linux/drivers/net/ethernet/alteon/acenic.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
   4 *           and other Tigon based cards.
   5 *
   6 * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
   7 *
   8 * Thanks to Alteon and 3Com for providing hardware and documentation
   9 * enabling me to write this driver.
  10 *
  11 * A mailing list for discussing the use of this driver has been
  12 * setup, please subscribe to the lists if you have any questions
  13 * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
  14 * see how to subscribe.
  15 *
  16 * Additional credits:
  17 *   Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
  18 *       dump support. The trace dump support has not been
  19 *       integrated yet however.
  20 *   Troy Benjegerdes: Big Endian (PPC) patches.
  21 *   Nate Stahl: Better out of memory handling and stats support.
  22 *   Aman Singla: Nasty race between interrupt handler and tx code dealing
  23 *                with 'testing the tx_ret_csm and setting tx_full'
  24 *   David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
  25 *                                       infrastructure and Sparc support
  26 *   Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
  27 *                              driver under Linux/Sparc64
  28 *   Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
  29 *                                       ETHTOOL_GDRVINFO support
  30 *   Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
  31 *                                       handler and close() cleanup.
  32 *   Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
  33 *                                       memory mapped IO is enabled to
  34 *                                       make the driver work on RS/6000.
  35 *   Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
  36 *                                       where the driver would disable
  37 *                                       bus master mode if it had to disable
  38 *                                       write and invalidate.
  39 *   Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
  40 *                                       endian systems.
  41 *   Val Henson <vhenson@esscom.com>:    Reset Jumbo skb producer and
  42 *                                       rx producer index when
  43 *                                       flushing the Jumbo ring.
  44 *   Hans Grobler <grobh@sun.ac.za>:     Memory leak fixes in the
  45 *                                       driver init path.
  46 *   Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
  47 */
  48
  49#include <linux/module.h>
  50#include <linux/moduleparam.h>
  51#include <linux/types.h>
  52#include <linux/errno.h>
  53#include <linux/ioport.h>
  54#include <linux/pci.h>
  55#include <linux/dma-mapping.h>
  56#include <linux/kernel.h>
  57#include <linux/netdevice.h>
  58#include <linux/etherdevice.h>
  59#include <linux/skbuff.h>
  60#include <linux/delay.h>
  61#include <linux/mm.h>
  62#include <linux/highmem.h>
  63#include <linux/sockios.h>
  64#include <linux/firmware.h>
  65#include <linux/slab.h>
  66#include <linux/prefetch.h>
  67#include <linux/if_vlan.h>
  68
  69#ifdef SIOCETHTOOL
  70#include <linux/ethtool.h>
  71#endif
  72
  73#include <net/sock.h>
  74#include <net/ip.h>
  75
  76#include <asm/io.h>
  77#include <asm/irq.h>
  78#include <asm/byteorder.h>
  79#include <linux/uaccess.h>
  80
  81
  82#define DRV_NAME "acenic"
  83
  84#undef INDEX_DEBUG
  85
  86#ifdef CONFIG_ACENIC_OMIT_TIGON_I
  87#define ACE_IS_TIGON_I(ap)      0
  88#define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES
  89#else
  90#define ACE_IS_TIGON_I(ap)      (ap->version == 1)
  91#define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries
  92#endif
  93
  94#ifndef PCI_VENDOR_ID_ALTEON
  95#define PCI_VENDOR_ID_ALTEON            0x12ae
  96#endif
  97#ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
  98#define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE  0x0001
  99#define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
 100#endif
 101#ifndef PCI_DEVICE_ID_3COM_3C985
 102#define PCI_DEVICE_ID_3COM_3C985        0x0001
 103#endif
 104#ifndef PCI_VENDOR_ID_NETGEAR
 105#define PCI_VENDOR_ID_NETGEAR           0x1385
 106#define PCI_DEVICE_ID_NETGEAR_GA620     0x620a
 107#endif
 108#ifndef PCI_DEVICE_ID_NETGEAR_GA620T
 109#define PCI_DEVICE_ID_NETGEAR_GA620T    0x630a
 110#endif
 111
 112
 113/*
 114 * Farallon used the DEC vendor ID by mistake and they seem not
 115 * to care - stinky!
 116 */
 117#ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
 118#define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a
 119#endif
 120#ifndef PCI_DEVICE_ID_FARALLON_PN9100T
 121#define PCI_DEVICE_ID_FARALLON_PN9100T  0xfa
 122#endif
 123#ifndef PCI_VENDOR_ID_SGI
 124#define PCI_VENDOR_ID_SGI               0x10a9
 125#endif
 126#ifndef PCI_DEVICE_ID_SGI_ACENIC
 127#define PCI_DEVICE_ID_SGI_ACENIC        0x0009
 128#endif
 129
 130static const struct pci_device_id acenic_pci_tbl[] = {
 131        { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE,
 132          PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 133        { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER,
 134          PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 135        { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985,
 136          PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 137        { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620,
 138          PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 139        { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T,
 140          PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 141        /*
 142         * Farallon used the DEC vendor ID on their cards incorrectly,
 143         * then later Alteon's ID.
 144         */
 145        { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX,
 146          PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 147        { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T,
 148          PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 149        { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC,
 150          PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 151        { }
 152};
 153MODULE_DEVICE_TABLE(pci, acenic_pci_tbl);
 154
 155#define ace_sync_irq(irq)       synchronize_irq(irq)
 156
 157#ifndef offset_in_page
 158#define offset_in_page(ptr)     ((unsigned long)(ptr) & ~PAGE_MASK)
 159#endif
 160
 161#define ACE_MAX_MOD_PARMS       8
 162#define BOARD_IDX_STATIC        0
 163#define BOARD_IDX_OVERFLOW      -1
 164
 165#include "acenic.h"
 166
 167/*
 168 * These must be defined before the firmware is included.
 169 */
 170#define MAX_TEXT_LEN    96*1024
 171#define MAX_RODATA_LEN  8*1024
 172#define MAX_DATA_LEN    2*1024
 173
 174#ifndef tigon2FwReleaseLocal
 175#define tigon2FwReleaseLocal 0
 176#endif
 177
 178/*
 179 * This driver currently supports Tigon I and Tigon II based cards
 180 * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
 181 * GA620. The driver should also work on the SGI, DEC and Farallon
 182 * versions of the card, however I have not been able to test that
 183 * myself.
 184 *
 185 * This card is really neat, it supports receive hardware checksumming
 186 * and jumbo frames (up to 9000 bytes) and does a lot of work in the
 187 * firmware. Also the programming interface is quite neat, except for
 188 * the parts dealing with the i2c eeprom on the card ;-)
 189 *
 190 * Using jumbo frames:
 191 *
 192 * To enable jumbo frames, simply specify an mtu between 1500 and 9000
 193 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
 194 * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
 195 * interface number and <MTU> being the MTU value.
 196 *
 197 * Module parameters:
 198 *
 199 * When compiled as a loadable module, the driver allows for a number
 200 * of module parameters to be specified. The driver supports the
 201 * following module parameters:
 202 *
 203 *  trace=<val> - Firmware trace level. This requires special traced
 204 *                firmware to replace the firmware supplied with
 205 *                the driver - for debugging purposes only.
 206 *
 207 *  link=<val>  - Link state. Normally you want to use the default link
 208 *                parameters set by the driver. This can be used to
 209 *                override these in case your switch doesn't negotiate
 210 *                the link properly. Valid values are:
 211 *         0x0001 - Force half duplex link.
 212 *         0x0002 - Do not negotiate line speed with the other end.
 213 *         0x0010 - 10Mbit/sec link.
 214 *         0x0020 - 100Mbit/sec link.
 215 *         0x0040 - 1000Mbit/sec link.
 216 *         0x0100 - Do not negotiate flow control.
 217 *         0x0200 - Enable RX flow control Y
 218 *         0x0400 - Enable TX flow control Y (Tigon II NICs only).
 219 *                Default value is 0x0270, ie. enable link+flow
 220 *                control negotiation. Negotiating the highest
 221 *                possible link speed with RX flow control enabled.
 222 *
 223 *                When disabling link speed negotiation, only one link
 224 *                speed is allowed to be specified!
 225 *
 226 *  tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
 227 *                to wait for more packets to arive before
 228 *                interrupting the host, from the time the first
 229 *                packet arrives.
 230 *
 231 *  rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
 232 *                to wait for more packets to arive in the transmit ring,
 233 *                before interrupting the host, after transmitting the
 234 *                first packet in the ring.
 235 *
 236 *  max_tx_desc=<val> - maximum number of transmit descriptors
 237 *                (packets) transmitted before interrupting the host.
 238 *
 239 *  max_rx_desc=<val> - maximum number of receive descriptors
 240 *                (packets) received before interrupting the host.
 241 *
 242 *  tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
 243 *                increments of the NIC's on board memory to be used for
 244 *                transmit and receive buffers. For the 1MB NIC app. 800KB
 245 *                is available, on the 1/2MB NIC app. 300KB is available.
 246 *                68KB will always be available as a minimum for both
 247 *                directions. The default value is a 50/50 split.
 248 *  dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
 249 *                operations, default (1) is to always disable this as
 250 *                that is what Alteon does on NT. I have not been able
 251 *                to measure any real performance differences with
 252 *                this on my systems. Set <val>=0 if you want to
 253 *                enable these operations.
 254 *
 255 * If you use more than one NIC, specify the parameters for the
 256 * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
 257 * run tracing on NIC #2 but not on NIC #1 and #3.
 258 *
 259 * TODO:
 260 *
 261 * - Proper multicast support.
 262 * - NIC dump support.
 263 * - More tuning parameters.
 264 *
 265 * The mini ring is not used under Linux and I am not sure it makes sense
 266 * to actually use it.
 267 *
 268 * New interrupt handler strategy:
 269 *
 270 * The old interrupt handler worked using the traditional method of
 271 * replacing an skbuff with a new one when a packet arrives. However
 272 * the rx rings do not need to contain a static number of buffer
 273 * descriptors, thus it makes sense to move the memory allocation out
 274 * of the main interrupt handler and do it in a bottom half handler
 275 * and only allocate new buffers when the number of buffers in the
 276 * ring is below a certain threshold. In order to avoid starving the
 277 * NIC under heavy load it is however necessary to force allocation
 278 * when hitting a minimum threshold. The strategy for alloction is as
 279 * follows:
 280 *
 281 *     RX_LOW_BUF_THRES    - allocate buffers in the bottom half
 282 *     RX_PANIC_LOW_THRES  - we are very low on buffers, allocate
 283 *                           the buffers in the interrupt handler
 284 *     RX_RING_THRES       - maximum number of buffers in the rx ring
 285 *     RX_MINI_THRES       - maximum number of buffers in the mini ring
 286 *     RX_JUMBO_THRES      - maximum number of buffers in the jumbo ring
 287 *
 288 * One advantagous side effect of this allocation approach is that the
 289 * entire rx processing can be done without holding any spin lock
 290 * since the rx rings and registers are totally independent of the tx
 291 * ring and its registers.  This of course includes the kmalloc's of
 292 * new skb's. Thus start_xmit can run in parallel with rx processing
 293 * and the memory allocation on SMP systems.
 294 *
 295 * Note that running the skb reallocation in a bottom half opens up
 296 * another can of races which needs to be handled properly. In
 297 * particular it can happen that the interrupt handler tries to run
 298 * the reallocation while the bottom half is either running on another
 299 * CPU or was interrupted on the same CPU. To get around this the
 300 * driver uses bitops to prevent the reallocation routines from being
 301 * reentered.
 302 *
 303 * TX handling can also be done without holding any spin lock, wheee
 304 * this is fun! since tx_ret_csm is only written to by the interrupt
 305 * handler. The case to be aware of is when shutting down the device
 306 * and cleaning up where it is necessary to make sure that
 307 * start_xmit() is not running while this is happening. Well DaveM
 308 * informs me that this case is already protected against ... bye bye
 309 * Mr. Spin Lock, it was nice to know you.
 310 *
 311 * TX interrupts are now partly disabled so the NIC will only generate
 312 * TX interrupts for the number of coal ticks, not for the number of
 313 * TX packets in the queue. This should reduce the number of TX only,
 314 * ie. when no RX processing is done, interrupts seen.
 315 */
 316
 317/*
 318 * Threshold values for RX buffer allocation - the low water marks for
 319 * when to start refilling the rings are set to 75% of the ring
 320 * sizes. It seems to make sense to refill the rings entirely from the
 321 * intrrupt handler once it gets below the panic threshold, that way
 322 * we don't risk that the refilling is moved to another CPU when the
 323 * one running the interrupt handler just got the slab code hot in its
 324 * cache.
 325 */
 326#define RX_RING_SIZE            72
 327#define RX_MINI_SIZE            64
 328#define RX_JUMBO_SIZE           48
 329
 330#define RX_PANIC_STD_THRES      16
 331#define RX_PANIC_STD_REFILL     (3*RX_PANIC_STD_THRES)/2
 332#define RX_LOW_STD_THRES        (3*RX_RING_SIZE)/4
 333#define RX_PANIC_MINI_THRES     12
 334#define RX_PANIC_MINI_REFILL    (3*RX_PANIC_MINI_THRES)/2
 335#define RX_LOW_MINI_THRES       (3*RX_MINI_SIZE)/4
 336#define RX_PANIC_JUMBO_THRES    6
 337#define RX_PANIC_JUMBO_REFILL   (3*RX_PANIC_JUMBO_THRES)/2
 338#define RX_LOW_JUMBO_THRES      (3*RX_JUMBO_SIZE)/4
 339
 340
 341/*
 342 * Size of the mini ring entries, basically these just should be big
 343 * enough to take TCP ACKs
 344 */
 345#define ACE_MINI_SIZE           100
 346
 347#define ACE_MINI_BUFSIZE        ACE_MINI_SIZE
 348#define ACE_STD_BUFSIZE         (ACE_STD_MTU + ETH_HLEN + 4)
 349#define ACE_JUMBO_BUFSIZE       (ACE_JUMBO_MTU + ETH_HLEN + 4)
 350
 351/*
 352 * There seems to be a magic difference in the effect between 995 and 996
 353 * but little difference between 900 and 995 ... no idea why.
 354 *
 355 * There is now a default set of tuning parameters which is set, depending
 356 * on whether or not the user enables Jumbo frames. It's assumed that if
 357 * Jumbo frames are enabled, the user wants optimal tuning for that case.
 358 */
 359#define DEF_TX_COAL             400 /* 996 */
 360#define DEF_TX_MAX_DESC         60  /* was 40 */
 361#define DEF_RX_COAL             120 /* 1000 */
 362#define DEF_RX_MAX_DESC         25
 363#define DEF_TX_RATIO            21 /* 24 */
 364
 365#define DEF_JUMBO_TX_COAL       20
 366#define DEF_JUMBO_TX_MAX_DESC   60
 367#define DEF_JUMBO_RX_COAL       30
 368#define DEF_JUMBO_RX_MAX_DESC   6
 369#define DEF_JUMBO_TX_RATIO      21
 370
 371#if tigon2FwReleaseLocal < 20001118
 372/*
 373 * Standard firmware and early modifications duplicate
 374 * IRQ load without this flag (coal timer is never reset).
 375 * Note that with this flag tx_coal should be less than
 376 * time to xmit full tx ring.
 377 * 400usec is not so bad for tx ring size of 128.
 378 */
 379#define TX_COAL_INTS_ONLY       1       /* worth it */
 380#else
 381/*
 382 * With modified firmware, this is not necessary, but still useful.
 383 */
 384#define TX_COAL_INTS_ONLY       1
 385#endif
 386
 387#define DEF_TRACE               0
 388#define DEF_STAT                (2 * TICKS_PER_SEC)
 389
 390
 391static int link_state[ACE_MAX_MOD_PARMS];
 392static int trace[ACE_MAX_MOD_PARMS];
 393static int tx_coal_tick[ACE_MAX_MOD_PARMS];
 394static int rx_coal_tick[ACE_MAX_MOD_PARMS];
 395static int max_tx_desc[ACE_MAX_MOD_PARMS];
 396static int max_rx_desc[ACE_MAX_MOD_PARMS];
 397static int tx_ratio[ACE_MAX_MOD_PARMS];
 398static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1};
 399
 400MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
 401MODULE_LICENSE("GPL");
 402MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
 403#ifndef CONFIG_ACENIC_OMIT_TIGON_I
 404MODULE_FIRMWARE("acenic/tg1.bin");
 405#endif
 406MODULE_FIRMWARE("acenic/tg2.bin");
 407
 408module_param_array_named(link, link_state, int, NULL, 0);
 409module_param_array(trace, int, NULL, 0);
 410module_param_array(tx_coal_tick, int, NULL, 0);
 411module_param_array(max_tx_desc, int, NULL, 0);
 412module_param_array(rx_coal_tick, int, NULL, 0);
 413module_param_array(max_rx_desc, int, NULL, 0);
 414module_param_array(tx_ratio, int, NULL, 0);
 415MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state");
 416MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level");
 417MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
 418MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
 419MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
 420MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
 421MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
 422
 423
 424static const char version[] =
 425  "acenic.c: v0.92 08/05/2002  Jes Sorensen, linux-acenic@SunSITE.dk\n"
 426  "                            http://home.cern.ch/~jes/gige/acenic.html\n";
 427
 428static int ace_get_link_ksettings(struct net_device *,
 429                                  struct ethtool_link_ksettings *);
 430static int ace_set_link_ksettings(struct net_device *,
 431                                  const struct ethtool_link_ksettings *);
 432static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *);
 433
 434static const struct ethtool_ops ace_ethtool_ops = {
 435        .get_drvinfo = ace_get_drvinfo,
 436        .get_link_ksettings = ace_get_link_ksettings,
 437        .set_link_ksettings = ace_set_link_ksettings,
 438};
 439
 440static void ace_watchdog(struct net_device *dev, unsigned int txqueue);
 441
 442static const struct net_device_ops ace_netdev_ops = {
 443        .ndo_open               = ace_open,
 444        .ndo_stop               = ace_close,
 445        .ndo_tx_timeout         = ace_watchdog,
 446        .ndo_get_stats          = ace_get_stats,
 447        .ndo_start_xmit         = ace_start_xmit,
 448        .ndo_set_rx_mode        = ace_set_multicast_list,
 449        .ndo_validate_addr      = eth_validate_addr,
 450        .ndo_set_mac_address    = ace_set_mac_addr,
 451        .ndo_change_mtu         = ace_change_mtu,
 452};
 453
 454static int acenic_probe_one(struct pci_dev *pdev,
 455                            const struct pci_device_id *id)
 456{
 457        struct net_device *dev;
 458        struct ace_private *ap;
 459        static int boards_found;
 460
 461        dev = alloc_etherdev(sizeof(struct ace_private));
 462        if (dev == NULL)
 463                return -ENOMEM;
 464
 465        SET_NETDEV_DEV(dev, &pdev->dev);
 466
 467        ap = netdev_priv(dev);
 468        ap->ndev = dev;
 469        ap->pdev = pdev;
 470        ap->name = pci_name(pdev);
 471
 472        dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
 473        dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
 474
 475        dev->watchdog_timeo = 5*HZ;
 476        dev->min_mtu = 0;
 477        dev->max_mtu = ACE_JUMBO_MTU;
 478
 479        dev->netdev_ops = &ace_netdev_ops;
 480        dev->ethtool_ops = &ace_ethtool_ops;
 481
 482        /* we only display this string ONCE */
 483        if (!boards_found)
 484                printk(version);
 485
 486        if (pci_enable_device(pdev))
 487                goto fail_free_netdev;
 488
 489        /*
 490         * Enable master mode before we start playing with the
 491         * pci_command word since pci_set_master() will modify
 492         * it.
 493         */
 494        pci_set_master(pdev);
 495
 496        pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command);
 497
 498        /* OpenFirmware on Mac's does not set this - DOH.. */
 499        if (!(ap->pci_command & PCI_COMMAND_MEMORY)) {
 500                printk(KERN_INFO "%s: Enabling PCI Memory Mapped "
 501                       "access - was not enabled by BIOS/Firmware\n",
 502                       ap->name);
 503                ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY;
 504                pci_write_config_word(ap->pdev, PCI_COMMAND,
 505                                      ap->pci_command);
 506                wmb();
 507        }
 508
 509        pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency);
 510        if (ap->pci_latency <= 0x40) {
 511                ap->pci_latency = 0x40;
 512                pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency);
 513        }
 514
 515        /*
 516         * Remap the regs into kernel space - this is abuse of
 517         * dev->base_addr since it was means for I/O port
 518         * addresses but who gives a damn.
 519         */
 520        dev->base_addr = pci_resource_start(pdev, 0);
 521        ap->regs = ioremap(dev->base_addr, 0x4000);
 522        if (!ap->regs) {
 523                printk(KERN_ERR "%s:  Unable to map I/O register, "
 524                       "AceNIC %i will be disabled.\n",
 525                       ap->name, boards_found);
 526                goto fail_free_netdev;
 527        }
 528
 529        switch(pdev->vendor) {
 530        case PCI_VENDOR_ID_ALTEON:
 531                if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) {
 532                        printk(KERN_INFO "%s: Farallon PN9100-T ",
 533                               ap->name);
 534                } else {
 535                        printk(KERN_INFO "%s: Alteon AceNIC ",
 536                               ap->name);
 537                }
 538                break;
 539        case PCI_VENDOR_ID_3COM:
 540                printk(KERN_INFO "%s: 3Com 3C985 ", ap->name);
 541                break;
 542        case PCI_VENDOR_ID_NETGEAR:
 543                printk(KERN_INFO "%s: NetGear GA620 ", ap->name);
 544                break;
 545        case PCI_VENDOR_ID_DEC:
 546                if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) {
 547                        printk(KERN_INFO "%s: Farallon PN9000-SX ",
 548                               ap->name);
 549                        break;
 550                }
 551                fallthrough;
 552        case PCI_VENDOR_ID_SGI:
 553                printk(KERN_INFO "%s: SGI AceNIC ", ap->name);
 554                break;
 555        default:
 556                printk(KERN_INFO "%s: Unknown AceNIC ", ap->name);
 557                break;
 558        }
 559
 560        printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr);
 561        printk("irq %d\n", pdev->irq);
 562
 563#ifdef CONFIG_ACENIC_OMIT_TIGON_I
 564        if ((readl(&ap->regs->HostCtrl) >> 28) == 4) {
 565                printk(KERN_ERR "%s: Driver compiled without Tigon I"
 566                       " support - NIC disabled\n", dev->name);
 567                goto fail_uninit;
 568        }
 569#endif
 570
 571        if (ace_allocate_descriptors(dev))
 572                goto fail_free_netdev;
 573
 574#ifdef MODULE
 575        if (boards_found >= ACE_MAX_MOD_PARMS)
 576                ap->board_idx = BOARD_IDX_OVERFLOW;
 577        else
 578                ap->board_idx = boards_found;
 579#else
 580        ap->board_idx = BOARD_IDX_STATIC;
 581#endif
 582
 583        if (ace_init(dev))
 584                goto fail_free_netdev;
 585
 586        if (register_netdev(dev)) {
 587                printk(KERN_ERR "acenic: device registration failed\n");
 588                goto fail_uninit;
 589        }
 590        ap->name = dev->name;
 591
 592        if (ap->pci_using_dac)
 593                dev->features |= NETIF_F_HIGHDMA;
 594
 595        pci_set_drvdata(pdev, dev);
 596
 597        boards_found++;
 598        return 0;
 599
 600 fail_uninit:
 601        ace_init_cleanup(dev);
 602 fail_free_netdev:
 603        free_netdev(dev);
 604        return -ENODEV;
 605}
 606
 607static void acenic_remove_one(struct pci_dev *pdev)
 608{
 609        struct net_device *dev = pci_get_drvdata(pdev);
 610        struct ace_private *ap = netdev_priv(dev);
 611        struct ace_regs __iomem *regs = ap->regs;
 612        short i;
 613
 614        unregister_netdev(dev);
 615
 616        writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
 617        if (ap->version >= 2)
 618                writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
 619
 620        /*
 621         * This clears any pending interrupts
 622         */
 623        writel(1, &regs->Mb0Lo);
 624        readl(&regs->CpuCtrl);  /* flush */
 625
 626        /*
 627         * Make sure no other CPUs are processing interrupts
 628         * on the card before the buffers are being released.
 629         * Otherwise one might experience some `interesting'
 630         * effects.
 631         *
 632         * Then release the RX buffers - jumbo buffers were
 633         * already released in ace_close().
 634         */
 635        ace_sync_irq(dev->irq);
 636
 637        for (i = 0; i < RX_STD_RING_ENTRIES; i++) {
 638                struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb;
 639
 640                if (skb) {
 641                        struct ring_info *ringp;
 642                        dma_addr_t mapping;
 643
 644                        ringp = &ap->skb->rx_std_skbuff[i];
 645                        mapping = dma_unmap_addr(ringp, mapping);
 646                        dma_unmap_page(&ap->pdev->dev, mapping,
 647                                       ACE_STD_BUFSIZE, DMA_FROM_DEVICE);
 648
 649                        ap->rx_std_ring[i].size = 0;
 650                        ap->skb->rx_std_skbuff[i].skb = NULL;
 651                        dev_kfree_skb(skb);
 652                }
 653        }
 654
 655        if (ap->version >= 2) {
 656                for (i = 0; i < RX_MINI_RING_ENTRIES; i++) {
 657                        struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb;
 658
 659                        if (skb) {
 660                                struct ring_info *ringp;
 661                                dma_addr_t mapping;
 662
 663                                ringp = &ap->skb->rx_mini_skbuff[i];
 664                                mapping = dma_unmap_addr(ringp,mapping);
 665                                dma_unmap_page(&ap->pdev->dev, mapping,
 666                                               ACE_MINI_BUFSIZE,
 667                                               DMA_FROM_DEVICE);
 668
 669                                ap->rx_mini_ring[i].size = 0;
 670                                ap->skb->rx_mini_skbuff[i].skb = NULL;
 671                                dev_kfree_skb(skb);
 672                        }
 673                }
 674        }
 675
 676        for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
 677                struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb;
 678                if (skb) {
 679                        struct ring_info *ringp;
 680                        dma_addr_t mapping;
 681
 682                        ringp = &ap->skb->rx_jumbo_skbuff[i];
 683                        mapping = dma_unmap_addr(ringp, mapping);
 684                        dma_unmap_page(&ap->pdev->dev, mapping,
 685                                       ACE_JUMBO_BUFSIZE, DMA_FROM_DEVICE);
 686
 687                        ap->rx_jumbo_ring[i].size = 0;
 688                        ap->skb->rx_jumbo_skbuff[i].skb = NULL;
 689                        dev_kfree_skb(skb);
 690                }
 691        }
 692
 693        ace_init_cleanup(dev);
 694        free_netdev(dev);
 695}
 696
 697static struct pci_driver acenic_pci_driver = {
 698        .name           = "acenic",
 699        .id_table       = acenic_pci_tbl,
 700        .probe          = acenic_probe_one,
 701        .remove         = acenic_remove_one,
 702};
 703
 704static void ace_free_descriptors(struct net_device *dev)
 705{
 706        struct ace_private *ap = netdev_priv(dev);
 707        int size;
 708
 709        if (ap->rx_std_ring != NULL) {
 710                size = (sizeof(struct rx_desc) *
 711                        (RX_STD_RING_ENTRIES +
 712                         RX_JUMBO_RING_ENTRIES +
 713                         RX_MINI_RING_ENTRIES +
 714                         RX_RETURN_RING_ENTRIES));
 715                dma_free_coherent(&ap->pdev->dev, size, ap->rx_std_ring,
 716                                  ap->rx_ring_base_dma);
 717                ap->rx_std_ring = NULL;
 718                ap->rx_jumbo_ring = NULL;
 719                ap->rx_mini_ring = NULL;
 720                ap->rx_return_ring = NULL;
 721        }
 722        if (ap->evt_ring != NULL) {
 723                size = (sizeof(struct event) * EVT_RING_ENTRIES);
 724                dma_free_coherent(&ap->pdev->dev, size, ap->evt_ring,
 725                                  ap->evt_ring_dma);
 726                ap->evt_ring = NULL;
 727        }
 728        if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) {
 729                size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
 730                dma_free_coherent(&ap->pdev->dev, size, ap->tx_ring,
 731                                  ap->tx_ring_dma);
 732        }
 733        ap->tx_ring = NULL;
 734
 735        if (ap->evt_prd != NULL) {
 736                dma_free_coherent(&ap->pdev->dev, sizeof(u32),
 737                                  (void *)ap->evt_prd, ap->evt_prd_dma);
 738                ap->evt_prd = NULL;
 739        }
 740        if (ap->rx_ret_prd != NULL) {
 741                dma_free_coherent(&ap->pdev->dev, sizeof(u32),
 742                                  (void *)ap->rx_ret_prd, ap->rx_ret_prd_dma);
 743                ap->rx_ret_prd = NULL;
 744        }
 745        if (ap->tx_csm != NULL) {
 746                dma_free_coherent(&ap->pdev->dev, sizeof(u32),
 747                                  (void *)ap->tx_csm, ap->tx_csm_dma);
 748                ap->tx_csm = NULL;
 749        }
 750}
 751
 752
 753static int ace_allocate_descriptors(struct net_device *dev)
 754{
 755        struct ace_private *ap = netdev_priv(dev);
 756        int size;
 757
 758        size = (sizeof(struct rx_desc) *
 759                (RX_STD_RING_ENTRIES +
 760                 RX_JUMBO_RING_ENTRIES +
 761                 RX_MINI_RING_ENTRIES +
 762                 RX_RETURN_RING_ENTRIES));
 763
 764        ap->rx_std_ring = dma_alloc_coherent(&ap->pdev->dev, size,
 765                                             &ap->rx_ring_base_dma, GFP_KERNEL);
 766        if (ap->rx_std_ring == NULL)
 767                goto fail;
 768
 769        ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES;
 770        ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES;
 771        ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES;
 772
 773        size = (sizeof(struct event) * EVT_RING_ENTRIES);
 774
 775        ap->evt_ring = dma_alloc_coherent(&ap->pdev->dev, size,
 776                                          &ap->evt_ring_dma, GFP_KERNEL);
 777
 778        if (ap->evt_ring == NULL)
 779                goto fail;
 780
 781        /*
 782         * Only allocate a host TX ring for the Tigon II, the Tigon I
 783         * has to use PCI registers for this ;-(
 784         */
 785        if (!ACE_IS_TIGON_I(ap)) {
 786                size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
 787
 788                ap->tx_ring = dma_alloc_coherent(&ap->pdev->dev, size,
 789                                                 &ap->tx_ring_dma, GFP_KERNEL);
 790
 791                if (ap->tx_ring == NULL)
 792                        goto fail;
 793        }
 794
 795        ap->evt_prd = dma_alloc_coherent(&ap->pdev->dev, sizeof(u32),
 796                                         &ap->evt_prd_dma, GFP_KERNEL);
 797        if (ap->evt_prd == NULL)
 798                goto fail;
 799
 800        ap->rx_ret_prd = dma_alloc_coherent(&ap->pdev->dev, sizeof(u32),
 801                                            &ap->rx_ret_prd_dma, GFP_KERNEL);
 802        if (ap->rx_ret_prd == NULL)
 803                goto fail;
 804
 805        ap->tx_csm = dma_alloc_coherent(&ap->pdev->dev, sizeof(u32),
 806                                        &ap->tx_csm_dma, GFP_KERNEL);
 807        if (ap->tx_csm == NULL)
 808                goto fail;
 809
 810        return 0;
 811
 812fail:
 813        /* Clean up. */
 814        ace_init_cleanup(dev);
 815        return 1;
 816}
 817
 818
 819/*
 820 * Generic cleanup handling data allocated during init. Used when the
 821 * module is unloaded or if an error occurs during initialization
 822 */
 823static void ace_init_cleanup(struct net_device *dev)
 824{
 825        struct ace_private *ap;
 826
 827        ap = netdev_priv(dev);
 828
 829        ace_free_descriptors(dev);
 830
 831        if (ap->info)
 832                dma_free_coherent(&ap->pdev->dev, sizeof(struct ace_info),
 833                                  ap->info, ap->info_dma);
 834        kfree(ap->skb);
 835        kfree(ap->trace_buf);
 836
 837        if (dev->irq)
 838                free_irq(dev->irq, dev);
 839
 840        iounmap(ap->regs);
 841}
 842
 843
 844/*
 845 * Commands are considered to be slow.
 846 */
 847static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd)
 848{
 849        u32 idx;
 850
 851        idx = readl(&regs->CmdPrd);
 852
 853        writel(*(u32 *)(cmd), &regs->CmdRng[idx]);
 854        idx = (idx + 1) % CMD_RING_ENTRIES;
 855
 856        writel(idx, &regs->CmdPrd);
 857}
 858
 859
 860static int ace_init(struct net_device *dev)
 861{
 862        struct ace_private *ap;
 863        struct ace_regs __iomem *regs;
 864        struct ace_info *info = NULL;
 865        struct pci_dev *pdev;
 866        unsigned long myjif;
 867        u64 tmp_ptr;
 868        u32 tig_ver, mac1, mac2, tmp, pci_state;
 869        int board_idx, ecode = 0;
 870        short i;
 871        unsigned char cache_size;
 872
 873        ap = netdev_priv(dev);
 874        regs = ap->regs;
 875
 876        board_idx = ap->board_idx;
 877
 878        /*
 879         * aman@sgi.com - its useful to do a NIC reset here to
 880         * address the `Firmware not running' problem subsequent
 881         * to any crashes involving the NIC
 882         */
 883        writel(HW_RESET | (HW_RESET << 24), &regs->HostCtrl);
 884        readl(&regs->HostCtrl);         /* PCI write posting */
 885        udelay(5);
 886
 887        /*
 888         * Don't access any other registers before this point!
 889         */
 890#ifdef __BIG_ENDIAN
 891        /*
 892         * This will most likely need BYTE_SWAP once we switch
 893         * to using __raw_writel()
 894         */
 895        writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)),
 896               &regs->HostCtrl);
 897#else
 898        writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)),
 899               &regs->HostCtrl);
 900#endif
 901        readl(&regs->HostCtrl);         /* PCI write posting */
 902
 903        /*
 904         * Stop the NIC CPU and clear pending interrupts
 905         */
 906        writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
 907        readl(&regs->CpuCtrl);          /* PCI write posting */
 908        writel(0, &regs->Mb0Lo);
 909
 910        tig_ver = readl(&regs->HostCtrl) >> 28;
 911
 912        switch(tig_ver){
 913#ifndef CONFIG_ACENIC_OMIT_TIGON_I
 914        case 4:
 915        case 5:
 916                printk(KERN_INFO "  Tigon I  (Rev. %i), Firmware: %i.%i.%i, ",
 917                       tig_ver, ap->firmware_major, ap->firmware_minor,
 918                       ap->firmware_fix);
 919                writel(0, &regs->LocalCtrl);
 920                ap->version = 1;
 921                ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES;
 922                break;
 923#endif
 924        case 6:
 925                printk(KERN_INFO "  Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
 926                       tig_ver, ap->firmware_major, ap->firmware_minor,
 927                       ap->firmware_fix);
 928                writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
 929                readl(&regs->CpuBCtrl);         /* PCI write posting */
 930                /*
 931                 * The SRAM bank size does _not_ indicate the amount
 932                 * of memory on the card, it controls the _bank_ size!
 933                 * Ie. a 1MB AceNIC will have two banks of 512KB.
 934                 */
 935                writel(SRAM_BANK_512K, &regs->LocalCtrl);
 936                writel(SYNC_SRAM_TIMING, &regs->MiscCfg);
 937                ap->version = 2;
 938                ap->tx_ring_entries = MAX_TX_RING_ENTRIES;
 939                break;
 940        default:
 941                printk(KERN_WARNING "  Unsupported Tigon version detected "
 942                       "(%i)\n", tig_ver);
 943                ecode = -ENODEV;
 944                goto init_error;
 945        }
 946
 947        /*
 948         * ModeStat _must_ be set after the SRAM settings as this change
 949         * seems to corrupt the ModeStat and possible other registers.
 950         * The SRAM settings survive resets and setting it to the same
 951         * value a second time works as well. This is what caused the
 952         * `Firmware not running' problem on the Tigon II.
 953         */
 954#ifdef __BIG_ENDIAN
 955        writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD |
 956               ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
 957#else
 958        writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL |
 959               ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
 960#endif
 961        readl(&regs->ModeStat);         /* PCI write posting */
 962
 963        mac1 = 0;
 964        for(i = 0; i < 4; i++) {
 965                int t;
 966
 967                mac1 = mac1 << 8;
 968                t = read_eeprom_byte(dev, 0x8c+i);
 969                if (t < 0) {
 970                        ecode = -EIO;
 971                        goto init_error;
 972                } else
 973                        mac1 |= (t & 0xff);
 974        }
 975        mac2 = 0;
 976        for(i = 4; i < 8; i++) {
 977                int t;
 978
 979                mac2 = mac2 << 8;
 980                t = read_eeprom_byte(dev, 0x8c+i);
 981                if (t < 0) {
 982                        ecode = -EIO;
 983                        goto init_error;
 984                } else
 985                        mac2 |= (t & 0xff);
 986        }
 987
 988        writel(mac1, &regs->MacAddrHi);
 989        writel(mac2, &regs->MacAddrLo);
 990
 991        dev->dev_addr[0] = (mac1 >> 8) & 0xff;
 992        dev->dev_addr[1] = mac1 & 0xff;
 993        dev->dev_addr[2] = (mac2 >> 24) & 0xff;
 994        dev->dev_addr[3] = (mac2 >> 16) & 0xff;
 995        dev->dev_addr[4] = (mac2 >> 8) & 0xff;
 996        dev->dev_addr[5] = mac2 & 0xff;
 997
 998        printk("MAC: %pM\n", dev->dev_addr);
 999
1000        /*
1001         * Looks like this is necessary to deal with on all architectures,
1002         * even this %$#%$# N440BX Intel based thing doesn't get it right.
1003         * Ie. having two NICs in the machine, one will have the cache
1004         * line set at boot time, the other will not.
1005         */
1006        pdev = ap->pdev;
1007        pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size);
1008        cache_size <<= 2;
1009        if (cache_size != SMP_CACHE_BYTES) {
1010                printk(KERN_INFO "  PCI cache line size set incorrectly "
1011                       "(%i bytes) by BIOS/FW, ", cache_size);
1012                if (cache_size > SMP_CACHE_BYTES)
1013                        printk("expecting %i\n", SMP_CACHE_BYTES);
1014                else {
1015                        printk("correcting to %i\n", SMP_CACHE_BYTES);
1016                        pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
1017                                              SMP_CACHE_BYTES >> 2);
1018                }
1019        }
1020
1021        pci_state = readl(&regs->PciState);
1022        printk(KERN_INFO "  PCI bus width: %i bits, speed: %iMHz, "
1023               "latency: %i clks\n",
1024                (pci_state & PCI_32BIT) ? 32 : 64,
1025                (pci_state & PCI_66MHZ) ? 66 : 33,
1026                ap->pci_latency);
1027
1028        /*
1029         * Set the max DMA transfer size. Seems that for most systems
1030         * the performance is better when no MAX parameter is
1031         * set. However for systems enabling PCI write and invalidate,
1032         * DMA writes must be set to the L1 cache line size to get
1033         * optimal performance.
1034         *
1035         * The default is now to turn the PCI write and invalidate off
1036         * - that is what Alteon does for NT.
1037         */
1038        tmp = READ_CMD_MEM | WRITE_CMD_MEM;
1039        if (ap->version >= 2) {
1040                tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ));
1041                /*
1042                 * Tuning parameters only supported for 8 cards
1043                 */
1044                if (board_idx == BOARD_IDX_OVERFLOW ||
1045                    dis_pci_mem_inval[board_idx]) {
1046                        if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1047                                ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1048                                pci_write_config_word(pdev, PCI_COMMAND,
1049                                                      ap->pci_command);
1050                                printk(KERN_INFO "  Disabling PCI memory "
1051                                       "write and invalidate\n");
1052                        }
1053                } else if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1054                        printk(KERN_INFO "  PCI memory write & invalidate "
1055                               "enabled by BIOS, enabling counter measures\n");
1056
1057                        switch(SMP_CACHE_BYTES) {
1058                        case 16:
1059                                tmp |= DMA_WRITE_MAX_16;
1060                                break;
1061                        case 32:
1062                                tmp |= DMA_WRITE_MAX_32;
1063                                break;
1064                        case 64:
1065                                tmp |= DMA_WRITE_MAX_64;
1066                                break;
1067                        case 128:
1068                                tmp |= DMA_WRITE_MAX_128;
1069                                break;
1070                        default:
1071                                printk(KERN_INFO "  Cache line size %i not "
1072                                       "supported, PCI write and invalidate "
1073                                       "disabled\n", SMP_CACHE_BYTES);
1074                                ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1075                                pci_write_config_word(pdev, PCI_COMMAND,
1076                                                      ap->pci_command);
1077                        }
1078                }
1079        }
1080
1081#ifdef __sparc__
1082        /*
1083         * On this platform, we know what the best dma settings
1084         * are.  We use 64-byte maximum bursts, because if we
1085         * burst larger than the cache line size (or even cross
1086         * a 64byte boundary in a single burst) the UltraSparc
1087         * PCI controller will disconnect at 64-byte multiples.
1088         *
1089         * Read-multiple will be properly enabled above, and when
1090         * set will give the PCI controller proper hints about
1091         * prefetching.
1092         */
1093        tmp &= ~DMA_READ_WRITE_MASK;
1094        tmp |= DMA_READ_MAX_64;
1095        tmp |= DMA_WRITE_MAX_64;
1096#endif
1097#ifdef __alpha__
1098        tmp &= ~DMA_READ_WRITE_MASK;
1099        tmp |= DMA_READ_MAX_128;
1100        /*
1101         * All the docs say MUST NOT. Well, I did.
1102         * Nothing terrible happens, if we load wrong size.
1103         * Bit w&i still works better!
1104         */
1105        tmp |= DMA_WRITE_MAX_128;
1106#endif
1107        writel(tmp, &regs->PciState);
1108
1109#if 0
1110        /*
1111         * The Host PCI bus controller driver has to set FBB.
1112         * If all devices on that PCI bus support FBB, then the controller
1113         * can enable FBB support in the Host PCI Bus controller (or on
1114         * the PCI-PCI bridge if that applies).
1115         * -ggg
1116         */
1117        /*
1118         * I have received reports from people having problems when this
1119         * bit is enabled.
1120         */
1121        if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) {
1122                printk(KERN_INFO "  Enabling PCI Fast Back to Back\n");
1123                ap->pci_command |= PCI_COMMAND_FAST_BACK;
1124                pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command);
1125        }
1126#endif
1127
1128        /*
1129         * Configure DMA attributes.
1130         */
1131        if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
1132                ap->pci_using_dac = 1;
1133        } else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
1134                ap->pci_using_dac = 0;
1135        } else {
1136                ecode = -ENODEV;
1137                goto init_error;
1138        }
1139
1140        /*
1141         * Initialize the generic info block and the command+event rings
1142         * and the control blocks for the transmit and receive rings
1143         * as they need to be setup once and for all.
1144         */
1145        if (!(info = dma_alloc_coherent(&ap->pdev->dev, sizeof(struct ace_info),
1146                                        &ap->info_dma, GFP_KERNEL))) {
1147                ecode = -EAGAIN;
1148                goto init_error;
1149        }
1150        ap->info = info;
1151
1152        /*
1153         * Get the memory for the skb rings.
1154         */
1155        if (!(ap->skb = kzalloc(sizeof(struct ace_skb), GFP_KERNEL))) {
1156                ecode = -EAGAIN;
1157                goto init_error;
1158        }
1159
1160        ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED,
1161                            DRV_NAME, dev);
1162        if (ecode) {
1163                printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1164                       DRV_NAME, pdev->irq);
1165                goto init_error;
1166        } else
1167                dev->irq = pdev->irq;
1168
1169#ifdef INDEX_DEBUG
1170        spin_lock_init(&ap->debug_lock);
1171        ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1;
1172        ap->last_std_rx = 0;
1173        ap->last_mini_rx = 0;
1174#endif
1175
1176        ecode = ace_load_firmware(dev);
1177        if (ecode)
1178                goto init_error;
1179
1180        ap->fw_running = 0;
1181
1182        tmp_ptr = ap->info_dma;
1183        writel(tmp_ptr >> 32, &regs->InfoPtrHi);
1184        writel(tmp_ptr & 0xffffffff, &regs->InfoPtrLo);
1185
1186        memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event));
1187
1188        set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma);
1189        info->evt_ctrl.flags = 0;
1190
1191        *(ap->evt_prd) = 0;
1192        wmb();
1193        set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma);
1194        writel(0, &regs->EvtCsm);
1195
1196        set_aceaddr(&info->cmd_ctrl.rngptr, 0x100);
1197        info->cmd_ctrl.flags = 0;
1198        info->cmd_ctrl.max_len = 0;
1199
1200        for (i = 0; i < CMD_RING_ENTRIES; i++)
1201                writel(0, &regs->CmdRng[i]);
1202
1203        writel(0, &regs->CmdPrd);
1204        writel(0, &regs->CmdCsm);
1205
1206        tmp_ptr = ap->info_dma;
1207        tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats);
1208        set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr);
1209
1210        set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma);
1211        info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE;
1212        info->rx_std_ctrl.flags =
1213          RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1214
1215        memset(ap->rx_std_ring, 0,
1216               RX_STD_RING_ENTRIES * sizeof(struct rx_desc));
1217
1218        for (i = 0; i < RX_STD_RING_ENTRIES; i++)
1219                ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM;
1220
1221        ap->rx_std_skbprd = 0;
1222        atomic_set(&ap->cur_rx_bufs, 0);
1223
1224        set_aceaddr(&info->rx_jumbo_ctrl.rngptr,
1225                    (ap->rx_ring_base_dma +
1226                     (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES)));
1227        info->rx_jumbo_ctrl.max_len = 0;
1228        info->rx_jumbo_ctrl.flags =
1229          RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1230
1231        memset(ap->rx_jumbo_ring, 0,
1232               RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc));
1233
1234        for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++)
1235                ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO;
1236
1237        ap->rx_jumbo_skbprd = 0;
1238        atomic_set(&ap->cur_jumbo_bufs, 0);
1239
1240        memset(ap->rx_mini_ring, 0,
1241               RX_MINI_RING_ENTRIES * sizeof(struct rx_desc));
1242
1243        if (ap->version >= 2) {
1244                set_aceaddr(&info->rx_mini_ctrl.rngptr,
1245                            (ap->rx_ring_base_dma +
1246                             (sizeof(struct rx_desc) *
1247                              (RX_STD_RING_ENTRIES +
1248                               RX_JUMBO_RING_ENTRIES))));
1249                info->rx_mini_ctrl.max_len = ACE_MINI_SIZE;
1250                info->rx_mini_ctrl.flags =
1251                  RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|RCB_FLG_VLAN_ASSIST;
1252
1253                for (i = 0; i < RX_MINI_RING_ENTRIES; i++)
1254                        ap->rx_mini_ring[i].flags =
1255                                BD_FLG_TCP_UDP_SUM | BD_FLG_MINI;
1256        } else {
1257                set_aceaddr(&info->rx_mini_ctrl.rngptr, 0);
1258                info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE;
1259                info->rx_mini_ctrl.max_len = 0;
1260        }
1261
1262        ap->rx_mini_skbprd = 0;
1263        atomic_set(&ap->cur_mini_bufs, 0);
1264
1265        set_aceaddr(&info->rx_return_ctrl.rngptr,
1266                    (ap->rx_ring_base_dma +
1267                     (sizeof(struct rx_desc) *
1268                      (RX_STD_RING_ENTRIES +
1269                       RX_JUMBO_RING_ENTRIES +
1270                       RX_MINI_RING_ENTRIES))));
1271        info->rx_return_ctrl.flags = 0;
1272        info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES;
1273
1274        memset(ap->rx_return_ring, 0,
1275               RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc));
1276
1277        set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma);
1278        *(ap->rx_ret_prd) = 0;
1279
1280        writel(TX_RING_BASE, &regs->WinBase);
1281
1282        if (ACE_IS_TIGON_I(ap)) {
1283                ap->tx_ring = (__force struct tx_desc *) regs->Window;
1284                for (i = 0; i < (TIGON_I_TX_RING_ENTRIES
1285                                 * sizeof(struct tx_desc)) / sizeof(u32); i++)
1286                        writel(0, (__force void __iomem *)ap->tx_ring  + i * 4);
1287
1288                set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE);
1289        } else {
1290                memset(ap->tx_ring, 0,
1291                       MAX_TX_RING_ENTRIES * sizeof(struct tx_desc));
1292
1293                set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma);
1294        }
1295
1296        info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap);
1297        tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1298
1299        /*
1300         * The Tigon I does not like having the TX ring in host memory ;-(
1301         */
1302        if (!ACE_IS_TIGON_I(ap))
1303                tmp |= RCB_FLG_TX_HOST_RING;
1304#if TX_COAL_INTS_ONLY
1305        tmp |= RCB_FLG_COAL_INT_ONLY;
1306#endif
1307        info->tx_ctrl.flags = tmp;
1308
1309        set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma);
1310
1311        /*
1312         * Potential item for tuning parameter
1313         */
1314#if 0 /* NO */
1315        writel(DMA_THRESH_16W, &regs->DmaReadCfg);
1316        writel(DMA_THRESH_16W, &regs->DmaWriteCfg);
1317#else
1318        writel(DMA_THRESH_8W, &regs->DmaReadCfg);
1319        writel(DMA_THRESH_8W, &regs->DmaWriteCfg);
1320#endif
1321
1322        writel(0, &regs->MaskInt);
1323        writel(1, &regs->IfIdx);
1324#if 0
1325        /*
1326         * McKinley boxes do not like us fiddling with AssistState
1327         * this early
1328         */
1329        writel(1, &regs->AssistState);
1330#endif
1331
1332        writel(DEF_STAT, &regs->TuneStatTicks);
1333        writel(DEF_TRACE, &regs->TuneTrace);
1334
1335        ace_set_rxtx_parms(dev, 0);
1336
1337        if (board_idx == BOARD_IDX_OVERFLOW) {
1338                printk(KERN_WARNING "%s: more than %i NICs detected, "
1339                       "ignoring module parameters!\n",
1340                       ap->name, ACE_MAX_MOD_PARMS);
1341        } else if (board_idx >= 0) {
1342                if (tx_coal_tick[board_idx])
1343                        writel(tx_coal_tick[board_idx],
1344                               &regs->TuneTxCoalTicks);
1345                if (max_tx_desc[board_idx])
1346                        writel(max_tx_desc[board_idx], &regs->TuneMaxTxDesc);
1347
1348                if (rx_coal_tick[board_idx])
1349                        writel(rx_coal_tick[board_idx],
1350                               &regs->TuneRxCoalTicks);
1351                if (max_rx_desc[board_idx])
1352                        writel(max_rx_desc[board_idx], &regs->TuneMaxRxDesc);
1353
1354                if (trace[board_idx])
1355                        writel(trace[board_idx], &regs->TuneTrace);
1356
1357                if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64))
1358                        writel(tx_ratio[board_idx], &regs->TxBufRat);
1359        }
1360
1361        /*
1362         * Default link parameters
1363         */
1364        tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB |
1365                LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE;
1366        if(ap->version >= 2)
1367                tmp |= LNK_TX_FLOW_CTL_Y;
1368
1369        /*
1370         * Override link default parameters
1371         */
1372        if ((board_idx >= 0) && link_state[board_idx]) {
1373                int option = link_state[board_idx];
1374
1375                tmp = LNK_ENABLE;
1376
1377                if (option & 0x01) {
1378                        printk(KERN_INFO "%s: Setting half duplex link\n",
1379                               ap->name);
1380                        tmp &= ~LNK_FULL_DUPLEX;
1381                }
1382                if (option & 0x02)
1383                        tmp &= ~LNK_NEGOTIATE;
1384                if (option & 0x10)
1385                        tmp |= LNK_10MB;
1386                if (option & 0x20)
1387                        tmp |= LNK_100MB;
1388                if (option & 0x40)
1389                        tmp |= LNK_1000MB;
1390                if ((option & 0x70) == 0) {
1391                        printk(KERN_WARNING "%s: No media speed specified, "
1392                               "forcing auto negotiation\n", ap->name);
1393                        tmp |= LNK_NEGOTIATE | LNK_1000MB |
1394                                LNK_100MB | LNK_10MB;
1395                }
1396                if ((option & 0x100) == 0)
1397                        tmp |= LNK_NEG_FCTL;
1398                else
1399                        printk(KERN_INFO "%s: Disabling flow control "
1400                               "negotiation\n", ap->name);
1401                if (option & 0x200)
1402                        tmp |= LNK_RX_FLOW_CTL_Y;
1403                if ((option & 0x400) && (ap->version >= 2)) {
1404                        printk(KERN_INFO "%s: Enabling TX flow control\n",
1405                               ap->name);
1406                        tmp |= LNK_TX_FLOW_CTL_Y;
1407                }
1408        }
1409
1410        ap->link = tmp;
1411        writel(tmp, &regs->TuneLink);
1412        if (ap->version >= 2)
1413                writel(tmp, &regs->TuneFastLink);
1414
1415        writel(ap->firmware_start, &regs->Pc);
1416
1417        writel(0, &regs->Mb0Lo);
1418
1419        /*
1420         * Set tx_csm before we start receiving interrupts, otherwise
1421         * the interrupt handler might think it is supposed to process
1422         * tx ints before we are up and running, which may cause a null
1423         * pointer access in the int handler.
1424         */
1425        ap->cur_rx = 0;
1426        ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0;
1427
1428        wmb();
1429        ace_set_txprd(regs, ap, 0);
1430        writel(0, &regs->RxRetCsm);
1431
1432        /*
1433         * Enable DMA engine now.
1434         * If we do this sooner, Mckinley box pukes.
1435         * I assume it's because Tigon II DMA engine wants to check
1436         * *something* even before the CPU is started.
1437         */
1438        writel(1, &regs->AssistState);  /* enable DMA */
1439
1440        /*
1441         * Start the NIC CPU
1442         */
1443        writel(readl(&regs->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), &regs->CpuCtrl);
1444        readl(&regs->CpuCtrl);
1445
1446        /*
1447         * Wait for the firmware to spin up - max 3 seconds.
1448         */
1449        myjif = jiffies + 3 * HZ;
1450        while (time_before(jiffies, myjif) && !ap->fw_running)
1451                cpu_relax();
1452
1453        if (!ap->fw_running) {
1454                printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name);
1455
1456                ace_dump_trace(ap);
1457                writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
1458                readl(&regs->CpuCtrl);
1459
1460                /* aman@sgi.com - account for badly behaving firmware/NIC:
1461                 * - have observed that the NIC may continue to generate
1462                 *   interrupts for some reason; attempt to stop it - halt
1463                 *   second CPU for Tigon II cards, and also clear Mb0
1464                 * - if we're a module, we'll fail to load if this was
1465                 *   the only GbE card in the system => if the kernel does
1466                 *   see an interrupt from the NIC, code to handle it is
1467                 *   gone and OOps! - so free_irq also
1468                 */
1469                if (ap->version >= 2)
1470                        writel(readl(&regs->CpuBCtrl) | CPU_HALT,
1471                               &regs->CpuBCtrl);
1472                writel(0, &regs->Mb0Lo);
1473                readl(&regs->Mb0Lo);
1474
1475                ecode = -EBUSY;
1476                goto init_error;
1477        }
1478
1479        /*
1480         * We load the ring here as there seem to be no way to tell the
1481         * firmware to wipe the ring without re-initializing it.
1482         */
1483        if (!test_and_set_bit(0, &ap->std_refill_busy))
1484                ace_load_std_rx_ring(dev, RX_RING_SIZE);
1485        else
1486                printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n",
1487                       ap->name);
1488        if (ap->version >= 2) {
1489                if (!test_and_set_bit(0, &ap->mini_refill_busy))
1490                        ace_load_mini_rx_ring(dev, RX_MINI_SIZE);
1491                else
1492                        printk(KERN_ERR "%s: Someone is busy refilling "
1493                               "the RX mini ring\n", ap->name);
1494        }
1495        return 0;
1496
1497 init_error:
1498        ace_init_cleanup(dev);
1499        return ecode;
1500}
1501
1502
1503static void ace_set_rxtx_parms(struct net_device *dev, int jumbo)
1504{
1505        struct ace_private *ap = netdev_priv(dev);
1506        struct ace_regs __iomem *regs = ap->regs;
1507        int board_idx = ap->board_idx;
1508
1509        if (board_idx >= 0) {
1510                if (!jumbo) {
1511                        if (!tx_coal_tick[board_idx])
1512                                writel(DEF_TX_COAL, &regs->TuneTxCoalTicks);
1513                        if (!max_tx_desc[board_idx])
1514                                writel(DEF_TX_MAX_DESC, &regs->TuneMaxTxDesc);
1515                        if (!rx_coal_tick[board_idx])
1516                                writel(DEF_RX_COAL, &regs->TuneRxCoalTicks);
1517                        if (!max_rx_desc[board_idx])
1518                                writel(DEF_RX_MAX_DESC, &regs->TuneMaxRxDesc);
1519                        if (!tx_ratio[board_idx])
1520                                writel(DEF_TX_RATIO, &regs->TxBufRat);
1521                } else {
1522                        if (!tx_coal_tick[board_idx])
1523                                writel(DEF_JUMBO_TX_COAL,
1524                                       &regs->TuneTxCoalTicks);
1525                        if (!max_tx_desc[board_idx])
1526                                writel(DEF_JUMBO_TX_MAX_DESC,
1527                                       &regs->TuneMaxTxDesc);
1528                        if (!rx_coal_tick[board_idx])
1529                                writel(DEF_JUMBO_RX_COAL,
1530                                       &regs->TuneRxCoalTicks);
1531                        if (!max_rx_desc[board_idx])
1532                                writel(DEF_JUMBO_RX_MAX_DESC,
1533                                       &regs->TuneMaxRxDesc);
1534                        if (!tx_ratio[board_idx])
1535                                writel(DEF_JUMBO_TX_RATIO, &regs->TxBufRat);
1536                }
1537        }
1538}
1539
1540
1541static void ace_watchdog(struct net_device *data, unsigned int txqueue)
1542{
1543        struct net_device *dev = data;
1544        struct ace_private *ap = netdev_priv(dev);
1545        struct ace_regs __iomem *regs = ap->regs;
1546
1547        /*
1548         * We haven't received a stats update event for more than 2.5
1549         * seconds and there is data in the transmit queue, thus we
1550         * assume the card is stuck.
1551         */
1552        if (*ap->tx_csm != ap->tx_ret_csm) {
1553                printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n",
1554                       dev->name, (unsigned int)readl(&regs->HostCtrl));
1555                /* This can happen due to ieee flow control. */
1556        } else {
1557                printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n",
1558                       dev->name);
1559#if 0
1560                netif_wake_queue(dev);
1561#endif
1562        }
1563}
1564
1565
1566static void ace_tasklet(struct tasklet_struct *t)
1567{
1568        struct ace_private *ap = from_tasklet(ap, t, ace_tasklet);
1569        struct net_device *dev = ap->ndev;
1570        int cur_size;
1571
1572        cur_size = atomic_read(&ap->cur_rx_bufs);
1573        if ((cur_size < RX_LOW_STD_THRES) &&
1574            !test_and_set_bit(0, &ap->std_refill_busy)) {
1575#ifdef DEBUG
1576                printk("refilling buffers (current %i)\n", cur_size);
1577#endif
1578                ace_load_std_rx_ring(dev, RX_RING_SIZE - cur_size);
1579        }
1580
1581        if (ap->version >= 2) {
1582                cur_size = atomic_read(&ap->cur_mini_bufs);
1583                if ((cur_size < RX_LOW_MINI_THRES) &&
1584                    !test_and_set_bit(0, &ap->mini_refill_busy)) {
1585#ifdef DEBUG
1586                        printk("refilling mini buffers (current %i)\n",
1587                               cur_size);
1588#endif
1589                        ace_load_mini_rx_ring(dev, RX_MINI_SIZE - cur_size);
1590                }
1591        }
1592
1593        cur_size = atomic_read(&ap->cur_jumbo_bufs);
1594        if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) &&
1595            !test_and_set_bit(0, &ap->jumbo_refill_busy)) {
1596#ifdef DEBUG
1597                printk("refilling jumbo buffers (current %i)\n", cur_size);
1598#endif
1599                ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE - cur_size);
1600        }
1601        ap->tasklet_pending = 0;
1602}
1603
1604
1605/*
1606 * Copy the contents of the NIC's trace buffer to kernel memory.
1607 */
1608static void ace_dump_trace(struct ace_private *ap)
1609{
1610#if 0
1611        if (!ap->trace_buf)
1612                if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL)))
1613                    return;
1614#endif
1615}
1616
1617
1618/*
1619 * Load the standard rx ring.
1620 *
1621 * Loading rings is safe without holding the spin lock since this is
1622 * done only before the device is enabled, thus no interrupts are
1623 * generated and by the interrupt handler/tasklet handler.
1624 */
1625static void ace_load_std_rx_ring(struct net_device *dev, int nr_bufs)
1626{
1627        struct ace_private *ap = netdev_priv(dev);
1628        struct ace_regs __iomem *regs = ap->regs;
1629        short i, idx;
1630
1631
1632        prefetchw(&ap->cur_rx_bufs);
1633
1634        idx = ap->rx_std_skbprd;
1635
1636        for (i = 0; i < nr_bufs; i++) {
1637                struct sk_buff *skb;
1638                struct rx_desc *rd;
1639                dma_addr_t mapping;
1640
1641                skb = netdev_alloc_skb_ip_align(dev, ACE_STD_BUFSIZE);
1642                if (!skb)
1643                        break;
1644
1645                mapping = dma_map_page(&ap->pdev->dev,
1646                                       virt_to_page(skb->data),
1647                                       offset_in_page(skb->data),
1648                                       ACE_STD_BUFSIZE, DMA_FROM_DEVICE);
1649                ap->skb->rx_std_skbuff[idx].skb = skb;
1650                dma_unmap_addr_set(&ap->skb->rx_std_skbuff[idx],
1651                                   mapping, mapping);
1652
1653                rd = &ap->rx_std_ring[idx];
1654                set_aceaddr(&rd->addr, mapping);
1655                rd->size = ACE_STD_BUFSIZE;
1656                rd->idx = idx;
1657                idx = (idx + 1) % RX_STD_RING_ENTRIES;
1658        }
1659
1660        if (!i)
1661                goto error_out;
1662
1663        atomic_add(i, &ap->cur_rx_bufs);
1664        ap->rx_std_skbprd = idx;
1665
1666        if (ACE_IS_TIGON_I(ap)) {
1667                struct cmd cmd;
1668                cmd.evt = C_SET_RX_PRD_IDX;
1669                cmd.code = 0;
1670                cmd.idx = ap->rx_std_skbprd;
1671                ace_issue_cmd(regs, &cmd);
1672        } else {
1673                writel(idx, &regs->RxStdPrd);
1674                wmb();
1675        }
1676
1677 out:
1678        clear_bit(0, &ap->std_refill_busy);
1679        return;
1680
1681 error_out:
1682        printk(KERN_INFO "Out of memory when allocating "
1683               "standard receive buffers\n");
1684        goto out;
1685}
1686
1687
1688static void ace_load_mini_rx_ring(struct net_device *dev, int nr_bufs)
1689{
1690        struct ace_private *ap = netdev_priv(dev);
1691        struct ace_regs __iomem *regs = ap->regs;
1692        short i, idx;
1693
1694        prefetchw(&ap->cur_mini_bufs);
1695
1696        idx = ap->rx_mini_skbprd;
1697        for (i = 0; i < nr_bufs; i++) {
1698                struct sk_buff *skb;
1699                struct rx_desc *rd;
1700                dma_addr_t mapping;
1701
1702                skb = netdev_alloc_skb_ip_align(dev, ACE_MINI_BUFSIZE);
1703                if (!skb)
1704                        break;
1705
1706                mapping = dma_map_page(&ap->pdev->dev,
1707                                       virt_to_page(skb->data),
1708                                       offset_in_page(skb->data),
1709                                       ACE_MINI_BUFSIZE, DMA_FROM_DEVICE);
1710                ap->skb->rx_mini_skbuff[idx].skb = skb;
1711                dma_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx],
1712                                   mapping, mapping);
1713
1714                rd = &ap->rx_mini_ring[idx];
1715                set_aceaddr(&rd->addr, mapping);
1716                rd->size = ACE_MINI_BUFSIZE;
1717                rd->idx = idx;
1718                idx = (idx + 1) % RX_MINI_RING_ENTRIES;
1719        }
1720
1721        if (!i)
1722                goto error_out;
1723
1724        atomic_add(i, &ap->cur_mini_bufs);
1725
1726        ap->rx_mini_skbprd = idx;
1727
1728        writel(idx, &regs->RxMiniPrd);
1729        wmb();
1730
1731 out:
1732        clear_bit(0, &ap->mini_refill_busy);
1733        return;
1734 error_out:
1735        printk(KERN_INFO "Out of memory when allocating "
1736               "mini receive buffers\n");
1737        goto out;
1738}
1739
1740
1741/*
1742 * Load the jumbo rx ring, this may happen at any time if the MTU
1743 * is changed to a value > 1500.
1744 */
1745static void ace_load_jumbo_rx_ring(struct net_device *dev, int nr_bufs)
1746{
1747        struct ace_private *ap = netdev_priv(dev);
1748        struct ace_regs __iomem *regs = ap->regs;
1749        short i, idx;
1750
1751        idx = ap->rx_jumbo_skbprd;
1752
1753        for (i = 0; i < nr_bufs; i++) {
1754                struct sk_buff *skb;
1755                struct rx_desc *rd;
1756                dma_addr_t mapping;
1757
1758                skb = netdev_alloc_skb_ip_align(dev, ACE_JUMBO_BUFSIZE);
1759                if (!skb)
1760                        break;
1761
1762                mapping = dma_map_page(&ap->pdev->dev,
1763                                       virt_to_page(skb->data),
1764                                       offset_in_page(skb->data),
1765                                       ACE_JUMBO_BUFSIZE, DMA_FROM_DEVICE);
1766                ap->skb->rx_jumbo_skbuff[idx].skb = skb;
1767                dma_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx],
1768                                   mapping, mapping);
1769
1770                rd = &ap->rx_jumbo_ring[idx];
1771                set_aceaddr(&rd->addr, mapping);
1772                rd->size = ACE_JUMBO_BUFSIZE;
1773                rd->idx = idx;
1774                idx = (idx + 1) % RX_JUMBO_RING_ENTRIES;
1775        }
1776
1777        if (!i)
1778                goto error_out;
1779
1780        atomic_add(i, &ap->cur_jumbo_bufs);
1781        ap->rx_jumbo_skbprd = idx;
1782
1783        if (ACE_IS_TIGON_I(ap)) {
1784                struct cmd cmd;
1785                cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1786                cmd.code = 0;
1787                cmd.idx = ap->rx_jumbo_skbprd;
1788                ace_issue_cmd(regs, &cmd);
1789        } else {
1790                writel(idx, &regs->RxJumboPrd);
1791                wmb();
1792        }
1793
1794 out:
1795        clear_bit(0, &ap->jumbo_refill_busy);
1796        return;
1797 error_out:
1798        if (net_ratelimit())
1799                printk(KERN_INFO "Out of memory when allocating "
1800                       "jumbo receive buffers\n");
1801        goto out;
1802}
1803
1804
1805/*
1806 * All events are considered to be slow (RX/TX ints do not generate
1807 * events) and are handled here, outside the main interrupt handler,
1808 * to reduce the size of the handler.
1809 */
1810static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd)
1811{
1812        struct ace_private *ap;
1813
1814        ap = netdev_priv(dev);
1815
1816        while (evtcsm != evtprd) {
1817                switch (ap->evt_ring[evtcsm].evt) {
1818                case E_FW_RUNNING:
1819                        printk(KERN_INFO "%s: Firmware up and running\n",
1820                               ap->name);
1821                        ap->fw_running = 1;
1822                        wmb();
1823                        break;
1824                case E_STATS_UPDATED:
1825                        break;
1826                case E_LNK_STATE:
1827                {
1828                        u16 code = ap->evt_ring[evtcsm].code;
1829                        switch (code) {
1830                        case E_C_LINK_UP:
1831                        {
1832                                u32 state = readl(&ap->regs->GigLnkState);
1833                                printk(KERN_WARNING "%s: Optical link UP "
1834                                       "(%s Duplex, Flow Control: %s%s)\n",
1835                                       ap->name,
1836                                       state & LNK_FULL_DUPLEX ? "Full":"Half",
1837                                       state & LNK_TX_FLOW_CTL_Y ? "TX " : "",
1838                                       state & LNK_RX_FLOW_CTL_Y ? "RX" : "");
1839                                break;
1840                        }
1841                        case E_C_LINK_DOWN:
1842                                printk(KERN_WARNING "%s: Optical link DOWN\n",
1843                                       ap->name);
1844                                break;
1845                        case E_C_LINK_10_100:
1846                                printk(KERN_WARNING "%s: 10/100BaseT link "
1847                                       "UP\n", ap->name);
1848                                break;
1849                        default:
1850                                printk(KERN_ERR "%s: Unknown optical link "
1851                                       "state %02x\n", ap->name, code);
1852                        }
1853                        break;
1854                }
1855                case E_ERROR:
1856                        switch(ap->evt_ring[evtcsm].code) {
1857                        case E_C_ERR_INVAL_CMD:
1858                                printk(KERN_ERR "%s: invalid command error\n",
1859                                       ap->name);
1860                                break;
1861                        case E_C_ERR_UNIMP_CMD:
1862                                printk(KERN_ERR "%s: unimplemented command "
1863                                       "error\n", ap->name);
1864                                break;
1865                        case E_C_ERR_BAD_CFG:
1866                                printk(KERN_ERR "%s: bad config error\n",
1867                                       ap->name);
1868                                break;
1869                        default:
1870                                printk(KERN_ERR "%s: unknown error %02x\n",
1871                                       ap->name, ap->evt_ring[evtcsm].code);
1872                        }
1873                        break;
1874                case E_RESET_JUMBO_RNG:
1875                {
1876                        int i;
1877                        for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
1878                                if (ap->skb->rx_jumbo_skbuff[i].skb) {
1879                                        ap->rx_jumbo_ring[i].size = 0;
1880                                        set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0);
1881                                        dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb);
1882                                        ap->skb->rx_jumbo_skbuff[i].skb = NULL;
1883                                }
1884                        }
1885
1886                        if (ACE_IS_TIGON_I(ap)) {
1887                                struct cmd cmd;
1888                                cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1889                                cmd.code = 0;
1890                                cmd.idx = 0;
1891                                ace_issue_cmd(ap->regs, &cmd);
1892                        } else {
1893                                writel(0, &((ap->regs)->RxJumboPrd));
1894                                wmb();
1895                        }
1896
1897                        ap->jumbo = 0;
1898                        ap->rx_jumbo_skbprd = 0;
1899                        printk(KERN_INFO "%s: Jumbo ring flushed\n",
1900                               ap->name);
1901                        clear_bit(0, &ap->jumbo_refill_busy);
1902                        break;
1903                }
1904                default:
1905                        printk(KERN_ERR "%s: Unhandled event 0x%02x\n",
1906                               ap->name, ap->evt_ring[evtcsm].evt);
1907                }
1908                evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES;
1909        }
1910
1911        return evtcsm;
1912}
1913
1914
1915static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm)
1916{
1917        struct ace_private *ap = netdev_priv(dev);
1918        u32 idx;
1919        int mini_count = 0, std_count = 0;
1920
1921        idx = rxretcsm;
1922
1923        prefetchw(&ap->cur_rx_bufs);
1924        prefetchw(&ap->cur_mini_bufs);
1925
1926        while (idx != rxretprd) {
1927                struct ring_info *rip;
1928                struct sk_buff *skb;
1929                struct rx_desc *retdesc;
1930                u32 skbidx;
1931                int bd_flags, desc_type, mapsize;
1932                u16 csum;
1933
1934
1935                /* make sure the rx descriptor isn't read before rxretprd */
1936                if (idx == rxretcsm)
1937                        rmb();
1938
1939                retdesc = &ap->rx_return_ring[idx];
1940                skbidx = retdesc->idx;
1941                bd_flags = retdesc->flags;
1942                desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI);
1943
1944                switch(desc_type) {
1945                        /*
1946                         * Normal frames do not have any flags set
1947                         *
1948                         * Mini and normal frames arrive frequently,
1949                         * so use a local counter to avoid doing
1950                         * atomic operations for each packet arriving.
1951                         */
1952                case 0:
1953                        rip = &ap->skb->rx_std_skbuff[skbidx];
1954                        mapsize = ACE_STD_BUFSIZE;
1955                        std_count++;
1956                        break;
1957                case BD_FLG_JUMBO:
1958                        rip = &ap->skb->rx_jumbo_skbuff[skbidx];
1959                        mapsize = ACE_JUMBO_BUFSIZE;
1960                        atomic_dec(&ap->cur_jumbo_bufs);
1961                        break;
1962                case BD_FLG_MINI:
1963                        rip = &ap->skb->rx_mini_skbuff[skbidx];
1964                        mapsize = ACE_MINI_BUFSIZE;
1965                        mini_count++;
1966                        break;
1967                default:
1968                        printk(KERN_INFO "%s: unknown frame type (0x%02x) "
1969                               "returned by NIC\n", dev->name,
1970                               retdesc->flags);
1971                        goto error;
1972                }
1973
1974                skb = rip->skb;
1975                rip->skb = NULL;
1976                dma_unmap_page(&ap->pdev->dev, dma_unmap_addr(rip, mapping),
1977                               mapsize, DMA_FROM_DEVICE);
1978                skb_put(skb, retdesc->size);
1979
1980                /*
1981                 * Fly baby, fly!
1982                 */
1983                csum = retdesc->tcp_udp_csum;
1984
1985                skb->protocol = eth_type_trans(skb, dev);
1986
1987                /*
1988                 * Instead of forcing the poor tigon mips cpu to calculate
1989                 * pseudo hdr checksum, we do this ourselves.
1990                 */
1991                if (bd_flags & BD_FLG_TCP_UDP_SUM) {
1992                        skb->csum = htons(csum);
1993                        skb->ip_summed = CHECKSUM_COMPLETE;
1994                } else {
1995                        skb_checksum_none_assert(skb);
1996                }
1997
1998                /* send it up */
1999                if ((bd_flags & BD_FLG_VLAN_TAG))
2000                        __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), retdesc->vlan);
2001                netif_rx(skb);
2002
2003                dev->stats.rx_packets++;
2004                dev->stats.rx_bytes += retdesc->size;
2005
2006                idx = (idx + 1) % RX_RETURN_RING_ENTRIES;
2007        }
2008
2009        atomic_sub(std_count, &ap->cur_rx_bufs);
2010        if (!ACE_IS_TIGON_I(ap))
2011                atomic_sub(mini_count, &ap->cur_mini_bufs);
2012
2013 out:
2014        /*
2015         * According to the documentation RxRetCsm is obsolete with
2016         * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
2017         */
2018        if (ACE_IS_TIGON_I(ap)) {
2019                writel(idx, &ap->regs->RxRetCsm);
2020        }
2021        ap->cur_rx = idx;
2022
2023        return;
2024 error:
2025        idx = rxretprd;
2026        goto out;
2027}
2028
2029
2030static inline void ace_tx_int(struct net_device *dev,
2031                              u32 txcsm, u32 idx)
2032{
2033        struct ace_private *ap = netdev_priv(dev);
2034
2035        do {
2036                struct sk_buff *skb;
2037                struct tx_ring_info *info;
2038
2039                info = ap->skb->tx_skbuff + idx;
2040                skb = info->skb;
2041
2042                if (dma_unmap_len(info, maplen)) {
2043                        dma_unmap_page(&ap->pdev->dev,
2044                                       dma_unmap_addr(info, mapping),
2045                                       dma_unmap_len(info, maplen),
2046                                       DMA_TO_DEVICE);
2047                        dma_unmap_len_set(info, maplen, 0);
2048                }
2049
2050                if (skb) {
2051                        dev->stats.tx_packets++;
2052                        dev->stats.tx_bytes += skb->len;
2053                        dev_consume_skb_irq(skb);
2054                        info->skb = NULL;
2055                }
2056
2057                idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2058        } while (idx != txcsm);
2059
2060        if (netif_queue_stopped(dev))
2061                netif_wake_queue(dev);
2062
2063        wmb();
2064        ap->tx_ret_csm = txcsm;
2065
2066        /* So... tx_ret_csm is advanced _after_ check for device wakeup.
2067         *
2068         * We could try to make it before. In this case we would get
2069         * the following race condition: hard_start_xmit on other cpu
2070         * enters after we advanced tx_ret_csm and fills space,
2071         * which we have just freed, so that we make illegal device wakeup.
2072         * There is no good way to workaround this (at entry
2073         * to ace_start_xmit detects this condition and prevents
2074         * ring corruption, but it is not a good workaround.)
2075         *
2076         * When tx_ret_csm is advanced after, we wake up device _only_
2077         * if we really have some space in ring (though the core doing
2078         * hard_start_xmit can see full ring for some period and has to
2079         * synchronize.) Superb.
2080         * BUT! We get another subtle race condition. hard_start_xmit
2081         * may think that ring is full between wakeup and advancing
2082         * tx_ret_csm and will stop device instantly! It is not so bad.
2083         * We are guaranteed that there is something in ring, so that
2084         * the next irq will resume transmission. To speedup this we could
2085         * mark descriptor, which closes ring with BD_FLG_COAL_NOW
2086         * (see ace_start_xmit).
2087         *
2088         * Well, this dilemma exists in all lock-free devices.
2089         * We, following scheme used in drivers by Donald Becker,
2090         * select the least dangerous.
2091         *                                                      --ANK
2092         */
2093}
2094
2095
2096static irqreturn_t ace_interrupt(int irq, void *dev_id)
2097{
2098        struct net_device *dev = (struct net_device *)dev_id;
2099        struct ace_private *ap = netdev_priv(dev);
2100        struct ace_regs __iomem *regs = ap->regs;
2101        u32 idx;
2102        u32 txcsm, rxretcsm, rxretprd;
2103        u32 evtcsm, evtprd;
2104
2105        /*
2106         * In case of PCI shared interrupts or spurious interrupts,
2107         * we want to make sure it is actually our interrupt before
2108         * spending any time in here.
2109         */
2110        if (!(readl(&regs->HostCtrl) & IN_INT))
2111                return IRQ_NONE;
2112
2113        /*
2114         * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
2115         * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
2116         * writel(0, &regs->Mb0Lo).
2117         *
2118         * "IRQ avoidance" recommended in docs applies to IRQs served
2119         * threads and it is wrong even for that case.
2120         */
2121        writel(0, &regs->Mb0Lo);
2122        readl(&regs->Mb0Lo);
2123
2124        /*
2125         * There is no conflict between transmit handling in
2126         * start_xmit and receive processing, thus there is no reason
2127         * to take a spin lock for RX handling. Wait until we start
2128         * working on the other stuff - hey we don't need a spin lock
2129         * anymore.
2130         */
2131        rxretprd = *ap->rx_ret_prd;
2132        rxretcsm = ap->cur_rx;
2133
2134        if (rxretprd != rxretcsm)
2135                ace_rx_int(dev, rxretprd, rxretcsm);
2136
2137        txcsm = *ap->tx_csm;
2138        idx = ap->tx_ret_csm;
2139
2140        if (txcsm != idx) {
2141                /*
2142                 * If each skb takes only one descriptor this check degenerates
2143                 * to identity, because new space has just been opened.
2144                 * But if skbs are fragmented we must check that this index
2145                 * update releases enough of space, otherwise we just
2146                 * wait for device to make more work.
2147                 */
2148                if (!tx_ring_full(ap, txcsm, ap->tx_prd))
2149                        ace_tx_int(dev, txcsm, idx);
2150        }
2151
2152        evtcsm = readl(&regs->EvtCsm);
2153        evtprd = *ap->evt_prd;
2154
2155        if (evtcsm != evtprd) {
2156                evtcsm = ace_handle_event(dev, evtcsm, evtprd);
2157                writel(evtcsm, &regs->EvtCsm);
2158        }
2159
2160        /*
2161         * This has to go last in the interrupt handler and run with
2162         * the spin lock released ... what lock?
2163         */
2164        if (netif_running(dev)) {
2165                int cur_size;
2166                int run_tasklet = 0;
2167
2168                cur_size = atomic_read(&ap->cur_rx_bufs);
2169                if (cur_size < RX_LOW_STD_THRES) {
2170                        if ((cur_size < RX_PANIC_STD_THRES) &&
2171                            !test_and_set_bit(0, &ap->std_refill_busy)) {
2172#ifdef DEBUG
2173                                printk("low on std buffers %i\n", cur_size);
2174#endif
2175                                ace_load_std_rx_ring(dev,
2176                                                     RX_RING_SIZE - cur_size);
2177                        } else
2178                                run_tasklet = 1;
2179                }
2180
2181                if (!ACE_IS_TIGON_I(ap)) {
2182                        cur_size = atomic_read(&ap->cur_mini_bufs);
2183                        if (cur_size < RX_LOW_MINI_THRES) {
2184                                if ((cur_size < RX_PANIC_MINI_THRES) &&
2185                                    !test_and_set_bit(0,
2186                                                      &ap->mini_refill_busy)) {
2187#ifdef DEBUG
2188                                        printk("low on mini buffers %i\n",
2189                                               cur_size);
2190#endif
2191                                        ace_load_mini_rx_ring(dev,
2192                                                              RX_MINI_SIZE - cur_size);
2193                                } else
2194                                        run_tasklet = 1;
2195                        }
2196                }
2197
2198                if (ap->jumbo) {
2199                        cur_size = atomic_read(&ap->cur_jumbo_bufs);
2200                        if (cur_size < RX_LOW_JUMBO_THRES) {
2201                                if ((cur_size < RX_PANIC_JUMBO_THRES) &&
2202                                    !test_and_set_bit(0,
2203                                                      &ap->jumbo_refill_busy)){
2204#ifdef DEBUG
2205                                        printk("low on jumbo buffers %i\n",
2206                                               cur_size);
2207#endif
2208                                        ace_load_jumbo_rx_ring(dev,
2209                                                               RX_JUMBO_SIZE - cur_size);
2210                                } else
2211                                        run_tasklet = 1;
2212                        }
2213                }
2214                if (run_tasklet && !ap->tasklet_pending) {
2215                        ap->tasklet_pending = 1;
2216                        tasklet_schedule(&ap->ace_tasklet);
2217                }
2218        }
2219
2220        return IRQ_HANDLED;
2221}
2222
2223static int ace_open(struct net_device *dev)
2224{
2225        struct ace_private *ap = netdev_priv(dev);
2226        struct ace_regs __iomem *regs = ap->regs;
2227        struct cmd cmd;
2228
2229        if (!(ap->fw_running)) {
2230                printk(KERN_WARNING "%s: Firmware not running!\n", dev->name);
2231                return -EBUSY;
2232        }
2233
2234        writel(dev->mtu + ETH_HLEN + 4, &regs->IfMtu);
2235
2236        cmd.evt = C_CLEAR_STATS;
2237        cmd.code = 0;
2238        cmd.idx = 0;
2239        ace_issue_cmd(regs, &cmd);
2240
2241        cmd.evt = C_HOST_STATE;
2242        cmd.code = C_C_STACK_UP;
2243        cmd.idx = 0;
2244        ace_issue_cmd(regs, &cmd);
2245
2246        if (ap->jumbo &&
2247            !test_and_set_bit(0, &ap->jumbo_refill_busy))
2248                ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE);
2249
2250        if (dev->flags & IFF_PROMISC) {
2251                cmd.evt = C_SET_PROMISC_MODE;
2252                cmd.code = C_C_PROMISC_ENABLE;
2253                cmd.idx = 0;
2254                ace_issue_cmd(regs, &cmd);
2255
2256                ap->promisc = 1;
2257        }else
2258                ap->promisc = 0;
2259        ap->mcast_all = 0;
2260
2261#if 0
2262        cmd.evt = C_LNK_NEGOTIATION;
2263        cmd.code = 0;
2264        cmd.idx = 0;
2265        ace_issue_cmd(regs, &cmd);
2266#endif
2267
2268        netif_start_queue(dev);
2269
2270        /*
2271         * Setup the bottom half rx ring refill handler
2272         */
2273        tasklet_setup(&ap->ace_tasklet, ace_tasklet);
2274        return 0;
2275}
2276
2277
2278static int ace_close(struct net_device *dev)
2279{
2280        struct ace_private *ap = netdev_priv(dev);
2281        struct ace_regs __iomem *regs = ap->regs;
2282        struct cmd cmd;
2283        unsigned long flags;
2284        short i;
2285
2286        /*
2287         * Without (or before) releasing irq and stopping hardware, this
2288         * is an absolute non-sense, by the way. It will be reset instantly
2289         * by the first irq.
2290         */
2291        netif_stop_queue(dev);
2292
2293
2294        if (ap->promisc) {
2295                cmd.evt = C_SET_PROMISC_MODE;
2296                cmd.code = C_C_PROMISC_DISABLE;
2297                cmd.idx = 0;
2298                ace_issue_cmd(regs, &cmd);
2299                ap->promisc = 0;
2300        }
2301
2302        cmd.evt = C_HOST_STATE;
2303        cmd.code = C_C_STACK_DOWN;
2304        cmd.idx = 0;
2305        ace_issue_cmd(regs, &cmd);
2306
2307        tasklet_kill(&ap->ace_tasklet);
2308
2309        /*
2310         * Make sure one CPU is not processing packets while
2311         * buffers are being released by another.
2312         */
2313
2314        local_irq_save(flags);
2315        ace_mask_irq(dev);
2316
2317        for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) {
2318                struct sk_buff *skb;
2319                struct tx_ring_info *info;
2320
2321                info = ap->skb->tx_skbuff + i;
2322                skb = info->skb;
2323
2324                if (dma_unmap_len(info, maplen)) {
2325                        if (ACE_IS_TIGON_I(ap)) {
2326                                /* NB: TIGON_1 is special, tx_ring is in io space */
2327                                struct tx_desc __iomem *tx;
2328                                tx = (__force struct tx_desc __iomem *) &ap->tx_ring[i];
2329                                writel(0, &tx->addr.addrhi);
2330                                writel(0, &tx->addr.addrlo);
2331                                writel(0, &tx->flagsize);
2332                        } else
2333                                memset(ap->tx_ring + i, 0,
2334                                       sizeof(struct tx_desc));
2335                        dma_unmap_page(&ap->pdev->dev,
2336                                       dma_unmap_addr(info, mapping),
2337                                       dma_unmap_len(info, maplen),
2338                                       DMA_TO_DEVICE);
2339                        dma_unmap_len_set(info, maplen, 0);
2340                }
2341                if (skb) {
2342                        dev_kfree_skb(skb);
2343                        info->skb = NULL;
2344                }
2345        }
2346
2347        if (ap->jumbo) {
2348                cmd.evt = C_RESET_JUMBO_RNG;
2349                cmd.code = 0;
2350                cmd.idx = 0;
2351                ace_issue_cmd(regs, &cmd);
2352        }
2353
2354        ace_unmask_irq(dev);
2355        local_irq_restore(flags);
2356
2357        return 0;
2358}
2359
2360
2361static inline dma_addr_t
2362ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb,
2363               struct sk_buff *tail, u32 idx)
2364{
2365        dma_addr_t mapping;
2366        struct tx_ring_info *info;
2367
2368        mapping = dma_map_page(&ap->pdev->dev, virt_to_page(skb->data),
2369                               offset_in_page(skb->data), skb->len,
2370                               DMA_TO_DEVICE);
2371
2372        info = ap->skb->tx_skbuff + idx;
2373        info->skb = tail;
2374        dma_unmap_addr_set(info, mapping, mapping);
2375        dma_unmap_len_set(info, maplen, skb->len);
2376        return mapping;
2377}
2378
2379
2380static inline void
2381ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr,
2382               u32 flagsize, u32 vlan_tag)
2383{
2384#if !USE_TX_COAL_NOW
2385        flagsize &= ~BD_FLG_COAL_NOW;
2386#endif
2387
2388        if (ACE_IS_TIGON_I(ap)) {
2389                struct tx_desc __iomem *io = (__force struct tx_desc __iomem *) desc;
2390                writel(addr >> 32, &io->addr.addrhi);
2391                writel(addr & 0xffffffff, &io->addr.addrlo);
2392                writel(flagsize, &io->flagsize);
2393                writel(vlan_tag, &io->vlanres);
2394        } else {
2395                desc->addr.addrhi = addr >> 32;
2396                desc->addr.addrlo = addr;
2397                desc->flagsize = flagsize;
2398                desc->vlanres = vlan_tag;
2399        }
2400}
2401
2402
2403static netdev_tx_t ace_start_xmit(struct sk_buff *skb,
2404                                  struct net_device *dev)
2405{
2406        struct ace_private *ap = netdev_priv(dev);
2407        struct ace_regs __iomem *regs = ap->regs;
2408        struct tx_desc *desc;
2409        u32 idx, flagsize;
2410        unsigned long maxjiff = jiffies + 3*HZ;
2411
2412restart:
2413        idx = ap->tx_prd;
2414
2415        if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2416                goto overflow;
2417
2418        if (!skb_shinfo(skb)->nr_frags) {
2419                dma_addr_t mapping;
2420                u32 vlan_tag = 0;
2421
2422                mapping = ace_map_tx_skb(ap, skb, skb, idx);
2423                flagsize = (skb->len << 16) | (BD_FLG_END);
2424                if (skb->ip_summed == CHECKSUM_PARTIAL)
2425                        flagsize |= BD_FLG_TCP_UDP_SUM;
2426                if (skb_vlan_tag_present(skb)) {
2427                        flagsize |= BD_FLG_VLAN_TAG;
2428                        vlan_tag = skb_vlan_tag_get(skb);
2429                }
2430                desc = ap->tx_ring + idx;
2431                idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2432
2433                /* Look at ace_tx_int for explanations. */
2434                if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2435                        flagsize |= BD_FLG_COAL_NOW;
2436
2437                ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2438        } else {
2439                dma_addr_t mapping;
2440                u32 vlan_tag = 0;
2441                int i, len = 0;
2442
2443                mapping = ace_map_tx_skb(ap, skb, NULL, idx);
2444                flagsize = (skb_headlen(skb) << 16);
2445                if (skb->ip_summed == CHECKSUM_PARTIAL)
2446                        flagsize |= BD_FLG_TCP_UDP_SUM;
2447                if (skb_vlan_tag_present(skb)) {
2448                        flagsize |= BD_FLG_VLAN_TAG;
2449                        vlan_tag = skb_vlan_tag_get(skb);
2450                }
2451
2452                ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag);
2453
2454                idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2455
2456                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2457                        const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2458                        struct tx_ring_info *info;
2459
2460                        len += skb_frag_size(frag);
2461                        info = ap->skb->tx_skbuff + idx;
2462                        desc = ap->tx_ring + idx;
2463
2464                        mapping = skb_frag_dma_map(&ap->pdev->dev, frag, 0,
2465                                                   skb_frag_size(frag),
2466                                                   DMA_TO_DEVICE);
2467
2468                        flagsize = skb_frag_size(frag) << 16;
2469                        if (skb->ip_summed == CHECKSUM_PARTIAL)
2470                                flagsize |= BD_FLG_TCP_UDP_SUM;
2471                        idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2472
2473                        if (i == skb_shinfo(skb)->nr_frags - 1) {
2474                                flagsize |= BD_FLG_END;
2475                                if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2476                                        flagsize |= BD_FLG_COAL_NOW;
2477
2478                                /*
2479                                 * Only the last fragment frees
2480                                 * the skb!
2481                                 */
2482                                info->skb = skb;
2483                        } else {
2484                                info->skb = NULL;
2485                        }
2486                        dma_unmap_addr_set(info, mapping, mapping);
2487                        dma_unmap_len_set(info, maplen, skb_frag_size(frag));
2488                        ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2489                }
2490        }
2491
2492        wmb();
2493        ap->tx_prd = idx;
2494        ace_set_txprd(regs, ap, idx);
2495
2496        if (flagsize & BD_FLG_COAL_NOW) {
2497                netif_stop_queue(dev);
2498
2499                /*
2500                 * A TX-descriptor producer (an IRQ) might have gotten
2501                 * between, making the ring free again. Since xmit is
2502                 * serialized, this is the only situation we have to
2503                 * re-test.
2504                 */
2505                if (!tx_ring_full(ap, ap->tx_ret_csm, idx))
2506                        netif_wake_queue(dev);
2507        }
2508
2509        return NETDEV_TX_OK;
2510
2511overflow:
2512        /*
2513         * This race condition is unavoidable with lock-free drivers.
2514         * We wake up the queue _before_ tx_prd is advanced, so that we can
2515         * enter hard_start_xmit too early, while tx ring still looks closed.
2516         * This happens ~1-4 times per 100000 packets, so that we can allow
2517         * to loop syncing to other CPU. Probably, we need an additional
2518         * wmb() in ace_tx_intr as well.
2519         *
2520         * Note that this race is relieved by reserving one more entry
2521         * in tx ring than it is necessary (see original non-SG driver).
2522         * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
2523         * is already overkill.
2524         *
2525         * Alternative is to return with 1 not throttling queue. In this
2526         * case loop becomes longer, no more useful effects.
2527         */
2528        if (time_before(jiffies, maxjiff)) {
2529                barrier();
2530                cpu_relax();
2531                goto restart;
2532        }
2533
2534        /* The ring is stuck full. */
2535        printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name);
2536        return NETDEV_TX_BUSY;
2537}
2538
2539
2540static int ace_change_mtu(struct net_device *dev, int new_mtu)
2541{
2542        struct ace_private *ap = netdev_priv(dev);
2543        struct ace_regs __iomem *regs = ap->regs;
2544
2545        writel(new_mtu + ETH_HLEN + 4, &regs->IfMtu);
2546        dev->mtu = new_mtu;
2547
2548        if (new_mtu > ACE_STD_MTU) {
2549                if (!(ap->jumbo)) {
2550                        printk(KERN_INFO "%s: Enabling Jumbo frame "
2551                               "support\n", dev->name);
2552                        ap->jumbo = 1;
2553                        if (!test_and_set_bit(0, &ap->jumbo_refill_busy))
2554                                ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE);
2555                        ace_set_rxtx_parms(dev, 1);
2556                }
2557        } else {
2558                while (test_and_set_bit(0, &ap->jumbo_refill_busy));
2559                ace_sync_irq(dev->irq);
2560                ace_set_rxtx_parms(dev, 0);
2561                if (ap->jumbo) {
2562                        struct cmd cmd;
2563
2564                        cmd.evt = C_RESET_JUMBO_RNG;
2565                        cmd.code = 0;
2566                        cmd.idx = 0;
2567                        ace_issue_cmd(regs, &cmd);
2568                }
2569        }
2570
2571        return 0;
2572}
2573
2574static int ace_get_link_ksettings(struct net_device *dev,
2575                                  struct ethtool_link_ksettings *cmd)
2576{
2577        struct ace_private *ap = netdev_priv(dev);
2578        struct ace_regs __iomem *regs = ap->regs;
2579        u32 link;
2580        u32 supported;
2581
2582        memset(cmd, 0, sizeof(struct ethtool_link_ksettings));
2583
2584        supported = (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2585                     SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2586                     SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full |
2587                     SUPPORTED_Autoneg | SUPPORTED_FIBRE);
2588
2589        cmd->base.port = PORT_FIBRE;
2590
2591        link = readl(&regs->GigLnkState);
2592        if (link & LNK_1000MB) {
2593                cmd->base.speed = SPEED_1000;
2594        } else {
2595                link = readl(&regs->FastLnkState);
2596                if (link & LNK_100MB)
2597                        cmd->base.speed = SPEED_100;
2598                else if (link & LNK_10MB)
2599                        cmd->base.speed = SPEED_10;
2600                else
2601                        cmd->base.speed = 0;
2602        }
2603        if (link & LNK_FULL_DUPLEX)
2604                cmd->base.duplex = DUPLEX_FULL;
2605        else
2606                cmd->base.duplex = DUPLEX_HALF;
2607
2608        if (link & LNK_NEGOTIATE)
2609                cmd->base.autoneg = AUTONEG_ENABLE;
2610        else
2611                cmd->base.autoneg = AUTONEG_DISABLE;
2612
2613#if 0
2614        /*
2615         * Current struct ethtool_cmd is insufficient
2616         */
2617        ecmd->trace = readl(&regs->TuneTrace);
2618
2619        ecmd->txcoal = readl(&regs->TuneTxCoalTicks);
2620        ecmd->rxcoal = readl(&regs->TuneRxCoalTicks);
2621#endif
2622
2623        ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2624                                                supported);
2625
2626        return 0;
2627}
2628
2629static int ace_set_link_ksettings(struct net_device *dev,
2630                                  const struct ethtool_link_ksettings *cmd)
2631{
2632        struct ace_private *ap = netdev_priv(dev);
2633        struct ace_regs __iomem *regs = ap->regs;
2634        u32 link, speed;
2635
2636        link = readl(&regs->GigLnkState);
2637        if (link & LNK_1000MB)
2638                speed = SPEED_1000;
2639        else {
2640                link = readl(&regs->FastLnkState);
2641                if (link & LNK_100MB)
2642                        speed = SPEED_100;
2643                else if (link & LNK_10MB)
2644                        speed = SPEED_10;
2645                else
2646                        speed = SPEED_100;
2647        }
2648
2649        link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB |
2650                LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL;
2651        if (!ACE_IS_TIGON_I(ap))
2652                link |= LNK_TX_FLOW_CTL_Y;
2653        if (cmd->base.autoneg == AUTONEG_ENABLE)
2654                link |= LNK_NEGOTIATE;
2655        if (cmd->base.speed != speed) {
2656                link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB);
2657                switch (cmd->base.speed) {
2658                case SPEED_1000:
2659                        link |= LNK_1000MB;
2660                        break;
2661                case SPEED_100:
2662                        link |= LNK_100MB;
2663                        break;
2664                case SPEED_10:
2665                        link |= LNK_10MB;
2666                        break;
2667                }
2668        }
2669
2670        if (cmd->base.duplex == DUPLEX_FULL)
2671                link |= LNK_FULL_DUPLEX;
2672
2673        if (link != ap->link) {
2674                struct cmd cmd;
2675                printk(KERN_INFO "%s: Renegotiating link state\n",
2676                       dev->name);
2677
2678                ap->link = link;
2679                writel(link, &regs->TuneLink);
2680                if (!ACE_IS_TIGON_I(ap))
2681                        writel(link, &regs->TuneFastLink);
2682                wmb();
2683
2684                cmd.evt = C_LNK_NEGOTIATION;
2685                cmd.code = 0;
2686                cmd.idx = 0;
2687                ace_issue_cmd(regs, &cmd);
2688        }
2689        return 0;
2690}
2691
2692static void ace_get_drvinfo(struct net_device *dev,
2693                            struct ethtool_drvinfo *info)
2694{
2695        struct ace_private *ap = netdev_priv(dev);
2696
2697        strlcpy(info->driver, "acenic", sizeof(info->driver));
2698        snprintf(info->fw_version, sizeof(info->version), "%i.%i.%i",
2699                 ap->firmware_major, ap->firmware_minor, ap->firmware_fix);
2700
2701        if (ap->pdev)
2702                strlcpy(info->bus_info, pci_name(ap->pdev),
2703                        sizeof(info->bus_info));
2704
2705}
2706
2707/*
2708 * Set the hardware MAC address.
2709 */
2710static int ace_set_mac_addr(struct net_device *dev, void *p)
2711{
2712        struct ace_private *ap = netdev_priv(dev);
2713        struct ace_regs __iomem *regs = ap->regs;
2714        struct sockaddr *addr=p;
2715        u8 *da;
2716        struct cmd cmd;
2717
2718        if(netif_running(dev))
2719                return -EBUSY;
2720
2721        memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
2722
2723        da = (u8 *)dev->dev_addr;
2724
2725        writel(da[0] << 8 | da[1], &regs->MacAddrHi);
2726        writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5],
2727               &regs->MacAddrLo);
2728
2729        cmd.evt = C_SET_MAC_ADDR;
2730        cmd.code = 0;
2731        cmd.idx = 0;
2732        ace_issue_cmd(regs, &cmd);
2733
2734        return 0;
2735}
2736
2737
2738static void ace_set_multicast_list(struct net_device *dev)
2739{
2740        struct ace_private *ap = netdev_priv(dev);
2741        struct ace_regs __iomem *regs = ap->regs;
2742        struct cmd cmd;
2743
2744        if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) {
2745                cmd.evt = C_SET_MULTICAST_MODE;
2746                cmd.code = C_C_MCAST_ENABLE;
2747                cmd.idx = 0;
2748                ace_issue_cmd(regs, &cmd);
2749                ap->mcast_all = 1;
2750        } else if (ap->mcast_all) {
2751                cmd.evt = C_SET_MULTICAST_MODE;
2752                cmd.code = C_C_MCAST_DISABLE;
2753                cmd.idx = 0;
2754                ace_issue_cmd(regs, &cmd);
2755                ap->mcast_all = 0;
2756        }
2757
2758        if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) {
2759                cmd.evt = C_SET_PROMISC_MODE;
2760                cmd.code = C_C_PROMISC_ENABLE;
2761                cmd.idx = 0;
2762                ace_issue_cmd(regs, &cmd);
2763                ap->promisc = 1;
2764        }else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) {
2765                cmd.evt = C_SET_PROMISC_MODE;
2766                cmd.code = C_C_PROMISC_DISABLE;
2767                cmd.idx = 0;
2768                ace_issue_cmd(regs, &cmd);
2769                ap->promisc = 0;
2770        }
2771
2772        /*
2773         * For the time being multicast relies on the upper layers
2774         * filtering it properly. The Firmware does not allow one to
2775         * set the entire multicast list at a time and keeping track of
2776         * it here is going to be messy.
2777         */
2778        if (!netdev_mc_empty(dev) && !ap->mcast_all) {
2779                cmd.evt = C_SET_MULTICAST_MODE;
2780                cmd.code = C_C_MCAST_ENABLE;
2781                cmd.idx = 0;
2782                ace_issue_cmd(regs, &cmd);
2783        }else if (!ap->mcast_all) {
2784                cmd.evt = C_SET_MULTICAST_MODE;
2785                cmd.code = C_C_MCAST_DISABLE;
2786                cmd.idx = 0;
2787                ace_issue_cmd(regs, &cmd);
2788        }
2789}
2790
2791
2792static struct net_device_stats *ace_get_stats(struct net_device *dev)
2793{
2794        struct ace_private *ap = netdev_priv(dev);
2795        struct ace_mac_stats __iomem *mac_stats =
2796                (struct ace_mac_stats __iomem *)ap->regs->Stats;
2797
2798        dev->stats.rx_missed_errors = readl(&mac_stats->drop_space);
2799        dev->stats.multicast = readl(&mac_stats->kept_mc);
2800        dev->stats.collisions = readl(&mac_stats->coll);
2801
2802        return &dev->stats;
2803}
2804
2805
2806static void ace_copy(struct ace_regs __iomem *regs, const __be32 *src,
2807                     u32 dest, int size)
2808{
2809        void __iomem *tdest;
2810        short tsize, i;
2811
2812        if (size <= 0)
2813                return;
2814
2815        while (size > 0) {
2816                tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2817                            min_t(u32, size, ACE_WINDOW_SIZE));
2818                tdest = (void __iomem *) &regs->Window +
2819                        (dest & (ACE_WINDOW_SIZE - 1));
2820                writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2821                for (i = 0; i < (tsize / 4); i++) {
2822                        /* Firmware is big-endian */
2823                        writel(be32_to_cpup(src), tdest);
2824                        src++;
2825                        tdest += 4;
2826                        dest += 4;
2827                        size -= 4;
2828                }
2829        }
2830}
2831
2832
2833static void ace_clear(struct ace_regs __iomem *regs, u32 dest, int size)
2834{
2835        void __iomem *tdest;
2836        short tsize = 0, i;
2837
2838        if (size <= 0)
2839                return;
2840
2841        while (size > 0) {
2842                tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2843                                min_t(u32, size, ACE_WINDOW_SIZE));
2844                tdest = (void __iomem *) &regs->Window +
2845                        (dest & (ACE_WINDOW_SIZE - 1));
2846                writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2847
2848                for (i = 0; i < (tsize / 4); i++) {
2849                        writel(0, tdest + i*4);
2850                }
2851
2852                dest += tsize;
2853                size -= tsize;
2854        }
2855}
2856
2857
2858/*
2859 * Download the firmware into the SRAM on the NIC
2860 *
2861 * This operation requires the NIC to be halted and is performed with
2862 * interrupts disabled and with the spinlock hold.
2863 */
2864static int ace_load_firmware(struct net_device *dev)
2865{
2866        const struct firmware *fw;
2867        const char *fw_name = "acenic/tg2.bin";
2868        struct ace_private *ap = netdev_priv(dev);
2869        struct ace_regs __iomem *regs = ap->regs;
2870        const __be32 *fw_data;
2871        u32 load_addr;
2872        int ret;
2873
2874        if (!(readl(&regs->CpuCtrl) & CPU_HALTED)) {
2875                printk(KERN_ERR "%s: trying to download firmware while the "
2876                       "CPU is running!\n", ap->name);
2877                return -EFAULT;
2878        }
2879
2880        if (ACE_IS_TIGON_I(ap))
2881                fw_name = "acenic/tg1.bin";
2882
2883        ret = request_firmware(&fw, fw_name, &ap->pdev->dev);
2884        if (ret) {
2885                printk(KERN_ERR "%s: Failed to load firmware \"%s\"\n",
2886                       ap->name, fw_name);
2887                return ret;
2888        }
2889
2890        fw_data = (void *)fw->data;
2891
2892        /* Firmware blob starts with version numbers, followed by
2893           load and start address. Remainder is the blob to be loaded
2894           contiguously from load address. We don't bother to represent
2895           the BSS/SBSS sections any more, since we were clearing the
2896           whole thing anyway. */
2897        ap->firmware_major = fw->data[0];
2898        ap->firmware_minor = fw->data[1];
2899        ap->firmware_fix = fw->data[2];
2900
2901        ap->firmware_start = be32_to_cpu(fw_data[1]);
2902        if (ap->firmware_start < 0x4000 || ap->firmware_start >= 0x80000) {
2903                printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
2904                       ap->name, ap->firmware_start, fw_name);
2905                ret = -EINVAL;
2906                goto out;
2907        }
2908
2909        load_addr = be32_to_cpu(fw_data[2]);
2910        if (load_addr < 0x4000 || load_addr >= 0x80000) {
2911                printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
2912                       ap->name, load_addr, fw_name);
2913                ret = -EINVAL;
2914                goto out;
2915        }
2916
2917        /*
2918         * Do not try to clear more than 512KiB or we end up seeing
2919         * funny things on NICs with only 512KiB SRAM
2920         */
2921        ace_clear(regs, 0x2000, 0x80000-0x2000);
2922        ace_copy(regs, &fw_data[3], load_addr, fw->size-12);
2923 out:
2924        release_firmware(fw);
2925        return ret;
2926}
2927
2928
2929/*
2930 * The eeprom on the AceNIC is an Atmel i2c EEPROM.
2931 *
2932 * Accessing the EEPROM is `interesting' to say the least - don't read
2933 * this code right after dinner.
2934 *
2935 * This is all about black magic and bit-banging the device .... I
2936 * wonder in what hospital they have put the guy who designed the i2c
2937 * specs.
2938 *
2939 * Oh yes, this is only the beginning!
2940 *
2941 * Thanks to Stevarino Webinski for helping tracking down the bugs in the
2942 * code i2c readout code by beta testing all my hacks.
2943 */
2944static void eeprom_start(struct ace_regs __iomem *regs)
2945{
2946        u32 local;
2947
2948        readl(&regs->LocalCtrl);
2949        udelay(ACE_SHORT_DELAY);
2950        local = readl(&regs->LocalCtrl);
2951        local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE;
2952        writel(local, &regs->LocalCtrl);
2953        readl(&regs->LocalCtrl);
2954        mb();
2955        udelay(ACE_SHORT_DELAY);
2956        local |= EEPROM_CLK_OUT;
2957        writel(local, &regs->LocalCtrl);
2958        readl(&regs->LocalCtrl);
2959        mb();
2960        udelay(ACE_SHORT_DELAY);
2961        local &= ~EEPROM_DATA_OUT;
2962        writel(local, &regs->LocalCtrl);
2963        readl(&regs->LocalCtrl);
2964        mb();
2965        udelay(ACE_SHORT_DELAY);
2966        local &= ~EEPROM_CLK_OUT;
2967        writel(local, &regs->LocalCtrl);
2968        readl(&regs->LocalCtrl);
2969        mb();
2970}
2971
2972
2973static void eeprom_prep(struct ace_regs __iomem *regs, u8 magic)
2974{
2975        short i;
2976        u32 local;
2977
2978        udelay(ACE_SHORT_DELAY);
2979        local = readl(&regs->LocalCtrl);
2980        local &= ~EEPROM_DATA_OUT;
2981        local |= EEPROM_WRITE_ENABLE;
2982        writel(local, &regs->LocalCtrl);
2983        readl(&regs->LocalCtrl);
2984        mb();
2985
2986        for (i = 0; i < 8; i++, magic <<= 1) {
2987                udelay(ACE_SHORT_DELAY);
2988                if (magic & 0x80)
2989                        local |= EEPROM_DATA_OUT;
2990                else
2991                        local &= ~EEPROM_DATA_OUT;
2992                writel(local, &regs->LocalCtrl);
2993                readl(&regs->LocalCtrl);
2994                mb();
2995
2996                udelay(ACE_SHORT_DELAY);
2997                local |= EEPROM_CLK_OUT;
2998                writel(local, &regs->LocalCtrl);
2999                readl(&regs->LocalCtrl);
3000                mb();
3001                udelay(ACE_SHORT_DELAY);
3002                local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT);
3003                writel(local, &regs->LocalCtrl);
3004                readl(&regs->LocalCtrl);
3005                mb();
3006        }
3007}
3008
3009
3010static int eeprom_check_ack(struct ace_regs __iomem *regs)
3011{
3012        int state;
3013        u32 local;
3014
3015        local = readl(&regs->LocalCtrl);
3016        local &= ~EEPROM_WRITE_ENABLE;
3017        writel(local, &regs->LocalCtrl);
3018        readl(&regs->LocalCtrl);
3019        mb();
3020        udelay(ACE_LONG_DELAY);
3021        local |= EEPROM_CLK_OUT;
3022        writel(local, &regs->LocalCtrl);
3023        readl(&regs->LocalCtrl);
3024        mb();
3025        udelay(ACE_SHORT_DELAY);
3026        /* sample data in middle of high clk */
3027        state = (readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0;
3028        udelay(ACE_SHORT_DELAY);
3029        mb();
3030        writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3031        readl(&regs->LocalCtrl);
3032        mb();
3033
3034        return state;
3035}
3036
3037
3038static void eeprom_stop(struct ace_regs __iomem *regs)
3039{
3040        u32 local;
3041
3042        udelay(ACE_SHORT_DELAY);
3043        local = readl(&regs->LocalCtrl);
3044        local |= EEPROM_WRITE_ENABLE;
3045        writel(local, &regs->LocalCtrl);
3046        readl(&regs->LocalCtrl);
3047        mb();
3048        udelay(ACE_SHORT_DELAY);
3049        local &= ~EEPROM_DATA_OUT;
3050        writel(local, &regs->LocalCtrl);
3051        readl(&regs->LocalCtrl);
3052        mb();
3053        udelay(ACE_SHORT_DELAY);
3054        local |= EEPROM_CLK_OUT;
3055        writel(local, &regs->LocalCtrl);
3056        readl(&regs->LocalCtrl);
3057        mb();
3058        udelay(ACE_SHORT_DELAY);
3059        local |= EEPROM_DATA_OUT;
3060        writel(local, &regs->LocalCtrl);
3061        readl(&regs->LocalCtrl);
3062        mb();
3063        udelay(ACE_LONG_DELAY);
3064        local &= ~EEPROM_CLK_OUT;
3065        writel(local, &regs->LocalCtrl);
3066        mb();
3067}
3068
3069
3070/*
3071 * Read a whole byte from the EEPROM.
3072 */
3073static int read_eeprom_byte(struct net_device *dev, unsigned long offset)
3074{
3075        struct ace_private *ap = netdev_priv(dev);
3076        struct ace_regs __iomem *regs = ap->regs;
3077        unsigned long flags;
3078        u32 local;
3079        int result = 0;
3080        short i;
3081
3082        /*
3083         * Don't take interrupts on this CPU will bit banging
3084         * the %#%#@$ I2C device
3085         */
3086        local_irq_save(flags);
3087
3088        eeprom_start(regs);
3089
3090        eeprom_prep(regs, EEPROM_WRITE_SELECT);
3091        if (eeprom_check_ack(regs)) {
3092                local_irq_restore(flags);
3093                printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name);
3094                result = -EIO;
3095                goto eeprom_read_error;
3096        }
3097
3098        eeprom_prep(regs, (offset >> 8) & 0xff);
3099        if (eeprom_check_ack(regs)) {
3100                local_irq_restore(flags);
3101                printk(KERN_ERR "%s: Unable to set address byte 0\n",
3102                       ap->name);
3103                result = -EIO;
3104                goto eeprom_read_error;
3105        }
3106
3107        eeprom_prep(regs, offset & 0xff);
3108        if (eeprom_check_ack(regs)) {
3109                local_irq_restore(flags);
3110                printk(KERN_ERR "%s: Unable to set address byte 1\n",
3111                       ap->name);
3112                result = -EIO;
3113                goto eeprom_read_error;
3114        }
3115
3116        eeprom_start(regs);
3117        eeprom_prep(regs, EEPROM_READ_SELECT);
3118        if (eeprom_check_ack(regs)) {
3119                local_irq_restore(flags);
3120                printk(KERN_ERR "%s: Unable to set READ_SELECT\n",
3121                       ap->name);
3122                result = -EIO;
3123                goto eeprom_read_error;
3124        }
3125
3126        for (i = 0; i < 8; i++) {
3127                local = readl(&regs->LocalCtrl);
3128                local &= ~EEPROM_WRITE_ENABLE;
3129                writel(local, &regs->LocalCtrl);
3130                readl(&regs->LocalCtrl);
3131                udelay(ACE_LONG_DELAY);
3132                mb();
3133                local |= EEPROM_CLK_OUT;
3134                writel(local, &regs->LocalCtrl);
3135                readl(&regs->LocalCtrl);
3136                mb();
3137                udelay(ACE_SHORT_DELAY);
3138                /* sample data mid high clk */
3139                result = (result << 1) |
3140                        ((readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0);
3141                udelay(ACE_SHORT_DELAY);
3142                mb();
3143                local = readl(&regs->LocalCtrl);
3144                local &= ~EEPROM_CLK_OUT;
3145                writel(local, &regs->LocalCtrl);
3146                readl(&regs->LocalCtrl);
3147                udelay(ACE_SHORT_DELAY);
3148                mb();
3149                if (i == 7) {
3150                        local |= EEPROM_WRITE_ENABLE;
3151                        writel(local, &regs->LocalCtrl);
3152                        readl(&regs->LocalCtrl);
3153                        mb();
3154                        udelay(ACE_SHORT_DELAY);
3155                }
3156        }
3157
3158        local |= EEPROM_DATA_OUT;
3159        writel(local, &regs->LocalCtrl);
3160        readl(&regs->LocalCtrl);
3161        mb();
3162        udelay(ACE_SHORT_DELAY);
3163        writel(readl(&regs->LocalCtrl) | EEPROM_CLK_OUT, &regs->LocalCtrl);
3164        readl(&regs->LocalCtrl);
3165        udelay(ACE_LONG_DELAY);
3166        writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3167        readl(&regs->LocalCtrl);
3168        mb();
3169        udelay(ACE_SHORT_DELAY);
3170        eeprom_stop(regs);
3171
3172        local_irq_restore(flags);
3173 out:
3174        return result;
3175
3176 eeprom_read_error:
3177        printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n",
3178               ap->name, offset);
3179        goto out;
3180}
3181
3182module_pci_driver(acenic_pci_driver);
3183