linux/fs/crypto/hooks.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * fs/crypto/hooks.c
   4 *
   5 * Encryption hooks for higher-level filesystem operations.
   6 */
   7
   8#include <linux/key.h>
   9
  10#include "fscrypt_private.h"
  11
  12/**
  13 * fscrypt_file_open() - prepare to open a possibly-encrypted regular file
  14 * @inode: the inode being opened
  15 * @filp: the struct file being set up
  16 *
  17 * Currently, an encrypted regular file can only be opened if its encryption key
  18 * is available; access to the raw encrypted contents is not supported.
  19 * Therefore, we first set up the inode's encryption key (if not already done)
  20 * and return an error if it's unavailable.
  21 *
  22 * We also verify that if the parent directory (from the path via which the file
  23 * is being opened) is encrypted, then the inode being opened uses the same
  24 * encryption policy.  This is needed as part of the enforcement that all files
  25 * in an encrypted directory tree use the same encryption policy, as a
  26 * protection against certain types of offline attacks.  Note that this check is
  27 * needed even when opening an *unencrypted* file, since it's forbidden to have
  28 * an unencrypted file in an encrypted directory.
  29 *
  30 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
  31 */
  32int fscrypt_file_open(struct inode *inode, struct file *filp)
  33{
  34        int err;
  35        struct dentry *dir;
  36
  37        err = fscrypt_require_key(inode);
  38        if (err)
  39                return err;
  40
  41        dir = dget_parent(file_dentry(filp));
  42        if (IS_ENCRYPTED(d_inode(dir)) &&
  43            !fscrypt_has_permitted_context(d_inode(dir), inode)) {
  44                fscrypt_warn(inode,
  45                             "Inconsistent encryption context (parent directory: %lu)",
  46                             d_inode(dir)->i_ino);
  47                err = -EPERM;
  48        }
  49        dput(dir);
  50        return err;
  51}
  52EXPORT_SYMBOL_GPL(fscrypt_file_open);
  53
  54int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
  55                           struct dentry *dentry)
  56{
  57        if (fscrypt_is_nokey_name(dentry))
  58                return -ENOKEY;
  59        /*
  60         * We don't need to separately check that the directory inode's key is
  61         * available, as it's implied by the dentry not being a no-key name.
  62         */
  63
  64        if (!fscrypt_has_permitted_context(dir, inode))
  65                return -EXDEV;
  66
  67        return 0;
  68}
  69EXPORT_SYMBOL_GPL(__fscrypt_prepare_link);
  70
  71int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
  72                             struct inode *new_dir, struct dentry *new_dentry,
  73                             unsigned int flags)
  74{
  75        if (fscrypt_is_nokey_name(old_dentry) ||
  76            fscrypt_is_nokey_name(new_dentry))
  77                return -ENOKEY;
  78        /*
  79         * We don't need to separately check that the directory inodes' keys are
  80         * available, as it's implied by the dentries not being no-key names.
  81         */
  82
  83        if (old_dir != new_dir) {
  84                if (IS_ENCRYPTED(new_dir) &&
  85                    !fscrypt_has_permitted_context(new_dir,
  86                                                   d_inode(old_dentry)))
  87                        return -EXDEV;
  88
  89                if ((flags & RENAME_EXCHANGE) &&
  90                    IS_ENCRYPTED(old_dir) &&
  91                    !fscrypt_has_permitted_context(old_dir,
  92                                                   d_inode(new_dentry)))
  93                        return -EXDEV;
  94        }
  95        return 0;
  96}
  97EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename);
  98
  99int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
 100                             struct fscrypt_name *fname)
 101{
 102        int err = fscrypt_setup_filename(dir, &dentry->d_name, 1, fname);
 103
 104        if (err && err != -ENOENT)
 105                return err;
 106
 107        if (fname->is_nokey_name) {
 108                spin_lock(&dentry->d_lock);
 109                dentry->d_flags |= DCACHE_NOKEY_NAME;
 110                spin_unlock(&dentry->d_lock);
 111        }
 112        return err;
 113}
 114EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);
 115
 116int __fscrypt_prepare_readdir(struct inode *dir)
 117{
 118        return fscrypt_get_encryption_info(dir, true);
 119}
 120EXPORT_SYMBOL_GPL(__fscrypt_prepare_readdir);
 121
 122int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr)
 123{
 124        if (attr->ia_valid & ATTR_SIZE)
 125                return fscrypt_require_key(d_inode(dentry));
 126        return 0;
 127}
 128EXPORT_SYMBOL_GPL(__fscrypt_prepare_setattr);
 129
 130/**
 131 * fscrypt_prepare_setflags() - prepare to change flags with FS_IOC_SETFLAGS
 132 * @inode: the inode on which flags are being changed
 133 * @oldflags: the old flags
 134 * @flags: the new flags
 135 *
 136 * The caller should be holding i_rwsem for write.
 137 *
 138 * Return: 0 on success; -errno if the flags change isn't allowed or if
 139 *         another error occurs.
 140 */
 141int fscrypt_prepare_setflags(struct inode *inode,
 142                             unsigned int oldflags, unsigned int flags)
 143{
 144        struct fscrypt_info *ci;
 145        struct key *key;
 146        struct fscrypt_master_key *mk;
 147        int err;
 148
 149        /*
 150         * When the CASEFOLD flag is set on an encrypted directory, we must
 151         * derive the secret key needed for the dirhash.  This is only possible
 152         * if the directory uses a v2 encryption policy.
 153         */
 154        if (IS_ENCRYPTED(inode) && (flags & ~oldflags & FS_CASEFOLD_FL)) {
 155                err = fscrypt_require_key(inode);
 156                if (err)
 157                        return err;
 158                ci = inode->i_crypt_info;
 159                if (ci->ci_policy.version != FSCRYPT_POLICY_V2)
 160                        return -EINVAL;
 161                key = ci->ci_master_key;
 162                mk = key->payload.data[0];
 163                down_read(&key->sem);
 164                if (is_master_key_secret_present(&mk->mk_secret))
 165                        err = fscrypt_derive_dirhash_key(ci, mk);
 166                else
 167                        err = -ENOKEY;
 168                up_read(&key->sem);
 169                return err;
 170        }
 171        return 0;
 172}
 173
 174/**
 175 * fscrypt_prepare_symlink() - prepare to create a possibly-encrypted symlink
 176 * @dir: directory in which the symlink is being created
 177 * @target: plaintext symlink target
 178 * @len: length of @target excluding null terminator
 179 * @max_len: space the filesystem has available to store the symlink target
 180 * @disk_link: (out) the on-disk symlink target being prepared
 181 *
 182 * This function computes the size the symlink target will require on-disk,
 183 * stores it in @disk_link->len, and validates it against @max_len.  An
 184 * encrypted symlink may be longer than the original.
 185 *
 186 * Additionally, @disk_link->name is set to @target if the symlink will be
 187 * unencrypted, but left NULL if the symlink will be encrypted.  For encrypted
 188 * symlinks, the filesystem must call fscrypt_encrypt_symlink() to create the
 189 * on-disk target later.  (The reason for the two-step process is that some
 190 * filesystems need to know the size of the symlink target before creating the
 191 * inode, e.g. to determine whether it will be a "fast" or "slow" symlink.)
 192 *
 193 * Return: 0 on success, -ENAMETOOLONG if the symlink target is too long,
 194 * -ENOKEY if the encryption key is missing, or another -errno code if a problem
 195 * occurred while setting up the encryption key.
 196 */
 197int fscrypt_prepare_symlink(struct inode *dir, const char *target,
 198                            unsigned int len, unsigned int max_len,
 199                            struct fscrypt_str *disk_link)
 200{
 201        const union fscrypt_policy *policy;
 202
 203        /*
 204         * To calculate the size of the encrypted symlink target we need to know
 205         * the amount of NUL padding, which is determined by the flags set in
 206         * the encryption policy which will be inherited from the directory.
 207         */
 208        policy = fscrypt_policy_to_inherit(dir);
 209        if (policy == NULL) {
 210                /* Not encrypted */
 211                disk_link->name = (unsigned char *)target;
 212                disk_link->len = len + 1;
 213                if (disk_link->len > max_len)
 214                        return -ENAMETOOLONG;
 215                return 0;
 216        }
 217        if (IS_ERR(policy))
 218                return PTR_ERR(policy);
 219
 220        /*
 221         * Calculate the size of the encrypted symlink and verify it won't
 222         * exceed max_len.  Note that for historical reasons, encrypted symlink
 223         * targets are prefixed with the ciphertext length, despite this
 224         * actually being redundant with i_size.  This decreases by 2 bytes the
 225         * longest symlink target we can accept.
 226         *
 227         * We could recover 1 byte by not counting a null terminator, but
 228         * counting it (even though it is meaningless for ciphertext) is simpler
 229         * for now since filesystems will assume it is there and subtract it.
 230         */
 231        if (!fscrypt_fname_encrypted_size(policy, len,
 232                                          max_len - sizeof(struct fscrypt_symlink_data),
 233                                          &disk_link->len))
 234                return -ENAMETOOLONG;
 235        disk_link->len += sizeof(struct fscrypt_symlink_data);
 236
 237        disk_link->name = NULL;
 238        return 0;
 239}
 240EXPORT_SYMBOL_GPL(fscrypt_prepare_symlink);
 241
 242int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
 243                              unsigned int len, struct fscrypt_str *disk_link)
 244{
 245        int err;
 246        struct qstr iname = QSTR_INIT(target, len);
 247        struct fscrypt_symlink_data *sd;
 248        unsigned int ciphertext_len;
 249
 250        /*
 251         * fscrypt_prepare_new_inode() should have already set up the new
 252         * symlink inode's encryption key.  We don't wait until now to do it,
 253         * since we may be in a filesystem transaction now.
 254         */
 255        if (WARN_ON_ONCE(!fscrypt_has_encryption_key(inode)))
 256                return -ENOKEY;
 257
 258        if (disk_link->name) {
 259                /* filesystem-provided buffer */
 260                sd = (struct fscrypt_symlink_data *)disk_link->name;
 261        } else {
 262                sd = kmalloc(disk_link->len, GFP_NOFS);
 263                if (!sd)
 264                        return -ENOMEM;
 265        }
 266        ciphertext_len = disk_link->len - sizeof(*sd);
 267        sd->len = cpu_to_le16(ciphertext_len);
 268
 269        err = fscrypt_fname_encrypt(inode, &iname, sd->encrypted_path,
 270                                    ciphertext_len);
 271        if (err)
 272                goto err_free_sd;
 273
 274        /*
 275         * Null-terminating the ciphertext doesn't make sense, but we still
 276         * count the null terminator in the length, so we might as well
 277         * initialize it just in case the filesystem writes it out.
 278         */
 279        sd->encrypted_path[ciphertext_len] = '\0';
 280
 281        /* Cache the plaintext symlink target for later use by get_link() */
 282        err = -ENOMEM;
 283        inode->i_link = kmemdup(target, len + 1, GFP_NOFS);
 284        if (!inode->i_link)
 285                goto err_free_sd;
 286
 287        if (!disk_link->name)
 288                disk_link->name = (unsigned char *)sd;
 289        return 0;
 290
 291err_free_sd:
 292        if (!disk_link->name)
 293                kfree(sd);
 294        return err;
 295}
 296EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink);
 297
 298/**
 299 * fscrypt_get_symlink() - get the target of an encrypted symlink
 300 * @inode: the symlink inode
 301 * @caddr: the on-disk contents of the symlink
 302 * @max_size: size of @caddr buffer
 303 * @done: if successful, will be set up to free the returned target if needed
 304 *
 305 * If the symlink's encryption key is available, we decrypt its target.
 306 * Otherwise, we encode its target for presentation.
 307 *
 308 * This may sleep, so the filesystem must have dropped out of RCU mode already.
 309 *
 310 * Return: the presentable symlink target or an ERR_PTR()
 311 */
 312const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
 313                                unsigned int max_size,
 314                                struct delayed_call *done)
 315{
 316        const struct fscrypt_symlink_data *sd;
 317        struct fscrypt_str cstr, pstr;
 318        bool has_key;
 319        int err;
 320
 321        /* This is for encrypted symlinks only */
 322        if (WARN_ON(!IS_ENCRYPTED(inode)))
 323                return ERR_PTR(-EINVAL);
 324
 325        /* If the decrypted target is already cached, just return it. */
 326        pstr.name = READ_ONCE(inode->i_link);
 327        if (pstr.name)
 328                return pstr.name;
 329
 330        /*
 331         * Try to set up the symlink's encryption key, but we can continue
 332         * regardless of whether the key is available or not.
 333         */
 334        err = fscrypt_get_encryption_info(inode, false);
 335        if (err)
 336                return ERR_PTR(err);
 337        has_key = fscrypt_has_encryption_key(inode);
 338
 339        /*
 340         * For historical reasons, encrypted symlink targets are prefixed with
 341         * the ciphertext length, even though this is redundant with i_size.
 342         */
 343
 344        if (max_size < sizeof(*sd))
 345                return ERR_PTR(-EUCLEAN);
 346        sd = caddr;
 347        cstr.name = (unsigned char *)sd->encrypted_path;
 348        cstr.len = le16_to_cpu(sd->len);
 349
 350        if (cstr.len == 0)
 351                return ERR_PTR(-EUCLEAN);
 352
 353        if (cstr.len + sizeof(*sd) - 1 > max_size)
 354                return ERR_PTR(-EUCLEAN);
 355
 356        err = fscrypt_fname_alloc_buffer(cstr.len, &pstr);
 357        if (err)
 358                return ERR_PTR(err);
 359
 360        err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
 361        if (err)
 362                goto err_kfree;
 363
 364        err = -EUCLEAN;
 365        if (pstr.name[0] == '\0')
 366                goto err_kfree;
 367
 368        pstr.name[pstr.len] = '\0';
 369
 370        /*
 371         * Cache decrypted symlink targets in i_link for later use.  Don't cache
 372         * symlink targets encoded without the key, since those become outdated
 373         * once the key is added.  This pairs with the READ_ONCE() above and in
 374         * the VFS path lookup code.
 375         */
 376        if (!has_key ||
 377            cmpxchg_release(&inode->i_link, NULL, pstr.name) != NULL)
 378                set_delayed_call(done, kfree_link, pstr.name);
 379
 380        return pstr.name;
 381
 382err_kfree:
 383        kfree(pstr.name);
 384        return ERR_PTR(err);
 385}
 386EXPORT_SYMBOL_GPL(fscrypt_get_symlink);
 387
 388/**
 389 * fscrypt_symlink_getattr() - set the correct st_size for encrypted symlinks
 390 * @path: the path for the encrypted symlink being queried
 391 * @stat: the struct being filled with the symlink's attributes
 392 *
 393 * Override st_size of encrypted symlinks to be the length of the decrypted
 394 * symlink target (or the no-key encoded symlink target, if the key is
 395 * unavailable) rather than the length of the encrypted symlink target.  This is
 396 * necessary for st_size to match the symlink target that userspace actually
 397 * sees.  POSIX requires this, and some userspace programs depend on it.
 398 *
 399 * This requires reading the symlink target from disk if needed, setting up the
 400 * inode's encryption key if possible, and then decrypting or encoding the
 401 * symlink target.  This makes lstat() more heavyweight than is normally the
 402 * case.  However, decrypted symlink targets will be cached in ->i_link, so
 403 * usually the symlink won't have to be read and decrypted again later if/when
 404 * it is actually followed, readlink() is called, or lstat() is called again.
 405 *
 406 * Return: 0 on success, -errno on failure
 407 */
 408int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat)
 409{
 410        struct dentry *dentry = path->dentry;
 411        struct inode *inode = d_inode(dentry);
 412        const char *link;
 413        DEFINE_DELAYED_CALL(done);
 414
 415        /*
 416         * To get the symlink target that userspace will see (whether it's the
 417         * decrypted target or the no-key encoded target), we can just get it in
 418         * the same way the VFS does during path resolution and readlink().
 419         */
 420        link = READ_ONCE(inode->i_link);
 421        if (!link) {
 422                link = inode->i_op->get_link(dentry, inode, &done);
 423                if (IS_ERR(link))
 424                        return PTR_ERR(link);
 425        }
 426        stat->size = strlen(link);
 427        do_delayed_call(&done);
 428        return 0;
 429}
 430EXPORT_SYMBOL_GPL(fscrypt_symlink_getattr);
 431