linux/drivers/net/can/c_can/c_can_main.c
<<
>>
Prefs
   1/*
   2 * CAN bus driver for Bosch C_CAN controller
   3 *
   4 * Copyright (C) 2010 ST Microelectronics
   5 * Bhupesh Sharma <bhupesh.sharma@st.com>
   6 *
   7 * Borrowed heavily from the C_CAN driver originally written by:
   8 * Copyright (C) 2007
   9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
  10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
  11 *
  12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
  13 * written by:
  14 * Copyright
  15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
  16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
  17 *
  18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
  19 * Bosch C_CAN user manual can be obtained from:
  20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
  21 * users_manual_c_can.pdf
  22 *
  23 * This file is licensed under the terms of the GNU General Public
  24 * License version 2. This program is licensed "as is" without any
  25 * warranty of any kind, whether express or implied.
  26 */
  27
  28#include <linux/kernel.h>
  29#include <linux/module.h>
  30#include <linux/interrupt.h>
  31#include <linux/delay.h>
  32#include <linux/netdevice.h>
  33#include <linux/if_arp.h>
  34#include <linux/if_ether.h>
  35#include <linux/list.h>
  36#include <linux/io.h>
  37#include <linux/pm_runtime.h>
  38#include <linux/pinctrl/consumer.h>
  39
  40#include <linux/can.h>
  41#include <linux/can/dev.h>
  42#include <linux/can/error.h>
  43#include <linux/can/led.h>
  44
  45#include "c_can.h"
  46
  47/* Number of interface registers */
  48#define IF_ENUM_REG_LEN         11
  49#define C_CAN_IFACE(reg, iface) (C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
  50
  51/* control extension register D_CAN specific */
  52#define CONTROL_EX_PDR          BIT(8)
  53
  54/* control register */
  55#define CONTROL_SWR             BIT(15)
  56#define CONTROL_TEST            BIT(7)
  57#define CONTROL_CCE             BIT(6)
  58#define CONTROL_DISABLE_AR      BIT(5)
  59#define CONTROL_ENABLE_AR       (0 << 5)
  60#define CONTROL_EIE             BIT(3)
  61#define CONTROL_SIE             BIT(2)
  62#define CONTROL_IE              BIT(1)
  63#define CONTROL_INIT            BIT(0)
  64
  65#define CONTROL_IRQMSK          (CONTROL_EIE | CONTROL_IE | CONTROL_SIE)
  66
  67/* test register */
  68#define TEST_RX                 BIT(7)
  69#define TEST_TX1                BIT(6)
  70#define TEST_TX2                BIT(5)
  71#define TEST_LBACK              BIT(4)
  72#define TEST_SILENT             BIT(3)
  73#define TEST_BASIC              BIT(2)
  74
  75/* status register */
  76#define STATUS_PDA              BIT(10)
  77#define STATUS_BOFF             BIT(7)
  78#define STATUS_EWARN            BIT(6)
  79#define STATUS_EPASS            BIT(5)
  80#define STATUS_RXOK             BIT(4)
  81#define STATUS_TXOK             BIT(3)
  82
  83/* error counter register */
  84#define ERR_CNT_TEC_MASK        0xff
  85#define ERR_CNT_TEC_SHIFT       0
  86#define ERR_CNT_REC_SHIFT       8
  87#define ERR_CNT_REC_MASK        (0x7f << ERR_CNT_REC_SHIFT)
  88#define ERR_CNT_RP_SHIFT        15
  89#define ERR_CNT_RP_MASK         (0x1 << ERR_CNT_RP_SHIFT)
  90
  91/* bit-timing register */
  92#define BTR_BRP_MASK            0x3f
  93#define BTR_BRP_SHIFT           0
  94#define BTR_SJW_SHIFT           6
  95#define BTR_SJW_MASK            (0x3 << BTR_SJW_SHIFT)
  96#define BTR_TSEG1_SHIFT         8
  97#define BTR_TSEG1_MASK          (0xf << BTR_TSEG1_SHIFT)
  98#define BTR_TSEG2_SHIFT         12
  99#define BTR_TSEG2_MASK          (0x7 << BTR_TSEG2_SHIFT)
 100
 101/* interrupt register */
 102#define INT_STS_PENDING         0x8000
 103
 104/* brp extension register */
 105#define BRP_EXT_BRPE_MASK       0x0f
 106#define BRP_EXT_BRPE_SHIFT      0
 107
 108/* IFx command request */
 109#define IF_COMR_BUSY            BIT(15)
 110
 111/* IFx command mask */
 112#define IF_COMM_WR              BIT(7)
 113#define IF_COMM_MASK            BIT(6)
 114#define IF_COMM_ARB             BIT(5)
 115#define IF_COMM_CONTROL         BIT(4)
 116#define IF_COMM_CLR_INT_PND     BIT(3)
 117#define IF_COMM_TXRQST          BIT(2)
 118#define IF_COMM_CLR_NEWDAT      IF_COMM_TXRQST
 119#define IF_COMM_DATAA           BIT(1)
 120#define IF_COMM_DATAB           BIT(0)
 121
 122/* TX buffer setup */
 123#define IF_COMM_TX              (IF_COMM_ARB | IF_COMM_CONTROL | \
 124                                 IF_COMM_TXRQST |                \
 125                                 IF_COMM_DATAA | IF_COMM_DATAB)
 126
 127/* For the low buffers we clear the interrupt bit, but keep newdat */
 128#define IF_COMM_RCV_LOW         (IF_COMM_MASK | IF_COMM_ARB | \
 129                                 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
 130                                 IF_COMM_DATAA | IF_COMM_DATAB)
 131
 132/* For the high buffers we clear the interrupt bit and newdat */
 133#define IF_COMM_RCV_HIGH        (IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
 134
 135/* Receive setup of message objects */
 136#define IF_COMM_RCV_SETUP       (IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)
 137
 138/* Invalidation of message objects */
 139#define IF_COMM_INVAL           (IF_COMM_ARB | IF_COMM_CONTROL)
 140
 141/* IFx arbitration */
 142#define IF_ARB_MSGVAL           BIT(31)
 143#define IF_ARB_MSGXTD           BIT(30)
 144#define IF_ARB_TRANSMIT         BIT(29)
 145
 146/* IFx message control */
 147#define IF_MCONT_NEWDAT         BIT(15)
 148#define IF_MCONT_MSGLST         BIT(14)
 149#define IF_MCONT_INTPND         BIT(13)
 150#define IF_MCONT_UMASK          BIT(12)
 151#define IF_MCONT_TXIE           BIT(11)
 152#define IF_MCONT_RXIE           BIT(10)
 153#define IF_MCONT_RMTEN          BIT(9)
 154#define IF_MCONT_TXRQST         BIT(8)
 155#define IF_MCONT_EOB            BIT(7)
 156#define IF_MCONT_DLC_MASK       0xf
 157
 158#define IF_MCONT_RCV            (IF_MCONT_RXIE | IF_MCONT_UMASK)
 159#define IF_MCONT_RCV_EOB        (IF_MCONT_RCV | IF_MCONT_EOB)
 160
 161#define IF_MCONT_TX             (IF_MCONT_TXIE | IF_MCONT_EOB)
 162
 163/* Use IF1 in NAPI path and IF2 in TX path */
 164#define IF_NAPI                 0
 165#define IF_TX                   1
 166
 167/* minimum timeout for checking BUSY status */
 168#define MIN_TIMEOUT_VALUE       6
 169
 170/* Wait for ~1 sec for INIT bit */
 171#define INIT_WAIT_MS            1000
 172
 173/* c_can lec values */
 174enum c_can_lec_type {
 175        LEC_NO_ERROR = 0,
 176        LEC_STUFF_ERROR,
 177        LEC_FORM_ERROR,
 178        LEC_ACK_ERROR,
 179        LEC_BIT1_ERROR,
 180        LEC_BIT0_ERROR,
 181        LEC_CRC_ERROR,
 182        LEC_UNUSED,
 183        LEC_MASK = LEC_UNUSED,
 184};
 185
 186/* c_can error types:
 187 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
 188 */
 189enum c_can_bus_error_types {
 190        C_CAN_NO_ERROR = 0,
 191        C_CAN_BUS_OFF,
 192        C_CAN_ERROR_WARNING,
 193        C_CAN_ERROR_PASSIVE,
 194};
 195
 196static const struct can_bittiming_const c_can_bittiming_const = {
 197        .name = KBUILD_MODNAME,
 198        .tseg1_min = 2,         /* Time segment 1 = prop_seg + phase_seg1 */
 199        .tseg1_max = 16,
 200        .tseg2_min = 1,         /* Time segment 2 = phase_seg2 */
 201        .tseg2_max = 8,
 202        .sjw_max = 4,
 203        .brp_min = 1,
 204        .brp_max = 1024,        /* 6-bit BRP field + 4-bit BRPE field*/
 205        .brp_inc = 1,
 206};
 207
 208static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
 209{
 210        if (priv->device)
 211                pm_runtime_get_sync(priv->device);
 212}
 213
 214static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
 215{
 216        if (priv->device)
 217                pm_runtime_put_sync(priv->device);
 218}
 219
 220static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
 221{
 222        if (priv->raminit)
 223                priv->raminit(priv, enable);
 224}
 225
 226static void c_can_irq_control(struct c_can_priv *priv, bool enable)
 227{
 228        u32 ctrl = priv->read_reg(priv, C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
 229
 230        if (enable)
 231                ctrl |= CONTROL_IRQMSK;
 232
 233        priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
 234}
 235
 236static void c_can_obj_update(struct net_device *dev, int iface, u32 cmd, u32 obj)
 237{
 238        struct c_can_priv *priv = netdev_priv(dev);
 239        int cnt, reg = C_CAN_IFACE(COMREQ_REG, iface);
 240
 241        priv->write_reg32(priv, reg, (cmd << 16) | obj);
 242
 243        for (cnt = MIN_TIMEOUT_VALUE; cnt; cnt--) {
 244                if (!(priv->read_reg(priv, reg) & IF_COMR_BUSY))
 245                        return;
 246                udelay(1);
 247        }
 248        netdev_err(dev, "Updating object timed out\n");
 249}
 250
 251static inline void c_can_object_get(struct net_device *dev, int iface,
 252                                    u32 obj, u32 cmd)
 253{
 254        c_can_obj_update(dev, iface, cmd, obj);
 255}
 256
 257static inline void c_can_object_put(struct net_device *dev, int iface,
 258                                    u32 obj, u32 cmd)
 259{
 260        c_can_obj_update(dev, iface, cmd | IF_COMM_WR, obj);
 261}
 262
 263/* Note: According to documentation clearing TXIE while MSGVAL is set
 264 * is not allowed, but works nicely on C/DCAN. And that lowers the I/O
 265 * load significantly.
 266 */
 267static void c_can_inval_tx_object(struct net_device *dev, int iface, int obj)
 268{
 269        struct c_can_priv *priv = netdev_priv(dev);
 270
 271        priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
 272        c_can_object_put(dev, iface, obj, IF_COMM_INVAL);
 273}
 274
 275static void c_can_inval_msg_object(struct net_device *dev, int iface, int obj)
 276{
 277        struct c_can_priv *priv = netdev_priv(dev);
 278
 279        priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
 280        c_can_inval_tx_object(dev, iface, obj);
 281}
 282
 283static void c_can_setup_tx_object(struct net_device *dev, int iface,
 284                                  struct can_frame *frame, int idx)
 285{
 286        struct c_can_priv *priv = netdev_priv(dev);
 287        u16 ctrl = IF_MCONT_TX | frame->len;
 288        bool rtr = frame->can_id & CAN_RTR_FLAG;
 289        u32 arb = IF_ARB_MSGVAL;
 290        int i;
 291
 292        if (frame->can_id & CAN_EFF_FLAG) {
 293                arb |= frame->can_id & CAN_EFF_MASK;
 294                arb |= IF_ARB_MSGXTD;
 295        } else {
 296                arb |= (frame->can_id & CAN_SFF_MASK) << 18;
 297        }
 298
 299        if (!rtr)
 300                arb |= IF_ARB_TRANSMIT;
 301
 302        /* If we change the DIR bit, we need to invalidate the buffer
 303         * first, i.e. clear the MSGVAL flag in the arbiter.
 304         */
 305        if (rtr != (bool)test_bit(idx, &priv->tx_dir)) {
 306                u32 obj = idx + priv->msg_obj_tx_first;
 307
 308                c_can_inval_msg_object(dev, iface, obj);
 309                change_bit(idx, &priv->tx_dir);
 310        }
 311
 312        priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), arb);
 313
 314        priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
 315
 316        if (priv->type == BOSCH_D_CAN) {
 317                u32 data = 0, dreg = C_CAN_IFACE(DATA1_REG, iface);
 318
 319                for (i = 0; i < frame->len; i += 4, dreg += 2) {
 320                        data = (u32)frame->data[i];
 321                        data |= (u32)frame->data[i + 1] << 8;
 322                        data |= (u32)frame->data[i + 2] << 16;
 323                        data |= (u32)frame->data[i + 3] << 24;
 324                        priv->write_reg32(priv, dreg, data);
 325                }
 326        } else {
 327                for (i = 0; i < frame->len; i += 2) {
 328                        priv->write_reg(priv,
 329                                        C_CAN_IFACE(DATA1_REG, iface) + i / 2,
 330                                        frame->data[i] |
 331                                        (frame->data[i + 1] << 8));
 332                }
 333        }
 334}
 335
 336static int c_can_handle_lost_msg_obj(struct net_device *dev,
 337                                     int iface, int objno, u32 ctrl)
 338{
 339        struct net_device_stats *stats = &dev->stats;
 340        struct c_can_priv *priv = netdev_priv(dev);
 341        struct can_frame *frame;
 342        struct sk_buff *skb;
 343
 344        ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
 345        priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
 346        c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
 347
 348        stats->rx_errors++;
 349        stats->rx_over_errors++;
 350
 351        /* create an error msg */
 352        skb = alloc_can_err_skb(dev, &frame);
 353        if (unlikely(!skb))
 354                return 0;
 355
 356        frame->can_id |= CAN_ERR_CRTL;
 357        frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
 358
 359        netif_receive_skb(skb);
 360        return 1;
 361}
 362
 363static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
 364{
 365        struct net_device_stats *stats = &dev->stats;
 366        struct c_can_priv *priv = netdev_priv(dev);
 367        struct can_frame *frame;
 368        struct sk_buff *skb;
 369        u32 arb, data;
 370
 371        skb = alloc_can_skb(dev, &frame);
 372        if (!skb) {
 373                stats->rx_dropped++;
 374                return -ENOMEM;
 375        }
 376
 377        frame->len = can_cc_dlc2len(ctrl & 0x0F);
 378
 379        arb = priv->read_reg32(priv, C_CAN_IFACE(ARB1_REG, iface));
 380
 381        if (arb & IF_ARB_MSGXTD)
 382                frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
 383        else
 384                frame->can_id = (arb >> 18) & CAN_SFF_MASK;
 385
 386        if (arb & IF_ARB_TRANSMIT) {
 387                frame->can_id |= CAN_RTR_FLAG;
 388        } else {
 389                int i, dreg = C_CAN_IFACE(DATA1_REG, iface);
 390
 391                if (priv->type == BOSCH_D_CAN) {
 392                        for (i = 0; i < frame->len; i += 4, dreg += 2) {
 393                                data = priv->read_reg32(priv, dreg);
 394                                frame->data[i] = data;
 395                                frame->data[i + 1] = data >> 8;
 396                                frame->data[i + 2] = data >> 16;
 397                                frame->data[i + 3] = data >> 24;
 398                        }
 399                } else {
 400                        for (i = 0; i < frame->len; i += 2, dreg++) {
 401                                data = priv->read_reg(priv, dreg);
 402                                frame->data[i] = data;
 403                                frame->data[i + 1] = data >> 8;
 404                        }
 405                }
 406        }
 407
 408        stats->rx_packets++;
 409        stats->rx_bytes += frame->len;
 410
 411        netif_receive_skb(skb);
 412        return 0;
 413}
 414
 415static void c_can_setup_receive_object(struct net_device *dev, int iface,
 416                                       u32 obj, u32 mask, u32 id, u32 mcont)
 417{
 418        struct c_can_priv *priv = netdev_priv(dev);
 419
 420        mask |= BIT(29);
 421        priv->write_reg32(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
 422
 423        id |= IF_ARB_MSGVAL;
 424        priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), id);
 425
 426        priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
 427        c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
 428}
 429
 430static bool c_can_tx_busy(const struct c_can_priv *priv,
 431                          const struct c_can_tx_ring *tx_ring)
 432{
 433        if (c_can_get_tx_free(tx_ring) > 0)
 434                return false;
 435
 436        netif_stop_queue(priv->dev);
 437
 438        /* Memory barrier before checking tx_free (head and tail) */
 439        smp_mb();
 440
 441        if (c_can_get_tx_free(tx_ring) == 0) {
 442                netdev_dbg(priv->dev,
 443                           "Stopping tx-queue (tx_head=0x%08x, tx_tail=0x%08x, len=%d).\n",
 444                           tx_ring->head, tx_ring->tail,
 445                           tx_ring->head - tx_ring->tail);
 446                return true;
 447        }
 448
 449        netif_start_queue(priv->dev);
 450        return false;
 451}
 452
 453static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
 454                                    struct net_device *dev)
 455{
 456        struct can_frame *frame = (struct can_frame *)skb->data;
 457        struct c_can_priv *priv = netdev_priv(dev);
 458        struct c_can_tx_ring *tx_ring = &priv->tx;
 459        u32 idx, obj, cmd = IF_COMM_TX;
 460
 461        if (can_dropped_invalid_skb(dev, skb))
 462                return NETDEV_TX_OK;
 463
 464        if (c_can_tx_busy(priv, tx_ring))
 465                return NETDEV_TX_BUSY;
 466
 467        idx = c_can_get_tx_head(tx_ring);
 468        tx_ring->head++;
 469        if (c_can_get_tx_free(tx_ring) == 0)
 470                netif_stop_queue(dev);
 471
 472        if (idx < c_can_get_tx_tail(tx_ring))
 473                cmd &= ~IF_COMM_TXRQST; /* Cache the message */
 474
 475        /* Store the message in the interface so we can call
 476         * can_put_echo_skb(). We must do this before we enable
 477         * transmit as we might race against do_tx().
 478         */
 479        c_can_setup_tx_object(dev, IF_TX, frame, idx);
 480        priv->dlc[idx] = frame->len;
 481        can_put_echo_skb(skb, dev, idx, 0);
 482        obj = idx + priv->msg_obj_tx_first;
 483        c_can_object_put(dev, IF_TX, obj, cmd);
 484
 485        return NETDEV_TX_OK;
 486}
 487
 488static int c_can_wait_for_ctrl_init(struct net_device *dev,
 489                                    struct c_can_priv *priv, u32 init)
 490{
 491        int retry = 0;
 492
 493        while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
 494                udelay(10);
 495                if (retry++ > 1000) {
 496                        netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
 497                        return -EIO;
 498                }
 499        }
 500        return 0;
 501}
 502
 503static int c_can_set_bittiming(struct net_device *dev)
 504{
 505        unsigned int reg_btr, reg_brpe, ctrl_save;
 506        u8 brp, brpe, sjw, tseg1, tseg2;
 507        u32 ten_bit_brp;
 508        struct c_can_priv *priv = netdev_priv(dev);
 509        const struct can_bittiming *bt = &priv->can.bittiming;
 510        int res;
 511
 512        /* c_can provides a 6-bit brp and 4-bit brpe fields */
 513        ten_bit_brp = bt->brp - 1;
 514        brp = ten_bit_brp & BTR_BRP_MASK;
 515        brpe = ten_bit_brp >> 6;
 516
 517        sjw = bt->sjw - 1;
 518        tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
 519        tseg2 = bt->phase_seg2 - 1;
 520        reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
 521                        (tseg2 << BTR_TSEG2_SHIFT);
 522        reg_brpe = brpe & BRP_EXT_BRPE_MASK;
 523
 524        netdev_info(dev,
 525                    "setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
 526
 527        ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
 528        ctrl_save &= ~CONTROL_INIT;
 529        priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
 530        res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
 531        if (res)
 532                return res;
 533
 534        priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
 535        priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
 536        priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
 537
 538        return c_can_wait_for_ctrl_init(dev, priv, 0);
 539}
 540
 541/* Configure C_CAN message objects for Tx and Rx purposes:
 542 * C_CAN provides a total of 32 message objects that can be configured
 543 * either for Tx or Rx purposes. Here the first 16 message objects are used as
 544 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
 545 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
 546 * See user guide document for further details on configuring message
 547 * objects.
 548 */
 549static void c_can_configure_msg_objects(struct net_device *dev)
 550{
 551        struct c_can_priv *priv = netdev_priv(dev);
 552        int i;
 553
 554        /* first invalidate all message objects */
 555        for (i = priv->msg_obj_rx_first; i <= priv->msg_obj_num; i++)
 556                c_can_inval_msg_object(dev, IF_NAPI, i);
 557
 558        /* setup receive message objects */
 559        for (i = priv->msg_obj_rx_first; i < priv->msg_obj_rx_last; i++)
 560                c_can_setup_receive_object(dev, IF_NAPI, i, 0, 0, IF_MCONT_RCV);
 561
 562        c_can_setup_receive_object(dev, IF_NAPI, priv->msg_obj_rx_last, 0, 0,
 563                                   IF_MCONT_RCV_EOB);
 564}
 565
 566static int c_can_software_reset(struct net_device *dev)
 567{
 568        struct c_can_priv *priv = netdev_priv(dev);
 569        int retry = 0;
 570
 571        if (priv->type != BOSCH_D_CAN)
 572                return 0;
 573
 574        priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_SWR | CONTROL_INIT);
 575        while (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_SWR) {
 576                msleep(20);
 577                if (retry++ > 100) {
 578                        netdev_err(dev, "CCTRL: software reset failed\n");
 579                        return -EIO;
 580                }
 581        }
 582
 583        return 0;
 584}
 585
 586/* Configure C_CAN chip:
 587 * - enable/disable auto-retransmission
 588 * - set operating mode
 589 * - configure message objects
 590 */
 591static int c_can_chip_config(struct net_device *dev)
 592{
 593        struct c_can_priv *priv = netdev_priv(dev);
 594        struct c_can_tx_ring *tx_ring = &priv->tx;
 595        int err;
 596
 597        err = c_can_software_reset(dev);
 598        if (err)
 599                return err;
 600
 601        /* enable automatic retransmission */
 602        priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
 603
 604        if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
 605            (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
 606                /* loopback + silent mode : useful for hot self-test */
 607                priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
 608                priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
 609        } else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
 610                /* loopback mode : useful for self-test function */
 611                priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
 612                priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
 613        } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
 614                /* silent mode : bus-monitoring mode */
 615                priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
 616                priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
 617        }
 618
 619        /* configure message objects */
 620        c_can_configure_msg_objects(dev);
 621
 622        /* set a `lec` value so that we can check for updates later */
 623        priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
 624
 625        /* Clear all internal status */
 626        tx_ring->head = 0;
 627        tx_ring->tail = 0;
 628        priv->tx_dir = 0;
 629
 630        /* set bittiming params */
 631        return c_can_set_bittiming(dev);
 632}
 633
 634static int c_can_start(struct net_device *dev)
 635{
 636        struct c_can_priv *priv = netdev_priv(dev);
 637        int err;
 638        struct pinctrl *p;
 639
 640        /* basic c_can configuration */
 641        err = c_can_chip_config(dev);
 642        if (err)
 643                return err;
 644
 645        /* Setup the command for new messages */
 646        priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
 647                IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
 648
 649        priv->can.state = CAN_STATE_ERROR_ACTIVE;
 650
 651        /* Attempt to use "active" if available else use "default" */
 652        p = pinctrl_get_select(priv->device, "active");
 653        if (!IS_ERR(p))
 654                pinctrl_put(p);
 655        else
 656                pinctrl_pm_select_default_state(priv->device);
 657
 658        return 0;
 659}
 660
 661static void c_can_stop(struct net_device *dev)
 662{
 663        struct c_can_priv *priv = netdev_priv(dev);
 664
 665        c_can_irq_control(priv, false);
 666
 667        /* put ctrl to init on stop to end ongoing transmission */
 668        priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_INIT);
 669
 670        /* deactivate pins */
 671        pinctrl_pm_select_sleep_state(dev->dev.parent);
 672        priv->can.state = CAN_STATE_STOPPED;
 673}
 674
 675static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
 676{
 677        struct c_can_priv *priv = netdev_priv(dev);
 678        int err;
 679
 680        switch (mode) {
 681        case CAN_MODE_START:
 682                err = c_can_start(dev);
 683                if (err)
 684                        return err;
 685                netif_wake_queue(dev);
 686                c_can_irq_control(priv, true);
 687                break;
 688        default:
 689                return -EOPNOTSUPP;
 690        }
 691
 692        return 0;
 693}
 694
 695static int __c_can_get_berr_counter(const struct net_device *dev,
 696                                    struct can_berr_counter *bec)
 697{
 698        unsigned int reg_err_counter;
 699        struct c_can_priv *priv = netdev_priv(dev);
 700
 701        reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
 702        bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
 703                                ERR_CNT_REC_SHIFT;
 704        bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
 705
 706        return 0;
 707}
 708
 709static int c_can_get_berr_counter(const struct net_device *dev,
 710                                  struct can_berr_counter *bec)
 711{
 712        struct c_can_priv *priv = netdev_priv(dev);
 713        int err;
 714
 715        c_can_pm_runtime_get_sync(priv);
 716        err = __c_can_get_berr_counter(dev, bec);
 717        c_can_pm_runtime_put_sync(priv);
 718
 719        return err;
 720}
 721
 722static void c_can_do_tx(struct net_device *dev)
 723{
 724        struct c_can_priv *priv = netdev_priv(dev);
 725        struct c_can_tx_ring *tx_ring = &priv->tx;
 726        struct net_device_stats *stats = &dev->stats;
 727        u32 idx, obj, pkts = 0, bytes = 0, pend;
 728        u8 tail;
 729
 730        if (priv->msg_obj_tx_last > 32)
 731                pend = priv->read_reg32(priv, C_CAN_INTPND3_REG);
 732        else
 733                pend = priv->read_reg(priv, C_CAN_INTPND2_REG);
 734
 735        while ((idx = ffs(pend))) {
 736                idx--;
 737                pend &= ~BIT(idx);
 738                obj = idx + priv->msg_obj_tx_first;
 739
 740                /* We use IF_NAPI interface instead of IF_TX because we
 741                 * are called from c_can_poll(), which runs inside
 742                 * NAPI. We are not transmitting.
 743                 */
 744                c_can_inval_tx_object(dev, IF_NAPI, obj);
 745                can_get_echo_skb(dev, idx, NULL);
 746                bytes += priv->dlc[idx];
 747                pkts++;
 748        }
 749
 750        if (!pkts)
 751                return;
 752
 753        tx_ring->tail += pkts;
 754        if (c_can_get_tx_free(tx_ring)) {
 755                /* Make sure that anybody stopping the queue after
 756                 * this sees the new tx_ring->tail.
 757                 */
 758                smp_mb();
 759                netif_wake_queue(priv->dev);
 760        }
 761
 762        stats->tx_bytes += bytes;
 763        stats->tx_packets += pkts;
 764        can_led_event(dev, CAN_LED_EVENT_TX);
 765
 766        tail = c_can_get_tx_tail(tx_ring);
 767
 768        if (tail == 0) {
 769                u8 head = c_can_get_tx_head(tx_ring);
 770
 771                /* Start transmission for all cached messages */
 772                for (idx = tail; idx < head; idx++) {
 773                        obj = idx + priv->msg_obj_tx_first;
 774                        c_can_object_put(dev, IF_NAPI, obj, IF_COMM_TXRQST);
 775                }
 776        }
 777}
 778
 779/* If we have a gap in the pending bits, that means we either
 780 * raced with the hardware or failed to readout all upper
 781 * objects in the last run due to quota limit.
 782 */
 783static u32 c_can_adjust_pending(u32 pend, u32 rx_mask)
 784{
 785        u32 weight, lasts;
 786
 787        if (pend == rx_mask)
 788                return pend;
 789
 790        /* If the last set bit is larger than the number of pending
 791         * bits we have a gap.
 792         */
 793        weight = hweight32(pend);
 794        lasts = fls(pend);
 795
 796        /* If the bits are linear, nothing to do */
 797        if (lasts == weight)
 798                return pend;
 799
 800        /* Find the first set bit after the gap. We walk backwards
 801         * from the last set bit.
 802         */
 803        for (lasts--; pend & BIT(lasts - 1); lasts--)
 804                ;
 805
 806        return pend & ~GENMASK(lasts - 1, 0);
 807}
 808
 809static inline void c_can_rx_object_get(struct net_device *dev,
 810                                       struct c_can_priv *priv, u32 obj)
 811{
 812        c_can_object_get(dev, IF_NAPI, obj, priv->comm_rcv_high);
 813}
 814
 815static inline void c_can_rx_finalize(struct net_device *dev,
 816                                     struct c_can_priv *priv, u32 obj)
 817{
 818        if (priv->type != BOSCH_D_CAN)
 819                c_can_object_get(dev, IF_NAPI, obj, IF_COMM_CLR_NEWDAT);
 820}
 821
 822static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
 823                              u32 pend, int quota)
 824{
 825        u32 pkts = 0, ctrl, obj;
 826
 827        while ((obj = ffs(pend)) && quota > 0) {
 828                pend &= ~BIT(obj - 1);
 829
 830                c_can_rx_object_get(dev, priv, obj);
 831                ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_NAPI));
 832
 833                if (ctrl & IF_MCONT_MSGLST) {
 834                        int n;
 835
 836                        n = c_can_handle_lost_msg_obj(dev, IF_NAPI, obj, ctrl);
 837
 838                        pkts += n;
 839                        quota -= n;
 840                        continue;
 841                }
 842
 843                /* This really should not happen, but this covers some
 844                 * odd HW behaviour. Do not remove that unless you
 845                 * want to brick your machine.
 846                 */
 847                if (!(ctrl & IF_MCONT_NEWDAT))
 848                        continue;
 849
 850                /* read the data from the message object */
 851                c_can_read_msg_object(dev, IF_NAPI, ctrl);
 852
 853                c_can_rx_finalize(dev, priv, obj);
 854
 855                pkts++;
 856                quota--;
 857        }
 858
 859        return pkts;
 860}
 861
 862static inline u32 c_can_get_pending(struct c_can_priv *priv)
 863{
 864        u32 pend;
 865
 866        if (priv->msg_obj_rx_last > 16)
 867                pend = priv->read_reg32(priv, C_CAN_NEWDAT1_REG);
 868        else
 869                pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);
 870
 871        return pend;
 872}
 873
 874/* theory of operation:
 875 *
 876 * c_can core saves a received CAN message into the first free message
 877 * object it finds free (starting with the lowest). Bits NEWDAT and
 878 * INTPND are set for this message object indicating that a new message
 879 * has arrived.
 880 *
 881 * We clear the newdat bit right away.
 882 *
 883 * This can result in packet reordering when the readout is slow.
 884 */
 885static int c_can_do_rx_poll(struct net_device *dev, int quota)
 886{
 887        struct c_can_priv *priv = netdev_priv(dev);
 888        u32 pkts = 0, pend = 0, toread, n;
 889
 890        while (quota > 0) {
 891                if (!pend) {
 892                        pend = c_can_get_pending(priv);
 893                        if (!pend)
 894                                break;
 895                        /* If the pending field has a gap, handle the
 896                         * bits above the gap first.
 897                         */
 898                        toread = c_can_adjust_pending(pend,
 899                                                      priv->msg_obj_rx_mask);
 900                } else {
 901                        toread = pend;
 902                }
 903                /* Remove the bits from pend */
 904                pend &= ~toread;
 905                /* Read the objects */
 906                n = c_can_read_objects(dev, priv, toread, quota);
 907                pkts += n;
 908                quota -= n;
 909        }
 910
 911        if (pkts)
 912                can_led_event(dev, CAN_LED_EVENT_RX);
 913
 914        return pkts;
 915}
 916
 917static int c_can_handle_state_change(struct net_device *dev,
 918                                     enum c_can_bus_error_types error_type)
 919{
 920        unsigned int reg_err_counter;
 921        unsigned int rx_err_passive;
 922        struct c_can_priv *priv = netdev_priv(dev);
 923        struct net_device_stats *stats = &dev->stats;
 924        struct can_frame *cf;
 925        struct sk_buff *skb;
 926        struct can_berr_counter bec;
 927
 928        switch (error_type) {
 929        case C_CAN_NO_ERROR:
 930                priv->can.state = CAN_STATE_ERROR_ACTIVE;
 931                break;
 932        case C_CAN_ERROR_WARNING:
 933                /* error warning state */
 934                priv->can.can_stats.error_warning++;
 935                priv->can.state = CAN_STATE_ERROR_WARNING;
 936                break;
 937        case C_CAN_ERROR_PASSIVE:
 938                /* error passive state */
 939                priv->can.can_stats.error_passive++;
 940                priv->can.state = CAN_STATE_ERROR_PASSIVE;
 941                break;
 942        case C_CAN_BUS_OFF:
 943                /* bus-off state */
 944                priv->can.state = CAN_STATE_BUS_OFF;
 945                priv->can.can_stats.bus_off++;
 946                break;
 947        default:
 948                break;
 949        }
 950
 951        /* propagate the error condition to the CAN stack */
 952        skb = alloc_can_err_skb(dev, &cf);
 953        if (unlikely(!skb))
 954                return 0;
 955
 956        __c_can_get_berr_counter(dev, &bec);
 957        reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
 958        rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
 959                                ERR_CNT_RP_SHIFT;
 960
 961        switch (error_type) {
 962        case C_CAN_NO_ERROR:
 963                /* error warning state */
 964                cf->can_id |= CAN_ERR_CRTL;
 965                cf->data[1] = CAN_ERR_CRTL_ACTIVE;
 966                cf->data[6] = bec.txerr;
 967                cf->data[7] = bec.rxerr;
 968                break;
 969        case C_CAN_ERROR_WARNING:
 970                /* error warning state */
 971                cf->can_id |= CAN_ERR_CRTL;
 972                cf->data[1] = (bec.txerr > bec.rxerr) ?
 973                        CAN_ERR_CRTL_TX_WARNING :
 974                        CAN_ERR_CRTL_RX_WARNING;
 975                cf->data[6] = bec.txerr;
 976                cf->data[7] = bec.rxerr;
 977
 978                break;
 979        case C_CAN_ERROR_PASSIVE:
 980                /* error passive state */
 981                cf->can_id |= CAN_ERR_CRTL;
 982                if (rx_err_passive)
 983                        cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
 984                if (bec.txerr > 127)
 985                        cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
 986
 987                cf->data[6] = bec.txerr;
 988                cf->data[7] = bec.rxerr;
 989                break;
 990        case C_CAN_BUS_OFF:
 991                /* bus-off state */
 992                cf->can_id |= CAN_ERR_BUSOFF;
 993                can_bus_off(dev);
 994                break;
 995        default:
 996                break;
 997        }
 998
 999        stats->rx_packets++;
1000        stats->rx_bytes += cf->len;
1001        netif_receive_skb(skb);
1002
1003        return 1;
1004}
1005
1006static int c_can_handle_bus_err(struct net_device *dev,
1007                                enum c_can_lec_type lec_type)
1008{
1009        struct c_can_priv *priv = netdev_priv(dev);
1010        struct net_device_stats *stats = &dev->stats;
1011        struct can_frame *cf;
1012        struct sk_buff *skb;
1013
1014        /* early exit if no lec update or no error.
1015         * no lec update means that no CAN bus event has been detected
1016         * since CPU wrote 0x7 value to status reg.
1017         */
1018        if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
1019                return 0;
1020
1021        if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1022                return 0;
1023
1024        /* common for all type of bus errors */
1025        priv->can.can_stats.bus_error++;
1026        stats->rx_errors++;
1027
1028        /* propagate the error condition to the CAN stack */
1029        skb = alloc_can_err_skb(dev, &cf);
1030        if (unlikely(!skb))
1031                return 0;
1032
1033        /* check for 'last error code' which tells us the
1034         * type of the last error to occur on the CAN bus
1035         */
1036        cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1037
1038        switch (lec_type) {
1039        case LEC_STUFF_ERROR:
1040                netdev_dbg(dev, "stuff error\n");
1041                cf->data[2] |= CAN_ERR_PROT_STUFF;
1042                break;
1043        case LEC_FORM_ERROR:
1044                netdev_dbg(dev, "form error\n");
1045                cf->data[2] |= CAN_ERR_PROT_FORM;
1046                break;
1047        case LEC_ACK_ERROR:
1048                netdev_dbg(dev, "ack error\n");
1049                cf->data[3] = CAN_ERR_PROT_LOC_ACK;
1050                break;
1051        case LEC_BIT1_ERROR:
1052                netdev_dbg(dev, "bit1 error\n");
1053                cf->data[2] |= CAN_ERR_PROT_BIT1;
1054                break;
1055        case LEC_BIT0_ERROR:
1056                netdev_dbg(dev, "bit0 error\n");
1057                cf->data[2] |= CAN_ERR_PROT_BIT0;
1058                break;
1059        case LEC_CRC_ERROR:
1060                netdev_dbg(dev, "CRC error\n");
1061                cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1062                break;
1063        default:
1064                break;
1065        }
1066
1067        stats->rx_packets++;
1068        stats->rx_bytes += cf->len;
1069        netif_receive_skb(skb);
1070        return 1;
1071}
1072
1073static int c_can_poll(struct napi_struct *napi, int quota)
1074{
1075        struct net_device *dev = napi->dev;
1076        struct c_can_priv *priv = netdev_priv(dev);
1077        u16 curr, last = priv->last_status;
1078        int work_done = 0;
1079
1080        /* Only read the status register if a status interrupt was pending */
1081        if (atomic_xchg(&priv->sie_pending, 0)) {
1082                priv->last_status = priv->read_reg(priv, C_CAN_STS_REG);
1083                curr = priv->last_status;
1084                /* Ack status on C_CAN. D_CAN is self clearing */
1085                if (priv->type != BOSCH_D_CAN)
1086                        priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1087        } else {
1088                /* no change detected ... */
1089                curr = last;
1090        }
1091
1092        /* handle state changes */
1093        if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
1094                netdev_dbg(dev, "entered error warning state\n");
1095                work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1096        }
1097
1098        if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
1099                netdev_dbg(dev, "entered error passive state\n");
1100                work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1101        }
1102
1103        if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
1104                netdev_dbg(dev, "entered bus off state\n");
1105                work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
1106                goto end;
1107        }
1108
1109        /* handle bus recovery events */
1110        if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
1111                netdev_dbg(dev, "left bus off state\n");
1112                work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1113        }
1114
1115        if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
1116                netdev_dbg(dev, "left error passive state\n");
1117                work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1118        }
1119
1120        if ((!(curr & STATUS_EWARN)) && (last & STATUS_EWARN)) {
1121                netdev_dbg(dev, "left error warning state\n");
1122                work_done += c_can_handle_state_change(dev, C_CAN_NO_ERROR);
1123        }
1124
1125        /* handle lec errors on the bus */
1126        work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);
1127
1128        /* Handle Tx/Rx events. We do this unconditionally */
1129        work_done += c_can_do_rx_poll(dev, (quota - work_done));
1130        c_can_do_tx(dev);
1131
1132end:
1133        if (work_done < quota) {
1134                napi_complete_done(napi, work_done);
1135                /* enable all IRQs if we are not in bus off state */
1136                if (priv->can.state != CAN_STATE_BUS_OFF)
1137                        c_can_irq_control(priv, true);
1138        }
1139
1140        return work_done;
1141}
1142
1143static irqreturn_t c_can_isr(int irq, void *dev_id)
1144{
1145        struct net_device *dev = (struct net_device *)dev_id;
1146        struct c_can_priv *priv = netdev_priv(dev);
1147        int reg_int;
1148
1149        reg_int = priv->read_reg(priv, C_CAN_INT_REG);
1150        if (!reg_int)
1151                return IRQ_NONE;
1152
1153        /* save for later use */
1154        if (reg_int & INT_STS_PENDING)
1155                atomic_set(&priv->sie_pending, 1);
1156
1157        /* disable all interrupts and schedule the NAPI */
1158        c_can_irq_control(priv, false);
1159        napi_schedule(&priv->napi);
1160
1161        return IRQ_HANDLED;
1162}
1163
1164static int c_can_open(struct net_device *dev)
1165{
1166        int err;
1167        struct c_can_priv *priv = netdev_priv(dev);
1168
1169        c_can_pm_runtime_get_sync(priv);
1170        c_can_reset_ram(priv, true);
1171
1172        /* open the can device */
1173        err = open_candev(dev);
1174        if (err) {
1175                netdev_err(dev, "failed to open can device\n");
1176                goto exit_open_fail;
1177        }
1178
1179        /* register interrupt handler */
1180        err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1181                          dev);
1182        if (err < 0) {
1183                netdev_err(dev, "failed to request interrupt\n");
1184                goto exit_irq_fail;
1185        }
1186
1187        /* start the c_can controller */
1188        err = c_can_start(dev);
1189        if (err)
1190                goto exit_start_fail;
1191
1192        can_led_event(dev, CAN_LED_EVENT_OPEN);
1193
1194        napi_enable(&priv->napi);
1195        /* enable status change, error and module interrupts */
1196        c_can_irq_control(priv, true);
1197        netif_start_queue(dev);
1198
1199        return 0;
1200
1201exit_start_fail:
1202        free_irq(dev->irq, dev);
1203exit_irq_fail:
1204        close_candev(dev);
1205exit_open_fail:
1206        c_can_reset_ram(priv, false);
1207        c_can_pm_runtime_put_sync(priv);
1208        return err;
1209}
1210
1211static int c_can_close(struct net_device *dev)
1212{
1213        struct c_can_priv *priv = netdev_priv(dev);
1214
1215        netif_stop_queue(dev);
1216        napi_disable(&priv->napi);
1217        c_can_stop(dev);
1218        free_irq(dev->irq, dev);
1219        close_candev(dev);
1220
1221        c_can_reset_ram(priv, false);
1222        c_can_pm_runtime_put_sync(priv);
1223
1224        can_led_event(dev, CAN_LED_EVENT_STOP);
1225
1226        return 0;
1227}
1228
1229struct net_device *alloc_c_can_dev(int msg_obj_num)
1230{
1231        struct net_device *dev;
1232        struct c_can_priv *priv;
1233        int msg_obj_tx_num = msg_obj_num / 2;
1234
1235        dev = alloc_candev(struct_size(priv, dlc, msg_obj_tx_num),
1236                           msg_obj_tx_num);
1237        if (!dev)
1238                return NULL;
1239
1240        priv = netdev_priv(dev);
1241        priv->msg_obj_num = msg_obj_num;
1242        priv->msg_obj_rx_num = msg_obj_num - msg_obj_tx_num;
1243        priv->msg_obj_rx_first = 1;
1244        priv->msg_obj_rx_last =
1245                priv->msg_obj_rx_first + priv->msg_obj_rx_num - 1;
1246        priv->msg_obj_rx_mask = GENMASK(priv->msg_obj_rx_num - 1, 0);
1247
1248        priv->msg_obj_tx_num = msg_obj_tx_num;
1249        priv->msg_obj_tx_first = priv->msg_obj_rx_last + 1;
1250        priv->msg_obj_tx_last =
1251                priv->msg_obj_tx_first + priv->msg_obj_tx_num - 1;
1252
1253        priv->tx.head = 0;
1254        priv->tx.tail = 0;
1255        priv->tx.obj_num = msg_obj_tx_num;
1256
1257        netif_napi_add(dev, &priv->napi, c_can_poll, priv->msg_obj_rx_num);
1258
1259        priv->dev = dev;
1260        priv->can.bittiming_const = &c_can_bittiming_const;
1261        priv->can.do_set_mode = c_can_set_mode;
1262        priv->can.do_get_berr_counter = c_can_get_berr_counter;
1263        priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1264                                        CAN_CTRLMODE_LISTENONLY |
1265                                        CAN_CTRLMODE_BERR_REPORTING;
1266
1267        return dev;
1268}
1269EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1270
1271#ifdef CONFIG_PM
1272int c_can_power_down(struct net_device *dev)
1273{
1274        u32 val;
1275        unsigned long time_out;
1276        struct c_can_priv *priv = netdev_priv(dev);
1277
1278        if (!(dev->flags & IFF_UP))
1279                return 0;
1280
1281        WARN_ON(priv->type != BOSCH_D_CAN);
1282
1283        /* set PDR value so the device goes to power down mode */
1284        val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1285        val |= CONTROL_EX_PDR;
1286        priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1287
1288        /* Wait for the PDA bit to get set */
1289        time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1290        while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1291               time_after(time_out, jiffies))
1292                cpu_relax();
1293
1294        if (time_after(jiffies, time_out))
1295                return -ETIMEDOUT;
1296
1297        c_can_stop(dev);
1298
1299        c_can_reset_ram(priv, false);
1300        c_can_pm_runtime_put_sync(priv);
1301
1302        return 0;
1303}
1304EXPORT_SYMBOL_GPL(c_can_power_down);
1305
1306int c_can_power_up(struct net_device *dev)
1307{
1308        u32 val;
1309        unsigned long time_out;
1310        struct c_can_priv *priv = netdev_priv(dev);
1311        int ret;
1312
1313        if (!(dev->flags & IFF_UP))
1314                return 0;
1315
1316        WARN_ON(priv->type != BOSCH_D_CAN);
1317
1318        c_can_pm_runtime_get_sync(priv);
1319        c_can_reset_ram(priv, true);
1320
1321        /* Clear PDR and INIT bits */
1322        val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1323        val &= ~CONTROL_EX_PDR;
1324        priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1325        val = priv->read_reg(priv, C_CAN_CTRL_REG);
1326        val &= ~CONTROL_INIT;
1327        priv->write_reg(priv, C_CAN_CTRL_REG, val);
1328
1329        /* Wait for the PDA bit to get clear */
1330        time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1331        while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1332               time_after(time_out, jiffies))
1333                cpu_relax();
1334
1335        if (time_after(jiffies, time_out)) {
1336                ret = -ETIMEDOUT;
1337                goto err_out;
1338        }
1339
1340        ret = c_can_start(dev);
1341        if (ret)
1342                goto err_out;
1343
1344        c_can_irq_control(priv, true);
1345
1346        return 0;
1347
1348err_out:
1349        c_can_reset_ram(priv, false);
1350        c_can_pm_runtime_put_sync(priv);
1351
1352        return ret;
1353}
1354EXPORT_SYMBOL_GPL(c_can_power_up);
1355#endif
1356
1357void free_c_can_dev(struct net_device *dev)
1358{
1359        struct c_can_priv *priv = netdev_priv(dev);
1360
1361        netif_napi_del(&priv->napi);
1362        free_candev(dev);
1363}
1364EXPORT_SYMBOL_GPL(free_c_can_dev);
1365
1366static const struct net_device_ops c_can_netdev_ops = {
1367        .ndo_open = c_can_open,
1368        .ndo_stop = c_can_close,
1369        .ndo_start_xmit = c_can_start_xmit,
1370        .ndo_change_mtu = can_change_mtu,
1371};
1372
1373int register_c_can_dev(struct net_device *dev)
1374{
1375        int err;
1376
1377        /* Deactivate pins to prevent DRA7 DCAN IP from being
1378         * stuck in transition when module is disabled.
1379         * Pins are activated in c_can_start() and deactivated
1380         * in c_can_stop()
1381         */
1382        pinctrl_pm_select_sleep_state(dev->dev.parent);
1383
1384        dev->flags |= IFF_ECHO; /* we support local echo */
1385        dev->netdev_ops = &c_can_netdev_ops;
1386        c_can_set_ethtool_ops(dev);
1387
1388        err = register_candev(dev);
1389        if (!err)
1390                devm_can_led_init(dev);
1391        return err;
1392}
1393EXPORT_SYMBOL_GPL(register_c_can_dev);
1394
1395void unregister_c_can_dev(struct net_device *dev)
1396{
1397        unregister_candev(dev);
1398}
1399EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1400
1401MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1402MODULE_LICENSE("GPL v2");
1403MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1404