linux/fs/btrfs/ctree.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/rbtree.h>
   9#include <linux/mm.h>
  10#include "ctree.h"
  11#include "disk-io.h"
  12#include "transaction.h"
  13#include "print-tree.h"
  14#include "locking.h"
  15#include "volumes.h"
  16#include "qgroup.h"
  17#include "tree-mod-log.h"
  18
  19static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  20                      *root, struct btrfs_path *path, int level);
  21static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  22                      const struct btrfs_key *ins_key, struct btrfs_path *path,
  23                      int data_size, int extend);
  24static int push_node_left(struct btrfs_trans_handle *trans,
  25                          struct extent_buffer *dst,
  26                          struct extent_buffer *src, int empty);
  27static int balance_node_right(struct btrfs_trans_handle *trans,
  28                              struct extent_buffer *dst_buf,
  29                              struct extent_buffer *src_buf);
  30static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  31                    int level, int slot);
  32
  33static const struct btrfs_csums {
  34        u16             size;
  35        const char      name[10];
  36        const char      driver[12];
  37} btrfs_csums[] = {
  38        [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
  39        [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
  40        [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
  41        [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
  42                                     .driver = "blake2b-256" },
  43};
  44
  45int btrfs_super_csum_size(const struct btrfs_super_block *s)
  46{
  47        u16 t = btrfs_super_csum_type(s);
  48        /*
  49         * csum type is validated at mount time
  50         */
  51        return btrfs_csums[t].size;
  52}
  53
  54const char *btrfs_super_csum_name(u16 csum_type)
  55{
  56        /* csum type is validated at mount time */
  57        return btrfs_csums[csum_type].name;
  58}
  59
  60/*
  61 * Return driver name if defined, otherwise the name that's also a valid driver
  62 * name
  63 */
  64const char *btrfs_super_csum_driver(u16 csum_type)
  65{
  66        /* csum type is validated at mount time */
  67        return btrfs_csums[csum_type].driver[0] ?
  68                btrfs_csums[csum_type].driver :
  69                btrfs_csums[csum_type].name;
  70}
  71
  72size_t __attribute_const__ btrfs_get_num_csums(void)
  73{
  74        return ARRAY_SIZE(btrfs_csums);
  75}
  76
  77struct btrfs_path *btrfs_alloc_path(void)
  78{
  79        return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  80}
  81
  82/* this also releases the path */
  83void btrfs_free_path(struct btrfs_path *p)
  84{
  85        if (!p)
  86                return;
  87        btrfs_release_path(p);
  88        kmem_cache_free(btrfs_path_cachep, p);
  89}
  90
  91/*
  92 * path release drops references on the extent buffers in the path
  93 * and it drops any locks held by this path
  94 *
  95 * It is safe to call this on paths that no locks or extent buffers held.
  96 */
  97noinline void btrfs_release_path(struct btrfs_path *p)
  98{
  99        int i;
 100
 101        for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 102                p->slots[i] = 0;
 103                if (!p->nodes[i])
 104                        continue;
 105                if (p->locks[i]) {
 106                        btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 107                        p->locks[i] = 0;
 108                }
 109                free_extent_buffer(p->nodes[i]);
 110                p->nodes[i] = NULL;
 111        }
 112}
 113
 114/*
 115 * safely gets a reference on the root node of a tree.  A lock
 116 * is not taken, so a concurrent writer may put a different node
 117 * at the root of the tree.  See btrfs_lock_root_node for the
 118 * looping required.
 119 *
 120 * The extent buffer returned by this has a reference taken, so
 121 * it won't disappear.  It may stop being the root of the tree
 122 * at any time because there are no locks held.
 123 */
 124struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 125{
 126        struct extent_buffer *eb;
 127
 128        while (1) {
 129                rcu_read_lock();
 130                eb = rcu_dereference(root->node);
 131
 132                /*
 133                 * RCU really hurts here, we could free up the root node because
 134                 * it was COWed but we may not get the new root node yet so do
 135                 * the inc_not_zero dance and if it doesn't work then
 136                 * synchronize_rcu and try again.
 137                 */
 138                if (atomic_inc_not_zero(&eb->refs)) {
 139                        rcu_read_unlock();
 140                        break;
 141                }
 142                rcu_read_unlock();
 143                synchronize_rcu();
 144        }
 145        return eb;
 146}
 147
 148/*
 149 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
 150 * just get put onto a simple dirty list.  Transaction walks this list to make
 151 * sure they get properly updated on disk.
 152 */
 153static void add_root_to_dirty_list(struct btrfs_root *root)
 154{
 155        struct btrfs_fs_info *fs_info = root->fs_info;
 156
 157        if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 158            !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 159                return;
 160
 161        spin_lock(&fs_info->trans_lock);
 162        if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 163                /* Want the extent tree to be the last on the list */
 164                if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
 165                        list_move_tail(&root->dirty_list,
 166                                       &fs_info->dirty_cowonly_roots);
 167                else
 168                        list_move(&root->dirty_list,
 169                                  &fs_info->dirty_cowonly_roots);
 170        }
 171        spin_unlock(&fs_info->trans_lock);
 172}
 173
 174/*
 175 * used by snapshot creation to make a copy of a root for a tree with
 176 * a given objectid.  The buffer with the new root node is returned in
 177 * cow_ret, and this func returns zero on success or a negative error code.
 178 */
 179int btrfs_copy_root(struct btrfs_trans_handle *trans,
 180                      struct btrfs_root *root,
 181                      struct extent_buffer *buf,
 182                      struct extent_buffer **cow_ret, u64 new_root_objectid)
 183{
 184        struct btrfs_fs_info *fs_info = root->fs_info;
 185        struct extent_buffer *cow;
 186        int ret = 0;
 187        int level;
 188        struct btrfs_disk_key disk_key;
 189
 190        WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 191                trans->transid != fs_info->running_transaction->transid);
 192        WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 193                trans->transid != root->last_trans);
 194
 195        level = btrfs_header_level(buf);
 196        if (level == 0)
 197                btrfs_item_key(buf, &disk_key, 0);
 198        else
 199                btrfs_node_key(buf, &disk_key, 0);
 200
 201        cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 202                                     &disk_key, level, buf->start, 0,
 203                                     BTRFS_NESTING_NEW_ROOT);
 204        if (IS_ERR(cow))
 205                return PTR_ERR(cow);
 206
 207        copy_extent_buffer_full(cow, buf);
 208        btrfs_set_header_bytenr(cow, cow->start);
 209        btrfs_set_header_generation(cow, trans->transid);
 210        btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 211        btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 212                                     BTRFS_HEADER_FLAG_RELOC);
 213        if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 214                btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 215        else
 216                btrfs_set_header_owner(cow, new_root_objectid);
 217
 218        write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 219
 220        WARN_ON(btrfs_header_generation(buf) > trans->transid);
 221        if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 222                ret = btrfs_inc_ref(trans, root, cow, 1);
 223        else
 224                ret = btrfs_inc_ref(trans, root, cow, 0);
 225        if (ret) {
 226                btrfs_tree_unlock(cow);
 227                free_extent_buffer(cow);
 228                btrfs_abort_transaction(trans, ret);
 229                return ret;
 230        }
 231
 232        btrfs_mark_buffer_dirty(cow);
 233        *cow_ret = cow;
 234        return 0;
 235}
 236
 237/*
 238 * check if the tree block can be shared by multiple trees
 239 */
 240int btrfs_block_can_be_shared(struct btrfs_root *root,
 241                              struct extent_buffer *buf)
 242{
 243        /*
 244         * Tree blocks not in shareable trees and tree roots are never shared.
 245         * If a block was allocated after the last snapshot and the block was
 246         * not allocated by tree relocation, we know the block is not shared.
 247         */
 248        if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 249            buf != root->node && buf != root->commit_root &&
 250            (btrfs_header_generation(buf) <=
 251             btrfs_root_last_snapshot(&root->root_item) ||
 252             btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 253                return 1;
 254
 255        return 0;
 256}
 257
 258static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 259                                       struct btrfs_root *root,
 260                                       struct extent_buffer *buf,
 261                                       struct extent_buffer *cow,
 262                                       int *last_ref)
 263{
 264        struct btrfs_fs_info *fs_info = root->fs_info;
 265        u64 refs;
 266        u64 owner;
 267        u64 flags;
 268        u64 new_flags = 0;
 269        int ret;
 270
 271        /*
 272         * Backrefs update rules:
 273         *
 274         * Always use full backrefs for extent pointers in tree block
 275         * allocated by tree relocation.
 276         *
 277         * If a shared tree block is no longer referenced by its owner
 278         * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 279         * use full backrefs for extent pointers in tree block.
 280         *
 281         * If a tree block is been relocating
 282         * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 283         * use full backrefs for extent pointers in tree block.
 284         * The reason for this is some operations (such as drop tree)
 285         * are only allowed for blocks use full backrefs.
 286         */
 287
 288        if (btrfs_block_can_be_shared(root, buf)) {
 289                ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
 290                                               btrfs_header_level(buf), 1,
 291                                               &refs, &flags);
 292                if (ret)
 293                        return ret;
 294                if (refs == 0) {
 295                        ret = -EROFS;
 296                        btrfs_handle_fs_error(fs_info, ret, NULL);
 297                        return ret;
 298                }
 299        } else {
 300                refs = 1;
 301                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 302                    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 303                        flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 304                else
 305                        flags = 0;
 306        }
 307
 308        owner = btrfs_header_owner(buf);
 309        BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
 310               !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 311
 312        if (refs > 1) {
 313                if ((owner == root->root_key.objectid ||
 314                     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
 315                    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 316                        ret = btrfs_inc_ref(trans, root, buf, 1);
 317                        if (ret)
 318                                return ret;
 319
 320                        if (root->root_key.objectid ==
 321                            BTRFS_TREE_RELOC_OBJECTID) {
 322                                ret = btrfs_dec_ref(trans, root, buf, 0);
 323                                if (ret)
 324                                        return ret;
 325                                ret = btrfs_inc_ref(trans, root, cow, 1);
 326                                if (ret)
 327                                        return ret;
 328                        }
 329                        new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 330                } else {
 331
 332                        if (root->root_key.objectid ==
 333                            BTRFS_TREE_RELOC_OBJECTID)
 334                                ret = btrfs_inc_ref(trans, root, cow, 1);
 335                        else
 336                                ret = btrfs_inc_ref(trans, root, cow, 0);
 337                        if (ret)
 338                                return ret;
 339                }
 340                if (new_flags != 0) {
 341                        int level = btrfs_header_level(buf);
 342
 343                        ret = btrfs_set_disk_extent_flags(trans, buf,
 344                                                          new_flags, level, 0);
 345                        if (ret)
 346                                return ret;
 347                }
 348        } else {
 349                if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 350                        if (root->root_key.objectid ==
 351                            BTRFS_TREE_RELOC_OBJECTID)
 352                                ret = btrfs_inc_ref(trans, root, cow, 1);
 353                        else
 354                                ret = btrfs_inc_ref(trans, root, cow, 0);
 355                        if (ret)
 356                                return ret;
 357                        ret = btrfs_dec_ref(trans, root, buf, 1);
 358                        if (ret)
 359                                return ret;
 360                }
 361                btrfs_clean_tree_block(buf);
 362                *last_ref = 1;
 363        }
 364        return 0;
 365}
 366
 367/*
 368 * does the dirty work in cow of a single block.  The parent block (if
 369 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 370 * dirty and returned locked.  If you modify the block it needs to be marked
 371 * dirty again.
 372 *
 373 * search_start -- an allocation hint for the new block
 374 *
 375 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 376 * bytes the allocator should try to find free next to the block it returns.
 377 * This is just a hint and may be ignored by the allocator.
 378 */
 379static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
 380                             struct btrfs_root *root,
 381                             struct extent_buffer *buf,
 382                             struct extent_buffer *parent, int parent_slot,
 383                             struct extent_buffer **cow_ret,
 384                             u64 search_start, u64 empty_size,
 385                             enum btrfs_lock_nesting nest)
 386{
 387        struct btrfs_fs_info *fs_info = root->fs_info;
 388        struct btrfs_disk_key disk_key;
 389        struct extent_buffer *cow;
 390        int level, ret;
 391        int last_ref = 0;
 392        int unlock_orig = 0;
 393        u64 parent_start = 0;
 394
 395        if (*cow_ret == buf)
 396                unlock_orig = 1;
 397
 398        btrfs_assert_tree_locked(buf);
 399
 400        WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 401                trans->transid != fs_info->running_transaction->transid);
 402        WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 403                trans->transid != root->last_trans);
 404
 405        level = btrfs_header_level(buf);
 406
 407        if (level == 0)
 408                btrfs_item_key(buf, &disk_key, 0);
 409        else
 410                btrfs_node_key(buf, &disk_key, 0);
 411
 412        if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
 413                parent_start = parent->start;
 414
 415        cow = btrfs_alloc_tree_block(trans, root, parent_start,
 416                                     root->root_key.objectid, &disk_key, level,
 417                                     search_start, empty_size, nest);
 418        if (IS_ERR(cow))
 419                return PTR_ERR(cow);
 420
 421        /* cow is set to blocking by btrfs_init_new_buffer */
 422
 423        copy_extent_buffer_full(cow, buf);
 424        btrfs_set_header_bytenr(cow, cow->start);
 425        btrfs_set_header_generation(cow, trans->transid);
 426        btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 427        btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 428                                     BTRFS_HEADER_FLAG_RELOC);
 429        if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
 430                btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 431        else
 432                btrfs_set_header_owner(cow, root->root_key.objectid);
 433
 434        write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 435
 436        ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
 437        if (ret) {
 438                btrfs_tree_unlock(cow);
 439                free_extent_buffer(cow);
 440                btrfs_abort_transaction(trans, ret);
 441                return ret;
 442        }
 443
 444        if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
 445                ret = btrfs_reloc_cow_block(trans, root, buf, cow);
 446                if (ret) {
 447                        btrfs_tree_unlock(cow);
 448                        free_extent_buffer(cow);
 449                        btrfs_abort_transaction(trans, ret);
 450                        return ret;
 451                }
 452        }
 453
 454        if (buf == root->node) {
 455                WARN_ON(parent && parent != buf);
 456                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 457                    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 458                        parent_start = buf->start;
 459
 460                atomic_inc(&cow->refs);
 461                ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
 462                BUG_ON(ret < 0);
 463                rcu_assign_pointer(root->node, cow);
 464
 465                btrfs_free_tree_block(trans, root, buf, parent_start,
 466                                      last_ref);
 467                free_extent_buffer(buf);
 468                add_root_to_dirty_list(root);
 469        } else {
 470                WARN_ON(trans->transid != btrfs_header_generation(parent));
 471                btrfs_tree_mod_log_insert_key(parent, parent_slot,
 472                                              BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
 473                btrfs_set_node_blockptr(parent, parent_slot,
 474                                        cow->start);
 475                btrfs_set_node_ptr_generation(parent, parent_slot,
 476                                              trans->transid);
 477                btrfs_mark_buffer_dirty(parent);
 478                if (last_ref) {
 479                        ret = btrfs_tree_mod_log_free_eb(buf);
 480                        if (ret) {
 481                                btrfs_tree_unlock(cow);
 482                                free_extent_buffer(cow);
 483                                btrfs_abort_transaction(trans, ret);
 484                                return ret;
 485                        }
 486                }
 487                btrfs_free_tree_block(trans, root, buf, parent_start,
 488                                      last_ref);
 489        }
 490        if (unlock_orig)
 491                btrfs_tree_unlock(buf);
 492        free_extent_buffer_stale(buf);
 493        btrfs_mark_buffer_dirty(cow);
 494        *cow_ret = cow;
 495        return 0;
 496}
 497
 498static inline int should_cow_block(struct btrfs_trans_handle *trans,
 499                                   struct btrfs_root *root,
 500                                   struct extent_buffer *buf)
 501{
 502        if (btrfs_is_testing(root->fs_info))
 503                return 0;
 504
 505        /* Ensure we can see the FORCE_COW bit */
 506        smp_mb__before_atomic();
 507
 508        /*
 509         * We do not need to cow a block if
 510         * 1) this block is not created or changed in this transaction;
 511         * 2) this block does not belong to TREE_RELOC tree;
 512         * 3) the root is not forced COW.
 513         *
 514         * What is forced COW:
 515         *    when we create snapshot during committing the transaction,
 516         *    after we've finished copying src root, we must COW the shared
 517         *    block to ensure the metadata consistency.
 518         */
 519        if (btrfs_header_generation(buf) == trans->transid &&
 520            !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
 521            !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
 522              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
 523            !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
 524                return 0;
 525        return 1;
 526}
 527
 528/*
 529 * cows a single block, see __btrfs_cow_block for the real work.
 530 * This version of it has extra checks so that a block isn't COWed more than
 531 * once per transaction, as long as it hasn't been written yet
 532 */
 533noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
 534                    struct btrfs_root *root, struct extent_buffer *buf,
 535                    struct extent_buffer *parent, int parent_slot,
 536                    struct extent_buffer **cow_ret,
 537                    enum btrfs_lock_nesting nest)
 538{
 539        struct btrfs_fs_info *fs_info = root->fs_info;
 540        u64 search_start;
 541        int ret;
 542
 543        if (test_bit(BTRFS_ROOT_DELETING, &root->state))
 544                btrfs_err(fs_info,
 545                        "COW'ing blocks on a fs root that's being dropped");
 546
 547        if (trans->transaction != fs_info->running_transaction)
 548                WARN(1, KERN_CRIT "trans %llu running %llu\n",
 549                       trans->transid,
 550                       fs_info->running_transaction->transid);
 551
 552        if (trans->transid != fs_info->generation)
 553                WARN(1, KERN_CRIT "trans %llu running %llu\n",
 554                       trans->transid, fs_info->generation);
 555
 556        if (!should_cow_block(trans, root, buf)) {
 557                *cow_ret = buf;
 558                return 0;
 559        }
 560
 561        search_start = buf->start & ~((u64)SZ_1G - 1);
 562
 563        /*
 564         * Before CoWing this block for later modification, check if it's
 565         * the subtree root and do the delayed subtree trace if needed.
 566         *
 567         * Also We don't care about the error, as it's handled internally.
 568         */
 569        btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
 570        ret = __btrfs_cow_block(trans, root, buf, parent,
 571                                 parent_slot, cow_ret, search_start, 0, nest);
 572
 573        trace_btrfs_cow_block(root, buf, *cow_ret);
 574
 575        return ret;
 576}
 577ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
 578
 579/*
 580 * helper function for defrag to decide if two blocks pointed to by a
 581 * node are actually close by
 582 */
 583static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
 584{
 585        if (blocknr < other && other - (blocknr + blocksize) < 32768)
 586                return 1;
 587        if (blocknr > other && blocknr - (other + blocksize) < 32768)
 588                return 1;
 589        return 0;
 590}
 591
 592#ifdef __LITTLE_ENDIAN
 593
 594/*
 595 * Compare two keys, on little-endian the disk order is same as CPU order and
 596 * we can avoid the conversion.
 597 */
 598static int comp_keys(const struct btrfs_disk_key *disk_key,
 599                     const struct btrfs_key *k2)
 600{
 601        const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
 602
 603        return btrfs_comp_cpu_keys(k1, k2);
 604}
 605
 606#else
 607
 608/*
 609 * compare two keys in a memcmp fashion
 610 */
 611static int comp_keys(const struct btrfs_disk_key *disk,
 612                     const struct btrfs_key *k2)
 613{
 614        struct btrfs_key k1;
 615
 616        btrfs_disk_key_to_cpu(&k1, disk);
 617
 618        return btrfs_comp_cpu_keys(&k1, k2);
 619}
 620#endif
 621
 622/*
 623 * same as comp_keys only with two btrfs_key's
 624 */
 625int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
 626{
 627        if (k1->objectid > k2->objectid)
 628                return 1;
 629        if (k1->objectid < k2->objectid)
 630                return -1;
 631        if (k1->type > k2->type)
 632                return 1;
 633        if (k1->type < k2->type)
 634                return -1;
 635        if (k1->offset > k2->offset)
 636                return 1;
 637        if (k1->offset < k2->offset)
 638                return -1;
 639        return 0;
 640}
 641
 642/*
 643 * this is used by the defrag code to go through all the
 644 * leaves pointed to by a node and reallocate them so that
 645 * disk order is close to key order
 646 */
 647int btrfs_realloc_node(struct btrfs_trans_handle *trans,
 648                       struct btrfs_root *root, struct extent_buffer *parent,
 649                       int start_slot, u64 *last_ret,
 650                       struct btrfs_key *progress)
 651{
 652        struct btrfs_fs_info *fs_info = root->fs_info;
 653        struct extent_buffer *cur;
 654        u64 blocknr;
 655        u64 search_start = *last_ret;
 656        u64 last_block = 0;
 657        u64 other;
 658        u32 parent_nritems;
 659        int end_slot;
 660        int i;
 661        int err = 0;
 662        u32 blocksize;
 663        int progress_passed = 0;
 664        struct btrfs_disk_key disk_key;
 665
 666        WARN_ON(trans->transaction != fs_info->running_transaction);
 667        WARN_ON(trans->transid != fs_info->generation);
 668
 669        parent_nritems = btrfs_header_nritems(parent);
 670        blocksize = fs_info->nodesize;
 671        end_slot = parent_nritems - 1;
 672
 673        if (parent_nritems <= 1)
 674                return 0;
 675
 676        for (i = start_slot; i <= end_slot; i++) {
 677                int close = 1;
 678
 679                btrfs_node_key(parent, &disk_key, i);
 680                if (!progress_passed && comp_keys(&disk_key, progress) < 0)
 681                        continue;
 682
 683                progress_passed = 1;
 684                blocknr = btrfs_node_blockptr(parent, i);
 685                if (last_block == 0)
 686                        last_block = blocknr;
 687
 688                if (i > 0) {
 689                        other = btrfs_node_blockptr(parent, i - 1);
 690                        close = close_blocks(blocknr, other, blocksize);
 691                }
 692                if (!close && i < end_slot) {
 693                        other = btrfs_node_blockptr(parent, i + 1);
 694                        close = close_blocks(blocknr, other, blocksize);
 695                }
 696                if (close) {
 697                        last_block = blocknr;
 698                        continue;
 699                }
 700
 701                cur = btrfs_read_node_slot(parent, i);
 702                if (IS_ERR(cur))
 703                        return PTR_ERR(cur);
 704                if (search_start == 0)
 705                        search_start = last_block;
 706
 707                btrfs_tree_lock(cur);
 708                err = __btrfs_cow_block(trans, root, cur, parent, i,
 709                                        &cur, search_start,
 710                                        min(16 * blocksize,
 711                                            (end_slot - i) * blocksize),
 712                                        BTRFS_NESTING_COW);
 713                if (err) {
 714                        btrfs_tree_unlock(cur);
 715                        free_extent_buffer(cur);
 716                        break;
 717                }
 718                search_start = cur->start;
 719                last_block = cur->start;
 720                *last_ret = search_start;
 721                btrfs_tree_unlock(cur);
 722                free_extent_buffer(cur);
 723        }
 724        return err;
 725}
 726
 727/*
 728 * search for key in the extent_buffer.  The items start at offset p,
 729 * and they are item_size apart.
 730 *
 731 * the slot in the array is returned via slot, and it points to
 732 * the place where you would insert key if it is not found in
 733 * the array.
 734 *
 735 * Slot may point to total number of items if the key is bigger than
 736 * all of the keys
 737 */
 738static noinline int generic_bin_search(struct extent_buffer *eb,
 739                                       unsigned long p, int item_size,
 740                                       const struct btrfs_key *key, int *slot)
 741{
 742        int low = 0;
 743        int high = btrfs_header_nritems(eb);
 744        int ret;
 745        const int key_size = sizeof(struct btrfs_disk_key);
 746
 747        if (low > high) {
 748                btrfs_err(eb->fs_info,
 749                 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
 750                          __func__, low, high, eb->start,
 751                          btrfs_header_owner(eb), btrfs_header_level(eb));
 752                return -EINVAL;
 753        }
 754
 755        while (low < high) {
 756                unsigned long oip;
 757                unsigned long offset;
 758                struct btrfs_disk_key *tmp;
 759                struct btrfs_disk_key unaligned;
 760                int mid;
 761
 762                mid = (low + high) / 2;
 763                offset = p + mid * item_size;
 764                oip = offset_in_page(offset);
 765
 766                if (oip + key_size <= PAGE_SIZE) {
 767                        const unsigned long idx = get_eb_page_index(offset);
 768                        char *kaddr = page_address(eb->pages[idx]);
 769
 770                        oip = get_eb_offset_in_page(eb, offset);
 771                        tmp = (struct btrfs_disk_key *)(kaddr + oip);
 772                } else {
 773                        read_extent_buffer(eb, &unaligned, offset, key_size);
 774                        tmp = &unaligned;
 775                }
 776
 777                ret = comp_keys(tmp, key);
 778
 779                if (ret < 0)
 780                        low = mid + 1;
 781                else if (ret > 0)
 782                        high = mid;
 783                else {
 784                        *slot = mid;
 785                        return 0;
 786                }
 787        }
 788        *slot = low;
 789        return 1;
 790}
 791
 792/*
 793 * simple bin_search frontend that does the right thing for
 794 * leaves vs nodes
 795 */
 796int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
 797                     int *slot)
 798{
 799        if (btrfs_header_level(eb) == 0)
 800                return generic_bin_search(eb,
 801                                          offsetof(struct btrfs_leaf, items),
 802                                          sizeof(struct btrfs_item), key, slot);
 803        else
 804                return generic_bin_search(eb,
 805                                          offsetof(struct btrfs_node, ptrs),
 806                                          sizeof(struct btrfs_key_ptr), key, slot);
 807}
 808
 809static void root_add_used(struct btrfs_root *root, u32 size)
 810{
 811        spin_lock(&root->accounting_lock);
 812        btrfs_set_root_used(&root->root_item,
 813                            btrfs_root_used(&root->root_item) + size);
 814        spin_unlock(&root->accounting_lock);
 815}
 816
 817static void root_sub_used(struct btrfs_root *root, u32 size)
 818{
 819        spin_lock(&root->accounting_lock);
 820        btrfs_set_root_used(&root->root_item,
 821                            btrfs_root_used(&root->root_item) - size);
 822        spin_unlock(&root->accounting_lock);
 823}
 824
 825/* given a node and slot number, this reads the blocks it points to.  The
 826 * extent buffer is returned with a reference taken (but unlocked).
 827 */
 828struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
 829                                           int slot)
 830{
 831        int level = btrfs_header_level(parent);
 832        struct extent_buffer *eb;
 833        struct btrfs_key first_key;
 834
 835        if (slot < 0 || slot >= btrfs_header_nritems(parent))
 836                return ERR_PTR(-ENOENT);
 837
 838        BUG_ON(level == 0);
 839
 840        btrfs_node_key_to_cpu(parent, &first_key, slot);
 841        eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
 842                             btrfs_header_owner(parent),
 843                             btrfs_node_ptr_generation(parent, slot),
 844                             level - 1, &first_key);
 845        if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
 846                free_extent_buffer(eb);
 847                eb = ERR_PTR(-EIO);
 848        }
 849
 850        return eb;
 851}
 852
 853/*
 854 * node level balancing, used to make sure nodes are in proper order for
 855 * item deletion.  We balance from the top down, so we have to make sure
 856 * that a deletion won't leave an node completely empty later on.
 857 */
 858static noinline int balance_level(struct btrfs_trans_handle *trans,
 859                         struct btrfs_root *root,
 860                         struct btrfs_path *path, int level)
 861{
 862        struct btrfs_fs_info *fs_info = root->fs_info;
 863        struct extent_buffer *right = NULL;
 864        struct extent_buffer *mid;
 865        struct extent_buffer *left = NULL;
 866        struct extent_buffer *parent = NULL;
 867        int ret = 0;
 868        int wret;
 869        int pslot;
 870        int orig_slot = path->slots[level];
 871        u64 orig_ptr;
 872
 873        ASSERT(level > 0);
 874
 875        mid = path->nodes[level];
 876
 877        WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
 878        WARN_ON(btrfs_header_generation(mid) != trans->transid);
 879
 880        orig_ptr = btrfs_node_blockptr(mid, orig_slot);
 881
 882        if (level < BTRFS_MAX_LEVEL - 1) {
 883                parent = path->nodes[level + 1];
 884                pslot = path->slots[level + 1];
 885        }
 886
 887        /*
 888         * deal with the case where there is only one pointer in the root
 889         * by promoting the node below to a root
 890         */
 891        if (!parent) {
 892                struct extent_buffer *child;
 893
 894                if (btrfs_header_nritems(mid) != 1)
 895                        return 0;
 896
 897                /* promote the child to a root */
 898                child = btrfs_read_node_slot(mid, 0);
 899                if (IS_ERR(child)) {
 900                        ret = PTR_ERR(child);
 901                        btrfs_handle_fs_error(fs_info, ret, NULL);
 902                        goto enospc;
 903                }
 904
 905                btrfs_tree_lock(child);
 906                ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
 907                                      BTRFS_NESTING_COW);
 908                if (ret) {
 909                        btrfs_tree_unlock(child);
 910                        free_extent_buffer(child);
 911                        goto enospc;
 912                }
 913
 914                ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
 915                BUG_ON(ret < 0);
 916                rcu_assign_pointer(root->node, child);
 917
 918                add_root_to_dirty_list(root);
 919                btrfs_tree_unlock(child);
 920
 921                path->locks[level] = 0;
 922                path->nodes[level] = NULL;
 923                btrfs_clean_tree_block(mid);
 924                btrfs_tree_unlock(mid);
 925                /* once for the path */
 926                free_extent_buffer(mid);
 927
 928                root_sub_used(root, mid->len);
 929                btrfs_free_tree_block(trans, root, mid, 0, 1);
 930                /* once for the root ptr */
 931                free_extent_buffer_stale(mid);
 932                return 0;
 933        }
 934        if (btrfs_header_nritems(mid) >
 935            BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
 936                return 0;
 937
 938        left = btrfs_read_node_slot(parent, pslot - 1);
 939        if (IS_ERR(left))
 940                left = NULL;
 941
 942        if (left) {
 943                __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
 944                wret = btrfs_cow_block(trans, root, left,
 945                                       parent, pslot - 1, &left,
 946                                       BTRFS_NESTING_LEFT_COW);
 947                if (wret) {
 948                        ret = wret;
 949                        goto enospc;
 950                }
 951        }
 952
 953        right = btrfs_read_node_slot(parent, pslot + 1);
 954        if (IS_ERR(right))
 955                right = NULL;
 956
 957        if (right) {
 958                __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
 959                wret = btrfs_cow_block(trans, root, right,
 960                                       parent, pslot + 1, &right,
 961                                       BTRFS_NESTING_RIGHT_COW);
 962                if (wret) {
 963                        ret = wret;
 964                        goto enospc;
 965                }
 966        }
 967
 968        /* first, try to make some room in the middle buffer */
 969        if (left) {
 970                orig_slot += btrfs_header_nritems(left);
 971                wret = push_node_left(trans, left, mid, 1);
 972                if (wret < 0)
 973                        ret = wret;
 974        }
 975
 976        /*
 977         * then try to empty the right most buffer into the middle
 978         */
 979        if (right) {
 980                wret = push_node_left(trans, mid, right, 1);
 981                if (wret < 0 && wret != -ENOSPC)
 982                        ret = wret;
 983                if (btrfs_header_nritems(right) == 0) {
 984                        btrfs_clean_tree_block(right);
 985                        btrfs_tree_unlock(right);
 986                        del_ptr(root, path, level + 1, pslot + 1);
 987                        root_sub_used(root, right->len);
 988                        btrfs_free_tree_block(trans, root, right, 0, 1);
 989                        free_extent_buffer_stale(right);
 990                        right = NULL;
 991                } else {
 992                        struct btrfs_disk_key right_key;
 993                        btrfs_node_key(right, &right_key, 0);
 994                        ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
 995                                        BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
 996                        BUG_ON(ret < 0);
 997                        btrfs_set_node_key(parent, &right_key, pslot + 1);
 998                        btrfs_mark_buffer_dirty(parent);
 999                }
1000        }
1001        if (btrfs_header_nritems(mid) == 1) {
1002                /*
1003                 * we're not allowed to leave a node with one item in the
1004                 * tree during a delete.  A deletion from lower in the tree
1005                 * could try to delete the only pointer in this node.
1006                 * So, pull some keys from the left.
1007                 * There has to be a left pointer at this point because
1008                 * otherwise we would have pulled some pointers from the
1009                 * right
1010                 */
1011                if (!left) {
1012                        ret = -EROFS;
1013                        btrfs_handle_fs_error(fs_info, ret, NULL);
1014                        goto enospc;
1015                }
1016                wret = balance_node_right(trans, mid, left);
1017                if (wret < 0) {
1018                        ret = wret;
1019                        goto enospc;
1020                }
1021                if (wret == 1) {
1022                        wret = push_node_left(trans, left, mid, 1);
1023                        if (wret < 0)
1024                                ret = wret;
1025                }
1026                BUG_ON(wret == 1);
1027        }
1028        if (btrfs_header_nritems(mid) == 0) {
1029                btrfs_clean_tree_block(mid);
1030                btrfs_tree_unlock(mid);
1031                del_ptr(root, path, level + 1, pslot);
1032                root_sub_used(root, mid->len);
1033                btrfs_free_tree_block(trans, root, mid, 0, 1);
1034                free_extent_buffer_stale(mid);
1035                mid = NULL;
1036        } else {
1037                /* update the parent key to reflect our changes */
1038                struct btrfs_disk_key mid_key;
1039                btrfs_node_key(mid, &mid_key, 0);
1040                ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1041                                BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1042                BUG_ON(ret < 0);
1043                btrfs_set_node_key(parent, &mid_key, pslot);
1044                btrfs_mark_buffer_dirty(parent);
1045        }
1046
1047        /* update the path */
1048        if (left) {
1049                if (btrfs_header_nritems(left) > orig_slot) {
1050                        atomic_inc(&left->refs);
1051                        /* left was locked after cow */
1052                        path->nodes[level] = left;
1053                        path->slots[level + 1] -= 1;
1054                        path->slots[level] = orig_slot;
1055                        if (mid) {
1056                                btrfs_tree_unlock(mid);
1057                                free_extent_buffer(mid);
1058                        }
1059                } else {
1060                        orig_slot -= btrfs_header_nritems(left);
1061                        path->slots[level] = orig_slot;
1062                }
1063        }
1064        /* double check we haven't messed things up */
1065        if (orig_ptr !=
1066            btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1067                BUG();
1068enospc:
1069        if (right) {
1070                btrfs_tree_unlock(right);
1071                free_extent_buffer(right);
1072        }
1073        if (left) {
1074                if (path->nodes[level] != left)
1075                        btrfs_tree_unlock(left);
1076                free_extent_buffer(left);
1077        }
1078        return ret;
1079}
1080
1081/* Node balancing for insertion.  Here we only split or push nodes around
1082 * when they are completely full.  This is also done top down, so we
1083 * have to be pessimistic.
1084 */
1085static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1086                                          struct btrfs_root *root,
1087                                          struct btrfs_path *path, int level)
1088{
1089        struct btrfs_fs_info *fs_info = root->fs_info;
1090        struct extent_buffer *right = NULL;
1091        struct extent_buffer *mid;
1092        struct extent_buffer *left = NULL;
1093        struct extent_buffer *parent = NULL;
1094        int ret = 0;
1095        int wret;
1096        int pslot;
1097        int orig_slot = path->slots[level];
1098
1099        if (level == 0)
1100                return 1;
1101
1102        mid = path->nodes[level];
1103        WARN_ON(btrfs_header_generation(mid) != trans->transid);
1104
1105        if (level < BTRFS_MAX_LEVEL - 1) {
1106                parent = path->nodes[level + 1];
1107                pslot = path->slots[level + 1];
1108        }
1109
1110        if (!parent)
1111                return 1;
1112
1113        left = btrfs_read_node_slot(parent, pslot - 1);
1114        if (IS_ERR(left))
1115                left = NULL;
1116
1117        /* first, try to make some room in the middle buffer */
1118        if (left) {
1119                u32 left_nr;
1120
1121                __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1122
1123                left_nr = btrfs_header_nritems(left);
1124                if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1125                        wret = 1;
1126                } else {
1127                        ret = btrfs_cow_block(trans, root, left, parent,
1128                                              pslot - 1, &left,
1129                                              BTRFS_NESTING_LEFT_COW);
1130                        if (ret)
1131                                wret = 1;
1132                        else {
1133                                wret = push_node_left(trans, left, mid, 0);
1134                        }
1135                }
1136                if (wret < 0)
1137                        ret = wret;
1138                if (wret == 0) {
1139                        struct btrfs_disk_key disk_key;
1140                        orig_slot += left_nr;
1141                        btrfs_node_key(mid, &disk_key, 0);
1142                        ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1143                                        BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1144                        BUG_ON(ret < 0);
1145                        btrfs_set_node_key(parent, &disk_key, pslot);
1146                        btrfs_mark_buffer_dirty(parent);
1147                        if (btrfs_header_nritems(left) > orig_slot) {
1148                                path->nodes[level] = left;
1149                                path->slots[level + 1] -= 1;
1150                                path->slots[level] = orig_slot;
1151                                btrfs_tree_unlock(mid);
1152                                free_extent_buffer(mid);
1153                        } else {
1154                                orig_slot -=
1155                                        btrfs_header_nritems(left);
1156                                path->slots[level] = orig_slot;
1157                                btrfs_tree_unlock(left);
1158                                free_extent_buffer(left);
1159                        }
1160                        return 0;
1161                }
1162                btrfs_tree_unlock(left);
1163                free_extent_buffer(left);
1164        }
1165        right = btrfs_read_node_slot(parent, pslot + 1);
1166        if (IS_ERR(right))
1167                right = NULL;
1168
1169        /*
1170         * then try to empty the right most buffer into the middle
1171         */
1172        if (right) {
1173                u32 right_nr;
1174
1175                __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1176
1177                right_nr = btrfs_header_nritems(right);
1178                if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1179                        wret = 1;
1180                } else {
1181                        ret = btrfs_cow_block(trans, root, right,
1182                                              parent, pslot + 1,
1183                                              &right, BTRFS_NESTING_RIGHT_COW);
1184                        if (ret)
1185                                wret = 1;
1186                        else {
1187                                wret = balance_node_right(trans, right, mid);
1188                        }
1189                }
1190                if (wret < 0)
1191                        ret = wret;
1192                if (wret == 0) {
1193                        struct btrfs_disk_key disk_key;
1194
1195                        btrfs_node_key(right, &disk_key, 0);
1196                        ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1197                                        BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1198                        BUG_ON(ret < 0);
1199                        btrfs_set_node_key(parent, &disk_key, pslot + 1);
1200                        btrfs_mark_buffer_dirty(parent);
1201
1202                        if (btrfs_header_nritems(mid) <= orig_slot) {
1203                                path->nodes[level] = right;
1204                                path->slots[level + 1] += 1;
1205                                path->slots[level] = orig_slot -
1206                                        btrfs_header_nritems(mid);
1207                                btrfs_tree_unlock(mid);
1208                                free_extent_buffer(mid);
1209                        } else {
1210                                btrfs_tree_unlock(right);
1211                                free_extent_buffer(right);
1212                        }
1213                        return 0;
1214                }
1215                btrfs_tree_unlock(right);
1216                free_extent_buffer(right);
1217        }
1218        return 1;
1219}
1220
1221/*
1222 * readahead one full node of leaves, finding things that are close
1223 * to the block in 'slot', and triggering ra on them.
1224 */
1225static void reada_for_search(struct btrfs_fs_info *fs_info,
1226                             struct btrfs_path *path,
1227                             int level, int slot, u64 objectid)
1228{
1229        struct extent_buffer *node;
1230        struct btrfs_disk_key disk_key;
1231        u32 nritems;
1232        u64 search;
1233        u64 target;
1234        u64 nread = 0;
1235        u64 nread_max;
1236        u32 nr;
1237        u32 blocksize;
1238        u32 nscan = 0;
1239
1240        if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1241                return;
1242
1243        if (!path->nodes[level])
1244                return;
1245
1246        node = path->nodes[level];
1247
1248        /*
1249         * Since the time between visiting leaves is much shorter than the time
1250         * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1251         * much IO at once (possibly random).
1252         */
1253        if (path->reada == READA_FORWARD_ALWAYS) {
1254                if (level > 1)
1255                        nread_max = node->fs_info->nodesize;
1256                else
1257                        nread_max = SZ_128K;
1258        } else {
1259                nread_max = SZ_64K;
1260        }
1261
1262        search = btrfs_node_blockptr(node, slot);
1263        blocksize = fs_info->nodesize;
1264        if (path->reada != READA_FORWARD_ALWAYS) {
1265                struct extent_buffer *eb;
1266
1267                eb = find_extent_buffer(fs_info, search);
1268                if (eb) {
1269                        free_extent_buffer(eb);
1270                        return;
1271                }
1272        }
1273
1274        target = search;
1275
1276        nritems = btrfs_header_nritems(node);
1277        nr = slot;
1278
1279        while (1) {
1280                if (path->reada == READA_BACK) {
1281                        if (nr == 0)
1282                                break;
1283                        nr--;
1284                } else if (path->reada == READA_FORWARD ||
1285                           path->reada == READA_FORWARD_ALWAYS) {
1286                        nr++;
1287                        if (nr >= nritems)
1288                                break;
1289                }
1290                if (path->reada == READA_BACK && objectid) {
1291                        btrfs_node_key(node, &disk_key, nr);
1292                        if (btrfs_disk_key_objectid(&disk_key) != objectid)
1293                                break;
1294                }
1295                search = btrfs_node_blockptr(node, nr);
1296                if (path->reada == READA_FORWARD_ALWAYS ||
1297                    (search <= target && target - search <= 65536) ||
1298                    (search > target && search - target <= 65536)) {
1299                        btrfs_readahead_node_child(node, nr);
1300                        nread += blocksize;
1301                }
1302                nscan++;
1303                if (nread > nread_max || nscan > 32)
1304                        break;
1305        }
1306}
1307
1308static noinline void reada_for_balance(struct btrfs_path *path, int level)
1309{
1310        struct extent_buffer *parent;
1311        int slot;
1312        int nritems;
1313
1314        parent = path->nodes[level + 1];
1315        if (!parent)
1316                return;
1317
1318        nritems = btrfs_header_nritems(parent);
1319        slot = path->slots[level + 1];
1320
1321        if (slot > 0)
1322                btrfs_readahead_node_child(parent, slot - 1);
1323        if (slot + 1 < nritems)
1324                btrfs_readahead_node_child(parent, slot + 1);
1325}
1326
1327
1328/*
1329 * when we walk down the tree, it is usually safe to unlock the higher layers
1330 * in the tree.  The exceptions are when our path goes through slot 0, because
1331 * operations on the tree might require changing key pointers higher up in the
1332 * tree.
1333 *
1334 * callers might also have set path->keep_locks, which tells this code to keep
1335 * the lock if the path points to the last slot in the block.  This is part of
1336 * walking through the tree, and selecting the next slot in the higher block.
1337 *
1338 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1339 * if lowest_unlock is 1, level 0 won't be unlocked
1340 */
1341static noinline void unlock_up(struct btrfs_path *path, int level,
1342                               int lowest_unlock, int min_write_lock_level,
1343                               int *write_lock_level)
1344{
1345        int i;
1346        int skip_level = level;
1347        int no_skips = 0;
1348        struct extent_buffer *t;
1349
1350        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1351                if (!path->nodes[i])
1352                        break;
1353                if (!path->locks[i])
1354                        break;
1355                if (!no_skips && path->slots[i] == 0) {
1356                        skip_level = i + 1;
1357                        continue;
1358                }
1359                if (!no_skips && path->keep_locks) {
1360                        u32 nritems;
1361                        t = path->nodes[i];
1362                        nritems = btrfs_header_nritems(t);
1363                        if (nritems < 1 || path->slots[i] >= nritems - 1) {
1364                                skip_level = i + 1;
1365                                continue;
1366                        }
1367                }
1368                if (skip_level < i && i >= lowest_unlock)
1369                        no_skips = 1;
1370
1371                t = path->nodes[i];
1372                if (i >= lowest_unlock && i > skip_level) {
1373                        btrfs_tree_unlock_rw(t, path->locks[i]);
1374                        path->locks[i] = 0;
1375                        if (write_lock_level &&
1376                            i > min_write_lock_level &&
1377                            i <= *write_lock_level) {
1378                                *write_lock_level = i - 1;
1379                        }
1380                }
1381        }
1382}
1383
1384/*
1385 * helper function for btrfs_search_slot.  The goal is to find a block
1386 * in cache without setting the path to blocking.  If we find the block
1387 * we return zero and the path is unchanged.
1388 *
1389 * If we can't find the block, we set the path blocking and do some
1390 * reada.  -EAGAIN is returned and the search must be repeated.
1391 */
1392static int
1393read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1394                      struct extent_buffer **eb_ret, int level, int slot,
1395                      const struct btrfs_key *key)
1396{
1397        struct btrfs_fs_info *fs_info = root->fs_info;
1398        u64 blocknr;
1399        u64 gen;
1400        struct extent_buffer *tmp;
1401        struct btrfs_key first_key;
1402        int ret;
1403        int parent_level;
1404
1405        blocknr = btrfs_node_blockptr(*eb_ret, slot);
1406        gen = btrfs_node_ptr_generation(*eb_ret, slot);
1407        parent_level = btrfs_header_level(*eb_ret);
1408        btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
1409
1410        tmp = find_extent_buffer(fs_info, blocknr);
1411        if (tmp) {
1412                if (p->reada == READA_FORWARD_ALWAYS)
1413                        reada_for_search(fs_info, p, level, slot, key->objectid);
1414
1415                /* first we do an atomic uptodate check */
1416                if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1417                        /*
1418                         * Do extra check for first_key, eb can be stale due to
1419                         * being cached, read from scrub, or have multiple
1420                         * parents (shared tree blocks).
1421                         */
1422                        if (btrfs_verify_level_key(tmp,
1423                                        parent_level - 1, &first_key, gen)) {
1424                                free_extent_buffer(tmp);
1425                                return -EUCLEAN;
1426                        }
1427                        *eb_ret = tmp;
1428                        return 0;
1429                }
1430
1431                /* now we're allowed to do a blocking uptodate check */
1432                ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
1433                if (!ret) {
1434                        *eb_ret = tmp;
1435                        return 0;
1436                }
1437                free_extent_buffer(tmp);
1438                btrfs_release_path(p);
1439                return -EIO;
1440        }
1441
1442        /*
1443         * reduce lock contention at high levels
1444         * of the btree by dropping locks before
1445         * we read.  Don't release the lock on the current
1446         * level because we need to walk this node to figure
1447         * out which blocks to read.
1448         */
1449        btrfs_unlock_up_safe(p, level + 1);
1450
1451        if (p->reada != READA_NONE)
1452                reada_for_search(fs_info, p, level, slot, key->objectid);
1453
1454        ret = -EAGAIN;
1455        tmp = read_tree_block(fs_info, blocknr, root->root_key.objectid,
1456                              gen, parent_level - 1, &first_key);
1457        if (!IS_ERR(tmp)) {
1458                /*
1459                 * If the read above didn't mark this buffer up to date,
1460                 * it will never end up being up to date.  Set ret to EIO now
1461                 * and give up so that our caller doesn't loop forever
1462                 * on our EAGAINs.
1463                 */
1464                if (!extent_buffer_uptodate(tmp))
1465                        ret = -EIO;
1466                free_extent_buffer(tmp);
1467        } else {
1468                ret = PTR_ERR(tmp);
1469        }
1470
1471        btrfs_release_path(p);
1472        return ret;
1473}
1474
1475/*
1476 * helper function for btrfs_search_slot.  This does all of the checks
1477 * for node-level blocks and does any balancing required based on
1478 * the ins_len.
1479 *
1480 * If no extra work was required, zero is returned.  If we had to
1481 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1482 * start over
1483 */
1484static int
1485setup_nodes_for_search(struct btrfs_trans_handle *trans,
1486                       struct btrfs_root *root, struct btrfs_path *p,
1487                       struct extent_buffer *b, int level, int ins_len,
1488                       int *write_lock_level)
1489{
1490        struct btrfs_fs_info *fs_info = root->fs_info;
1491        int ret = 0;
1492
1493        if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1494            BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1495
1496                if (*write_lock_level < level + 1) {
1497                        *write_lock_level = level + 1;
1498                        btrfs_release_path(p);
1499                        return -EAGAIN;
1500                }
1501
1502                reada_for_balance(p, level);
1503                ret = split_node(trans, root, p, level);
1504
1505                b = p->nodes[level];
1506        } else if (ins_len < 0 && btrfs_header_nritems(b) <
1507                   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1508
1509                if (*write_lock_level < level + 1) {
1510                        *write_lock_level = level + 1;
1511                        btrfs_release_path(p);
1512                        return -EAGAIN;
1513                }
1514
1515                reada_for_balance(p, level);
1516                ret = balance_level(trans, root, p, level);
1517                if (ret)
1518                        return ret;
1519
1520                b = p->nodes[level];
1521                if (!b) {
1522                        btrfs_release_path(p);
1523                        return -EAGAIN;
1524                }
1525                BUG_ON(btrfs_header_nritems(b) == 1);
1526        }
1527        return ret;
1528}
1529
1530int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1531                u64 iobjectid, u64 ioff, u8 key_type,
1532                struct btrfs_key *found_key)
1533{
1534        int ret;
1535        struct btrfs_key key;
1536        struct extent_buffer *eb;
1537
1538        ASSERT(path);
1539        ASSERT(found_key);
1540
1541        key.type = key_type;
1542        key.objectid = iobjectid;
1543        key.offset = ioff;
1544
1545        ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1546        if (ret < 0)
1547                return ret;
1548
1549        eb = path->nodes[0];
1550        if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1551                ret = btrfs_next_leaf(fs_root, path);
1552                if (ret)
1553                        return ret;
1554                eb = path->nodes[0];
1555        }
1556
1557        btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1558        if (found_key->type != key.type ||
1559                        found_key->objectid != key.objectid)
1560                return 1;
1561
1562        return 0;
1563}
1564
1565static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1566                                                        struct btrfs_path *p,
1567                                                        int write_lock_level)
1568{
1569        struct btrfs_fs_info *fs_info = root->fs_info;
1570        struct extent_buffer *b;
1571        int root_lock;
1572        int level = 0;
1573
1574        /* We try very hard to do read locks on the root */
1575        root_lock = BTRFS_READ_LOCK;
1576
1577        if (p->search_commit_root) {
1578                /*
1579                 * The commit roots are read only so we always do read locks,
1580                 * and we always must hold the commit_root_sem when doing
1581                 * searches on them, the only exception is send where we don't
1582                 * want to block transaction commits for a long time, so
1583                 * we need to clone the commit root in order to avoid races
1584                 * with transaction commits that create a snapshot of one of
1585                 * the roots used by a send operation.
1586                 */
1587                if (p->need_commit_sem) {
1588                        down_read(&fs_info->commit_root_sem);
1589                        b = btrfs_clone_extent_buffer(root->commit_root);
1590                        up_read(&fs_info->commit_root_sem);
1591                        if (!b)
1592                                return ERR_PTR(-ENOMEM);
1593
1594                } else {
1595                        b = root->commit_root;
1596                        atomic_inc(&b->refs);
1597                }
1598                level = btrfs_header_level(b);
1599                /*
1600                 * Ensure that all callers have set skip_locking when
1601                 * p->search_commit_root = 1.
1602                 */
1603                ASSERT(p->skip_locking == 1);
1604
1605                goto out;
1606        }
1607
1608        if (p->skip_locking) {
1609                b = btrfs_root_node(root);
1610                level = btrfs_header_level(b);
1611                goto out;
1612        }
1613
1614        /*
1615         * If the level is set to maximum, we can skip trying to get the read
1616         * lock.
1617         */
1618        if (write_lock_level < BTRFS_MAX_LEVEL) {
1619                /*
1620                 * We don't know the level of the root node until we actually
1621                 * have it read locked
1622                 */
1623                b = btrfs_read_lock_root_node(root);
1624                level = btrfs_header_level(b);
1625                if (level > write_lock_level)
1626                        goto out;
1627
1628                /* Whoops, must trade for write lock */
1629                btrfs_tree_read_unlock(b);
1630                free_extent_buffer(b);
1631        }
1632
1633        b = btrfs_lock_root_node(root);
1634        root_lock = BTRFS_WRITE_LOCK;
1635
1636        /* The level might have changed, check again */
1637        level = btrfs_header_level(b);
1638
1639out:
1640        p->nodes[level] = b;
1641        if (!p->skip_locking)
1642                p->locks[level] = root_lock;
1643        /*
1644         * Callers are responsible for dropping b's references.
1645         */
1646        return b;
1647}
1648
1649
1650/*
1651 * btrfs_search_slot - look for a key in a tree and perform necessary
1652 * modifications to preserve tree invariants.
1653 *
1654 * @trans:      Handle of transaction, used when modifying the tree
1655 * @p:          Holds all btree nodes along the search path
1656 * @root:       The root node of the tree
1657 * @key:        The key we are looking for
1658 * @ins_len:    Indicates purpose of search:
1659 *              >0  for inserts it's size of item inserted (*)
1660 *              <0  for deletions
1661 *               0  for plain searches, not modifying the tree
1662 *
1663 *              (*) If size of item inserted doesn't include
1664 *              sizeof(struct btrfs_item), then p->search_for_extension must
1665 *              be set.
1666 * @cow:        boolean should CoW operations be performed. Must always be 1
1667 *              when modifying the tree.
1668 *
1669 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
1670 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
1671 *
1672 * If @key is found, 0 is returned and you can find the item in the leaf level
1673 * of the path (level 0)
1674 *
1675 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
1676 * points to the slot where it should be inserted
1677 *
1678 * If an error is encountered while searching the tree a negative error number
1679 * is returned
1680 */
1681int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1682                      const struct btrfs_key *key, struct btrfs_path *p,
1683                      int ins_len, int cow)
1684{
1685        struct extent_buffer *b;
1686        int slot;
1687        int ret;
1688        int err;
1689        int level;
1690        int lowest_unlock = 1;
1691        /* everything at write_lock_level or lower must be write locked */
1692        int write_lock_level = 0;
1693        u8 lowest_level = 0;
1694        int min_write_lock_level;
1695        int prev_cmp;
1696
1697        lowest_level = p->lowest_level;
1698        WARN_ON(lowest_level && ins_len > 0);
1699        WARN_ON(p->nodes[0] != NULL);
1700        BUG_ON(!cow && ins_len);
1701
1702        if (ins_len < 0) {
1703                lowest_unlock = 2;
1704
1705                /* when we are removing items, we might have to go up to level
1706                 * two as we update tree pointers  Make sure we keep write
1707                 * for those levels as well
1708                 */
1709                write_lock_level = 2;
1710        } else if (ins_len > 0) {
1711                /*
1712                 * for inserting items, make sure we have a write lock on
1713                 * level 1 so we can update keys
1714                 */
1715                write_lock_level = 1;
1716        }
1717
1718        if (!cow)
1719                write_lock_level = -1;
1720
1721        if (cow && (p->keep_locks || p->lowest_level))
1722                write_lock_level = BTRFS_MAX_LEVEL;
1723
1724        min_write_lock_level = write_lock_level;
1725
1726again:
1727        prev_cmp = -1;
1728        b = btrfs_search_slot_get_root(root, p, write_lock_level);
1729        if (IS_ERR(b)) {
1730                ret = PTR_ERR(b);
1731                goto done;
1732        }
1733
1734        while (b) {
1735                int dec = 0;
1736
1737                level = btrfs_header_level(b);
1738
1739                if (cow) {
1740                        bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
1741
1742                        /*
1743                         * if we don't really need to cow this block
1744                         * then we don't want to set the path blocking,
1745                         * so we test it here
1746                         */
1747                        if (!should_cow_block(trans, root, b))
1748                                goto cow_done;
1749
1750                        /*
1751                         * must have write locks on this node and the
1752                         * parent
1753                         */
1754                        if (level > write_lock_level ||
1755                            (level + 1 > write_lock_level &&
1756                            level + 1 < BTRFS_MAX_LEVEL &&
1757                            p->nodes[level + 1])) {
1758                                write_lock_level = level + 1;
1759                                btrfs_release_path(p);
1760                                goto again;
1761                        }
1762
1763                        if (last_level)
1764                                err = btrfs_cow_block(trans, root, b, NULL, 0,
1765                                                      &b,
1766                                                      BTRFS_NESTING_COW);
1767                        else
1768                                err = btrfs_cow_block(trans, root, b,
1769                                                      p->nodes[level + 1],
1770                                                      p->slots[level + 1], &b,
1771                                                      BTRFS_NESTING_COW);
1772                        if (err) {
1773                                ret = err;
1774                                goto done;
1775                        }
1776                }
1777cow_done:
1778                p->nodes[level] = b;
1779                /*
1780                 * Leave path with blocking locks to avoid massive
1781                 * lock context switch, this is made on purpose.
1782                 */
1783
1784                /*
1785                 * we have a lock on b and as long as we aren't changing
1786                 * the tree, there is no way to for the items in b to change.
1787                 * It is safe to drop the lock on our parent before we
1788                 * go through the expensive btree search on b.
1789                 *
1790                 * If we're inserting or deleting (ins_len != 0), then we might
1791                 * be changing slot zero, which may require changing the parent.
1792                 * So, we can't drop the lock until after we know which slot
1793                 * we're operating on.
1794                 */
1795                if (!ins_len && !p->keep_locks) {
1796                        int u = level + 1;
1797
1798                        if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
1799                                btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
1800                                p->locks[u] = 0;
1801                        }
1802                }
1803
1804                /*
1805                 * If btrfs_bin_search returns an exact match (prev_cmp == 0)
1806                 * we can safely assume the target key will always be in slot 0
1807                 * on lower levels due to the invariants BTRFS' btree provides,
1808                 * namely that a btrfs_key_ptr entry always points to the
1809                 * lowest key in the child node, thus we can skip searching
1810                 * lower levels
1811                 */
1812                if (prev_cmp == 0) {
1813                        slot = 0;
1814                        ret = 0;
1815                } else {
1816                        ret = btrfs_bin_search(b, key, &slot);
1817                        prev_cmp = ret;
1818                        if (ret < 0)
1819                                goto done;
1820                }
1821
1822                if (level == 0) {
1823                        p->slots[level] = slot;
1824                        /*
1825                         * Item key already exists. In this case, if we are
1826                         * allowed to insert the item (for example, in dir_item
1827                         * case, item key collision is allowed), it will be
1828                         * merged with the original item. Only the item size
1829                         * grows, no new btrfs item will be added. If
1830                         * search_for_extension is not set, ins_len already
1831                         * accounts the size btrfs_item, deduct it here so leaf
1832                         * space check will be correct.
1833                         */
1834                        if (ret == 0 && ins_len > 0 && !p->search_for_extension) {
1835                                ASSERT(ins_len >= sizeof(struct btrfs_item));
1836                                ins_len -= sizeof(struct btrfs_item);
1837                        }
1838                        if (ins_len > 0 &&
1839                            btrfs_leaf_free_space(b) < ins_len) {
1840                                if (write_lock_level < 1) {
1841                                        write_lock_level = 1;
1842                                        btrfs_release_path(p);
1843                                        goto again;
1844                                }
1845
1846                                err = split_leaf(trans, root, key,
1847                                                 p, ins_len, ret == 0);
1848
1849                                BUG_ON(err > 0);
1850                                if (err) {
1851                                        ret = err;
1852                                        goto done;
1853                                }
1854                        }
1855                        if (!p->search_for_split)
1856                                unlock_up(p, level, lowest_unlock,
1857                                          min_write_lock_level, NULL);
1858                        goto done;
1859                }
1860                if (ret && slot > 0) {
1861                        dec = 1;
1862                        slot--;
1863                }
1864                p->slots[level] = slot;
1865                err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
1866                                             &write_lock_level);
1867                if (err == -EAGAIN)
1868                        goto again;
1869                if (err) {
1870                        ret = err;
1871                        goto done;
1872                }
1873                b = p->nodes[level];
1874                slot = p->slots[level];
1875
1876                /*
1877                 * Slot 0 is special, if we change the key we have to update
1878                 * the parent pointer which means we must have a write lock on
1879                 * the parent
1880                 */
1881                if (slot == 0 && ins_len && write_lock_level < level + 1) {
1882                        write_lock_level = level + 1;
1883                        btrfs_release_path(p);
1884                        goto again;
1885                }
1886
1887                unlock_up(p, level, lowest_unlock, min_write_lock_level,
1888                          &write_lock_level);
1889
1890                if (level == lowest_level) {
1891                        if (dec)
1892                                p->slots[level]++;
1893                        goto done;
1894                }
1895
1896                err = read_block_for_search(root, p, &b, level, slot, key);
1897                if (err == -EAGAIN)
1898                        goto again;
1899                if (err) {
1900                        ret = err;
1901                        goto done;
1902                }
1903
1904                if (!p->skip_locking) {
1905                        level = btrfs_header_level(b);
1906                        if (level <= write_lock_level) {
1907                                btrfs_tree_lock(b);
1908                                p->locks[level] = BTRFS_WRITE_LOCK;
1909                        } else {
1910                                btrfs_tree_read_lock(b);
1911                                p->locks[level] = BTRFS_READ_LOCK;
1912                        }
1913                        p->nodes[level] = b;
1914                }
1915        }
1916        ret = 1;
1917done:
1918        if (ret < 0 && !p->skip_release_on_error)
1919                btrfs_release_path(p);
1920        return ret;
1921}
1922ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
1923
1924/*
1925 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
1926 * current state of the tree together with the operations recorded in the tree
1927 * modification log to search for the key in a previous version of this tree, as
1928 * denoted by the time_seq parameter.
1929 *
1930 * Naturally, there is no support for insert, delete or cow operations.
1931 *
1932 * The resulting path and return value will be set up as if we called
1933 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
1934 */
1935int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
1936                          struct btrfs_path *p, u64 time_seq)
1937{
1938        struct btrfs_fs_info *fs_info = root->fs_info;
1939        struct extent_buffer *b;
1940        int slot;
1941        int ret;
1942        int err;
1943        int level;
1944        int lowest_unlock = 1;
1945        u8 lowest_level = 0;
1946
1947        lowest_level = p->lowest_level;
1948        WARN_ON(p->nodes[0] != NULL);
1949
1950        if (p->search_commit_root) {
1951                BUG_ON(time_seq);
1952                return btrfs_search_slot(NULL, root, key, p, 0, 0);
1953        }
1954
1955again:
1956        b = btrfs_get_old_root(root, time_seq);
1957        if (!b) {
1958                ret = -EIO;
1959                goto done;
1960        }
1961        level = btrfs_header_level(b);
1962        p->locks[level] = BTRFS_READ_LOCK;
1963
1964        while (b) {
1965                int dec = 0;
1966
1967                level = btrfs_header_level(b);
1968                p->nodes[level] = b;
1969
1970                /*
1971                 * we have a lock on b and as long as we aren't changing
1972                 * the tree, there is no way to for the items in b to change.
1973                 * It is safe to drop the lock on our parent before we
1974                 * go through the expensive btree search on b.
1975                 */
1976                btrfs_unlock_up_safe(p, level + 1);
1977
1978                ret = btrfs_bin_search(b, key, &slot);
1979                if (ret < 0)
1980                        goto done;
1981
1982                if (level == 0) {
1983                        p->slots[level] = slot;
1984                        unlock_up(p, level, lowest_unlock, 0, NULL);
1985                        goto done;
1986                }
1987
1988                if (ret && slot > 0) {
1989                        dec = 1;
1990                        slot--;
1991                }
1992                p->slots[level] = slot;
1993                unlock_up(p, level, lowest_unlock, 0, NULL);
1994
1995                if (level == lowest_level) {
1996                        if (dec)
1997                                p->slots[level]++;
1998                        goto done;
1999                }
2000
2001                err = read_block_for_search(root, p, &b, level, slot, key);
2002                if (err == -EAGAIN)
2003                        goto again;
2004                if (err) {
2005                        ret = err;
2006                        goto done;
2007                }
2008
2009                level = btrfs_header_level(b);
2010                btrfs_tree_read_lock(b);
2011                b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2012                if (!b) {
2013                        ret = -ENOMEM;
2014                        goto done;
2015                }
2016                p->locks[level] = BTRFS_READ_LOCK;
2017                p->nodes[level] = b;
2018        }
2019        ret = 1;
2020done:
2021        if (ret < 0)
2022                btrfs_release_path(p);
2023
2024        return ret;
2025}
2026
2027/*
2028 * helper to use instead of search slot if no exact match is needed but
2029 * instead the next or previous item should be returned.
2030 * When find_higher is true, the next higher item is returned, the next lower
2031 * otherwise.
2032 * When return_any and find_higher are both true, and no higher item is found,
2033 * return the next lower instead.
2034 * When return_any is true and find_higher is false, and no lower item is found,
2035 * return the next higher instead.
2036 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2037 * < 0 on error
2038 */
2039int btrfs_search_slot_for_read(struct btrfs_root *root,
2040                               const struct btrfs_key *key,
2041                               struct btrfs_path *p, int find_higher,
2042                               int return_any)
2043{
2044        int ret;
2045        struct extent_buffer *leaf;
2046
2047again:
2048        ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2049        if (ret <= 0)
2050                return ret;
2051        /*
2052         * a return value of 1 means the path is at the position where the
2053         * item should be inserted. Normally this is the next bigger item,
2054         * but in case the previous item is the last in a leaf, path points
2055         * to the first free slot in the previous leaf, i.e. at an invalid
2056         * item.
2057         */
2058        leaf = p->nodes[0];
2059
2060        if (find_higher) {
2061                if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2062                        ret = btrfs_next_leaf(root, p);
2063                        if (ret <= 0)
2064                                return ret;
2065                        if (!return_any)
2066                                return 1;
2067                        /*
2068                         * no higher item found, return the next
2069                         * lower instead
2070                         */
2071                        return_any = 0;
2072                        find_higher = 0;
2073                        btrfs_release_path(p);
2074                        goto again;
2075                }
2076        } else {
2077                if (p->slots[0] == 0) {
2078                        ret = btrfs_prev_leaf(root, p);
2079                        if (ret < 0)
2080                                return ret;
2081                        if (!ret) {
2082                                leaf = p->nodes[0];
2083                                if (p->slots[0] == btrfs_header_nritems(leaf))
2084                                        p->slots[0]--;
2085                                return 0;
2086                        }
2087                        if (!return_any)
2088                                return 1;
2089                        /*
2090                         * no lower item found, return the next
2091                         * higher instead
2092                         */
2093                        return_any = 0;
2094                        find_higher = 1;
2095                        btrfs_release_path(p);
2096                        goto again;
2097                } else {
2098                        --p->slots[0];
2099                }
2100        }
2101        return 0;
2102}
2103
2104/*
2105 * Execute search and call btrfs_previous_item to traverse backwards if the item
2106 * was not found.
2107 *
2108 * Return 0 if found, 1 if not found and < 0 if error.
2109 */
2110int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2111                           struct btrfs_path *path)
2112{
2113        int ret;
2114
2115        ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2116        if (ret > 0)
2117                ret = btrfs_previous_item(root, path, key->objectid, key->type);
2118
2119        if (ret == 0)
2120                btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2121
2122        return ret;
2123}
2124
2125/*
2126 * adjust the pointers going up the tree, starting at level
2127 * making sure the right key of each node is points to 'key'.
2128 * This is used after shifting pointers to the left, so it stops
2129 * fixing up pointers when a given leaf/node is not in slot 0 of the
2130 * higher levels
2131 *
2132 */
2133static void fixup_low_keys(struct btrfs_path *path,
2134                           struct btrfs_disk_key *key, int level)
2135{
2136        int i;
2137        struct extent_buffer *t;
2138        int ret;
2139
2140        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2141                int tslot = path->slots[i];
2142
2143                if (!path->nodes[i])
2144                        break;
2145                t = path->nodes[i];
2146                ret = btrfs_tree_mod_log_insert_key(t, tslot,
2147                                BTRFS_MOD_LOG_KEY_REPLACE, GFP_ATOMIC);
2148                BUG_ON(ret < 0);
2149                btrfs_set_node_key(t, key, tslot);
2150                btrfs_mark_buffer_dirty(path->nodes[i]);
2151                if (tslot != 0)
2152                        break;
2153        }
2154}
2155
2156/*
2157 * update item key.
2158 *
2159 * This function isn't completely safe. It's the caller's responsibility
2160 * that the new key won't break the order
2161 */
2162void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2163                             struct btrfs_path *path,
2164                             const struct btrfs_key *new_key)
2165{
2166        struct btrfs_disk_key disk_key;
2167        struct extent_buffer *eb;
2168        int slot;
2169
2170        eb = path->nodes[0];
2171        slot = path->slots[0];
2172        if (slot > 0) {
2173                btrfs_item_key(eb, &disk_key, slot - 1);
2174                if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2175                        btrfs_crit(fs_info,
2176                "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2177                                   slot, btrfs_disk_key_objectid(&disk_key),
2178                                   btrfs_disk_key_type(&disk_key),
2179                                   btrfs_disk_key_offset(&disk_key),
2180                                   new_key->objectid, new_key->type,
2181                                   new_key->offset);
2182                        btrfs_print_leaf(eb);
2183                        BUG();
2184                }
2185        }
2186        if (slot < btrfs_header_nritems(eb) - 1) {
2187                btrfs_item_key(eb, &disk_key, slot + 1);
2188                if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2189                        btrfs_crit(fs_info,
2190                "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2191                                   slot, btrfs_disk_key_objectid(&disk_key),
2192                                   btrfs_disk_key_type(&disk_key),
2193                                   btrfs_disk_key_offset(&disk_key),
2194                                   new_key->objectid, new_key->type,
2195                                   new_key->offset);
2196                        btrfs_print_leaf(eb);
2197                        BUG();
2198                }
2199        }
2200
2201        btrfs_cpu_key_to_disk(&disk_key, new_key);
2202        btrfs_set_item_key(eb, &disk_key, slot);
2203        btrfs_mark_buffer_dirty(eb);
2204        if (slot == 0)
2205                fixup_low_keys(path, &disk_key, 1);
2206}
2207
2208/*
2209 * Check key order of two sibling extent buffers.
2210 *
2211 * Return true if something is wrong.
2212 * Return false if everything is fine.
2213 *
2214 * Tree-checker only works inside one tree block, thus the following
2215 * corruption can not be detected by tree-checker:
2216 *
2217 * Leaf @left                   | Leaf @right
2218 * --------------------------------------------------------------
2219 * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2220 *
2221 * Key f6 in leaf @left itself is valid, but not valid when the next
2222 * key in leaf @right is 7.
2223 * This can only be checked at tree block merge time.
2224 * And since tree checker has ensured all key order in each tree block
2225 * is correct, we only need to bother the last key of @left and the first
2226 * key of @right.
2227 */
2228static bool check_sibling_keys(struct extent_buffer *left,
2229                               struct extent_buffer *right)
2230{
2231        struct btrfs_key left_last;
2232        struct btrfs_key right_first;
2233        int level = btrfs_header_level(left);
2234        int nr_left = btrfs_header_nritems(left);
2235        int nr_right = btrfs_header_nritems(right);
2236
2237        /* No key to check in one of the tree blocks */
2238        if (!nr_left || !nr_right)
2239                return false;
2240
2241        if (level) {
2242                btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2243                btrfs_node_key_to_cpu(right, &right_first, 0);
2244        } else {
2245                btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2246                btrfs_item_key_to_cpu(right, &right_first, 0);
2247        }
2248
2249        if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
2250                btrfs_crit(left->fs_info,
2251"bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2252                           left_last.objectid, left_last.type,
2253                           left_last.offset, right_first.objectid,
2254                           right_first.type, right_first.offset);
2255                return true;
2256        }
2257        return false;
2258}
2259
2260/*
2261 * try to push data from one node into the next node left in the
2262 * tree.
2263 *
2264 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2265 * error, and > 0 if there was no room in the left hand block.
2266 */
2267static int push_node_left(struct btrfs_trans_handle *trans,
2268                          struct extent_buffer *dst,
2269                          struct extent_buffer *src, int empty)
2270{
2271        struct btrfs_fs_info *fs_info = trans->fs_info;
2272        int push_items = 0;
2273        int src_nritems;
2274        int dst_nritems;
2275        int ret = 0;
2276
2277        src_nritems = btrfs_header_nritems(src);
2278        dst_nritems = btrfs_header_nritems(dst);
2279        push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2280        WARN_ON(btrfs_header_generation(src) != trans->transid);
2281        WARN_ON(btrfs_header_generation(dst) != trans->transid);
2282
2283        if (!empty && src_nritems <= 8)
2284                return 1;
2285
2286        if (push_items <= 0)
2287                return 1;
2288
2289        if (empty) {
2290                push_items = min(src_nritems, push_items);
2291                if (push_items < src_nritems) {
2292                        /* leave at least 8 pointers in the node if
2293                         * we aren't going to empty it
2294                         */
2295                        if (src_nritems - push_items < 8) {
2296                                if (push_items <= 8)
2297                                        return 1;
2298                                push_items -= 8;
2299                        }
2300                }
2301        } else
2302                push_items = min(src_nritems - 8, push_items);
2303
2304        /* dst is the left eb, src is the middle eb */
2305        if (check_sibling_keys(dst, src)) {
2306                ret = -EUCLEAN;
2307                btrfs_abort_transaction(trans, ret);
2308                return ret;
2309        }
2310        ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2311        if (ret) {
2312                btrfs_abort_transaction(trans, ret);
2313                return ret;
2314        }
2315        copy_extent_buffer(dst, src,
2316                           btrfs_node_key_ptr_offset(dst_nritems),
2317                           btrfs_node_key_ptr_offset(0),
2318                           push_items * sizeof(struct btrfs_key_ptr));
2319
2320        if (push_items < src_nritems) {
2321                /*
2322                 * Don't call btrfs_tree_mod_log_insert_move() here, key removal
2323                 * was already fully logged by btrfs_tree_mod_log_eb_copy() above.
2324                 */
2325                memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2326                                      btrfs_node_key_ptr_offset(push_items),
2327                                      (src_nritems - push_items) *
2328                                      sizeof(struct btrfs_key_ptr));
2329        }
2330        btrfs_set_header_nritems(src, src_nritems - push_items);
2331        btrfs_set_header_nritems(dst, dst_nritems + push_items);
2332        btrfs_mark_buffer_dirty(src);
2333        btrfs_mark_buffer_dirty(dst);
2334
2335        return ret;
2336}
2337
2338/*
2339 * try to push data from one node into the next node right in the
2340 * tree.
2341 *
2342 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2343 * error, and > 0 if there was no room in the right hand block.
2344 *
2345 * this will  only push up to 1/2 the contents of the left node over
2346 */
2347static int balance_node_right(struct btrfs_trans_handle *trans,
2348                              struct extent_buffer *dst,
2349                              struct extent_buffer *src)
2350{
2351        struct btrfs_fs_info *fs_info = trans->fs_info;
2352        int push_items = 0;
2353        int max_push;
2354        int src_nritems;
2355        int dst_nritems;
2356        int ret = 0;
2357
2358        WARN_ON(btrfs_header_generation(src) != trans->transid);
2359        WARN_ON(btrfs_header_generation(dst) != trans->transid);
2360
2361        src_nritems = btrfs_header_nritems(src);
2362        dst_nritems = btrfs_header_nritems(dst);
2363        push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2364        if (push_items <= 0)
2365                return 1;
2366
2367        if (src_nritems < 4)
2368                return 1;
2369
2370        max_push = src_nritems / 2 + 1;
2371        /* don't try to empty the node */
2372        if (max_push >= src_nritems)
2373                return 1;
2374
2375        if (max_push < push_items)
2376                push_items = max_push;
2377
2378        /* dst is the right eb, src is the middle eb */
2379        if (check_sibling_keys(src, dst)) {
2380                ret = -EUCLEAN;
2381                btrfs_abort_transaction(trans, ret);
2382                return ret;
2383        }
2384        ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
2385        BUG_ON(ret < 0);
2386        memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2387                                      btrfs_node_key_ptr_offset(0),
2388                                      (dst_nritems) *
2389                                      sizeof(struct btrfs_key_ptr));
2390
2391        ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2392                                         push_items);
2393        if (ret) {
2394                btrfs_abort_transaction(trans, ret);
2395                return ret;
2396        }
2397        copy_extent_buffer(dst, src,
2398                           btrfs_node_key_ptr_offset(0),
2399                           btrfs_node_key_ptr_offset(src_nritems - push_items),
2400                           push_items * sizeof(struct btrfs_key_ptr));
2401
2402        btrfs_set_header_nritems(src, src_nritems - push_items);
2403        btrfs_set_header_nritems(dst, dst_nritems + push_items);
2404
2405        btrfs_mark_buffer_dirty(src);
2406        btrfs_mark_buffer_dirty(dst);
2407
2408        return ret;
2409}
2410
2411/*
2412 * helper function to insert a new root level in the tree.
2413 * A new node is allocated, and a single item is inserted to
2414 * point to the existing root
2415 *
2416 * returns zero on success or < 0 on failure.
2417 */
2418static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2419                           struct btrfs_root *root,
2420                           struct btrfs_path *path, int level)
2421{
2422        struct btrfs_fs_info *fs_info = root->fs_info;
2423        u64 lower_gen;
2424        struct extent_buffer *lower;
2425        struct extent_buffer *c;
2426        struct extent_buffer *old;
2427        struct btrfs_disk_key lower_key;
2428        int ret;
2429
2430        BUG_ON(path->nodes[level]);
2431        BUG_ON(path->nodes[level-1] != root->node);
2432
2433        lower = path->nodes[level-1];
2434        if (level == 1)
2435                btrfs_item_key(lower, &lower_key, 0);
2436        else
2437                btrfs_node_key(lower, &lower_key, 0);
2438
2439        c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2440                                   &lower_key, level, root->node->start, 0,
2441                                   BTRFS_NESTING_NEW_ROOT);
2442        if (IS_ERR(c))
2443                return PTR_ERR(c);
2444
2445        root_add_used(root, fs_info->nodesize);
2446
2447        btrfs_set_header_nritems(c, 1);
2448        btrfs_set_node_key(c, &lower_key, 0);
2449        btrfs_set_node_blockptr(c, 0, lower->start);
2450        lower_gen = btrfs_header_generation(lower);
2451        WARN_ON(lower_gen != trans->transid);
2452
2453        btrfs_set_node_ptr_generation(c, 0, lower_gen);
2454
2455        btrfs_mark_buffer_dirty(c);
2456
2457        old = root->node;
2458        ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2459        BUG_ON(ret < 0);
2460        rcu_assign_pointer(root->node, c);
2461
2462        /* the super has an extra ref to root->node */
2463        free_extent_buffer(old);
2464
2465        add_root_to_dirty_list(root);
2466        atomic_inc(&c->refs);
2467        path->nodes[level] = c;
2468        path->locks[level] = BTRFS_WRITE_LOCK;
2469        path->slots[level] = 0;
2470        return 0;
2471}
2472
2473/*
2474 * worker function to insert a single pointer in a node.
2475 * the node should have enough room for the pointer already
2476 *
2477 * slot and level indicate where you want the key to go, and
2478 * blocknr is the block the key points to.
2479 */
2480static void insert_ptr(struct btrfs_trans_handle *trans,
2481                       struct btrfs_path *path,
2482                       struct btrfs_disk_key *key, u64 bytenr,
2483                       int slot, int level)
2484{
2485        struct extent_buffer *lower;
2486        int nritems;
2487        int ret;
2488
2489        BUG_ON(!path->nodes[level]);
2490        btrfs_assert_tree_locked(path->nodes[level]);
2491        lower = path->nodes[level];
2492        nritems = btrfs_header_nritems(lower);
2493        BUG_ON(slot > nritems);
2494        BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2495        if (slot != nritems) {
2496                if (level) {
2497                        ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2498                                        slot, nritems - slot);
2499                        BUG_ON(ret < 0);
2500                }
2501                memmove_extent_buffer(lower,
2502                              btrfs_node_key_ptr_offset(slot + 1),
2503                              btrfs_node_key_ptr_offset(slot),
2504                              (nritems - slot) * sizeof(struct btrfs_key_ptr));
2505        }
2506        if (level) {
2507                ret = btrfs_tree_mod_log_insert_key(lower, slot,
2508                                            BTRFS_MOD_LOG_KEY_ADD, GFP_NOFS);
2509                BUG_ON(ret < 0);
2510        }
2511        btrfs_set_node_key(lower, key, slot);
2512        btrfs_set_node_blockptr(lower, slot, bytenr);
2513        WARN_ON(trans->transid == 0);
2514        btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2515        btrfs_set_header_nritems(lower, nritems + 1);
2516        btrfs_mark_buffer_dirty(lower);
2517}
2518
2519/*
2520 * split the node at the specified level in path in two.
2521 * The path is corrected to point to the appropriate node after the split
2522 *
2523 * Before splitting this tries to make some room in the node by pushing
2524 * left and right, if either one works, it returns right away.
2525 *
2526 * returns 0 on success and < 0 on failure
2527 */
2528static noinline int split_node(struct btrfs_trans_handle *trans,
2529                               struct btrfs_root *root,
2530                               struct btrfs_path *path, int level)
2531{
2532        struct btrfs_fs_info *fs_info = root->fs_info;
2533        struct extent_buffer *c;
2534        struct extent_buffer *split;
2535        struct btrfs_disk_key disk_key;
2536        int mid;
2537        int ret;
2538        u32 c_nritems;
2539
2540        c = path->nodes[level];
2541        WARN_ON(btrfs_header_generation(c) != trans->transid);
2542        if (c == root->node) {
2543                /*
2544                 * trying to split the root, lets make a new one
2545                 *
2546                 * tree mod log: We don't log_removal old root in
2547                 * insert_new_root, because that root buffer will be kept as a
2548                 * normal node. We are going to log removal of half of the
2549                 * elements below with btrfs_tree_mod_log_eb_copy(). We're
2550                 * holding a tree lock on the buffer, which is why we cannot
2551                 * race with other tree_mod_log users.
2552                 */
2553                ret = insert_new_root(trans, root, path, level + 1);
2554                if (ret)
2555                        return ret;
2556        } else {
2557                ret = push_nodes_for_insert(trans, root, path, level);
2558                c = path->nodes[level];
2559                if (!ret && btrfs_header_nritems(c) <
2560                    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
2561                        return 0;
2562                if (ret < 0)
2563                        return ret;
2564        }
2565
2566        c_nritems = btrfs_header_nritems(c);
2567        mid = (c_nritems + 1) / 2;
2568        btrfs_node_key(c, &disk_key, mid);
2569
2570        split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2571                                       &disk_key, level, c->start, 0,
2572                                       BTRFS_NESTING_SPLIT);
2573        if (IS_ERR(split))
2574                return PTR_ERR(split);
2575
2576        root_add_used(root, fs_info->nodesize);
2577        ASSERT(btrfs_header_level(c) == level);
2578
2579        ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
2580        if (ret) {
2581                btrfs_abort_transaction(trans, ret);
2582                return ret;
2583        }
2584        copy_extent_buffer(split, c,
2585                           btrfs_node_key_ptr_offset(0),
2586                           btrfs_node_key_ptr_offset(mid),
2587                           (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2588        btrfs_set_header_nritems(split, c_nritems - mid);
2589        btrfs_set_header_nritems(c, mid);
2590
2591        btrfs_mark_buffer_dirty(c);
2592        btrfs_mark_buffer_dirty(split);
2593
2594        insert_ptr(trans, path, &disk_key, split->start,
2595                   path->slots[level + 1] + 1, level + 1);
2596
2597        if (path->slots[level] >= mid) {
2598                path->slots[level] -= mid;
2599                btrfs_tree_unlock(c);
2600                free_extent_buffer(c);
2601                path->nodes[level] = split;
2602                path->slots[level + 1] += 1;
2603        } else {
2604                btrfs_tree_unlock(split);
2605                free_extent_buffer(split);
2606        }
2607        return 0;
2608}
2609
2610/*
2611 * how many bytes are required to store the items in a leaf.  start
2612 * and nr indicate which items in the leaf to check.  This totals up the
2613 * space used both by the item structs and the item data
2614 */
2615static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2616{
2617        struct btrfs_item *start_item;
2618        struct btrfs_item *end_item;
2619        int data_len;
2620        int nritems = btrfs_header_nritems(l);
2621        int end = min(nritems, start + nr) - 1;
2622
2623        if (!nr)
2624                return 0;
2625        start_item = btrfs_item_nr(start);
2626        end_item = btrfs_item_nr(end);
2627        data_len = btrfs_item_offset(l, start_item) +
2628                   btrfs_item_size(l, start_item);
2629        data_len = data_len - btrfs_item_offset(l, end_item);
2630        data_len += sizeof(struct btrfs_item) * nr;
2631        WARN_ON(data_len < 0);
2632        return data_len;
2633}
2634
2635/*
2636 * The space between the end of the leaf items and
2637 * the start of the leaf data.  IOW, how much room
2638 * the leaf has left for both items and data
2639 */
2640noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
2641{
2642        struct btrfs_fs_info *fs_info = leaf->fs_info;
2643        int nritems = btrfs_header_nritems(leaf);
2644        int ret;
2645
2646        ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
2647        if (ret < 0) {
2648                btrfs_crit(fs_info,
2649                           "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
2650                           ret,
2651                           (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
2652                           leaf_space_used(leaf, 0, nritems), nritems);
2653        }
2654        return ret;
2655}
2656
2657/*
2658 * min slot controls the lowest index we're willing to push to the
2659 * right.  We'll push up to and including min_slot, but no lower
2660 */
2661static noinline int __push_leaf_right(struct btrfs_path *path,
2662                                      int data_size, int empty,
2663                                      struct extent_buffer *right,
2664                                      int free_space, u32 left_nritems,
2665                                      u32 min_slot)
2666{
2667        struct btrfs_fs_info *fs_info = right->fs_info;
2668        struct extent_buffer *left = path->nodes[0];
2669        struct extent_buffer *upper = path->nodes[1];
2670        struct btrfs_map_token token;
2671        struct btrfs_disk_key disk_key;
2672        int slot;
2673        u32 i;
2674        int push_space = 0;
2675        int push_items = 0;
2676        struct btrfs_item *item;
2677        u32 nr;
2678        u32 right_nritems;
2679        u32 data_end;
2680        u32 this_item_size;
2681
2682        if (empty)
2683                nr = 0;
2684        else
2685                nr = max_t(u32, 1, min_slot);
2686
2687        if (path->slots[0] >= left_nritems)
2688                push_space += data_size;
2689
2690        slot = path->slots[1];
2691        i = left_nritems - 1;
2692        while (i >= nr) {
2693                item = btrfs_item_nr(i);
2694
2695                if (!empty && push_items > 0) {
2696                        if (path->slots[0] > i)
2697                                break;
2698                        if (path->slots[0] == i) {
2699                                int space = btrfs_leaf_free_space(left);
2700
2701                                if (space + push_space * 2 > free_space)
2702                                        break;
2703                        }
2704                }
2705
2706                if (path->slots[0] == i)
2707                        push_space += data_size;
2708
2709                this_item_size = btrfs_item_size(left, item);
2710                if (this_item_size + sizeof(*item) + push_space > free_space)
2711                        break;
2712
2713                push_items++;
2714                push_space += this_item_size + sizeof(*item);
2715                if (i == 0)
2716                        break;
2717                i--;
2718        }
2719
2720        if (push_items == 0)
2721                goto out_unlock;
2722
2723        WARN_ON(!empty && push_items == left_nritems);
2724
2725        /* push left to right */
2726        right_nritems = btrfs_header_nritems(right);
2727
2728        push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2729        push_space -= leaf_data_end(left);
2730
2731        /* make room in the right data area */
2732        data_end = leaf_data_end(right);
2733        memmove_extent_buffer(right,
2734                              BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
2735                              BTRFS_LEAF_DATA_OFFSET + data_end,
2736                              BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
2737
2738        /* copy from the left data area */
2739        copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
2740                     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
2741                     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
2742                     push_space);
2743
2744        memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2745                              btrfs_item_nr_offset(0),
2746                              right_nritems * sizeof(struct btrfs_item));
2747
2748        /* copy the items from left to right */
2749        copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2750                   btrfs_item_nr_offset(left_nritems - push_items),
2751                   push_items * sizeof(struct btrfs_item));
2752
2753        /* update the item pointers */
2754        btrfs_init_map_token(&token, right);
2755        right_nritems += push_items;
2756        btrfs_set_header_nritems(right, right_nritems);
2757        push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
2758        for (i = 0; i < right_nritems; i++) {
2759                item = btrfs_item_nr(i);
2760                push_space -= btrfs_token_item_size(&token, item);
2761                btrfs_set_token_item_offset(&token, item, push_space);
2762        }
2763
2764        left_nritems -= push_items;
2765        btrfs_set_header_nritems(left, left_nritems);
2766
2767        if (left_nritems)
2768                btrfs_mark_buffer_dirty(left);
2769        else
2770                btrfs_clean_tree_block(left);
2771
2772        btrfs_mark_buffer_dirty(right);
2773
2774        btrfs_item_key(right, &disk_key, 0);
2775        btrfs_set_node_key(upper, &disk_key, slot + 1);
2776        btrfs_mark_buffer_dirty(upper);
2777
2778        /* then fixup the leaf pointer in the path */
2779        if (path->slots[0] >= left_nritems) {
2780                path->slots[0] -= left_nritems;
2781                if (btrfs_header_nritems(path->nodes[0]) == 0)
2782                        btrfs_clean_tree_block(path->nodes[0]);
2783                btrfs_tree_unlock(path->nodes[0]);
2784                free_extent_buffer(path->nodes[0]);
2785                path->nodes[0] = right;
2786                path->slots[1] += 1;
2787        } else {
2788                btrfs_tree_unlock(right);
2789                free_extent_buffer(right);
2790        }
2791        return 0;
2792
2793out_unlock:
2794        btrfs_tree_unlock(right);
2795        free_extent_buffer(right);
2796        return 1;
2797}
2798
2799/*
2800 * push some data in the path leaf to the right, trying to free up at
2801 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2802 *
2803 * returns 1 if the push failed because the other node didn't have enough
2804 * room, 0 if everything worked out and < 0 if there were major errors.
2805 *
2806 * this will push starting from min_slot to the end of the leaf.  It won't
2807 * push any slot lower than min_slot
2808 */
2809static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2810                           *root, struct btrfs_path *path,
2811                           int min_data_size, int data_size,
2812                           int empty, u32 min_slot)
2813{
2814        struct extent_buffer *left = path->nodes[0];
2815        struct extent_buffer *right;
2816        struct extent_buffer *upper;
2817        int slot;
2818        int free_space;
2819        u32 left_nritems;
2820        int ret;
2821
2822        if (!path->nodes[1])
2823                return 1;
2824
2825        slot = path->slots[1];
2826        upper = path->nodes[1];
2827        if (slot >= btrfs_header_nritems(upper) - 1)
2828                return 1;
2829
2830        btrfs_assert_tree_locked(path->nodes[1]);
2831
2832        right = btrfs_read_node_slot(upper, slot + 1);
2833        /*
2834         * slot + 1 is not valid or we fail to read the right node,
2835         * no big deal, just return.
2836         */
2837        if (IS_ERR(right))
2838                return 1;
2839
2840        __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
2841
2842        free_space = btrfs_leaf_free_space(right);
2843        if (free_space < data_size)
2844                goto out_unlock;
2845
2846        /* cow and double check */
2847        ret = btrfs_cow_block(trans, root, right, upper,
2848                              slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
2849        if (ret)
2850                goto out_unlock;
2851
2852        free_space = btrfs_leaf_free_space(right);
2853        if (free_space < data_size)
2854                goto out_unlock;
2855
2856        left_nritems = btrfs_header_nritems(left);
2857        if (left_nritems == 0)
2858                goto out_unlock;
2859
2860        if (check_sibling_keys(left, right)) {
2861                ret = -EUCLEAN;
2862                btrfs_tree_unlock(right);
2863                free_extent_buffer(right);
2864                return ret;
2865        }
2866        if (path->slots[0] == left_nritems && !empty) {
2867                /* Key greater than all keys in the leaf, right neighbor has
2868                 * enough room for it and we're not emptying our leaf to delete
2869                 * it, therefore use right neighbor to insert the new item and
2870                 * no need to touch/dirty our left leaf. */
2871                btrfs_tree_unlock(left);
2872                free_extent_buffer(left);
2873                path->nodes[0] = right;
2874                path->slots[0] = 0;
2875                path->slots[1]++;
2876                return 0;
2877        }
2878
2879        return __push_leaf_right(path, min_data_size, empty,
2880                                right, free_space, left_nritems, min_slot);
2881out_unlock:
2882        btrfs_tree_unlock(right);
2883        free_extent_buffer(right);
2884        return 1;
2885}
2886
2887/*
2888 * push some data in the path leaf to the left, trying to free up at
2889 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2890 *
2891 * max_slot can put a limit on how far into the leaf we'll push items.  The
2892 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
2893 * items
2894 */
2895static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
2896                                     int empty, struct extent_buffer *left,
2897                                     int free_space, u32 right_nritems,
2898                                     u32 max_slot)
2899{
2900        struct btrfs_fs_info *fs_info = left->fs_info;
2901        struct btrfs_disk_key disk_key;
2902        struct extent_buffer *right = path->nodes[0];
2903        int i;
2904        int push_space = 0;
2905        int push_items = 0;
2906        struct btrfs_item *item;
2907        u32 old_left_nritems;
2908        u32 nr;
2909        int ret = 0;
2910        u32 this_item_size;
2911        u32 old_left_item_size;
2912        struct btrfs_map_token token;
2913
2914        if (empty)
2915                nr = min(right_nritems, max_slot);
2916        else
2917                nr = min(right_nritems - 1, max_slot);
2918
2919        for (i = 0; i < nr; i++) {
2920                item = btrfs_item_nr(i);
2921
2922                if (!empty && push_items > 0) {
2923                        if (path->slots[0] < i)
2924                                break;
2925                        if (path->slots[0] == i) {
2926                                int space = btrfs_leaf_free_space(right);
2927
2928                                if (space + push_space * 2 > free_space)
2929                                        break;
2930                        }
2931                }
2932
2933                if (path->slots[0] == i)
2934                        push_space += data_size;
2935
2936                this_item_size = btrfs_item_size(right, item);
2937                if (this_item_size + sizeof(*item) + push_space > free_space)
2938                        break;
2939
2940                push_items++;
2941                push_space += this_item_size + sizeof(*item);
2942        }
2943
2944        if (push_items == 0) {
2945                ret = 1;
2946                goto out;
2947        }
2948        WARN_ON(!empty && push_items == btrfs_header_nritems(right));
2949
2950        /* push data from right to left */
2951        copy_extent_buffer(left, right,
2952                           btrfs_item_nr_offset(btrfs_header_nritems(left)),
2953                           btrfs_item_nr_offset(0),
2954                           push_items * sizeof(struct btrfs_item));
2955
2956        push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
2957                     btrfs_item_offset_nr(right, push_items - 1);
2958
2959        copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
2960                     leaf_data_end(left) - push_space,
2961                     BTRFS_LEAF_DATA_OFFSET +
2962                     btrfs_item_offset_nr(right, push_items - 1),
2963                     push_space);
2964        old_left_nritems = btrfs_header_nritems(left);
2965        BUG_ON(old_left_nritems <= 0);
2966
2967        btrfs_init_map_token(&token, left);
2968        old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2969        for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2970                u32 ioff;
2971
2972                item = btrfs_item_nr(i);
2973
2974                ioff = btrfs_token_item_offset(&token, item);
2975                btrfs_set_token_item_offset(&token, item,
2976                      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
2977        }
2978        btrfs_set_header_nritems(left, old_left_nritems + push_items);
2979
2980        /* fixup right node */
2981        if (push_items > right_nritems)
2982                WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
2983                       right_nritems);
2984
2985        if (push_items < right_nritems) {
2986                push_space = btrfs_item_offset_nr(right, push_items - 1) -
2987                                                  leaf_data_end(right);
2988                memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
2989                                      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
2990                                      BTRFS_LEAF_DATA_OFFSET +
2991                                      leaf_data_end(right), push_space);
2992
2993                memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2994                              btrfs_item_nr_offset(push_items),
2995                             (btrfs_header_nritems(right) - push_items) *
2996                             sizeof(struct btrfs_item));
2997        }
2998
2999        btrfs_init_map_token(&token, right);
3000        right_nritems -= push_items;
3001        btrfs_set_header_nritems(right, right_nritems);
3002        push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3003        for (i = 0; i < right_nritems; i++) {
3004                item = btrfs_item_nr(i);
3005
3006                push_space = push_space - btrfs_token_item_size(&token, item);
3007                btrfs_set_token_item_offset(&token, item, push_space);
3008        }
3009
3010        btrfs_mark_buffer_dirty(left);
3011        if (right_nritems)
3012                btrfs_mark_buffer_dirty(right);
3013        else
3014                btrfs_clean_tree_block(right);
3015
3016        btrfs_item_key(right, &disk_key, 0);
3017        fixup_low_keys(path, &disk_key, 1);
3018
3019        /* then fixup the leaf pointer in the path */
3020        if (path->slots[0] < push_items) {
3021                path->slots[0] += old_left_nritems;
3022                btrfs_tree_unlock(path->nodes[0]);
3023                free_extent_buffer(path->nodes[0]);
3024                path->nodes[0] = left;
3025                path->slots[1] -= 1;
3026        } else {
3027                btrfs_tree_unlock(left);
3028                free_extent_buffer(left);
3029                path->slots[0] -= push_items;
3030        }
3031        BUG_ON(path->slots[0] < 0);
3032        return ret;
3033out:
3034        btrfs_tree_unlock(left);
3035        free_extent_buffer(left);
3036        return ret;
3037}
3038
3039/*
3040 * push some data in the path leaf to the left, trying to free up at
3041 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3042 *
3043 * max_slot can put a limit on how far into the leaf we'll push items.  The
3044 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3045 * items
3046 */
3047static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3048                          *root, struct btrfs_path *path, int min_data_size,
3049                          int data_size, int empty, u32 max_slot)
3050{
3051        struct extent_buffer *right = path->nodes[0];
3052        struct extent_buffer *left;
3053        int slot;
3054        int free_space;
3055        u32 right_nritems;
3056        int ret = 0;
3057
3058        slot = path->slots[1];
3059        if (slot == 0)
3060                return 1;
3061        if (!path->nodes[1])
3062                return 1;
3063
3064        right_nritems = btrfs_header_nritems(right);
3065        if (right_nritems == 0)
3066                return 1;
3067
3068        btrfs_assert_tree_locked(path->nodes[1]);
3069
3070        left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3071        /*
3072         * slot - 1 is not valid or we fail to read the left node,
3073         * no big deal, just return.
3074         */
3075        if (IS_ERR(left))
3076                return 1;
3077
3078        __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3079
3080        free_space = btrfs_leaf_free_space(left);
3081        if (free_space < data_size) {
3082                ret = 1;
3083                goto out;
3084        }
3085
3086        /* cow and double check */
3087        ret = btrfs_cow_block(trans, root, left,
3088                              path->nodes[1], slot - 1, &left,
3089                              BTRFS_NESTING_LEFT_COW);
3090        if (ret) {
3091                /* we hit -ENOSPC, but it isn't fatal here */
3092                if (ret == -ENOSPC)
3093                        ret = 1;
3094                goto out;
3095        }
3096
3097        free_space = btrfs_leaf_free_space(left);
3098        if (free_space < data_size) {
3099                ret = 1;
3100                goto out;
3101        }
3102
3103        if (check_sibling_keys(left, right)) {
3104                ret = -EUCLEAN;
3105                goto out;
3106        }
3107        return __push_leaf_left(path, min_data_size,
3108                               empty, left, free_space, right_nritems,
3109                               max_slot);
3110out:
3111        btrfs_tree_unlock(left);
3112        free_extent_buffer(left);
3113        return ret;
3114}
3115
3116/*
3117 * split the path's leaf in two, making sure there is at least data_size
3118 * available for the resulting leaf level of the path.
3119 */
3120static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3121                                    struct btrfs_path *path,
3122                                    struct extent_buffer *l,
3123                                    struct extent_buffer *right,
3124                                    int slot, int mid, int nritems)
3125{
3126        struct btrfs_fs_info *fs_info = trans->fs_info;
3127        int data_copy_size;
3128        int rt_data_off;
3129        int i;
3130        struct btrfs_disk_key disk_key;
3131        struct btrfs_map_token token;
3132
3133        nritems = nritems - mid;
3134        btrfs_set_header_nritems(right, nritems);
3135        data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
3136
3137        copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3138                           btrfs_item_nr_offset(mid),
3139                           nritems * sizeof(struct btrfs_item));
3140
3141        copy_extent_buffer(right, l,
3142                     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
3143                     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
3144                     leaf_data_end(l), data_copy_size);
3145
3146        rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
3147
3148        btrfs_init_map_token(&token, right);
3149        for (i = 0; i < nritems; i++) {
3150                struct btrfs_item *item = btrfs_item_nr(i);
3151                u32 ioff;
3152
3153                ioff = btrfs_token_item_offset(&token, item);
3154                btrfs_set_token_item_offset(&token, item, ioff + rt_data_off);
3155        }
3156
3157        btrfs_set_header_nritems(l, mid);
3158        btrfs_item_key(right, &disk_key, 0);
3159        insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3160
3161        btrfs_mark_buffer_dirty(right);
3162        btrfs_mark_buffer_dirty(l);
3163        BUG_ON(path->slots[0] != slot);
3164
3165        if (mid <= slot) {
3166                btrfs_tree_unlock(path->nodes[0]);
3167                free_extent_buffer(path->nodes[0]);
3168                path->nodes[0] = right;
3169                path->slots[0] -= mid;
3170                path->slots[1] += 1;
3171        } else {
3172                btrfs_tree_unlock(right);
3173                free_extent_buffer(right);
3174        }
3175
3176        BUG_ON(path->slots[0] < 0);
3177}
3178
3179/*
3180 * double splits happen when we need to insert a big item in the middle
3181 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3182 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3183 *          A                 B                 C
3184 *
3185 * We avoid this by trying to push the items on either side of our target
3186 * into the adjacent leaves.  If all goes well we can avoid the double split
3187 * completely.
3188 */
3189static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3190                                          struct btrfs_root *root,
3191                                          struct btrfs_path *path,
3192                                          int data_size)
3193{
3194        int ret;
3195        int progress = 0;
3196        int slot;
3197        u32 nritems;
3198        int space_needed = data_size;
3199
3200        slot = path->slots[0];
3201        if (slot < btrfs_header_nritems(path->nodes[0]))
3202                space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3203
3204        /*
3205         * try to push all the items after our slot into the
3206         * right leaf
3207         */
3208        ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3209        if (ret < 0)
3210                return ret;
3211
3212        if (ret == 0)
3213                progress++;
3214
3215        nritems = btrfs_header_nritems(path->nodes[0]);
3216        /*
3217         * our goal is to get our slot at the start or end of a leaf.  If
3218         * we've done so we're done
3219         */
3220        if (path->slots[0] == 0 || path->slots[0] == nritems)
3221                return 0;
3222
3223        if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3224                return 0;
3225
3226        /* try to push all the items before our slot into the next leaf */
3227        slot = path->slots[0];
3228        space_needed = data_size;
3229        if (slot > 0)
3230                space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3231        ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3232        if (ret < 0)
3233                return ret;
3234
3235        if (ret == 0)
3236                progress++;
3237
3238        if (progress)
3239                return 0;
3240        return 1;
3241}
3242
3243/*
3244 * split the path's leaf in two, making sure there is at least data_size
3245 * available for the resulting leaf level of the path.
3246 *
3247 * returns 0 if all went well and < 0 on failure.
3248 */
3249static noinline int split_leaf(struct btrfs_trans_handle *trans,
3250                               struct btrfs_root *root,
3251                               const struct btrfs_key *ins_key,
3252                               struct btrfs_path *path, int data_size,
3253                               int extend)
3254{
3255        struct btrfs_disk_key disk_key;
3256        struct extent_buffer *l;
3257        u32 nritems;
3258        int mid;
3259        int slot;
3260        struct extent_buffer *right;
3261        struct btrfs_fs_info *fs_info = root->fs_info;
3262        int ret = 0;
3263        int wret;
3264        int split;
3265        int num_doubles = 0;
3266        int tried_avoid_double = 0;
3267
3268        l = path->nodes[0];
3269        slot = path->slots[0];
3270        if (extend && data_size + btrfs_item_size_nr(l, slot) +
3271            sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3272                return -EOVERFLOW;
3273
3274        /* first try to make some room by pushing left and right */
3275        if (data_size && path->nodes[1]) {
3276                int space_needed = data_size;
3277
3278                if (slot < btrfs_header_nritems(l))
3279                        space_needed -= btrfs_leaf_free_space(l);
3280
3281                wret = push_leaf_right(trans, root, path, space_needed,
3282                                       space_needed, 0, 0);
3283                if (wret < 0)
3284                        return wret;
3285                if (wret) {
3286                        space_needed = data_size;
3287                        if (slot > 0)
3288                                space_needed -= btrfs_leaf_free_space(l);
3289                        wret = push_leaf_left(trans, root, path, space_needed,
3290                                              space_needed, 0, (u32)-1);
3291                        if (wret < 0)
3292                                return wret;
3293                }
3294                l = path->nodes[0];
3295
3296                /* did the pushes work? */
3297                if (btrfs_leaf_free_space(l) >= data_size)
3298                        return 0;
3299        }
3300
3301        if (!path->nodes[1]) {
3302                ret = insert_new_root(trans, root, path, 1);
3303                if (ret)
3304                        return ret;
3305        }
3306again:
3307        split = 1;
3308        l = path->nodes[0];
3309        slot = path->slots[0];
3310        nritems = btrfs_header_nritems(l);
3311        mid = (nritems + 1) / 2;
3312
3313        if (mid <= slot) {
3314                if (nritems == 1 ||
3315                    leaf_space_used(l, mid, nritems - mid) + data_size >
3316                        BTRFS_LEAF_DATA_SIZE(fs_info)) {
3317                        if (slot >= nritems) {
3318                                split = 0;
3319                        } else {
3320                                mid = slot;
3321                                if (mid != nritems &&
3322                                    leaf_space_used(l, mid, nritems - mid) +
3323                                    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3324                                        if (data_size && !tried_avoid_double)
3325                                                goto push_for_double;
3326                                        split = 2;
3327                                }
3328                        }
3329                }
3330        } else {
3331                if (leaf_space_used(l, 0, mid) + data_size >
3332                        BTRFS_LEAF_DATA_SIZE(fs_info)) {
3333                        if (!extend && data_size && slot == 0) {
3334                                split = 0;
3335                        } else if ((extend || !data_size) && slot == 0) {
3336                                mid = 1;
3337                        } else {
3338                                mid = slot;
3339                                if (mid != nritems &&
3340                                    leaf_space_used(l, mid, nritems - mid) +
3341                                    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3342                                        if (data_size && !tried_avoid_double)
3343                                                goto push_for_double;
3344                                        split = 2;
3345                                }
3346                        }
3347                }
3348        }
3349
3350        if (split == 0)
3351                btrfs_cpu_key_to_disk(&disk_key, ins_key);
3352        else
3353                btrfs_item_key(l, &disk_key, mid);
3354
3355        /*
3356         * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3357         * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3358         * subclasses, which is 8 at the time of this patch, and we've maxed it
3359         * out.  In the future we could add a
3360         * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3361         * use BTRFS_NESTING_NEW_ROOT.
3362         */
3363        right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3364                                       &disk_key, 0, l->start, 0,
3365                                       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3366                                       BTRFS_NESTING_SPLIT);
3367        if (IS_ERR(right))
3368                return PTR_ERR(right);
3369
3370        root_add_used(root, fs_info->nodesize);
3371
3372        if (split == 0) {
3373                if (mid <= slot) {
3374                        btrfs_set_header_nritems(right, 0);
3375                        insert_ptr(trans, path, &disk_key,
3376                                   right->start, path->slots[1] + 1, 1);
3377                        btrfs_tree_unlock(path->nodes[0]);
3378                        free_extent_buffer(path->nodes[0]);
3379                        path->nodes[0] = right;
3380                        path->slots[0] = 0;
3381                        path->slots[1] += 1;
3382                } else {
3383                        btrfs_set_header_nritems(right, 0);
3384                        insert_ptr(trans, path, &disk_key,
3385                                   right->start, path->slots[1], 1);
3386                        btrfs_tree_unlock(path->nodes[0]);
3387                        free_extent_buffer(path->nodes[0]);
3388                        path->nodes[0] = right;
3389                        path->slots[0] = 0;
3390                        if (path->slots[1] == 0)
3391                                fixup_low_keys(path, &disk_key, 1);
3392                }
3393                /*
3394                 * We create a new leaf 'right' for the required ins_len and
3395                 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3396                 * the content of ins_len to 'right'.
3397                 */
3398                return ret;
3399        }
3400
3401        copy_for_split(trans, path, l, right, slot, mid, nritems);
3402
3403        if (split == 2) {
3404                BUG_ON(num_doubles != 0);
3405                num_doubles++;
3406                goto again;
3407        }
3408
3409        return 0;
3410
3411push_for_double:
3412        push_for_double_split(trans, root, path, data_size);
3413        tried_avoid_double = 1;
3414        if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3415                return 0;
3416        goto again;
3417}
3418
3419static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3420                                         struct btrfs_root *root,
3421                                         struct btrfs_path *path, int ins_len)
3422{
3423        struct btrfs_key key;
3424        struct extent_buffer *leaf;
3425        struct btrfs_file_extent_item *fi;
3426        u64 extent_len = 0;
3427        u32 item_size;
3428        int ret;
3429
3430        leaf = path->nodes[0];
3431        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3432
3433        BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3434               key.type != BTRFS_EXTENT_CSUM_KEY);
3435
3436        if (btrfs_leaf_free_space(leaf) >= ins_len)
3437                return 0;
3438
3439        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3440        if (key.type == BTRFS_EXTENT_DATA_KEY) {
3441                fi = btrfs_item_ptr(leaf, path->slots[0],
3442                                    struct btrfs_file_extent_item);
3443                extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3444        }
3445        btrfs_release_path(path);
3446
3447        path->keep_locks = 1;
3448        path->search_for_split = 1;
3449        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3450        path->search_for_split = 0;
3451        if (ret > 0)
3452                ret = -EAGAIN;
3453        if (ret < 0)
3454                goto err;
3455
3456        ret = -EAGAIN;
3457        leaf = path->nodes[0];
3458        /* if our item isn't there, return now */
3459        if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3460                goto err;
3461
3462        /* the leaf has  changed, it now has room.  return now */
3463        if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3464                goto err;
3465
3466        if (key.type == BTRFS_EXTENT_DATA_KEY) {
3467                fi = btrfs_item_ptr(leaf, path->slots[0],
3468                                    struct btrfs_file_extent_item);
3469                if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3470                        goto err;
3471        }
3472
3473        ret = split_leaf(trans, root, &key, path, ins_len, 1);
3474        if (ret)
3475                goto err;
3476
3477        path->keep_locks = 0;
3478        btrfs_unlock_up_safe(path, 1);
3479        return 0;
3480err:
3481        path->keep_locks = 0;
3482        return ret;
3483}
3484
3485static noinline int split_item(struct btrfs_path *path,
3486                               const struct btrfs_key *new_key,
3487                               unsigned long split_offset)
3488{
3489        struct extent_buffer *leaf;
3490        struct btrfs_item *item;
3491        struct btrfs_item *new_item;
3492        int slot;
3493        char *buf;
3494        u32 nritems;
3495        u32 item_size;
3496        u32 orig_offset;
3497        struct btrfs_disk_key disk_key;
3498
3499        leaf = path->nodes[0];
3500        BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
3501
3502        item = btrfs_item_nr(path->slots[0]);
3503        orig_offset = btrfs_item_offset(leaf, item);
3504        item_size = btrfs_item_size(leaf, item);
3505
3506        buf = kmalloc(item_size, GFP_NOFS);
3507        if (!buf)
3508                return -ENOMEM;
3509
3510        read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3511                            path->slots[0]), item_size);
3512
3513        slot = path->slots[0] + 1;
3514        nritems = btrfs_header_nritems(leaf);
3515        if (slot != nritems) {
3516                /* shift the items */
3517                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3518                                btrfs_item_nr_offset(slot),
3519                                (nritems - slot) * sizeof(struct btrfs_item));
3520        }
3521
3522        btrfs_cpu_key_to_disk(&disk_key, new_key);
3523        btrfs_set_item_key(leaf, &disk_key, slot);
3524
3525        new_item = btrfs_item_nr(slot);
3526
3527        btrfs_set_item_offset(leaf, new_item, orig_offset);
3528        btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3529
3530        btrfs_set_item_offset(leaf, item,
3531                              orig_offset + item_size - split_offset);
3532        btrfs_set_item_size(leaf, item, split_offset);
3533
3534        btrfs_set_header_nritems(leaf, nritems + 1);
3535
3536        /* write the data for the start of the original item */
3537        write_extent_buffer(leaf, buf,
3538                            btrfs_item_ptr_offset(leaf, path->slots[0]),
3539                            split_offset);
3540
3541        /* write the data for the new item */
3542        write_extent_buffer(leaf, buf + split_offset,
3543                            btrfs_item_ptr_offset(leaf, slot),
3544                            item_size - split_offset);
3545        btrfs_mark_buffer_dirty(leaf);
3546
3547        BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3548        kfree(buf);
3549        return 0;
3550}
3551
3552/*
3553 * This function splits a single item into two items,
3554 * giving 'new_key' to the new item and splitting the
3555 * old one at split_offset (from the start of the item).
3556 *
3557 * The path may be released by this operation.  After
3558 * the split, the path is pointing to the old item.  The
3559 * new item is going to be in the same node as the old one.
3560 *
3561 * Note, the item being split must be smaller enough to live alone on
3562 * a tree block with room for one extra struct btrfs_item
3563 *
3564 * This allows us to split the item in place, keeping a lock on the
3565 * leaf the entire time.
3566 */
3567int btrfs_split_item(struct btrfs_trans_handle *trans,
3568                     struct btrfs_root *root,
3569                     struct btrfs_path *path,
3570                     const struct btrfs_key *new_key,
3571                     unsigned long split_offset)
3572{
3573        int ret;
3574        ret = setup_leaf_for_split(trans, root, path,
3575                                   sizeof(struct btrfs_item));
3576        if (ret)
3577                return ret;
3578
3579        ret = split_item(path, new_key, split_offset);
3580        return ret;
3581}
3582
3583/*
3584 * This function duplicate a item, giving 'new_key' to the new item.
3585 * It guarantees both items live in the same tree leaf and the new item
3586 * is contiguous with the original item.
3587 *
3588 * This allows us to split file extent in place, keeping a lock on the
3589 * leaf the entire time.
3590 */
3591int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3592                         struct btrfs_root *root,
3593                         struct btrfs_path *path,
3594                         const struct btrfs_key *new_key)
3595{
3596        struct extent_buffer *leaf;
3597        int ret;
3598        u32 item_size;
3599
3600        leaf = path->nodes[0];
3601        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3602        ret = setup_leaf_for_split(trans, root, path,
3603                                   item_size + sizeof(struct btrfs_item));
3604        if (ret)
3605                return ret;
3606
3607        path->slots[0]++;
3608        setup_items_for_insert(root, path, new_key, &item_size, 1);
3609        leaf = path->nodes[0];
3610        memcpy_extent_buffer(leaf,
3611                             btrfs_item_ptr_offset(leaf, path->slots[0]),
3612                             btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3613                             item_size);
3614        return 0;
3615}
3616
3617/*
3618 * make the item pointed to by the path smaller.  new_size indicates
3619 * how small to make it, and from_end tells us if we just chop bytes
3620 * off the end of the item or if we shift the item to chop bytes off
3621 * the front.
3622 */
3623void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
3624{
3625        int slot;
3626        struct extent_buffer *leaf;
3627        struct btrfs_item *item;
3628        u32 nritems;
3629        unsigned int data_end;
3630        unsigned int old_data_start;
3631        unsigned int old_size;
3632        unsigned int size_diff;
3633        int i;
3634        struct btrfs_map_token token;
3635
3636        leaf = path->nodes[0];
3637        slot = path->slots[0];
3638
3639        old_size = btrfs_item_size_nr(leaf, slot);
3640        if (old_size == new_size)
3641                return;
3642
3643        nritems = btrfs_header_nritems(leaf);
3644        data_end = leaf_data_end(leaf);
3645
3646        old_data_start = btrfs_item_offset_nr(leaf, slot);
3647
3648        size_diff = old_size - new_size;
3649
3650        BUG_ON(slot < 0);
3651        BUG_ON(slot >= nritems);
3652
3653        /*
3654         * item0..itemN ... dataN.offset..dataN.size .. data0.size
3655         */
3656        /* first correct the data pointers */
3657        btrfs_init_map_token(&token, leaf);
3658        for (i = slot; i < nritems; i++) {
3659                u32 ioff;
3660                item = btrfs_item_nr(i);
3661
3662                ioff = btrfs_token_item_offset(&token, item);
3663                btrfs_set_token_item_offset(&token, item, ioff + size_diff);
3664        }
3665
3666        /* shift the data */
3667        if (from_end) {
3668                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3669                              data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3670                              data_end, old_data_start + new_size - data_end);
3671        } else {
3672                struct btrfs_disk_key disk_key;
3673                u64 offset;
3674
3675                btrfs_item_key(leaf, &disk_key, slot);
3676
3677                if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3678                        unsigned long ptr;
3679                        struct btrfs_file_extent_item *fi;
3680
3681                        fi = btrfs_item_ptr(leaf, slot,
3682                                            struct btrfs_file_extent_item);
3683                        fi = (struct btrfs_file_extent_item *)(
3684                             (unsigned long)fi - size_diff);
3685
3686                        if (btrfs_file_extent_type(leaf, fi) ==
3687                            BTRFS_FILE_EXTENT_INLINE) {
3688                                ptr = btrfs_item_ptr_offset(leaf, slot);
3689                                memmove_extent_buffer(leaf, ptr,
3690                                      (unsigned long)fi,
3691                                      BTRFS_FILE_EXTENT_INLINE_DATA_START);
3692                        }
3693                }
3694
3695                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3696                              data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3697                              data_end, old_data_start - data_end);
3698
3699                offset = btrfs_disk_key_offset(&disk_key);
3700                btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3701                btrfs_set_item_key(leaf, &disk_key, slot);
3702                if (slot == 0)
3703                        fixup_low_keys(path, &disk_key, 1);
3704        }
3705
3706        item = btrfs_item_nr(slot);
3707        btrfs_set_item_size(leaf, item, new_size);
3708        btrfs_mark_buffer_dirty(leaf);
3709
3710        if (btrfs_leaf_free_space(leaf) < 0) {
3711                btrfs_print_leaf(leaf);
3712                BUG();
3713        }
3714}
3715
3716/*
3717 * make the item pointed to by the path bigger, data_size is the added size.
3718 */
3719void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
3720{
3721        int slot;
3722        struct extent_buffer *leaf;
3723        struct btrfs_item *item;
3724        u32 nritems;
3725        unsigned int data_end;
3726        unsigned int old_data;
3727        unsigned int old_size;
3728        int i;
3729        struct btrfs_map_token token;
3730
3731        leaf = path->nodes[0];
3732
3733        nritems = btrfs_header_nritems(leaf);
3734        data_end = leaf_data_end(leaf);
3735
3736        if (btrfs_leaf_free_space(leaf) < data_size) {
3737                btrfs_print_leaf(leaf);
3738                BUG();
3739        }
3740        slot = path->slots[0];
3741        old_data = btrfs_item_end_nr(leaf, slot);
3742
3743        BUG_ON(slot < 0);
3744        if (slot >= nritems) {
3745                btrfs_print_leaf(leaf);
3746                btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
3747                           slot, nritems);
3748                BUG();
3749        }
3750
3751        /*
3752         * item0..itemN ... dataN.offset..dataN.size .. data0.size
3753         */
3754        /* first correct the data pointers */
3755        btrfs_init_map_token(&token, leaf);
3756        for (i = slot; i < nritems; i++) {
3757                u32 ioff;
3758                item = btrfs_item_nr(i);
3759
3760                ioff = btrfs_token_item_offset(&token, item);
3761                btrfs_set_token_item_offset(&token, item, ioff - data_size);
3762        }
3763
3764        /* shift the data */
3765        memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3766                      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
3767                      data_end, old_data - data_end);
3768
3769        data_end = old_data;
3770        old_size = btrfs_item_size_nr(leaf, slot);
3771        item = btrfs_item_nr(slot);
3772        btrfs_set_item_size(leaf, item, old_size + data_size);
3773        btrfs_mark_buffer_dirty(leaf);
3774
3775        if (btrfs_leaf_free_space(leaf) < 0) {
3776                btrfs_print_leaf(leaf);
3777                BUG();
3778        }
3779}
3780
3781/**
3782 * setup_items_for_insert - Helper called before inserting one or more items
3783 * to a leaf. Main purpose is to save stack depth by doing the bulk of the work
3784 * in a function that doesn't call btrfs_search_slot
3785 *
3786 * @root:       root we are inserting items to
3787 * @path:       points to the leaf/slot where we are going to insert new items
3788 * @cpu_key:    array of keys for items to be inserted
3789 * @data_size:  size of the body of each item we are going to insert
3790 * @nr:         size of @cpu_key/@data_size arrays
3791 */
3792void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
3793                            const struct btrfs_key *cpu_key, u32 *data_size,
3794                            int nr)
3795{
3796        struct btrfs_fs_info *fs_info = root->fs_info;
3797        struct btrfs_item *item;
3798        int i;
3799        u32 nritems;
3800        unsigned int data_end;
3801        struct btrfs_disk_key disk_key;
3802        struct extent_buffer *leaf;
3803        int slot;
3804        struct btrfs_map_token token;
3805        u32 total_size;
3806        u32 total_data = 0;
3807
3808        for (i = 0; i < nr; i++)
3809                total_data += data_size[i];
3810        total_size = total_data + (nr * sizeof(struct btrfs_item));
3811
3812        if (path->slots[0] == 0) {
3813                btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3814                fixup_low_keys(path, &disk_key, 1);
3815        }
3816        btrfs_unlock_up_safe(path, 1);
3817
3818        leaf = path->nodes[0];
3819        slot = path->slots[0];
3820
3821        nritems = btrfs_header_nritems(leaf);
3822        data_end = leaf_data_end(leaf);
3823
3824        if (btrfs_leaf_free_space(leaf) < total_size) {
3825                btrfs_print_leaf(leaf);
3826                btrfs_crit(fs_info, "not enough freespace need %u have %d",
3827                           total_size, btrfs_leaf_free_space(leaf));
3828                BUG();
3829        }
3830
3831        btrfs_init_map_token(&token, leaf);
3832        if (slot != nritems) {
3833                unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3834
3835                if (old_data < data_end) {
3836                        btrfs_print_leaf(leaf);
3837                        btrfs_crit(fs_info,
3838                "item at slot %d with data offset %u beyond data end of leaf %u",
3839                                   slot, old_data, data_end);
3840                        BUG();
3841                }
3842                /*
3843                 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3844                 */
3845                /* first correct the data pointers */
3846                for (i = slot; i < nritems; i++) {
3847                        u32 ioff;
3848
3849                        item = btrfs_item_nr(i);
3850                        ioff = btrfs_token_item_offset(&token, item);
3851                        btrfs_set_token_item_offset(&token, item,
3852                                                    ioff - total_data);
3853                }
3854                /* shift the items */
3855                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3856                              btrfs_item_nr_offset(slot),
3857                              (nritems - slot) * sizeof(struct btrfs_item));
3858
3859                /* shift the data */
3860                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3861                              data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
3862                              data_end, old_data - data_end);
3863                data_end = old_data;
3864        }
3865
3866        /* setup the item for the new data */
3867        for (i = 0; i < nr; i++) {
3868                btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3869                btrfs_set_item_key(leaf, &disk_key, slot + i);
3870                item = btrfs_item_nr(slot + i);
3871                data_end -= data_size[i];
3872                btrfs_set_token_item_offset(&token, item, data_end);
3873                btrfs_set_token_item_size(&token, item, data_size[i]);
3874        }
3875
3876        btrfs_set_header_nritems(leaf, nritems + nr);
3877        btrfs_mark_buffer_dirty(leaf);
3878
3879        if (btrfs_leaf_free_space(leaf) < 0) {
3880                btrfs_print_leaf(leaf);
3881                BUG();
3882        }
3883}
3884
3885/*
3886 * Given a key and some data, insert items into the tree.
3887 * This does all the path init required, making room in the tree if needed.
3888 */
3889int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3890                            struct btrfs_root *root,
3891                            struct btrfs_path *path,
3892                            const struct btrfs_key *cpu_key, u32 *data_size,
3893                            int nr)
3894{
3895        int ret = 0;
3896        int slot;
3897        int i;
3898        u32 total_size = 0;
3899        u32 total_data = 0;
3900
3901        for (i = 0; i < nr; i++)
3902                total_data += data_size[i];
3903
3904        total_size = total_data + (nr * sizeof(struct btrfs_item));
3905        ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3906        if (ret == 0)
3907                return -EEXIST;
3908        if (ret < 0)
3909                return ret;
3910
3911        slot = path->slots[0];
3912        BUG_ON(slot < 0);
3913
3914        setup_items_for_insert(root, path, cpu_key, data_size, nr);
3915        return 0;
3916}
3917
3918/*
3919 * Given a key and some data, insert an item into the tree.
3920 * This does all the path init required, making room in the tree if needed.
3921 */
3922int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3923                      const struct btrfs_key *cpu_key, void *data,
3924                      u32 data_size)
3925{
3926        int ret = 0;
3927        struct btrfs_path *path;
3928        struct extent_buffer *leaf;
3929        unsigned long ptr;
3930
3931        path = btrfs_alloc_path();
3932        if (!path)
3933                return -ENOMEM;
3934        ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3935        if (!ret) {
3936                leaf = path->nodes[0];
3937                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3938                write_extent_buffer(leaf, data, ptr, data_size);
3939                btrfs_mark_buffer_dirty(leaf);
3940        }
3941        btrfs_free_path(path);
3942        return ret;
3943}
3944
3945/*
3946 * delete the pointer from a given node.
3947 *
3948 * the tree should have been previously balanced so the deletion does not
3949 * empty a node.
3950 */
3951static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
3952                    int level, int slot)
3953{
3954        struct extent_buffer *parent = path->nodes[level];
3955        u32 nritems;
3956        int ret;
3957
3958        nritems = btrfs_header_nritems(parent);
3959        if (slot != nritems - 1) {
3960                if (level) {
3961                        ret = btrfs_tree_mod_log_insert_move(parent, slot,
3962                                        slot + 1, nritems - slot - 1);
3963                        BUG_ON(ret < 0);
3964                }
3965                memmove_extent_buffer(parent,
3966                              btrfs_node_key_ptr_offset(slot),
3967                              btrfs_node_key_ptr_offset(slot + 1),
3968                              sizeof(struct btrfs_key_ptr) *
3969                              (nritems - slot - 1));
3970        } else if (level) {
3971                ret = btrfs_tree_mod_log_insert_key(parent, slot,
3972                                BTRFS_MOD_LOG_KEY_REMOVE, GFP_NOFS);
3973                BUG_ON(ret < 0);
3974        }
3975
3976        nritems--;
3977        btrfs_set_header_nritems(parent, nritems);
3978        if (nritems == 0 && parent == root->node) {
3979                BUG_ON(btrfs_header_level(root->node) != 1);
3980                /* just turn the root into a leaf and break */
3981                btrfs_set_header_level(root->node, 0);
3982        } else if (slot == 0) {
3983                struct btrfs_disk_key disk_key;
3984
3985                btrfs_node_key(parent, &disk_key, 0);
3986                fixup_low_keys(path, &disk_key, level + 1);
3987        }
3988        btrfs_mark_buffer_dirty(parent);
3989}
3990
3991/*
3992 * a helper function to delete the leaf pointed to by path->slots[1] and
3993 * path->nodes[1].
3994 *
3995 * This deletes the pointer in path->nodes[1] and frees the leaf
3996 * block extent.  zero is returned if it all worked out, < 0 otherwise.
3997 *
3998 * The path must have already been setup for deleting the leaf, including
3999 * all the proper balancing.  path->nodes[1] must be locked.
4000 */
4001static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4002                                    struct btrfs_root *root,
4003                                    struct btrfs_path *path,
4004                                    struct extent_buffer *leaf)
4005{
4006        WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4007        del_ptr(root, path, 1, path->slots[1]);
4008
4009        /*
4010         * btrfs_free_extent is expensive, we want to make sure we
4011         * aren't holding any locks when we call it
4012         */
4013        btrfs_unlock_up_safe(path, 0);
4014
4015        root_sub_used(root, leaf->len);
4016
4017        atomic_inc(&leaf->refs);
4018        btrfs_free_tree_block(trans, root, leaf, 0, 1);
4019        free_extent_buffer_stale(leaf);
4020}
4021/*
4022 * delete the item at the leaf level in path.  If that empties
4023 * the leaf, remove it from the tree
4024 */
4025int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4026                    struct btrfs_path *path, int slot, int nr)
4027{
4028        struct btrfs_fs_info *fs_info = root->fs_info;
4029        struct extent_buffer *leaf;
4030        struct btrfs_item *item;
4031        u32 last_off;
4032        u32 dsize = 0;
4033        int ret = 0;
4034        int wret;
4035        int i;
4036        u32 nritems;
4037
4038        leaf = path->nodes[0];
4039        last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4040
4041        for (i = 0; i < nr; i++)
4042                dsize += btrfs_item_size_nr(leaf, slot + i);
4043
4044        nritems = btrfs_header_nritems(leaf);
4045
4046        if (slot + nr != nritems) {
4047                int data_end = leaf_data_end(leaf);
4048                struct btrfs_map_token token;
4049
4050                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4051                              data_end + dsize,
4052                              BTRFS_LEAF_DATA_OFFSET + data_end,
4053                              last_off - data_end);
4054
4055                btrfs_init_map_token(&token, leaf);
4056                for (i = slot + nr; i < nritems; i++) {
4057                        u32 ioff;
4058
4059                        item = btrfs_item_nr(i);
4060                        ioff = btrfs_token_item_offset(&token, item);
4061                        btrfs_set_token_item_offset(&token, item, ioff + dsize);
4062                }
4063
4064                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4065                              btrfs_item_nr_offset(slot + nr),
4066                              sizeof(struct btrfs_item) *
4067                              (nritems - slot - nr));
4068        }
4069        btrfs_set_header_nritems(leaf, nritems - nr);
4070        nritems -= nr;
4071
4072        /* delete the leaf if we've emptied it */
4073        if (nritems == 0) {
4074                if (leaf == root->node) {
4075                        btrfs_set_header_level(leaf, 0);
4076                } else {
4077                        btrfs_clean_tree_block(leaf);
4078                        btrfs_del_leaf(trans, root, path, leaf);
4079                }
4080        } else {
4081                int used = leaf_space_used(leaf, 0, nritems);
4082                if (slot == 0) {
4083                        struct btrfs_disk_key disk_key;
4084
4085                        btrfs_item_key(leaf, &disk_key, 0);
4086                        fixup_low_keys(path, &disk_key, 1);
4087                }
4088
4089                /* delete the leaf if it is mostly empty */
4090                if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4091                        /* push_leaf_left fixes the path.
4092                         * make sure the path still points to our leaf
4093                         * for possible call to del_ptr below
4094                         */
4095                        slot = path->slots[1];
4096                        atomic_inc(&leaf->refs);
4097
4098                        wret = push_leaf_left(trans, root, path, 1, 1,
4099                                              1, (u32)-1);
4100                        if (wret < 0 && wret != -ENOSPC)
4101                                ret = wret;
4102
4103                        if (path->nodes[0] == leaf &&
4104                            btrfs_header_nritems(leaf)) {
4105                                wret = push_leaf_right(trans, root, path, 1,
4106                                                       1, 1, 0);
4107                                if (wret < 0 && wret != -ENOSPC)
4108                                        ret = wret;
4109                        }
4110
4111                        if (btrfs_header_nritems(leaf) == 0) {
4112                                path->slots[1] = slot;
4113                                btrfs_del_leaf(trans, root, path, leaf);
4114                                free_extent_buffer(leaf);
4115                                ret = 0;
4116                        } else {
4117                                /* if we're still in the path, make sure
4118                                 * we're dirty.  Otherwise, one of the
4119                                 * push_leaf functions must have already
4120                                 * dirtied this buffer
4121                                 */
4122                                if (path->nodes[0] == leaf)
4123                                        btrfs_mark_buffer_dirty(leaf);
4124                                free_extent_buffer(leaf);
4125                        }
4126                } else {
4127                        btrfs_mark_buffer_dirty(leaf);
4128                }
4129        }
4130        return ret;
4131}
4132
4133/*
4134 * search the tree again to find a leaf with lesser keys
4135 * returns 0 if it found something or 1 if there are no lesser leaves.
4136 * returns < 0 on io errors.
4137 *
4138 * This may release the path, and so you may lose any locks held at the
4139 * time you call it.
4140 */
4141int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4142{
4143        struct btrfs_key key;
4144        struct btrfs_disk_key found_key;
4145        int ret;
4146
4147        btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4148
4149        if (key.offset > 0) {
4150                key.offset--;
4151        } else if (key.type > 0) {
4152                key.type--;
4153                key.offset = (u64)-1;
4154        } else if (key.objectid > 0) {
4155                key.objectid--;
4156                key.type = (u8)-1;
4157                key.offset = (u64)-1;
4158        } else {
4159                return 1;
4160        }
4161
4162        btrfs_release_path(path);
4163        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4164        if (ret < 0)
4165                return ret;
4166        btrfs_item_key(path->nodes[0], &found_key, 0);
4167        ret = comp_keys(&found_key, &key);
4168        /*
4169         * We might have had an item with the previous key in the tree right
4170         * before we released our path. And after we released our path, that
4171         * item might have been pushed to the first slot (0) of the leaf we
4172         * were holding due to a tree balance. Alternatively, an item with the
4173         * previous key can exist as the only element of a leaf (big fat item).
4174         * Therefore account for these 2 cases, so that our callers (like
4175         * btrfs_previous_item) don't miss an existing item with a key matching
4176         * the previous key we computed above.
4177         */
4178        if (ret <= 0)
4179                return 0;
4180        return 1;
4181}
4182
4183/*
4184 * A helper function to walk down the tree starting at min_key, and looking
4185 * for nodes or leaves that are have a minimum transaction id.
4186 * This is used by the btree defrag code, and tree logging
4187 *
4188 * This does not cow, but it does stuff the starting key it finds back
4189 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4190 * key and get a writable path.
4191 *
4192 * This honors path->lowest_level to prevent descent past a given level
4193 * of the tree.
4194 *
4195 * min_trans indicates the oldest transaction that you are interested
4196 * in walking through.  Any nodes or leaves older than min_trans are
4197 * skipped over (without reading them).
4198 *
4199 * returns zero if something useful was found, < 0 on error and 1 if there
4200 * was nothing in the tree that matched the search criteria.
4201 */
4202int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4203                         struct btrfs_path *path,
4204                         u64 min_trans)
4205{
4206        struct extent_buffer *cur;
4207        struct btrfs_key found_key;
4208        int slot;
4209        int sret;
4210        u32 nritems;
4211        int level;
4212        int ret = 1;
4213        int keep_locks = path->keep_locks;
4214
4215        path->keep_locks = 1;
4216again:
4217        cur = btrfs_read_lock_root_node(root);
4218        level = btrfs_header_level(cur);
4219        WARN_ON(path->nodes[level]);
4220        path->nodes[level] = cur;
4221        path->locks[level] = BTRFS_READ_LOCK;
4222
4223        if (btrfs_header_generation(cur) < min_trans) {
4224                ret = 1;
4225                goto out;
4226        }
4227        while (1) {
4228                nritems = btrfs_header_nritems(cur);
4229                level = btrfs_header_level(cur);
4230                sret = btrfs_bin_search(cur, min_key, &slot);
4231                if (sret < 0) {
4232                        ret = sret;
4233                        goto out;
4234                }
4235
4236                /* at the lowest level, we're done, setup the path and exit */
4237                if (level == path->lowest_level) {
4238                        if (slot >= nritems)
4239                                goto find_next_key;
4240                        ret = 0;
4241                        path->slots[level] = slot;
4242                        btrfs_item_key_to_cpu(cur, &found_key, slot);
4243                        goto out;
4244                }
4245                if (sret && slot > 0)
4246                        slot--;
4247                /*
4248                 * check this node pointer against the min_trans parameters.
4249                 * If it is too old, skip to the next one.
4250                 */
4251                while (slot < nritems) {
4252                        u64 gen;
4253
4254                        gen = btrfs_node_ptr_generation(cur, slot);
4255                        if (gen < min_trans) {
4256                                slot++;
4257                                continue;
4258                        }
4259                        break;
4260                }
4261find_next_key:
4262                /*
4263                 * we didn't find a candidate key in this node, walk forward
4264                 * and find another one
4265                 */
4266                if (slot >= nritems) {
4267                        path->slots[level] = slot;
4268                        sret = btrfs_find_next_key(root, path, min_key, level,
4269                                                  min_trans);
4270                        if (sret == 0) {
4271                                btrfs_release_path(path);
4272                                goto again;
4273                        } else {
4274                                goto out;
4275                        }
4276                }
4277                /* save our key for returning back */
4278                btrfs_node_key_to_cpu(cur, &found_key, slot);
4279                path->slots[level] = slot;
4280                if (level == path->lowest_level) {
4281                        ret = 0;
4282                        goto out;
4283                }
4284                cur = btrfs_read_node_slot(cur, slot);
4285                if (IS_ERR(cur)) {
4286                        ret = PTR_ERR(cur);
4287                        goto out;
4288                }
4289
4290                btrfs_tree_read_lock(cur);
4291
4292                path->locks[level - 1] = BTRFS_READ_LOCK;
4293                path->nodes[level - 1] = cur;
4294                unlock_up(path, level, 1, 0, NULL);
4295        }
4296out:
4297        path->keep_locks = keep_locks;
4298        if (ret == 0) {
4299                btrfs_unlock_up_safe(path, path->lowest_level + 1);
4300                memcpy(min_key, &found_key, sizeof(found_key));
4301        }
4302        return ret;
4303}
4304
4305/*
4306 * this is similar to btrfs_next_leaf, but does not try to preserve
4307 * and fixup the path.  It looks for and returns the next key in the
4308 * tree based on the current path and the min_trans parameters.
4309 *
4310 * 0 is returned if another key is found, < 0 if there are any errors
4311 * and 1 is returned if there are no higher keys in the tree
4312 *
4313 * path->keep_locks should be set to 1 on the search made before
4314 * calling this function.
4315 */
4316int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4317                        struct btrfs_key *key, int level, u64 min_trans)
4318{
4319        int slot;
4320        struct extent_buffer *c;
4321
4322        WARN_ON(!path->keep_locks && !path->skip_locking);
4323        while (level < BTRFS_MAX_LEVEL) {
4324                if (!path->nodes[level])
4325                        return 1;
4326
4327                slot = path->slots[level] + 1;
4328                c = path->nodes[level];
4329next:
4330                if (slot >= btrfs_header_nritems(c)) {
4331                        int ret;
4332                        int orig_lowest;
4333                        struct btrfs_key cur_key;
4334                        if (level + 1 >= BTRFS_MAX_LEVEL ||
4335                            !path->nodes[level + 1])
4336                                return 1;
4337
4338                        if (path->locks[level + 1] || path->skip_locking) {
4339                                level++;
4340                                continue;
4341                        }
4342
4343                        slot = btrfs_header_nritems(c) - 1;
4344                        if (level == 0)
4345                                btrfs_item_key_to_cpu(c, &cur_key, slot);
4346                        else
4347                                btrfs_node_key_to_cpu(c, &cur_key, slot);
4348
4349                        orig_lowest = path->lowest_level;
4350                        btrfs_release_path(path);
4351                        path->lowest_level = level;
4352                        ret = btrfs_search_slot(NULL, root, &cur_key, path,
4353                                                0, 0);
4354                        path->lowest_level = orig_lowest;
4355                        if (ret < 0)
4356                                return ret;
4357
4358                        c = path->nodes[level];
4359                        slot = path->slots[level];
4360                        if (ret == 0)
4361                                slot++;
4362                        goto next;
4363                }
4364
4365                if (level == 0)
4366                        btrfs_item_key_to_cpu(c, key, slot);
4367                else {
4368                        u64 gen = btrfs_node_ptr_generation(c, slot);
4369
4370                        if (gen < min_trans) {
4371                                slot++;
4372                                goto next;
4373                        }
4374                        btrfs_node_key_to_cpu(c, key, slot);
4375                }
4376                return 0;
4377        }
4378        return 1;
4379}
4380
4381int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4382                        u64 time_seq)
4383{
4384        int slot;
4385        int level;
4386        struct extent_buffer *c;
4387        struct extent_buffer *next;
4388        struct btrfs_key key;
4389        u32 nritems;
4390        int ret;
4391        int i;
4392
4393        nritems = btrfs_header_nritems(path->nodes[0]);
4394        if (nritems == 0)
4395                return 1;
4396
4397        btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4398again:
4399        level = 1;
4400        next = NULL;
4401        btrfs_release_path(path);
4402
4403        path->keep_locks = 1;
4404
4405        if (time_seq)
4406                ret = btrfs_search_old_slot(root, &key, path, time_seq);
4407        else
4408                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4409        path->keep_locks = 0;
4410
4411        if (ret < 0)
4412                return ret;
4413
4414        nritems = btrfs_header_nritems(path->nodes[0]);
4415        /*
4416         * by releasing the path above we dropped all our locks.  A balance
4417         * could have added more items next to the key that used to be
4418         * at the very end of the block.  So, check again here and
4419         * advance the path if there are now more items available.
4420         */
4421        if (nritems > 0 && path->slots[0] < nritems - 1) {
4422                if (ret == 0)
4423                        path->slots[0]++;
4424                ret = 0;
4425                goto done;
4426        }
4427        /*
4428         * So the above check misses one case:
4429         * - after releasing the path above, someone has removed the item that
4430         *   used to be at the very end of the block, and balance between leafs
4431         *   gets another one with bigger key.offset to replace it.
4432         *
4433         * This one should be returned as well, or we can get leaf corruption
4434         * later(esp. in __btrfs_drop_extents()).
4435         *
4436         * And a bit more explanation about this check,
4437         * with ret > 0, the key isn't found, the path points to the slot
4438         * where it should be inserted, so the path->slots[0] item must be the
4439         * bigger one.
4440         */
4441        if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4442                ret = 0;
4443                goto done;
4444        }
4445
4446        while (level < BTRFS_MAX_LEVEL) {
4447                if (!path->nodes[level]) {
4448                        ret = 1;
4449                        goto done;
4450                }
4451
4452                slot = path->slots[level] + 1;
4453                c = path->nodes[level];
4454                if (slot >= btrfs_header_nritems(c)) {
4455                        level++;
4456                        if (level == BTRFS_MAX_LEVEL) {
4457                                ret = 1;
4458                                goto done;
4459                        }
4460                        continue;
4461                }
4462
4463
4464                /*
4465                 * Our current level is where we're going to start from, and to
4466                 * make sure lockdep doesn't complain we need to drop our locks
4467                 * and nodes from 0 to our current level.
4468                 */
4469                for (i = 0; i < level; i++) {
4470                        if (path->locks[level]) {
4471                                btrfs_tree_read_unlock(path->nodes[i]);
4472                                path->locks[i] = 0;
4473                        }
4474                        free_extent_buffer(path->nodes[i]);
4475                        path->nodes[i] = NULL;
4476                }
4477
4478                next = c;
4479                ret = read_block_for_search(root, path, &next, level,
4480                                            slot, &key);
4481                if (ret == -EAGAIN)
4482                        goto again;
4483
4484                if (ret < 0) {
4485                        btrfs_release_path(path);
4486                        goto done;
4487                }
4488
4489                if (!path->skip_locking) {
4490                        ret = btrfs_try_tree_read_lock(next);
4491                        if (!ret && time_seq) {
4492                                /*
4493                                 * If we don't get the lock, we may be racing
4494                                 * with push_leaf_left, holding that lock while
4495                                 * itself waiting for the leaf we've currently
4496                                 * locked. To solve this situation, we give up
4497                                 * on our lock and cycle.
4498                                 */
4499                                free_extent_buffer(next);
4500                                btrfs_release_path(path);
4501                                cond_resched();
4502                                goto again;
4503                        }
4504                        if (!ret)
4505                                btrfs_tree_read_lock(next);
4506                }
4507                break;
4508        }
4509        path->slots[level] = slot;
4510        while (1) {
4511                level--;
4512                path->nodes[level] = next;
4513                path->slots[level] = 0;
4514                if (!path->skip_locking)
4515                        path->locks[level] = BTRFS_READ_LOCK;
4516                if (!level)
4517                        break;
4518
4519                ret = read_block_for_search(root, path, &next, level,
4520                                            0, &key);
4521                if (ret == -EAGAIN)
4522                        goto again;
4523
4524                if (ret < 0) {
4525                        btrfs_release_path(path);
4526                        goto done;
4527                }
4528
4529                if (!path->skip_locking)
4530                        btrfs_tree_read_lock(next);
4531        }
4532        ret = 0;
4533done:
4534        unlock_up(path, 0, 1, 0, NULL);
4535
4536        return ret;
4537}
4538
4539/*
4540 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4541 * searching until it gets past min_objectid or finds an item of 'type'
4542 *
4543 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4544 */
4545int btrfs_previous_item(struct btrfs_root *root,
4546                        struct btrfs_path *path, u64 min_objectid,
4547                        int type)
4548{
4549        struct btrfs_key found_key;
4550        struct extent_buffer *leaf;
4551        u32 nritems;
4552        int ret;
4553
4554        while (1) {
4555                if (path->slots[0] == 0) {
4556                        ret = btrfs_prev_leaf(root, path);
4557                        if (ret != 0)
4558                                return ret;
4559                } else {
4560                        path->slots[0]--;
4561                }
4562                leaf = path->nodes[0];
4563                nritems = btrfs_header_nritems(leaf);
4564                if (nritems == 0)
4565                        return 1;
4566                if (path->slots[0] == nritems)
4567                        path->slots[0]--;
4568
4569                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4570                if (found_key.objectid < min_objectid)
4571                        break;
4572                if (found_key.type == type)
4573                        return 0;
4574                if (found_key.objectid == min_objectid &&
4575                    found_key.type < type)
4576                        break;
4577        }
4578        return 1;
4579}
4580
4581/*
4582 * search in extent tree to find a previous Metadata/Data extent item with
4583 * min objecitd.
4584 *
4585 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4586 */
4587int btrfs_previous_extent_item(struct btrfs_root *root,
4588                        struct btrfs_path *path, u64 min_objectid)
4589{
4590        struct btrfs_key found_key;
4591        struct extent_buffer *leaf;
4592        u32 nritems;
4593        int ret;
4594
4595        while (1) {
4596                if (path->slots[0] == 0) {
4597                        ret = btrfs_prev_leaf(root, path);
4598                        if (ret != 0)
4599                                return ret;
4600                } else {
4601                        path->slots[0]--;
4602                }
4603                leaf = path->nodes[0];
4604                nritems = btrfs_header_nritems(leaf);
4605                if (nritems == 0)
4606                        return 1;
4607                if (path->slots[0] == nritems)
4608                        path->slots[0]--;
4609
4610                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4611                if (found_key.objectid < min_objectid)
4612                        break;
4613                if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
4614                    found_key.type == BTRFS_METADATA_ITEM_KEY)
4615                        return 0;
4616                if (found_key.objectid == min_objectid &&
4617                    found_key.type < BTRFS_EXTENT_ITEM_KEY)
4618                        break;
4619        }
4620        return 1;
4621}
4622