, err_msk))
1386                        return;
1387
1388        host->cmd = NULL;
1389
1390        if (status & MCI_CMDTIMEOUT) {
1391                cmd->error = -ETIMEDOUT;
1392        } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1393                cmd->error = -EILSEQ;
1394        } else if (host->variant->busy_timeout && busy_resp &&
1395                   status & MCI_DATATIMEOUT) {
1396                cmd->error = -ETIMEDOUT;
1397                host->irq_action = IRQ_WAKE_THREAD;
1398        } else {
1399                cmd->resp[0] = readl(base + MMCIRESPONSE0);
1400                cmd->resp[1] = readl(base + MMCIRESPONSE1);
1401                cmd->resp[2] = readl(base + MMCIRESPONSE2);
1402                cmd->resp[3] = readl(base + MMCIRESPONSE3);
1403        }
1404
1405        if ((!sbc && !cmd->data) || cmd->error) {
1406                if (host->data) {
1407                        /* Terminate the DMA transfer */
1408                        mmci_dma_error(host);
1409
1410                        mmci_stop_data(host);
1411                        if (host->variant->cmdreg_stop && cmd->error) {
1412                                mmci_stop_command(host);
1413                                return;
1414                        }
1415                }
1416
1417                if (host->irq_action != IRQ_WAKE_THREAD)
1418                        mmci_request_end(host, host->mrq);
1419
1420        } else if (sbc) {
1421                mmci_start_command(host, host->mrq->cmd, 0);
1422        } else if (!host->variant->datactrl_first &&
1423                   !(cmd->data->flags & MMC_DATA_READ)) {
1424                mmci_start_data(host, cmd->data);
1425        }
1426}
1427
1428static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1429{
1430        return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1431}
1432
1433static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1434{
1435        /*
1436         * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1437         * from the fifo range should be used
1438         */
1439        if (status & MCI_RXFIFOHALFFULL)
1440                return host->variant->fifohalfsize;
1441        else if (status & MCI_RXDATAAVLBL)
1442                return 4;
1443
1444        return 0;
1445}
1446
1447static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1448{
1449        void __iomem *base = host->base;
1450        char *ptr = buffer;
1451        u32 status = readl(host->base + MMCISTATUS);
1452        int host_remain = host->size;
1453
1454        do {
1455                int count = host->get_rx_fifocnt(host, status, host_remain);
1456
1457                if (count > remain)
1458                        count = remain;
1459
1460                if (count <= 0)
1461                        break;
1462
1463                /*
1464                 * SDIO especially may want to send something that is
1465                 * not divisible by 4 (as opposed to card sectors
1466                 * etc). Therefore make sure to always read the last bytes
1467                 * while only doing full 32-bit reads towards the FIFO.
1468                 */
1469                if (unlikely(count & 0x3)) {
1470                        if (count < 4) {
1471                                unsigned char buf[4];
1472                                ioread32_rep(base + MMCIFIFO, buf, 1);
1473                                memcpy(ptr, buf, count);
1474                        } else {
1475                                ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1476                                count &= ~0x3;
1477                        }
1478                } else {
1479                        ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1480                }
1481
1482                ptr += count;
1483                remain -= count;
1484                host_remain -= count;
1485
1486                if (remain == 0)
1487                        break;
1488
1489                status = readl(base + MMCISTATUS);
1490        } while (status & MCI_RXDATAAVLBL);
1491
1492        return ptr - buffer;
1493}
1494
1495static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1496{
1497        struct variant_data *variant = host->variant;
1498        void __iomem *base = host->base;
1499        char *ptr = buffer;
1500
1501        do {
1502                unsigned int count, maxcnt;
1503
1504                maxcnt = status & MCI_TXFIFOEMPTY ?
1505                         variant->fifosize : variant->fifohalfsize;
1506                count = min(remain, maxcnt);
1507
1508                /*
1509                 * SDIO especially may want to send something that is
1510                 * not divisible by 4 (as opposed to card sectors
1511                 * etc), and the FIFO only accept full 32-bit writes.
1512                 * So compensate by adding +3 on the count, a single
1513                 * byte become a 32bit write, 7 bytes will be two
1514                 * 32bit writes etc.
1515                 */
1516                iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1517
1518                ptr += count;
1519                remain -= count;
1520
1521                if (remain == 0)
1522                        break;
1523
1524                status = readl(base + MMCISTATUS);
1525        } while (status & MCI_TXFIFOHALFEMPTY);
1526
1527        return ptr - buffer;
1528}
1529
1530/*
1531 * PIO data transfer IRQ handler.
1532 */
1533static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1534{
1535        struct mmci_host *host = dev_id;
1536        struct sg_mapping_iter *sg_miter = &host->sg_miter;
1537        struct variant_data *variant = host->variant;
1538        void __iomem *base = host->base;
1539        u32 status;
1540
1541        status = readl(base + MMCISTATUS);
1542
1543        dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1544
1545        do {
1546                unsigned int remain, len;
1547                char *buffer;
1548
1549                /*
1550                 * For write, we only need to test the half-empty flag
1551                 * here - if the FIFO is completely empty, then by
1552                 * definition it is more than half empty.
1553                 *
1554                 * For read, check for data available.
1555                 */
1556                if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1557                        break;
1558
1559                if (!sg_miter_next(sg_miter))
1560                        break;
1561
1562                buffer = sg_miter->addr;
1563                remain = sg_miter->length;
1564
1565                len = 0;
1566                if (status & MCI_RXACTIVE)
1567                        len = mmci_pio_read(host, buffer, remain);
1568                if (status & MCI_TXACTIVE)
1569                        len = mmci_pio_write(host, buffer, remain, status);
1570
1571                sg_miter->consumed = len;
1572
1573                host->size -= len;
1574                remain -= len;
1575
1576                if (remain)
1577                        break;
1578
1579                status = readl(base + MMCISTATUS);
1580        } while (1);
1581
1582        sg_miter_stop(sg_miter);
1583
1584        /*
1585         * If we have less than the fifo 'half-full' threshold to transfer,
1586         * trigger a PIO interrupt as soon as any data is available.
1587         */
1588        if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1589                mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1590
1591        /*
1592         * If we run out of data, disable the data IRQs; this
1593         * prevents a race where the FIFO becomes empty before
1594         * the chip itself has disabled the data path, and
1595         * stops us racing with our data end IRQ.
1596         */
1597        if (host->size == 0) {
1598                mmci_set_mask1(host, 0);
1599                writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1600        }
1601
1602        return IRQ_HANDLED;
1603}
1604
1605/*
1606 * Handle completion of command and data transfers.
1607 */
1608static irqreturn_t mmci_irq(int irq, void *dev_id)
1609{
1610        struct mmci_host *host = dev_id;
1611        u32 status;
1612
1613        spin_lock(&host->lock);
1614        host->irq_action = IRQ_HANDLED;
1615
1616        do {
1617                status = readl(host->base + MMCISTATUS);
1618
1619                if (host->singleirq) {
1620                        if (status & host->mask1_reg)
1621                                mmci_pio_irq(irq, dev_id);
1622
1623                        status &= ~host->variant->irq_pio_mask;
1624                }
1625
1626                /*
1627                 * Busy detection is managed by mmci_cmd_irq(), including to
1628                 * clear the corresponding IRQ.
1629                 */
1630                status &= readl(host->base + MMCIMASK0);
1631                if (host->variant->busy_detect)
1632                        writel(status & ~host->variant->busy_detect_mask,
1633                               host->base + MMCICLEAR);
1634                else
1635                        writel(status, host->base + MMCICLEAR);
1636
1637                dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1638
1639                if (host->variant->reversed_irq_handling) {
1640                        mmci_data_irq(host, host->data, status);
1641                        mmci_cmd_irq(host, host->cmd, status);
1642                } else {
1643                        mmci_cmd_irq(host, host->cmd, status);
1644                        mmci_data_irq(host, host->data, status);
1645                }
1646
1647                /*
1648                 * Busy detection has been handled by mmci_cmd_irq() above.
1649                 * Clear the status bit to prevent polling in IRQ context.
1650                 */
1651                if (host->variant->busy_detect_flag)
1652                        status &= ~host->variant->busy_detect_flag;
1653
1654        } while (status);
1655
1656        spin_unlock(&host->lock);
1657
1658        return host->irq_action;
1659}
1660
1661/*
1662 * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW.
1663 *
1664 * A reset is needed for some variants, where a datatimeout for a R1B request
1665 * causes the DPSM to stay busy (non-functional).
1666 */
1667static irqreturn_t mmci_irq_thread(int irq, void *dev_id)
1668{
1669        struct mmci_host *host = dev_id;
1670        unsigned long flags;
1671
1672        if (host->rst) {
1673                reset_control_assert(host->rst);
1674                udelay(2);
1675                reset_control_deassert(host->rst);
1676        }
1677
1678        spin_lock_irqsave(&host->lock, flags);
1679        writel(host->clk_reg, host->base + MMCICLOCK);
1680        writel(host->pwr_reg, host->base + MMCIPOWER);
1681        writel(MCI_IRQENABLE | host->variant->start_err,
1682               host->base + MMCIMASK0);
1683
1684        host->irq_action = IRQ_HANDLED;
1685        mmci_request_end(host, host->mrq);
1686        spin_unlock_irqrestore(&host->lock, flags);
1687
1688        return host->irq_action;
1689}
1690
1691static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1692{
1693        struct mmci_host *host = mmc_priv(mmc);
1694        unsigned long flags;
1695
1696        WARN_ON(host->mrq != NULL);
1697
1698        mrq->cmd->error = mmci_validate_data(host, mrq->data);
1699        if (mrq->cmd->error) {
1700                mmc_request_done(mmc, mrq);
1701                return;
1702        }
1703
1704        spin_lock_irqsave(&host->lock, flags);
1705
1706        host->mrq = mrq;
1707
1708        if (mrq->data)
1709                mmci_get_next_data(host, mrq->data);
1710
1711        if (mrq->data &&
1712            (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1713                mmci_start_data(host, mrq->data);
1714
1715        if (mrq->sbc)
1716                mmci_start_command(host, mrq->sbc, 0);
1717        else
1718                mmci_start_command(host, mrq->cmd, 0);
1719
1720        spin_unlock_irqrestore(&host->lock, flags);
1721}
1722
1723static void mmci_set_max_busy_timeout(struct mmc_host *mmc)
1724{
1725        struct mmci_host *host = mmc_priv(mmc);
1726        u32 max_busy_timeout = 0;
1727
1728        if (!host->variant->busy_detect)
1729                return;
1730
1731        if (host->variant->busy_timeout && mmc->actual_clock)
1732                max_busy_timeout = ~0UL / (mmc->actual_clock / MSEC_PER_SEC);
1733
1734        mmc->max_busy_timeout = max_busy_timeout;
1735}
1736
1737static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1738{
1739        struct mmci_host *host = mmc_priv(mmc);
1740        struct variant_data *variant = host->variant;
1741        u32 pwr = 0;
1742        unsigned long flags;
1743        int ret;
1744
1745        if (host->plat->ios_handler &&
1746                host->plat->ios_handler(mmc_dev(mmc), ios))
1747                        dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1748
1749        switch (ios->power_mode) {
1750        case MMC_POWER_OFF:
1751                if (!IS_ERR(mmc->supply.vmmc))
1752                        mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1753
1754                if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1755                        regulator_disable(mmc->supply.vqmmc);
1756                        host->vqmmc_enabled = false;
1757                }
1758
1759                break;
1760        case MMC_POWER_UP:
1761                if (!IS_ERR(mmc->supply.vmmc))
1762                        mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1763
1764                /*
1765                 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1766                 * and instead uses MCI_PWR_ON so apply whatever value is
1767                 * configured in the variant data.
1768                 */
1769                pwr |= variant->pwrreg_powerup;
1770
1771                break;
1772        case MMC_POWER_ON:
1773                if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1774                        ret = regulator_enable(mmc->supply.vqmmc);
1775                        if (ret < 0)
1776                                dev_err(mmc_dev(mmc),
1777                                        "failed to enable vqmmc regulator\n");
1778                        else
1779                                host->vqmmc_enabled = true;
1780                }
1781
1782                pwr |= MCI_PWR_ON;
1783                break;
1784        }
1785
1786        if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1787                /*
1788                 * The ST Micro variant has some additional bits
1789                 * indicating signal direction for the signals in
1790                 * the SD/MMC bus and feedback-clock usage.
1791                 */
1792                pwr |= host->pwr_reg_add;
1793
1794                if (ios->bus_width == MMC_BUS_WIDTH_4)
1795                        pwr &= ~MCI_ST_DATA74DIREN;
1796                else if (ios->bus_width == MMC_BUS_WIDTH_1)
1797                        pwr &= (~MCI_ST_DATA74DIREN &
1798                                ~MCI_ST_DATA31DIREN &
1799                                ~MCI_ST_DATA2DIREN);
1800        }
1801
1802        if (variant->opendrain) {
1803                if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1804                        pwr |= variant->opendrain;
1805        } else {
1806                /*
1807                 * If the variant cannot configure the pads by its own, then we
1808                 * expect the pinctrl to be able to do that for us
1809                 */
1810                if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1811                        pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1812                else
1813                        pinctrl_select_default_state(mmc_dev(mmc));
1814        }
1815
1816        /*
1817         * If clock = 0 and the variant requires the MMCIPOWER to be used for
1818         * gating the clock, the MCI_PWR_ON bit is cleared.
1819         */
1820        if (!ios->clock && variant->pwrreg_clkgate)
1821                pwr &= ~MCI_PWR_ON;
1822
1823        if (host->variant->explicit_mclk_control &&
1824            ios->clock != host->clock_cache) {
1825                ret = clk_set_rate(host->clk, ios->clock);
1826                if (ret < 0)
1827                        dev_err(mmc_dev(host->mmc),
1828                                "Error setting clock rate (%d)\n", ret);
1829                else
1830                        host->mclk = clk_get_rate(host->clk);
1831        }
1832        host->clock_cache = ios->clock;
1833
1834        spin_lock_irqsave(&host->lock, flags);
1835
1836        if (host->ops && host->ops->set_clkreg)
1837                host->ops->set_clkreg(host, ios->clock);
1838        else
1839                mmci_set_clkreg(host, ios->clock);
1840
1841        mmci_set_max_busy_timeout(mmc);
1842
1843        if (host->ops && host->ops->set_pwrreg)
1844                host->ops->set_pwrreg(host, pwr);
1845        else
1846                mmci_write_pwrreg(host, pwr);
1847
1848        mmci_reg_delay(host);
1849
1850        spin_unlock_irqrestore(&host->lock, flags);
1851}
1852
1853static int mmci_get_cd(struct mmc_host *mmc)
1854{
1855        struct mmci_host *host = mmc_priv(mmc);
1856        struct mmci_platform_data *plat = host->plat;
1857        unsigned int status = mmc_gpio_get_cd(mmc);
1858
1859        if (status == -ENOSYS) {
1860                if (!plat->status)
1861                        return 1; /* Assume always present */
1862
1863                status = plat->status(mmc_dev(host->mmc));
1864        }
1865        return status;
1866}
1867
1868static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1869{
1870        struct mmci_host *host = mmc_priv(mmc);
1871        int ret;
1872
1873        ret = mmc_regulator_set_vqmmc(mmc, ios);
1874
1875        if (!ret && host->ops && host->ops->post_sig_volt_switch)
1876                ret = host->ops->post_sig_volt_switch(host, ios);
1877        else if (ret)
1878                ret = 0;
1879
1880        if (ret < 0)
1881                dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1882
1883        return ret;
1884}
1885
1886static struct mmc_host_ops mmci_ops = {
1887        .request        = mmci_request,
1888        .pre_req        = mmci_pre_request,
1889        .post_req       = mmci_post_request,
1890        .set_ios        = mmci_set_ios,
1891        .get_ro         = mmc_gpio_get_ro,
1892        .get_cd         = mmci_get_cd,
1893        .start_signal_voltage_switch = mmci_sig_volt_switch,
1894};
1895
1896static void mmci_probe_level_translator(struct mmc_host *mmc)
1897{
1898        struct device *dev = mmc_dev(mmc);
1899        struct mmci_host *host = mmc_priv(mmc);
1900        struct gpio_desc *cmd_gpio;
1901        struct gpio_desc *ck_gpio;
1902        struct gpio_desc *ckin_gpio;
1903        int clk_hi, clk_lo;
1904
1905        /*
1906         * Assume the level translator is present if st,use-ckin is set.
1907         * This is to cater for DTs which do not implement this test.
1908         */
1909        host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
1910
1911        cmd_gpio = gpiod_get(dev, "st,cmd", GPIOD_OUT_HIGH);
1912        if (IS_ERR(cmd_gpio))
1913                goto exit_cmd;
1914
1915        ck_gpio = gpiod_get(dev, "st,ck", GPIOD_OUT_HIGH);
1916        if (IS_ERR(ck_gpio))
1917                goto exit_ck;
1918
1919        ckin_gpio = gpiod_get(dev, "st,ckin", GPIOD_IN);
1920        if (IS_ERR(ckin_gpio))
1921                goto exit_ckin;
1922
1923        /* All GPIOs are valid, test whether level translator works */
1924
1925        /* Sample CKIN */
1926        clk_hi = !!gpiod_get_value(ckin_gpio);
1927
1928        /* Set CK low */
1929        gpiod_set_value(ck_gpio, 0);
1930
1931        /* Sample CKIN */
1932        clk_lo = !!gpiod_get_value(ckin_gpio);
1933
1934        /* Tristate all */
1935        gpiod_direction_input(cmd_gpio);
1936        gpiod_direction_input(ck_gpio);
1937
1938        /* Level translator is present if CK signal is propagated to CKIN */
1939        if (!clk_hi || clk_lo) {
1940                host->clk_reg_add &= ~MCI_STM32_CLK_SELCKIN;
1941                dev_warn(dev,
1942                         "Level translator inoperable, CK signal not detected on CKIN, disabling.\n");
1943        }
1944
1945        gpiod_put(ckin_gpio);
1946
1947exit_ckin:
1948        gpiod_put(ck_gpio);
1949exit_ck:
1950        gpiod_put(cmd_gpio);
1951exit_cmd:
1952        pinctrl_select_default_state(dev);
1953}
1954
1955static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1956{
1957        struct mmci_host *host = mmc_priv(mmc);
1958        int ret = mmc_of_parse(mmc);
1959
1960        if (ret)
1961                return ret;
1962
1963        if (of_get_property(np, "st,sig-dir-dat0", NULL))
1964                host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1965        if (of_get_property(np, "st,sig-dir-dat2", NULL))
1966                host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1967        if (of_get_property(np, "st,sig-dir-dat31", NULL))
1968                host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1969        if (of_get_property(np, "st,sig-dir-dat74", NULL))
1970                host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1971        if (of_get_property(np, "st,sig-dir-cmd", NULL))
1972                host->pwr_reg_add |= MCI_ST_CMDDIREN;
1973        if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1974                host->pwr_reg_add |= MCI_ST_FBCLKEN;
1975        if (of_get_property(np, "st,sig-dir", NULL))
1976                host->pwr_reg_add |= MCI_STM32_DIRPOL;
1977        if (of_get_property(np, "st,neg-edge", NULL))
1978                host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
1979        if (of_get_property(np, "st,use-ckin", NULL))
1980                mmci_probe_level_translator(mmc);
1981
1982        if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1983                mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1984        if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1985                mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1986
1987        return 0;
1988}
1989
1990static int mmci_probe(struct amba_device *dev,
1991        const struct amba_id *id)
1992{
1993        struct mmci_platform_data *plat = dev->dev.platform_data;
1994        struct device_node *np = dev->dev.of_node;
1995        struct variant_data *variant = id->data;
1996        struct mmci_host *host;
1997        struct mmc_host *mmc;
1998        int ret;
1999
2000        /* Must have platform data or Device Tree. */
2001        if (!plat && !np) {
2002                dev_err(&dev->dev, "No plat data or DT found\n");
2003                return -EINVAL;
2004        }
2005
2006        if (!plat) {
2007                plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
2008                if (!plat)
2009                        return -ENOMEM;
2010        }
2011
2012        mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
2013        if (!mmc)
2014                return -ENOMEM;
2015
2016        host = mmc_priv(mmc);
2017        host->mmc = mmc;
2018        host->mmc_ops = &mmci_ops;
2019        mmc->ops = &mmci_ops;
2020
2021        ret = mmci_of_parse(np, mmc);
2022        if (ret)
2023                goto host_free;
2024
2025        /*
2026         * Some variant (STM32) doesn't have opendrain bit, nevertheless
2027         * pins can be set accordingly using pinctrl
2028         */
2029        if (!variant->opendrain) {
2030                host->pinctrl = devm_pinctrl_get(&dev->dev);
2031                if (IS_ERR(host->pinctrl)) {
2032                        dev_err(&dev->dev, "failed to get pinctrl");
2033                        ret = PTR_ERR(host->pinctrl);
2034                        goto host_free;
2035                }
2036
2037                host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
2038                                                            MMCI_PINCTRL_STATE_OPENDRAIN);
2039                if (IS_ERR(host->pins_opendrain)) {
2040                        dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
2041                        ret = PTR_ERR(host->pins_opendrain);
2042                        goto host_free;
2043                }
2044        }
2045
2046        host->hw_designer = amba_manf(dev);
2047        host->hw_revision = amba_rev(dev);
2048        dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
2049        dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
2050
2051        host->clk = devm_clk_get(&dev->dev, NULL);
2052        if (IS_ERR(host->clk)) {
2053                ret = PTR_ERR(host->clk);
2054                goto host_free;
2055        }
2056
2057        ret = clk_prepare_enable(host->clk);
2058        if (ret)
2059                goto host_free;
2060
2061        if (variant->qcom_fifo)
2062                host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
2063        else
2064                host->get_rx_fifocnt = mmci_get_rx_fifocnt;
2065
2066        host->plat = plat;
2067        host->variant = variant;
2068        host->mclk = clk_get_rate(host->clk);
2069        /*
2070         * According to the spec, mclk is max 100 MHz,
2071         * so we try to adjust the clock down to this,
2072         * (if possible).
2073         */
2074        if (host->mclk > variant->f_max) {
2075                ret = clk_set_rate(host->clk, variant->f_max);
2076                if (ret < 0)
2077                        goto clk_disable;
2078                host->mclk = clk_get_rate(host->clk);
2079                dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
2080                        host->mclk);
2081        }
2082
2083        host->phybase = dev->res.start;
2084        host->base = devm_ioremap_resource(&dev->dev, &dev->res);
2085        if (IS_ERR(host->base)) {
2086                ret = PTR_ERR(host->base);
2087                goto clk_disable;
2088        }
2089
2090        if (variant->init)
2091                variant->init(host);
2092
2093        /*
2094         * The ARM and ST versions of the block have slightly different
2095         * clock divider equations which means that the minimum divider
2096         * differs too.
2097         * on Qualcomm like controllers get the nearest minimum clock to 100Khz
2098         */
2099        if (variant->st_clkdiv)
2100                mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
2101        else if (variant->stm32_clkdiv)
2102                mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
2103        else if (variant->explicit_mclk_control)
2104                mmc->f_min = clk_round_rate(host->clk, 100000);
2105        else
2106                mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
2107        /*
2108         * If no maximum operating frequency is supplied, fall back to use
2109         * the module parameter, which has a (low) default value in case it
2110         * is not specified. Either value must not exceed the clock rate into
2111         * the block, of course.
2112         */
2113        if (mmc->f_max)
2114                mmc->f_max = variant->explicit_mclk_control ?
2115                                min(variant->f_max, mmc->f_max) :
2116                                min(host->mclk, mmc->f_max);
2117        else
2118                mmc->f_max = variant->explicit_mclk_control ?
2119                                fmax : min(host->mclk, fmax);
2120
2121
2122        dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
2123
2124        host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
2125        if (IS_ERR(host->rst)) {
2126                ret = PTR_ERR(host->rst);
2127                goto clk_disable;
2128        }
2129        ret = reset_control_deassert(host->rst);
2130        if (ret)
2131                dev_err(mmc_dev(mmc), "failed to de-assert reset\n");
2132
2133        /* Get regulators and the supported OCR mask */
2134        ret = mmc_regulator_get_supply(mmc);
2135        if (ret)
2136                goto clk_disable;
2137
2138        if (!mmc->ocr_avail)
2139                mmc->ocr_avail = plat->ocr_mask;
2140        else if (plat->ocr_mask)
2141                dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
2142
2143        /* We support these capabilities. */
2144        mmc->caps |= MMC_CAP_CMD23;
2145
2146        /*
2147         * Enable busy detection.
2148         */
2149        if (variant->busy_detect) {
2150                mmci_ops.card_busy = mmci_card_busy;
2151                /*
2152                 * Not all variants have a flag to enable busy detection
2153                 * in the DPSM, but if they do, set it here.
2154                 */
2155                if (variant->busy_dpsm_flag)
2156                        mmci_write_datactrlreg(host,
2157                                               host->variant->busy_dpsm_flag);
2158                mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
2159        }
2160
2161        /* Variants with mandatory busy timeout in HW needs R1B responses. */
2162        if (variant->busy_timeout)
2163                mmc->caps |= MMC_CAP_NEED_RSP_BUSY;
2164
2165        /* Prepare a CMD12 - needed to clear the DPSM on some variants. */
2166        host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
2167        host->stop_abort.arg = 0;
2168        host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
2169
2170        /* We support these PM capabilities. */
2171        mmc->pm_caps |= MMC_PM_KEEP_POWER;
2172
2173        /*
2174         * We can do SGIO
2175         */
2176        mmc->max_segs = NR_SG;
2177
2178        /*
2179         * Since only a certain number of bits are valid in the data length
2180         * register, we must ensure that we don't exceed 2^num-1 bytes in a
2181         * single request.
2182         */
2183        mmc->max_req_size = (1 << variant->datalength_bits) - 1;
2184
2185        /*
2186         * Set the maximum segment size.  Since we aren't doing DMA
2187         * (yet) we are only limited by the data length register.
2188         */
2189        mmc->max_seg_size = mmc->max_req_size;
2190
2191        /*
2192         * Block size can be up to 2048 bytes, but must be a power of two.
2193         */
2194        mmc->max_blk_size = 1 << variant->datactrl_blocksz;
2195
2196        /*
2197         * Limit the number of blocks transferred so that we don't overflow
2198         * the maximum request size.
2199         */
2200        mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2201
2202        spin_lock_init(&host->lock);
2203
2204        writel(0, host->base + MMCIMASK0);
2205
2206        if (variant->mmcimask1)
2207                writel(0, host->base + MMCIMASK1);
2208
2209        writel(0xfff, host->base + MMCICLEAR);
2210
2211        /*
2212         * If:
2213         * - not using DT but using a descriptor table, or
2214         * - using a table of descriptors ALONGSIDE DT, or
2215         * look up these descriptors named "cd" and "wp" right here, fail
2216         * silently of these do not exist
2217         */
2218        if (!np) {
2219                ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0);
2220                if (ret == -EPROBE_DEFER)
2221                        goto clk_disable;
2222
2223                ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0);
2224                if (ret == -EPROBE_DEFER)
2225                        goto clk_disable;
2226        }
2227
2228        ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq,
2229                                        mmci_irq_thread, IRQF_SHARED,
2230                                        DRIVER_NAME " (cmd)", host);
2231        if (ret)
2232                goto clk_disable;
2233
2234        if (!dev->irq[1])
2235                host->singleirq = true;
2236        else {
2237                ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2238                                IRQF_SHARED, DRIVER_NAME " (pio)", host);
2239                if (ret)
2240                        goto clk_disable;
2241        }
2242
2243        writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2244
2245        amba_set_drvdata(dev, mmc);
2246
2247        dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2248                 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2249                 amba_rev(dev), (unsigned long long)dev->res.start,
2250                 dev->irq[0], dev->irq[1]);
2251
2252        mmci_dma_setup(host);
2253
2254        pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2255        pm_runtime_use_autosuspend(&dev->dev);
2256
2257        mmc_add_host(mmc);
2258
2259        pm_runtime_put(&dev->dev);
2260        return 0;
2261
2262 clk_disable:
2263        clk_disable_unprepare(host->clk);
2264 host_free:
2265        mmc_free_host(mmc);
2266        return ret;
2267}
2268
2269static void mmci_remove(struct amba_device *dev)
2270{
2271        struct mmc_host *mmc = amba_get_drvdata(dev);
2272
2273        if (mmc) {
2274                struct mmci_host *host = mmc_priv(mmc);
2275                struct variant_data *variant = host->variant;
2276
2277                /*
2278                 * Undo pm_runtime_put() in probe.  We use the _sync
2279                 * version here so that we can access the primecell.
2280                 */
2281                pm_runtime_get_sync(&dev->dev);
2282
2283                mmc_remove_host(mmc);
2284
2285                writel(0, host->base + MMCIMASK0);
2286
2287                if (variant->mmcimask1)
2288                        writel(0, host->base + MMCIMASK1);
2289
2290                writel(0, host->base + MMCICOMMAND);
2291                writel(0, host->base + MMCIDATACTRL);
2292
2293                mmci_dma_release(host);
2294                clk_disable_unprepare(host->clk);
2295                mmc_free_host(mmc);
2296        }
2297}
2298
2299#ifdef CONFIG_PM
2300static void mmci_save(struct mmci_host *host)
2301{
2302        unsigned long flags;
2303
2304        spin_lock_irqsave(&host->lock, flags);
2305
2306        writel(0, host->base + MMCIMASK0);
2307        if (host->variant->pwrreg_nopower) {
2308                writel(0, host->base + MMCIDATACTRL);
2309                writel(0, host->base + MMCIPOWER);
2310                writel(0, host->base + MMCICLOCK);
2311        }
2312        mmci_reg_delay(host);
2313
2314        spin_unlock_irqrestore(&host->lock, flags);
2315}
2316
2317static void mmci_restore(struct mmci_host *host)
2318{
2319        unsigned long flags;
2320
2321        spin_lock_irqsave(&host->lock, flags);
2322
2323        if (host->variant->pwrreg_nopower) {
2324                writel(host->clk_reg, host->base + MMCICLOCK);
2325                writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2326                writel(host->pwr_reg, host->base + MMCIPOWER);
2327        }
2328        writel(MCI_IRQENABLE | host->variant->start_err,
2329               host->base + MMCIMASK0);
2330        mmci_reg_delay(host);
2331
2332        spin_unlock_irqrestore(&host->lock, flags);
2333}
2334
2335static int mmci_runtime_suspend(struct device *dev)
2336{
2337        struct amba_device *adev = to_amba_device(dev);
2338        struct mmc_host *mmc = amba_get_drvdata(adev);
2339
2340        if (mmc) {
2341                struct mmci_host *host = mmc_priv(mmc);
2342                pinctrl_pm_select_sleep_state(dev);
2343                mmci_save(host);
2344                clk_disable_unprepare(host->clk);
2345        }
2346
2347        return 0;
2348}
2349
2350static int mmci_runtime_resume(struct device *dev)
2351{
2352        struct amba_device *adev = to_amba_device(dev);
2353        struct mmc_host *mmc = amba_get_drvdata(adev);
2354
2355        if (mmc) {
2356                struct mmci_host *host = mmc_priv(mmc);
2357                clk_prepare_enable(host->clk);
2358                mmci_restore(host);
2359                pinctrl_select_default_state(dev);
2360        }
2361
2362        return 0;
2363}
2364#endif
2365
2366static const struct dev_pm_ops mmci_dev_pm_ops = {
2367        SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2368                                pm_runtime_force_resume)
2369        SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2370};
2371
2372static const struct amba_id mmci_ids[] = {
2373        {
2374                .id     = 0x00041180,
2375                .mask   = 0xff0fffff,
2376                .data   = &variant_arm,
2377        },
2378        {
2379                .id     = 0x01041180,
2380                .mask   = 0xff0fffff,
2381                .data   = &variant_arm_extended_fifo,
2382        },
2383        {
2384                .id     = 0x02041180,
2385                .mask   = 0xff0fffff,
2386                .data   = &variant_arm_extended_fifo_hwfc,
2387        },
2388        {
2389                .id     = 0x00041181,
2390                .mask   = 0x000fffff,
2391                .data   = &variant_arm,
2392        },
2393        /* ST Micro variants */
2394        {
2395                .id     = 0x00180180,
2396                .mask   = 0x00ffffff,
2397                .data   = &variant_u300,
2398        },
2399        {
2400                .id     = 0x10180180,
2401                .mask   = 0xf0ffffff,
2402                .data   = &variant_nomadik,
2403        },
2404        {
2405                .id     = 0x00280180,
2406                .mask   = 0x00ffffff,
2407                .data   = &variant_nomadik,
2408        },
2409        {
2410                .id     = 0x00480180,
2411                .mask   = 0xf0ffffff,
2412                .data   = &variant_ux500,
2413        },
2414        {
2415                .id     = 0x10480180,
2416                .mask   = 0xf0ffffff,
2417                .data   = &variant_ux500v2,
2418        },
2419        {
2420                .id     = 0x00880180,
2421                .mask   = 0x00ffffff,
2422                .data   = &variant_stm32,
2423        },
2424        {
2425                .id     = 0x10153180,
2426                .mask   = 0xf0ffffff,
2427                .data   = &variant_stm32_sdmmc,
2428        },
2429        {
2430                .id     = 0x00253180,
2431                .mask   = 0xf0ffffff,
2432                .data   = &variant_stm32_sdmmcv2,
2433        },
2434        /* Qualcomm variants */
2435        {
2436                .id     = 0x00051180,
2437                .mask   = 0x000fffff,
2438                .data   = &variant_qcom,
2439        },
2440        { 0, 0 },
2441};
2442
2443MODULE_DEVICE_TABLE(amba, mmci_ids);
2444
2445static struct amba_driver mmci_driver = {
2446        .drv            = {
2447                .name   = DRIVER_NAME,
2448                .pm     = &mmci_dev_pm_ops,
2449        },
2450        .probe          = mmci_probe,
2451        .remove         = mmci_remove,
2452        .id_table       = mmci_ids,
2453};
2454
2455module_amba_driver(mmci_driver);
2456
2457module_param(fmax, uint, 0444);
2458
2459MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2460MODULE_LICENSE("GPL");
2461