linux/drivers/net/ipa/gsi_trans.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2
   3/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
   4 * Copyright (C) 2019-2020 Linaro Ltd.
   5 */
   6
   7#include <linux/types.h>
   8#include <linux/bits.h>
   9#include <linux/bitfield.h>
  10#include <linux/refcount.h>
  11#include <linux/scatterlist.h>
  12#include <linux/dma-direction.h>
  13
  14#include "gsi.h"
  15#include "gsi_private.h"
  16#include "gsi_trans.h"
  17#include "ipa_gsi.h"
  18#include "ipa_data.h"
  19#include "ipa_cmd.h"
  20
  21/**
  22 * DOC: GSI Transactions
  23 *
  24 * A GSI transaction abstracts the behavior of a GSI channel by representing
  25 * everything about a related group of IPA commands in a single structure.
  26 * (A "command" in this sense is either a data transfer or an IPA immediate
  27 * command.)  Most details of interaction with the GSI hardware are managed
  28 * by the GSI transaction core, allowing users to simply describe commands
  29 * to be performed.  When a transaction has completed a callback function
  30 * (dependent on the type of endpoint associated with the channel) allows
  31 * cleanup of resources associated with the transaction.
  32 *
  33 * To perform a command (or set of them), a user of the GSI transaction
  34 * interface allocates a transaction, indicating the number of TREs required
  35 * (one per command).  If sufficient TREs are available, they are reserved
  36 * for use in the transaction and the allocation succeeds.  This way
  37 * exhaustion of the available TREs in a channel ring is detected
  38 * as early as possible.  All resources required to complete a transaction
  39 * are allocated at transaction allocation time.
  40 *
  41 * Commands performed as part of a transaction are represented in an array
  42 * of Linux scatterlist structures.  This array is allocated with the
  43 * transaction, and its entries are initialized using standard scatterlist
  44 * functions (such as sg_set_buf() or skb_to_sgvec()).
  45 *
  46 * Once a transaction's scatterlist structures have been initialized, the
  47 * transaction is committed.  The caller is responsible for mapping buffers
  48 * for DMA if necessary, and this should be done *before* allocating
  49 * the transaction.  Between a successful allocation and commit of a
  50 * transaction no errors should occur.
  51 *
  52 * Committing transfers ownership of the entire transaction to the GSI
  53 * transaction core.  The GSI transaction code formats the content of
  54 * the scatterlist array into the channel ring buffer and informs the
  55 * hardware that new TREs are available to process.
  56 *
  57 * The last TRE in each transaction is marked to interrupt the AP when the
  58 * GSI hardware has completed it.  Because transfers described by TREs are
  59 * performed strictly in order, signaling the completion of just the last
  60 * TRE in the transaction is sufficient to indicate the full transaction
  61 * is complete.
  62 *
  63 * When a transaction is complete, ipa_gsi_trans_complete() is called by the
  64 * GSI code into the IPA layer, allowing it to perform any final cleanup
  65 * required before the transaction is freed.
  66 */
  67
  68/* Hardware values representing a transfer element type */
  69enum gsi_tre_type {
  70        GSI_RE_XFER     = 0x2,
  71        GSI_RE_IMMD_CMD = 0x3,
  72};
  73
  74/* An entry in a channel ring */
  75struct gsi_tre {
  76        __le64 addr;            /* DMA address */
  77        __le16 len_opcode;      /* length in bytes or enum IPA_CMD_* */
  78        __le16 reserved;
  79        __le32 flags;           /* TRE_FLAGS_* */
  80};
  81
  82/* gsi_tre->flags mask values (in CPU byte order) */
  83#define TRE_FLAGS_CHAIN_FMASK   GENMASK(0, 0)
  84#define TRE_FLAGS_IEOT_FMASK    GENMASK(9, 9)
  85#define TRE_FLAGS_BEI_FMASK     GENMASK(10, 10)
  86#define TRE_FLAGS_TYPE_FMASK    GENMASK(23, 16)
  87
  88int gsi_trans_pool_init(struct gsi_trans_pool *pool, size_t size, u32 count,
  89                        u32 max_alloc)
  90{
  91        void *virt;
  92
  93        if (!size)
  94                return -EINVAL;
  95        if (count < max_alloc)
  96                return -EINVAL;
  97        if (!max_alloc)
  98                return -EINVAL;
  99
 100        /* By allocating a few extra entries in our pool (one less
 101         * than the maximum number that will be requested in a
 102         * single allocation), we can always satisfy requests without
 103         * ever worrying about straddling the end of the pool array.
 104         * If there aren't enough entries starting at the free index,
 105         * we just allocate free entries from the beginning of the pool.
 106         */
 107        virt = kcalloc(count + max_alloc - 1, size, GFP_KERNEL);
 108        if (!virt)
 109                return -ENOMEM;
 110
 111        pool->base = virt;
 112        /* If the allocator gave us any extra memory, use it */
 113        pool->count = ksize(pool->base) / size;
 114        pool->free = 0;
 115        pool->max_alloc = max_alloc;
 116        pool->size = size;
 117        pool->addr = 0;         /* Only used for DMA pools */
 118
 119        return 0;
 120}
 121
 122void gsi_trans_pool_exit(struct gsi_trans_pool *pool)
 123{
 124        kfree(pool->base);
 125        memset(pool, 0, sizeof(*pool));
 126}
 127
 128/* Allocate the requested number of (zeroed) entries from the pool */
 129/* Home-grown DMA pool.  This way we can preallocate and use the tre_count
 130 * to guarantee allocations will succeed.  Even though we specify max_alloc
 131 * (and it can be more than one), we only allow allocation of a single
 132 * element from a DMA pool.
 133 */
 134int gsi_trans_pool_init_dma(struct device *dev, struct gsi_trans_pool *pool,
 135                            size_t size, u32 count, u32 max_alloc)
 136{
 137        size_t total_size;
 138        dma_addr_t addr;
 139        void *virt;
 140
 141        if (!size)
 142                return -EINVAL;
 143        if (count < max_alloc)
 144                return -EINVAL;
 145        if (!max_alloc)
 146                return -EINVAL;
 147
 148        /* Don't let allocations cross a power-of-two boundary */
 149        size = __roundup_pow_of_two(size);
 150        total_size = (count + max_alloc - 1) * size;
 151
 152        /* The allocator will give us a power-of-2 number of pages
 153         * sufficient to satisfy our request.  Round up our requested
 154         * size to avoid any unused space in the allocation.  This way
 155         * gsi_trans_pool_exit_dma() can assume the total allocated
 156         * size is exactly (count * size).
 157         */
 158        total_size = get_order(total_size) << PAGE_SHIFT;
 159
 160        virt = dma_alloc_coherent(dev, total_size, &addr, GFP_KERNEL);
 161        if (!virt)
 162                return -ENOMEM;
 163
 164        pool->base = virt;
 165        pool->count = total_size / size;
 166        pool->free = 0;
 167        pool->size = size;
 168        pool->max_alloc = max_alloc;
 169        pool->addr = addr;
 170
 171        return 0;
 172}
 173
 174void gsi_trans_pool_exit_dma(struct device *dev, struct gsi_trans_pool *pool)
 175{
 176        size_t total_size = pool->count * pool->size;
 177
 178        dma_free_coherent(dev, total_size, pool->base, pool->addr);
 179        memset(pool, 0, sizeof(*pool));
 180}
 181
 182/* Return the byte offset of the next free entry in the pool */
 183static u32 gsi_trans_pool_alloc_common(struct gsi_trans_pool *pool, u32 count)
 184{
 185        u32 offset;
 186
 187        WARN_ON(!count);
 188        WARN_ON(count > pool->max_alloc);
 189
 190        /* Allocate from beginning if wrap would occur */
 191        if (count > pool->count - pool->free)
 192                pool->free = 0;
 193
 194        offset = pool->free * pool->size;
 195        pool->free += count;
 196        memset(pool->base + offset, 0, count * pool->size);
 197
 198        return offset;
 199}
 200
 201/* Allocate a contiguous block of zeroed entries from a pool */
 202void *gsi_trans_pool_alloc(struct gsi_trans_pool *pool, u32 count)
 203{
 204        return pool->base + gsi_trans_pool_alloc_common(pool, count);
 205}
 206
 207/* Allocate a single zeroed entry from a DMA pool */
 208void *gsi_trans_pool_alloc_dma(struct gsi_trans_pool *pool, dma_addr_t *addr)
 209{
 210        u32 offset = gsi_trans_pool_alloc_common(pool, 1);
 211
 212        *addr = pool->addr + offset;
 213
 214        return pool->base + offset;
 215}
 216
 217/* Return the pool element that immediately follows the one given.
 218 * This only works done if elements are allocated one at a time.
 219 */
 220void *gsi_trans_pool_next(struct gsi_trans_pool *pool, void *element)
 221{
 222        void *end = pool->base + pool->count * pool->size;
 223
 224        WARN_ON(element < pool->base);
 225        WARN_ON(element >= end);
 226        WARN_ON(pool->max_alloc != 1);
 227
 228        element += pool->size;
 229
 230        return element < end ? element : pool->base;
 231}
 232
 233/* Map a given ring entry index to the transaction associated with it */
 234static void gsi_channel_trans_map(struct gsi_channel *channel, u32 index,
 235                                  struct gsi_trans *trans)
 236{
 237        /* Note: index *must* be used modulo the ring count here */
 238        channel->trans_info.map[index % channel->tre_ring.count] = trans;
 239}
 240
 241/* Return the transaction mapped to a given ring entry */
 242struct gsi_trans *
 243gsi_channel_trans_mapped(struct gsi_channel *channel, u32 index)
 244{
 245        /* Note: index *must* be used modulo the ring count here */
 246        return channel->trans_info.map[index % channel->tre_ring.count];
 247}
 248
 249/* Return the oldest completed transaction for a channel (or null) */
 250struct gsi_trans *gsi_channel_trans_complete(struct gsi_channel *channel)
 251{
 252        return list_first_entry_or_null(&channel->trans_info.complete,
 253                                        struct gsi_trans, links);
 254}
 255
 256/* Move a transaction from the allocated list to the pending list */
 257static void gsi_trans_move_pending(struct gsi_trans *trans)
 258{
 259        struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
 260        struct gsi_trans_info *trans_info = &channel->trans_info;
 261
 262        spin_lock_bh(&trans_info->spinlock);
 263
 264        list_move_tail(&trans->links, &trans_info->pending);
 265
 266        spin_unlock_bh(&trans_info->spinlock);
 267}
 268
 269/* Move a transaction and all of its predecessors from the pending list
 270 * to the completed list.
 271 */
 272void gsi_trans_move_complete(struct gsi_trans *trans)
 273{
 274        struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
 275        struct gsi_trans_info *trans_info = &channel->trans_info;
 276        struct list_head list;
 277
 278        spin_lock_bh(&trans_info->spinlock);
 279
 280        /* Move this transaction and all predecessors to completed list */
 281        list_cut_position(&list, &trans_info->pending, &trans->links);
 282        list_splice_tail(&list, &trans_info->complete);
 283
 284        spin_unlock_bh(&trans_info->spinlock);
 285}
 286
 287/* Move a transaction from the completed list to the polled list */
 288void gsi_trans_move_polled(struct gsi_trans *trans)
 289{
 290        struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
 291        struct gsi_trans_info *trans_info = &channel->trans_info;
 292
 293        spin_lock_bh(&trans_info->spinlock);
 294
 295        list_move_tail(&trans->links, &trans_info->polled);
 296
 297        spin_unlock_bh(&trans_info->spinlock);
 298}
 299
 300/* Reserve some number of TREs on a channel.  Returns true if successful */
 301static bool
 302gsi_trans_tre_reserve(struct gsi_trans_info *trans_info, u32 tre_count)
 303{
 304        int avail = atomic_read(&trans_info->tre_avail);
 305        int new;
 306
 307        do {
 308                new = avail - (int)tre_count;
 309                if (unlikely(new < 0))
 310                        return false;
 311        } while (!atomic_try_cmpxchg(&trans_info->tre_avail, &avail, new));
 312
 313        return true;
 314}
 315
 316/* Release previously-reserved TRE entries to a channel */
 317static void
 318gsi_trans_tre_release(struct gsi_trans_info *trans_info, u32 tre_count)
 319{
 320        atomic_add(tre_count, &trans_info->tre_avail);
 321}
 322
 323/* Allocate a GSI transaction on a channel */
 324struct gsi_trans *gsi_channel_trans_alloc(struct gsi *gsi, u32 channel_id,
 325                                          u32 tre_count,
 326                                          enum dma_data_direction direction)
 327{
 328        struct gsi_channel *channel = &gsi->channel[channel_id];
 329        struct gsi_trans_info *trans_info;
 330        struct gsi_trans *trans;
 331
 332        if (WARN_ON(tre_count > gsi_channel_trans_tre_max(gsi, channel_id)))
 333                return NULL;
 334
 335        trans_info = &channel->trans_info;
 336
 337        /* We reserve the TREs now, but consume them at commit time.
 338         * If there aren't enough available, we're done.
 339         */
 340        if (!gsi_trans_tre_reserve(trans_info, tre_count))
 341                return NULL;
 342
 343        /* Allocate and initialize non-zero fields in the the transaction */
 344        trans = gsi_trans_pool_alloc(&trans_info->pool, 1);
 345        trans->gsi = gsi;
 346        trans->channel_id = channel_id;
 347        trans->tre_count = tre_count;
 348        init_completion(&trans->completion);
 349
 350        /* Allocate the scatterlist and (if requested) info entries. */
 351        trans->sgl = gsi_trans_pool_alloc(&trans_info->sg_pool, tre_count);
 352        sg_init_marker(trans->sgl, tre_count);
 353
 354        trans->direction = direction;
 355
 356        spin_lock_bh(&trans_info->spinlock);
 357
 358        list_add_tail(&trans->links, &trans_info->alloc);
 359
 360        spin_unlock_bh(&trans_info->spinlock);
 361
 362        refcount_set(&trans->refcount, 1);
 363
 364        return trans;
 365}
 366
 367/* Free a previously-allocated transaction */
 368void gsi_trans_free(struct gsi_trans *trans)
 369{
 370        refcount_t *refcount = &trans->refcount;
 371        struct gsi_trans_info *trans_info;
 372        bool last;
 373
 374        /* We must hold the lock to release the last reference */
 375        if (refcount_dec_not_one(refcount))
 376                return;
 377
 378        trans_info = &trans->gsi->channel[trans->channel_id].trans_info;
 379
 380        spin_lock_bh(&trans_info->spinlock);
 381
 382        /* Reference might have been added before we got the lock */
 383        last = refcount_dec_and_test(refcount);
 384        if (last)
 385                list_del(&trans->links);
 386
 387        spin_unlock_bh(&trans_info->spinlock);
 388
 389        if (!last)
 390                return;
 391
 392        ipa_gsi_trans_release(trans);
 393
 394        /* Releasing the reserved TREs implicitly frees the sgl[] and
 395         * (if present) info[] arrays, plus the transaction itself.
 396         */
 397        gsi_trans_tre_release(trans_info, trans->tre_count);
 398}
 399
 400/* Add an immediate command to a transaction */
 401void gsi_trans_cmd_add(struct gsi_trans *trans, void *buf, u32 size,
 402                       dma_addr_t addr, enum dma_data_direction direction,
 403                       enum ipa_cmd_opcode opcode)
 404{
 405        struct ipa_cmd_info *info;
 406        u32 which = trans->used++;
 407        struct scatterlist *sg;
 408
 409        WARN_ON(which >= trans->tre_count);
 410
 411        /* Commands are quite different from data transfer requests.
 412         * Their payloads come from a pool whose memory is allocated
 413         * using dma_alloc_coherent().  We therefore do *not* map them
 414         * for DMA (unlike what we do for pages and skbs).
 415         *
 416         * When a transaction completes, the SGL is normally unmapped.
 417         * A command transaction has direction DMA_NONE, which tells
 418         * gsi_trans_complete() to skip the unmapping step.
 419         *
 420         * The only things we use directly in a command scatter/gather
 421         * entry are the DMA address and length.  We still need the SG
 422         * table flags to be maintained though, so assign a NULL page
 423         * pointer for that purpose.
 424         */
 425        sg = &trans->sgl[which];
 426        sg_assign_page(sg, NULL);
 427        sg_dma_address(sg) = addr;
 428        sg_dma_len(sg) = size;
 429
 430        info = &trans->info[which];
 431        info->opcode = opcode;
 432        info->direction = direction;
 433}
 434
 435/* Add a page transfer to a transaction.  It will fill the only TRE. */
 436int gsi_trans_page_add(struct gsi_trans *trans, struct page *page, u32 size,
 437                       u32 offset)
 438{
 439        struct scatterlist *sg = &trans->sgl[0];
 440        int ret;
 441
 442        if (WARN_ON(trans->tre_count != 1))
 443                return -EINVAL;
 444        if (WARN_ON(trans->used))
 445                return -EINVAL;
 446
 447        sg_set_page(sg, page, size, offset);
 448        ret = dma_map_sg(trans->gsi->dev, sg, 1, trans->direction);
 449        if (!ret)
 450                return -ENOMEM;
 451
 452        trans->used++;  /* Transaction now owns the (DMA mapped) page */
 453
 454        return 0;
 455}
 456
 457/* Add an SKB transfer to a transaction.  No other TREs will be used. */
 458int gsi_trans_skb_add(struct gsi_trans *trans, struct sk_buff *skb)
 459{
 460        struct scatterlist *sg = &trans->sgl[0];
 461        u32 used;
 462        int ret;
 463
 464        if (WARN_ON(trans->tre_count != 1))
 465                return -EINVAL;
 466        if (WARN_ON(trans->used))
 467                return -EINVAL;
 468
 469        /* skb->len will not be 0 (checked early) */
 470        ret = skb_to_sgvec(skb, sg, 0, skb->len);
 471        if (ret < 0)
 472                return ret;
 473        used = ret;
 474
 475        ret = dma_map_sg(trans->gsi->dev, sg, used, trans->direction);
 476        if (!ret)
 477                return -ENOMEM;
 478
 479        trans->used += used;    /* Transaction now owns the (DMA mapped) skb */
 480
 481        return 0;
 482}
 483
 484/* Compute the length/opcode value to use for a TRE */
 485static __le16 gsi_tre_len_opcode(enum ipa_cmd_opcode opcode, u32 len)
 486{
 487        return opcode == IPA_CMD_NONE ? cpu_to_le16((u16)len)
 488                                      : cpu_to_le16((u16)opcode);
 489}
 490
 491/* Compute the flags value to use for a given TRE */
 492static __le32 gsi_tre_flags(bool last_tre, bool bei, enum ipa_cmd_opcode opcode)
 493{
 494        enum gsi_tre_type tre_type;
 495        u32 tre_flags;
 496
 497        tre_type = opcode == IPA_CMD_NONE ? GSI_RE_XFER : GSI_RE_IMMD_CMD;
 498        tre_flags = u32_encode_bits(tre_type, TRE_FLAGS_TYPE_FMASK);
 499
 500        /* Last TRE contains interrupt flags */
 501        if (last_tre) {
 502                /* All transactions end in a transfer completion interrupt */
 503                tre_flags |= TRE_FLAGS_IEOT_FMASK;
 504                /* Don't interrupt when outbound commands are acknowledged */
 505                if (bei)
 506                        tre_flags |= TRE_FLAGS_BEI_FMASK;
 507        } else {        /* All others indicate there's more to come */
 508                tre_flags |= TRE_FLAGS_CHAIN_FMASK;
 509        }
 510
 511        return cpu_to_le32(tre_flags);
 512}
 513
 514static void gsi_trans_tre_fill(struct gsi_tre *dest_tre, dma_addr_t addr,
 515                               u32 len, bool last_tre, bool bei,
 516                               enum ipa_cmd_opcode opcode)
 517{
 518        struct gsi_tre tre;
 519
 520        tre.addr = cpu_to_le64(addr);
 521        tre.len_opcode = gsi_tre_len_opcode(opcode, len);
 522        tre.reserved = 0;
 523        tre.flags = gsi_tre_flags(last_tre, bei, opcode);
 524
 525        /* ARM64 can write 16 bytes as a unit with a single instruction.
 526         * Doing the assignment this way is an attempt to make that happen.
 527         */
 528        *dest_tre = tre;
 529}
 530
 531/**
 532 * __gsi_trans_commit() - Common GSI transaction commit code
 533 * @trans:      Transaction to commit
 534 * @ring_db:    Whether to tell the hardware about these queued transfers
 535 *
 536 * Formats channel ring TRE entries based on the content of the scatterlist.
 537 * Maps a transaction pointer to the last ring entry used for the transaction,
 538 * so it can be recovered when it completes.  Moves the transaction to the
 539 * pending list.  Finally, updates the channel ring pointer and optionally
 540 * rings the doorbell.
 541 */
 542static void __gsi_trans_commit(struct gsi_trans *trans, bool ring_db)
 543{
 544        struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
 545        struct gsi_ring *ring = &channel->tre_ring;
 546        enum ipa_cmd_opcode opcode = IPA_CMD_NONE;
 547        bool bei = channel->toward_ipa;
 548        struct ipa_cmd_info *info;
 549        struct gsi_tre *dest_tre;
 550        struct scatterlist *sg;
 551        u32 byte_count = 0;
 552        u32 avail;
 553        u32 i;
 554
 555        WARN_ON(!trans->used);
 556
 557        /* Consume the entries.  If we cross the end of the ring while
 558         * filling them we'll switch to the beginning to finish.
 559         * If there is no info array we're doing a simple data
 560         * transfer request, whose opcode is IPA_CMD_NONE.
 561         */
 562        info = trans->info ? &trans->info[0] : NULL;
 563        avail = ring->count - ring->index % ring->count;
 564        dest_tre = gsi_ring_virt(ring, ring->index);
 565        for_each_sg(trans->sgl, sg, trans->used, i) {
 566                bool last_tre = i == trans->used - 1;
 567                dma_addr_t addr = sg_dma_address(sg);
 568                u32 len = sg_dma_len(sg);
 569
 570                byte_count += len;
 571                if (!avail--)
 572                        dest_tre = gsi_ring_virt(ring, 0);
 573                if (info)
 574                        opcode = info++->opcode;
 575
 576                gsi_trans_tre_fill(dest_tre, addr, len, last_tre, bei, opcode);
 577                dest_tre++;
 578        }
 579        ring->index += trans->used;
 580
 581        if (channel->toward_ipa) {
 582                /* We record TX bytes when they are sent */
 583                trans->len = byte_count;
 584                trans->trans_count = channel->trans_count;
 585                trans->byte_count = channel->byte_count;
 586                channel->trans_count++;
 587                channel->byte_count += byte_count;
 588        }
 589
 590        /* Associate the last TRE with the transaction */
 591        gsi_channel_trans_map(channel, ring->index - 1, trans);
 592
 593        gsi_trans_move_pending(trans);
 594
 595        /* Ring doorbell if requested, or if all TREs are allocated */
 596        if (ring_db || !atomic_read(&channel->trans_info.tre_avail)) {
 597                /* Report what we're handing off to hardware for TX channels */
 598                if (channel->toward_ipa)
 599                        gsi_channel_tx_queued(channel);
 600                gsi_channel_doorbell(channel);
 601        }
 602}
 603
 604/* Commit a GSI transaction */
 605void gsi_trans_commit(struct gsi_trans *trans, bool ring_db)
 606{
 607        if (trans->used)
 608                __gsi_trans_commit(trans, ring_db);
 609        else
 610                gsi_trans_free(trans);
 611}
 612
 613/* Commit a GSI transaction and wait for it to complete */
 614void gsi_trans_commit_wait(struct gsi_trans *trans)
 615{
 616        if (!trans->used)
 617                goto out_trans_free;
 618
 619        refcount_inc(&trans->refcount);
 620
 621        __gsi_trans_commit(trans, true);
 622
 623        wait_for_completion(&trans->completion);
 624
 625out_trans_free:
 626        gsi_trans_free(trans);
 627}
 628
 629/* Commit a GSI transaction and wait for it to complete, with timeout */
 630int gsi_trans_commit_wait_timeout(struct gsi_trans *trans,
 631                                  unsigned long timeout)
 632{
 633        unsigned long timeout_jiffies = msecs_to_jiffies(timeout);
 634        unsigned long remaining = 1;    /* In case of empty transaction */
 635
 636        if (!trans->used)
 637                goto out_trans_free;
 638
 639        refcount_inc(&trans->refcount);
 640
 641        __gsi_trans_commit(trans, true);
 642
 643        remaining = wait_for_completion_timeout(&trans->completion,
 644                                                timeout_jiffies);
 645out_trans_free:
 646        gsi_trans_free(trans);
 647
 648        return remaining ? 0 : -ETIMEDOUT;
 649}
 650
 651/* Process the completion of a transaction; called while polling */
 652void gsi_trans_complete(struct gsi_trans *trans)
 653{
 654        /* If the entire SGL was mapped when added, unmap it now */
 655        if (trans->direction != DMA_NONE)
 656                dma_unmap_sg(trans->gsi->dev, trans->sgl, trans->used,
 657                             trans->direction);
 658
 659        ipa_gsi_trans_complete(trans);
 660
 661        complete(&trans->completion);
 662
 663        gsi_trans_free(trans);
 664}
 665
 666/* Cancel a channel's pending transactions */
 667void gsi_channel_trans_cancel_pending(struct gsi_channel *channel)
 668{
 669        struct gsi_trans_info *trans_info = &channel->trans_info;
 670        struct gsi_trans *trans;
 671        bool cancelled;
 672
 673        /* channel->gsi->mutex is held by caller */
 674        spin_lock_bh(&trans_info->spinlock);
 675
 676        cancelled = !list_empty(&trans_info->pending);
 677        list_for_each_entry(trans, &trans_info->pending, links)
 678                trans->cancelled = true;
 679
 680        list_splice_tail_init(&trans_info->pending, &trans_info->complete);
 681
 682        spin_unlock_bh(&trans_info->spinlock);
 683
 684        /* Schedule NAPI polling to complete the cancelled transactions */
 685        if (cancelled)
 686                napi_schedule(&channel->napi);
 687}
 688
 689/* Issue a command to read a single byte from a channel */
 690int gsi_trans_read_byte(struct gsi *gsi, u32 channel_id, dma_addr_t addr)
 691{
 692        struct gsi_channel *channel = &gsi->channel[channel_id];
 693        struct gsi_ring *ring = &channel->tre_ring;
 694        struct gsi_trans_info *trans_info;
 695        struct gsi_tre *dest_tre;
 696
 697        trans_info = &channel->trans_info;
 698
 699        /* First reserve the TRE, if possible */
 700        if (!gsi_trans_tre_reserve(trans_info, 1))
 701                return -EBUSY;
 702
 703        /* Now fill the the reserved TRE and tell the hardware */
 704
 705        dest_tre = gsi_ring_virt(ring, ring->index);
 706        gsi_trans_tre_fill(dest_tre, addr, 1, true, false, IPA_CMD_NONE);
 707
 708        ring->index++;
 709        gsi_channel_doorbell(channel);
 710
 711        return 0;
 712}
 713
 714/* Mark a gsi_trans_read_byte() request done */
 715void gsi_trans_read_byte_done(struct gsi *gsi, u32 channel_id)
 716{
 717        struct gsi_channel *channel = &gsi->channel[channel_id];
 718
 719        gsi_trans_tre_release(&channel->trans_info, 1);
 720}
 721
 722/* Initialize a channel's GSI transaction info */
 723int gsi_channel_trans_init(struct gsi *gsi, u32 channel_id)
 724{
 725        struct gsi_channel *channel = &gsi->channel[channel_id];
 726        struct gsi_trans_info *trans_info;
 727        u32 tre_max;
 728        int ret;
 729
 730        /* Ensure the size of a channel element is what's expected */
 731        BUILD_BUG_ON(sizeof(struct gsi_tre) != GSI_RING_ELEMENT_SIZE);
 732
 733        /* The map array is used to determine what transaction is associated
 734         * with a TRE that the hardware reports has completed.  We need one
 735         * map entry per TRE.
 736         */
 737        trans_info = &channel->trans_info;
 738        trans_info->map = kcalloc(channel->tre_count, sizeof(*trans_info->map),
 739                                  GFP_KERNEL);
 740        if (!trans_info->map)
 741                return -ENOMEM;
 742
 743        /* We can't use more TREs than there are available in the ring.
 744         * This limits the number of transactions that can be oustanding.
 745         * Worst case is one TRE per transaction (but we actually limit
 746         * it to something a little less than that).  We allocate resources
 747         * for transactions (including transaction structures) based on
 748         * this maximum number.
 749         */
 750        tre_max = gsi_channel_tre_max(channel->gsi, channel_id);
 751
 752        /* Transactions are allocated one at a time. */
 753        ret = gsi_trans_pool_init(&trans_info->pool, sizeof(struct gsi_trans),
 754                                  tre_max, 1);
 755        if (ret)
 756                goto err_kfree;
 757
 758        /* A transaction uses a scatterlist array to represent the data
 759         * transfers implemented by the transaction.  Each scatterlist
 760         * element is used to fill a single TRE when the transaction is
 761         * committed.  So we need as many scatterlist elements as the
 762         * maximum number of TREs that can be outstanding.
 763         *
 764         * All TREs in a transaction must fit within the channel's TLV FIFO.
 765         * A transaction on a channel can allocate as many TREs as that but
 766         * no more.
 767         */
 768        ret = gsi_trans_pool_init(&trans_info->sg_pool,
 769                                  sizeof(struct scatterlist),
 770                                  tre_max, channel->tlv_count);
 771        if (ret)
 772                goto err_trans_pool_exit;
 773
 774        /* Finally, the tre_avail field is what ultimately limits the number
 775         * of outstanding transactions and their resources.  A transaction
 776         * allocation succeeds only if the TREs available are sufficient for
 777         * what the transaction might need.  Transaction resource pools are
 778         * sized based on the maximum number of outstanding TREs, so there
 779         * will always be resources available if there are TREs available.
 780         */
 781        atomic_set(&trans_info->tre_avail, tre_max);
 782
 783        spin_lock_init(&trans_info->spinlock);
 784        INIT_LIST_HEAD(&trans_info->alloc);
 785        INIT_LIST_HEAD(&trans_info->pending);
 786        INIT_LIST_HEAD(&trans_info->complete);
 787        INIT_LIST_HEAD(&trans_info->polled);
 788
 789        return 0;
 790
 791err_trans_pool_exit:
 792        gsi_trans_pool_exit(&trans_info->pool);
 793err_kfree:
 794        kfree(trans_info->map);
 795
 796        dev_err(gsi->dev, "error %d initializing channel %u transactions\n",
 797                ret, channel_id);
 798
 799        return ret;
 800}
 801
 802/* Inverse of gsi_channel_trans_init() */
 803void gsi_channel_trans_exit(struct gsi_channel *channel)
 804{
 805        struct gsi_trans_info *trans_info = &channel->trans_info;
 806
 807        gsi_trans_pool_exit(&trans_info->sg_pool);
 808        gsi_trans_pool_exit(&trans_info->pool);
 809        kfree(trans_info->map);
 810}
 811