linux/drivers/nvdimm/pmem.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Persistent Memory Driver
   4 *
   5 * Copyright (c) 2014-2015, Intel Corporation.
   6 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
   7 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
   8 */
   9
  10#include <linux/blkdev.h>
  11#include <linux/pagemap.h>
  12#include <linux/hdreg.h>
  13#include <linux/init.h>
  14#include <linux/platform_device.h>
  15#include <linux/set_memory.h>
  16#include <linux/module.h>
  17#include <linux/moduleparam.h>
  18#include <linux/badblocks.h>
  19#include <linux/memremap.h>
  20#include <linux/vmalloc.h>
  21#include <linux/blk-mq.h>
  22#include <linux/pfn_t.h>
  23#include <linux/slab.h>
  24#include <linux/uio.h>
  25#include <linux/dax.h>
  26#include <linux/nd.h>
  27#include <linux/mm.h>
  28#include <asm/cacheflush.h>
  29#include "pmem.h"
  30#include "btt.h"
  31#include "pfn.h"
  32#include "nd.h"
  33
  34static struct device *to_dev(struct pmem_device *pmem)
  35{
  36        /*
  37         * nvdimm bus services need a 'dev' parameter, and we record the device
  38         * at init in bb.dev.
  39         */
  40        return pmem->bb.dev;
  41}
  42
  43static struct nd_region *to_region(struct pmem_device *pmem)
  44{
  45        return to_nd_region(to_dev(pmem)->parent);
  46}
  47
  48static void hwpoison_clear(struct pmem_device *pmem,
  49                phys_addr_t phys, unsigned int len)
  50{
  51        unsigned long pfn_start, pfn_end, pfn;
  52
  53        /* only pmem in the linear map supports HWPoison */
  54        if (is_vmalloc_addr(pmem->virt_addr))
  55                return;
  56
  57        pfn_start = PHYS_PFN(phys);
  58        pfn_end = pfn_start + PHYS_PFN(len);
  59        for (pfn = pfn_start; pfn < pfn_end; pfn++) {
  60                struct page *page = pfn_to_page(pfn);
  61
  62                /*
  63                 * Note, no need to hold a get_dev_pagemap() reference
  64                 * here since we're in the driver I/O path and
  65                 * outstanding I/O requests pin the dev_pagemap.
  66                 */
  67                if (test_and_clear_pmem_poison(page))
  68                        clear_mce_nospec(pfn);
  69        }
  70}
  71
  72static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
  73                phys_addr_t offset, unsigned int len)
  74{
  75        struct device *dev = to_dev(pmem);
  76        sector_t sector;
  77        long cleared;
  78        blk_status_t rc = BLK_STS_OK;
  79
  80        sector = (offset - pmem->data_offset) / 512;
  81
  82        cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
  83        if (cleared < len)
  84                rc = BLK_STS_IOERR;
  85        if (cleared > 0 && cleared / 512) {
  86                hwpoison_clear(pmem, pmem->phys_addr + offset, cleared);
  87                cleared /= 512;
  88                dev_dbg(dev, "%#llx clear %ld sector%s\n",
  89                                (unsigned long long) sector, cleared,
  90                                cleared > 1 ? "s" : "");
  91                badblocks_clear(&pmem->bb, sector, cleared);
  92                if (pmem->bb_state)
  93                        sysfs_notify_dirent(pmem->bb_state);
  94        }
  95
  96        arch_invalidate_pmem(pmem->virt_addr + offset, len);
  97
  98        return rc;
  99}
 100
 101static void write_pmem(void *pmem_addr, struct page *page,
 102                unsigned int off, unsigned int len)
 103{
 104        unsigned int chunk;
 105        void *mem;
 106
 107        while (len) {
 108                mem = kmap_atomic(page);
 109                chunk = min_t(unsigned int, len, PAGE_SIZE - off);
 110                memcpy_flushcache(pmem_addr, mem + off, chunk);
 111                kunmap_atomic(mem);
 112                len -= chunk;
 113                off = 0;
 114                page++;
 115                pmem_addr += chunk;
 116        }
 117}
 118
 119static blk_status_t read_pmem(struct page *page, unsigned int off,
 120                void *pmem_addr, unsigned int len)
 121{
 122        unsigned int chunk;
 123        unsigned long rem;
 124        void *mem;
 125
 126        while (len) {
 127                mem = kmap_atomic(page);
 128                chunk = min_t(unsigned int, len, PAGE_SIZE - off);
 129                rem = copy_mc_to_kernel(mem + off, pmem_addr, chunk);
 130                kunmap_atomic(mem);
 131                if (rem)
 132                        return BLK_STS_IOERR;
 133                len -= chunk;
 134                off = 0;
 135                page++;
 136                pmem_addr += chunk;
 137        }
 138        return BLK_STS_OK;
 139}
 140
 141static blk_status_t pmem_do_read(struct pmem_device *pmem,
 142                        struct page *page, unsigned int page_off,
 143                        sector_t sector, unsigned int len)
 144{
 145        blk_status_t rc;
 146        phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
 147        void *pmem_addr = pmem->virt_addr + pmem_off;
 148
 149        if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
 150                return BLK_STS_IOERR;
 151
 152        rc = read_pmem(page, page_off, pmem_addr, len);
 153        flush_dcache_page(page);
 154        return rc;
 155}
 156
 157static blk_status_t pmem_do_write(struct pmem_device *pmem,
 158                        struct page *page, unsigned int page_off,
 159                        sector_t sector, unsigned int len)
 160{
 161        blk_status_t rc = BLK_STS_OK;
 162        bool bad_pmem = false;
 163        phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
 164        void *pmem_addr = pmem->virt_addr + pmem_off;
 165
 166        if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
 167                bad_pmem = true;
 168
 169        /*
 170         * Note that we write the data both before and after
 171         * clearing poison.  The write before clear poison
 172         * handles situations where the latest written data is
 173         * preserved and the clear poison operation simply marks
 174         * the address range as valid without changing the data.
 175         * In this case application software can assume that an
 176         * interrupted write will either return the new good
 177         * data or an error.
 178         *
 179         * However, if pmem_clear_poison() leaves the data in an
 180         * indeterminate state we need to perform the write
 181         * after clear poison.
 182         */
 183        flush_dcache_page(page);
 184        write_pmem(pmem_addr, page, page_off, len);
 185        if (unlikely(bad_pmem)) {
 186                rc = pmem_clear_poison(pmem, pmem_off, len);
 187                write_pmem(pmem_addr, page, page_off, len);
 188        }
 189
 190        return rc;
 191}
 192
 193static blk_qc_t pmem_submit_bio(struct bio *bio)
 194{
 195        int ret = 0;
 196        blk_status_t rc = 0;
 197        bool do_acct;
 198        unsigned long start;
 199        struct bio_vec bvec;
 200        struct bvec_iter iter;
 201        struct pmem_device *pmem = bio->bi_bdev->bd_disk->private_data;
 202        struct nd_region *nd_region = to_region(pmem);
 203
 204        if (bio->bi_opf & REQ_PREFLUSH)
 205                ret = nvdimm_flush(nd_region, bio);
 206
 207        do_acct = blk_queue_io_stat(bio->bi_bdev->bd_disk->queue);
 208        if (do_acct)
 209                start = bio_start_io_acct(bio);
 210        bio_for_each_segment(bvec, bio, iter) {
 211                if (op_is_write(bio_op(bio)))
 212                        rc = pmem_do_write(pmem, bvec.bv_page, bvec.bv_offset,
 213                                iter.bi_sector, bvec.bv_len);
 214                else
 215                        rc = pmem_do_read(pmem, bvec.bv_page, bvec.bv_offset,
 216                                iter.bi_sector, bvec.bv_len);
 217                if (rc) {
 218                        bio->bi_status = rc;
 219                        break;
 220                }
 221        }
 222        if (do_acct)
 223                bio_end_io_acct(bio, start);
 224
 225        if (bio->bi_opf & REQ_FUA)
 226                ret = nvdimm_flush(nd_region, bio);
 227
 228        if (ret)
 229                bio->bi_status = errno_to_blk_status(ret);
 230
 231        bio_endio(bio);
 232        return BLK_QC_T_NONE;
 233}
 234
 235static int pmem_rw_page(struct block_device *bdev, sector_t sector,
 236                       struct page *page, unsigned int op)
 237{
 238        struct pmem_device *pmem = bdev->bd_disk->private_data;
 239        blk_status_t rc;
 240
 241        if (op_is_write(op))
 242                rc = pmem_do_write(pmem, page, 0, sector, thp_size(page));
 243        else
 244                rc = pmem_do_read(pmem, page, 0, sector, thp_size(page));
 245        /*
 246         * The ->rw_page interface is subtle and tricky.  The core
 247         * retries on any error, so we can only invoke page_endio() in
 248         * the successful completion case.  Otherwise, we'll see crashes
 249         * caused by double completion.
 250         */
 251        if (rc == 0)
 252                page_endio(page, op_is_write(op), 0);
 253
 254        return blk_status_to_errno(rc);
 255}
 256
 257/* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
 258__weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
 259                long nr_pages, void **kaddr, pfn_t *pfn)
 260{
 261        resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
 262
 263        if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
 264                                        PFN_PHYS(nr_pages))))
 265                return -EIO;
 266
 267        if (kaddr)
 268                *kaddr = pmem->virt_addr + offset;
 269        if (pfn)
 270                *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
 271
 272        /*
 273         * If badblocks are present, limit known good range to the
 274         * requested range.
 275         */
 276        if (unlikely(pmem->bb.count))
 277                return nr_pages;
 278        return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
 279}
 280
 281static const struct block_device_operations pmem_fops = {
 282        .owner =                THIS_MODULE,
 283        .submit_bio =           pmem_submit_bio,
 284        .rw_page =              pmem_rw_page,
 285};
 286
 287static int pmem_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
 288                                    size_t nr_pages)
 289{
 290        struct pmem_device *pmem = dax_get_private(dax_dev);
 291
 292        return blk_status_to_errno(pmem_do_write(pmem, ZERO_PAGE(0), 0,
 293                                   PFN_PHYS(pgoff) >> SECTOR_SHIFT,
 294                                   PAGE_SIZE));
 295}
 296
 297static long pmem_dax_direct_access(struct dax_device *dax_dev,
 298                pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
 299{
 300        struct pmem_device *pmem = dax_get_private(dax_dev);
 301
 302        return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
 303}
 304
 305/*
 306 * Use the 'no check' versions of copy_from_iter_flushcache() and
 307 * copy_mc_to_iter() to bypass HARDENED_USERCOPY overhead. Bounds
 308 * checking, both file offset and device offset, is handled by
 309 * dax_iomap_actor()
 310 */
 311static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
 312                void *addr, size_t bytes, struct iov_iter *i)
 313{
 314        return _copy_from_iter_flushcache(addr, bytes, i);
 315}
 316
 317static size_t pmem_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
 318                void *addr, size_t bytes, struct iov_iter *i)
 319{
 320        return _copy_mc_to_iter(addr, bytes, i);
 321}
 322
 323static const struct dax_operations pmem_dax_ops = {
 324        .direct_access = pmem_dax_direct_access,
 325        .dax_supported = generic_fsdax_supported,
 326        .copy_from_iter = pmem_copy_from_iter,
 327        .copy_to_iter = pmem_copy_to_iter,
 328        .zero_page_range = pmem_dax_zero_page_range,
 329};
 330
 331static const struct attribute_group *pmem_attribute_groups[] = {
 332        &dax_attribute_group,
 333        NULL,
 334};
 335
 336static void pmem_release_disk(void *__pmem)
 337{
 338        struct pmem_device *pmem = __pmem;
 339
 340        kill_dax(pmem->dax_dev);
 341        put_dax(pmem->dax_dev);
 342        del_gendisk(pmem->disk);
 343
 344        blk_cleanup_disk(pmem->disk);
 345}
 346
 347static int pmem_attach_disk(struct device *dev,
 348                struct nd_namespace_common *ndns)
 349{
 350        struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
 351        struct nd_region *nd_region = to_nd_region(dev->parent);
 352        int nid = dev_to_node(dev), fua;
 353        struct resource *res = &nsio->res;
 354        struct range bb_range;
 355        struct nd_pfn *nd_pfn = NULL;
 356        struct dax_device *dax_dev;
 357        struct nd_pfn_sb *pfn_sb;
 358        struct pmem_device *pmem;
 359        struct request_queue *q;
 360        struct gendisk *disk;
 361        void *addr;
 362        int rc;
 363        unsigned long flags = 0UL;
 364
 365        pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
 366        if (!pmem)
 367                return -ENOMEM;
 368
 369        rc = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
 370        if (rc)
 371                return rc;
 372
 373        /* while nsio_rw_bytes is active, parse a pfn info block if present */
 374        if (is_nd_pfn(dev)) {
 375                nd_pfn = to_nd_pfn(dev);
 376                rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
 377                if (rc)
 378                        return rc;
 379        }
 380
 381        /* we're attaching a block device, disable raw namespace access */
 382        devm_namespace_disable(dev, ndns);
 383
 384        dev_set_drvdata(dev, pmem);
 385        pmem->phys_addr = res->start;
 386        pmem->size = resource_size(res);
 387        fua = nvdimm_has_flush(nd_region);
 388        if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
 389                dev_warn(dev, "unable to guarantee persistence of writes\n");
 390                fua = 0;
 391        }
 392
 393        if (!devm_request_mem_region(dev, res->start, resource_size(res),
 394                                dev_name(&ndns->dev))) {
 395                dev_warn(dev, "could not reserve region %pR\n", res);
 396                return -EBUSY;
 397        }
 398
 399        disk = blk_alloc_disk(nid);
 400        if (!disk)
 401                return -ENOMEM;
 402        q = disk->queue;
 403
 404        pmem->disk = disk;
 405        pmem->pgmap.owner = pmem;
 406        pmem->pfn_flags = PFN_DEV;
 407        if (is_nd_pfn(dev)) {
 408                pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
 409                addr = devm_memremap_pages(dev, &pmem->pgmap);
 410                pfn_sb = nd_pfn->pfn_sb;
 411                pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
 412                pmem->pfn_pad = resource_size(res) -
 413                        range_len(&pmem->pgmap.range);
 414                pmem->pfn_flags |= PFN_MAP;
 415                bb_range = pmem->pgmap.range;
 416                bb_range.start += pmem->data_offset;
 417        } else if (pmem_should_map_pages(dev)) {
 418                pmem->pgmap.range.start = res->start;
 419                pmem->pgmap.range.end = res->end;
 420                pmem->pgmap.nr_range = 1;
 421                pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
 422                addr = devm_memremap_pages(dev, &pmem->pgmap);
 423                pmem->pfn_flags |= PFN_MAP;
 424                bb_range = pmem->pgmap.range;
 425        } else {
 426                addr = devm_memremap(dev, pmem->phys_addr,
 427                                pmem->size, ARCH_MEMREMAP_PMEM);
 428                bb_range.start =  res->start;
 429                bb_range.end = res->end;
 430        }
 431
 432        if (IS_ERR(addr))
 433                return PTR_ERR(addr);
 434        pmem->virt_addr = addr;
 435
 436        blk_queue_write_cache(q, true, fua);
 437        blk_queue_physical_block_size(q, PAGE_SIZE);
 438        blk_queue_logical_block_size(q, pmem_sector_size(ndns));
 439        blk_queue_max_hw_sectors(q, UINT_MAX);
 440        blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
 441        if (pmem->pfn_flags & PFN_MAP)
 442                blk_queue_flag_set(QUEUE_FLAG_DAX, q);
 443
 444        disk->fops              = &pmem_fops;
 445        disk->private_data      = pmem;
 446        nvdimm_namespace_disk_name(ndns, disk->disk_name);
 447        set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
 448                        / 512);
 449        if (devm_init_badblocks(dev, &pmem->bb))
 450                return -ENOMEM;
 451        nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_range);
 452        disk->bb = &pmem->bb;
 453
 454        if (is_nvdimm_sync(nd_region))
 455                flags = DAXDEV_F_SYNC;
 456        dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops, flags);
 457        if (IS_ERR(dax_dev)) {
 458                return PTR_ERR(dax_dev);
 459        }
 460        dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
 461        pmem->dax_dev = dax_dev;
 462
 463        device_add_disk(dev, disk, pmem_attribute_groups);
 464        if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
 465                return -ENOMEM;
 466
 467        nvdimm_check_and_set_ro(disk);
 468
 469        pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
 470                                          "badblocks");
 471        if (!pmem->bb_state)
 472                dev_warn(dev, "'badblocks' notification disabled\n");
 473
 474        return 0;
 475}
 476
 477static int nd_pmem_probe(struct device *dev)
 478{
 479        int ret;
 480        struct nd_namespace_common *ndns;
 481
 482        ndns = nvdimm_namespace_common_probe(dev);
 483        if (IS_ERR(ndns))
 484                return PTR_ERR(ndns);
 485
 486        if (is_nd_btt(dev))
 487                return nvdimm_namespace_attach_btt(ndns);
 488
 489        if (is_nd_pfn(dev))
 490                return pmem_attach_disk(dev, ndns);
 491
 492        ret = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
 493        if (ret)
 494                return ret;
 495
 496        ret = nd_btt_probe(dev, ndns);
 497        if (ret == 0)
 498                return -ENXIO;
 499
 500        /*
 501         * We have two failure conditions here, there is no
 502         * info reserver block or we found a valid info reserve block
 503         * but failed to initialize the pfn superblock.
 504         *
 505         * For the first case consider namespace as a raw pmem namespace
 506         * and attach a disk.
 507         *
 508         * For the latter, consider this a success and advance the namespace
 509         * seed.
 510         */
 511        ret = nd_pfn_probe(dev, ndns);
 512        if (ret == 0)
 513                return -ENXIO;
 514        else if (ret == -EOPNOTSUPP)
 515                return ret;
 516
 517        ret = nd_dax_probe(dev, ndns);
 518        if (ret == 0)
 519                return -ENXIO;
 520        else if (ret == -EOPNOTSUPP)
 521                return ret;
 522
 523        /* probe complete, attach handles namespace enabling */
 524        devm_namespace_disable(dev, ndns);
 525
 526        return pmem_attach_disk(dev, ndns);
 527}
 528
 529static void nd_pmem_remove(struct device *dev)
 530{
 531        struct pmem_device *pmem = dev_get_drvdata(dev);
 532
 533        if (is_nd_btt(dev))
 534                nvdimm_namespace_detach_btt(to_nd_btt(dev));
 535        else {
 536                /*
 537                 * Note, this assumes nd_device_lock() context to not
 538                 * race nd_pmem_notify()
 539                 */
 540                sysfs_put(pmem->bb_state);
 541                pmem->bb_state = NULL;
 542        }
 543        nvdimm_flush(to_nd_region(dev->parent), NULL);
 544}
 545
 546static void nd_pmem_shutdown(struct device *dev)
 547{
 548        nvdimm_flush(to_nd_region(dev->parent), NULL);
 549}
 550
 551static void pmem_revalidate_poison(struct device *dev)
 552{
 553        struct nd_region *nd_region;
 554        resource_size_t offset = 0, end_trunc = 0;
 555        struct nd_namespace_common *ndns;
 556        struct nd_namespace_io *nsio;
 557        struct badblocks *bb;
 558        struct range range;
 559        struct kernfs_node *bb_state;
 560
 561        if (is_nd_btt(dev)) {
 562                struct nd_btt *nd_btt = to_nd_btt(dev);
 563
 564                ndns = nd_btt->ndns;
 565                nd_region = to_nd_region(ndns->dev.parent);
 566                nsio = to_nd_namespace_io(&ndns->dev);
 567                bb = &nsio->bb;
 568                bb_state = NULL;
 569        } else {
 570                struct pmem_device *pmem = dev_get_drvdata(dev);
 571
 572                nd_region = to_region(pmem);
 573                bb = &pmem->bb;
 574                bb_state = pmem->bb_state;
 575
 576                if (is_nd_pfn(dev)) {
 577                        struct nd_pfn *nd_pfn = to_nd_pfn(dev);
 578                        struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
 579
 580                        ndns = nd_pfn->ndns;
 581                        offset = pmem->data_offset +
 582                                        __le32_to_cpu(pfn_sb->start_pad);
 583                        end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
 584                } else {
 585                        ndns = to_ndns(dev);
 586                }
 587
 588                nsio = to_nd_namespace_io(&ndns->dev);
 589        }
 590
 591        range.start = nsio->res.start + offset;
 592        range.end = nsio->res.end - end_trunc;
 593        nvdimm_badblocks_populate(nd_region, bb, &range);
 594        if (bb_state)
 595                sysfs_notify_dirent(bb_state);
 596}
 597
 598static void pmem_revalidate_region(struct device *dev)
 599{
 600        struct pmem_device *pmem;
 601
 602        if (is_nd_btt(dev)) {
 603                struct nd_btt *nd_btt = to_nd_btt(dev);
 604                struct btt *btt = nd_btt->btt;
 605
 606                nvdimm_check_and_set_ro(btt->btt_disk);
 607                return;
 608        }
 609
 610        pmem = dev_get_drvdata(dev);
 611        nvdimm_check_and_set_ro(pmem->disk);
 612}
 613
 614static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
 615{
 616        switch (event) {
 617        case NVDIMM_REVALIDATE_POISON:
 618                pmem_revalidate_poison(dev);
 619                break;
 620        case NVDIMM_REVALIDATE_REGION:
 621                pmem_revalidate_region(dev);
 622                break;
 623        default:
 624                dev_WARN_ONCE(dev, 1, "notify: unknown event: %d\n", event);
 625                break;
 626        }
 627}
 628
 629MODULE_ALIAS("pmem");
 630MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
 631MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
 632static struct nd_device_driver nd_pmem_driver = {
 633        .probe = nd_pmem_probe,
 634        .remove = nd_pmem_remove,
 635        .notify = nd_pmem_notify,
 636        .shutdown = nd_pmem_shutdown,
 637        .drv = {
 638                .name = "nd_pmem",
 639        },
 640        .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
 641};
 642
 643module_nd_driver(nd_pmem_driver);
 644
 645MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
 646MODULE_LICENSE("GPL v2");
 647